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Abstract. A new batch of “complete and proper” digital signature
scheme submissions has recently been published by NIST as part of
its process for establishing post-quantum cryptographic standards. This
note communicates an attack on the 3WISE digital signature scheme
that the submitters did not wish to withdraw after NIST communicated
it to them.

While the 3WISE digital signature scheme is based on a collection of
cubic maps which are naturally modeled as symmetric 3-tensors and
3-tensor rank is a difficult problem, the multivariate signature scheme
is still vulnerable to MinRank attacks upon projection. We are able to
break the NIST security level I parameters within a few seconds. Since
the attack is polynomial time, there is no reparametrization resulting in
a secure scheme.
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1 Introduction

About a year ago, the National Institute of Standards and Technology (NIST)
published its first selections for post-quantum cryptographic standards, see [1].
Shortly thereafter, NIST published a new call for proposals for post-quantum
digital signatures, see [9], citing the contrast between the relatively limited se-
lection of secure digital signature schemes in the standardization process and
the quite diverse uses of digital signatures in the world today. Now, NIST has
published the “complete and proper” submissions added to the standardization
process from this call.

A submission is judged to be complete and proper by passing a checklist of
requirements specified in the call for proposals [9]. Usually the schemes that are
deemed complete and proper are plausibly secure; however, schemes for which
NIST has communicated to the submitters an attack but the submitters do not
wish to withdraw from the process are still published for public analysis. The
publication of such schemes does not illustrate any endorsement by NIST or any
assessment of the quality of the submission; it merely indicates the satisfaction
of the requirements for submission into the process. This short article presents
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the attack NIST communicated with the submitter of 3WISE revealling a total
and practical break of the scheme.

The 3WISE digital signature scheme [6] is a multivariate scheme utilizing
cubic maps instead of the traditional quadratic maps. One of the motivations
for the design of 3WISE is the fact that the natural way of representing cubic
forms is by way of 3-tensors, and 3-tensor rank is a difficult problem. In fact,
the central map of 3WISE is a fixed collection of 3-tensors, each of which is a
rank 1 tensor.

In this work, we show that we may still apply standard MinRank techniques
to attack 3WISE due to its low 3-tensor rank property. Specifically, we show that
we may apply a projection to the scheme and recover a related quadratic system
with a rank defect. We then show that solving the MinRank instances arising
from such projections reveals information about the secret bases and powers a
key recovery attack.

We implement our attack and find that we are able to efficiently recover an
equivalent secret key for full scale parameter sets in seconds. Since the attack
is polynomial time, there is no possible parametrization that offers a reasonable
combination of security and performance.

The paper is organized as follows. First, we present the design of the 3WISE
digital signature scheme. We next discuss the MinRank problem and a simple
method for solving the problem that is efficient for very small target ranks.
In the subsequent section, we present our attack on 3WISE and analyze its
complexity. Our experimental data on our implementation of the attack on the
actual parameters of 3WISE are then provided in the next section. Finally, we
conclude, noting how this cryptanalysis compares with previous cryptanalyses
in the literature.

2 The 3WISE Digital Signature Scheme

The 3WISE digital signature scheme is specified in [6]. The construction is a
small field multivariate cryptosystem with the normal construction given in Fig-
ure 1. There is a central nonlinear polynomial map F which is perturbed by two
linear transformations: one acting on the inputs and one acting on the outputs.
The central map must be specially structured so that it is easily inverted. The
hope is that the public map P is hard to invert.
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Fig. 1. Generic construction of a small field multivariate cryptosystem.



A Total Break of the 3WISE Digital Signature Scheme 3

In the case of 3WISE, the central map F is extremely simple. It is coordinate-
wise the monomial map x 7→ x3. Naturally the field Fq is chosen so that this
map is non-linear and invertible. The 3WISE specifications require q = 17, but
any field Fq for which q − 1 and 3 are coprime (and x ̸= x3) can be chosen.

To sign the hash of a message encoded into Fn
q , say y, requires an application

of the inverse of each of the three component maps. Inverting F is simple because
F−1 is also coordinate-wise a monomial map. Specifically each coordinate is
raised to the power of 3−1 (mod q−1). Thus the signature is given by the vector
x = U−1(F−1(T−1(y)))

Verification is accomplished by computing y, the encoding of the hash of
the message, and evaluating P at the signature x. Verification succeeds with
probability one because

P (x) = T (F (U(U−1(F−1(T−1(y)))))) = y.

3 MinRank

The MinRank problem is the problem of determining a linear combination of
a given collection of matrices that satisfies a rank bound. Specifically, given
K matrices Mi of dimension m × n with coefficients lying in a field F, and a
target rank r, the MinRank problem asks us to recover a nonzero collection of
coefficients λi lying in the field E such that

∑
i λiMi has rank bounded by r. In

general the field E may be a subfield or an extension of F.
There are numerous ways of computing a linear combination satisfying the

requirements of a MinRank solution. Such methods include brute force, linear al-
gebra search [7], Kipnis-Shamir modeling [10], minors modeling [5], and support
minors modeling [3].

For our application in this manuscript our target rank is 1 and we are consid-
ering square matrices, so the Kipnis-Shamir and support minors models are not
competitive, having the same solving degree as minors modeling but with many
more variables. The brute force method is only viable when the number of matri-
ces K and the size of the field E are small, which is also not relevant here. Thus,
we will focus on the linear algebra search and minors modeling approaches. Since
we are interested in MinRank instances with n matrices of dimension n× n, we
restrict to this case in the descriptions below.

3.1 Linear Algebra Search

Since matrices of lower rank have larger kernels, a randomly chosen vector has a
greater probability of being in the kernel of a lower rank matrix in comparison
to a higher rank matrix. The linear algebra search method, see [7], takes advan-
tage of this fact to provide a combinatorial search problem that is usually more
efficient than brute force.
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Specifically, one chooses a random vector x and constructs the system of
linear equations

n∑
i=1

tixMi = 0

in the unknowns ti. This system is fully determined, and so there is a small
solution space in general. One then constructs the matrix

L =

n∑
i=1

tiMi,

and checks to see if the rank condition is met.
Given a target rank of r, the probability that a randomly selected vector is

in the kernel is q−r, so one expects for the process to need to be repeated qr

times. The total complexity of the method is then

O (qrnω) ,

where ω is the linear algebra constant.

3.2 Minors Modeling

Another technique for solving MinRank is the minors method of [5]. If there is
a linear combination of the matrices M1, . . . ,Mn of rank at most r, then all
(r + 1)× (r + 1) minors of the sum

Σ =

n∑
i=1

xiMi

are zero for the correct values of the xi. Thus, we may take these minors as a
system of equations and solve it.

For most MinRank instances occuring in multivariate cryptography, the pa-
rameters of the minors modeling instance are such that the system of degree
r + 1 equations linearizes and can be solved immediately by specifying a vari-
able. In this case, the complexity of solving such a MinRank instance with minors
modeling is

O
((

n+ r

r + 1

)ω)
.

4 Attacks on 3WISE

In this section we present a couple of attacks that break the proposed parameters
for 3WISE in [6]. The first attack is specific to the parameter set used and can
be made inefficient by changing the parameters. The second attack, based on
rank, is more intrinsic to the design of the scheme and breaks all conceivable
parameters.
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Before we present either of these attacks, we should note that the parameters
do not achieve the claimed NIST security levels due to targeting the wrong values
by the designer of the scheme. NIST level 1, for example, is defined as providing
as much security as brute force key search for AES-128, under an assumption
that AES-128 works as an ideal cipher. As specified in [8,9], it is assumed that
one call of AES-128 on a guessed key costs around 215 gates. Thus NIST level I
requires 2143 gates (not 2128 gates) in the absence of some other justified cost,
such as memory access. Since an essentially memoryless brute force attack for the
parameters in [6] require fewer gates, they do not achieve their claimed security
levels as defined.

4.1 First Attack: Interpolation

The first observation providing a substantial break of 3WISE is based on the
fact that the inverse of the public key exists and is a low degree polynomial map.
Specifically, with the selection of q = 17, the inverse of the map f : Fq → Fq

defined by f(x) = x3 is f(x) = x11. Since U and T are linear, it is clear that
P−1 = U−1 ◦ F−1 ◦ T−1 is a degree 11 map.

As in [2], we can interpolate the inverse of the map by simply generating a
sufficiently large number of plaintext/ciphertext pairs. Since a generic degree 11
polynomial in n variables has

(
n+10
11

)
monomials, we can find the inverse of the

public key as a polynomial with complexity

O
((

n+ 10

11

)ω)
= O

(
n11ω

)
as measured in field multiplications. Once recovered, this inverse map is a new
(though very large) decryption key.

The complexity of this calculation is summarized in Table 1. Although the
parameters were mistakenly chosen, they were roughly correct in terms of the
brute force complexity. With respect to the interpolation attack, however, none
of the parameters approach their claimed security levels.

Table 1. Complexity (logarithmic) of the Inverse Interpolation Attack on 3WISE for
all parameter sets.

3WISE(q, n) Claimed Security Brute Force Interpolation

2WISE(17, 32) 2 (2146 gates) 131 95
3WISE(17, 48) 4 (2210 gates) 196 111
3WISE(17, 64) 5 (2272 gates) 262 123

The damage to the scheme due to the interpolation attack is easily mitigated
by the same method that fixes the problem due to the brute force attack. The
parameter q should be increased. If the user selects q = 257 instead of q = 17,
then the brute force attack becomes quite bad, and since the inverse of 2 modulo
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256 is 171, the inverse polynomial has
(
n+170
171

)
monomials, and the attack is

completely impractical.
Naturally, since the recovered inverse is quite large in terms of storage size,

one could argue that actually computing with the inverse is very costly in terms
of memory access. Even using a very conservative memory access model in which
memory accesses cost the square root of the memory size (and under the un-
realistic assumption that recovering a single coefficient of the polynomial is a
random access) the cost of evaluating the inverse polynomial is well below 2100

gate-equivalents for every parameter set.

4.2 Second Attack: MinRank

The second and most devestating attack on 3WISE is an attack powered by
MinRank. This attack breaks all conceivable parameter sets significantly.

First, note that since the central polynomials are all of the form Fi(x) = x3
i ,

they can all be modeled as 3-tensors of rank 1. Specifically the polynomial Fi

can be represented as the 3-tensor Fi whose value is 1 ∈ Fq on the basis vector
ei ⊗ ei ⊗ ei and is zero on all other basis vectors. (Visually, this 3-tensor is a
cube of zero coefficients with a single 1 at coordinate (i, i, i).)

Clearly, the composition Fi ◦ U corresponds to the 3-tensor Fi(U ·, U ·, U ·).
The public polynomials then are linear combinations of these 3-tensors.

The key observation is the fact that the property that the private 3-tensors
have rank 1 implies that any projection onto a 2-tensor must also have rank 1.
Specifically, for any z̃ ∈ Fn

q , we have that Fi(z̃, ·, ·) is a 2-tensor of rank 1. In
fact, we can write Fi(z̃, ·, ·) as a matrix with a single potentially nonzero entry,
z̃i at coordinate (i, i).

Composing by U does not change the rank of this matrix. We simply ex-
change z̃ with U(z), and place U in the other coordinates. Thus Fi(Uz, U ·, U ·)
is a rank 1 matrix for any choice of z. Since the public cubic forms are linear
combinations of the 3-tensors Fi(U ·, U ·, U ·) and the operations of projection
and taking linear combinations of these 3-tensors commute, we see that there
are n linearly independent linear combinations of the public 3-tensors with the
property that any projection by a vector z produces a rank 1 matrix.

If there were an exact correspondence between rank 1 matrices in the span
of Pi(z, ·, ·) and the 3-tensors Fi(U ·, U ·, U ·) then it would be enough to just
solve the MinRank problem. Unfortunately, the MinRank solution is not enough
information to recover the rank 1 matrices Fi(Uz, U ·, U ·). To see this fact, note
that

n∑
i=1

tiPi(z, ·, ·) =
n∑

j=1

zj

(
n∑

i=1

tiPi(ej , ·, ·)

)
. (1)

If the sum
∑n

i=1 tiPi(·, ·, ·) has low rank as a 3-tensor, it is more likely that
there is a choice of z making the right hand side of Equation (1) of rank 1.
Since there are very many low rank 3-tensors in the span of the Fi and hence
the Pi, the probability that the solution t to the MinRank instance produces∑n

i=1 tiPi(z, ·, ·) of low (but not 1) rank is fairly high.
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To combat this problem we may select multiple projections zj and require
that simultaneously each of the

∑n
i=1 tiPi(zj , ·, ·) are of rank 1. This requirement

is equivalent to having the multiple conditions

Rank

(
n∑

k=1

zj,k

(
n∑

i=1

tiPi(ek, ·, ·)

))
= 1

on the 3-tensor
∑n

i=1 tiPi(·, ·, ·). Experimentally, we need only solve this simulta-
neous MinRank problem with three random vectors zj to eliminate the spurious
solutions.

This “simultaneous MinRank problem” is actually just a special case of nor-
mal MinRank. Instead of the square matrices Pi(zj , ·, ·), for i = 1, . . . , n, we
consider the concatenations Pi(z1, ·, ·)∥Pi(z2, ·, ·)∥Pi(z3, ·, ·) for i = 1, . . . , n.

To recover the inverse of the output transformation for an equivalent key, we
must recover a linearly independent collection of n MinRank solutions. The solu-
tions then form the rows of the matrix representation of a linear transformation
T̃−1.

Once the map T̃−1 is recovered, the scheme unravels quickly. Notice that if
y = P (x), then v = T̃−1(y) is some permutation of nonzero multiples of the co-
ordinates of F (U(x)). Thus, taking the 11th power of each coordinate vi produces
a nonzero multiple of some coordinate uj of U(x), since F−1

i (x) = x11. Therefore

F−1(T̃−1(y)) is linearly related to x. To recover an equivalent input transfor-

mation Ũ , we merely generate sufficiently many certificate/signature pairs and
solve. We then obtain an equivalent key

T̃ ◦ F ◦ Ũ = T ◦ F ◦ U.

5 Experiments and Complexity Analysis

We studied the two possibly best MinRank methods for this attack to determine
their relative performance: linear algebra search and minors modeling. We note
that with minors modeling the system always linearizes at degree 2, so the at-
tack has good performance. The greatest factor in complexity for both of these
methods is the fact that we need to perform MinRank on the order of n times.

The complexity of the linear algebra search method on a single MinRank
instance is O(qrnω+1) due to the need for n matrix multiplications to construct
the coefficient matrix and solve for t. With the simultaneous instance we are
using in the attack, the situation is a bit complicated. We require many more
conditions on the unknowns than for a square instance, but because of their
related nature, the systems are often consistent and provide solutions.

The analysis of the minors method is much simpler. Since the system lin-
earizes at degree 2, we only need to compute roughly

(
n+1
2

)
minors and then

solve the linear system to recover the coefficients. The complexity of this task
is O(

(
n+1
2

)ω
). Performing this task n times produces a total complexity of the

dominant step of O(n
(
n+1
2

)ω
).
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We implemented both MinRank methods to attack the scheme in theMagma
Computer Algebra System3, see [4]. We performed these experiments on the all
proposed parameters from the specification [6] .

In all instances, for both methods, the attack worked in practice to break the
scheme. The results are summarized in Table 2.

Table 2.Magma attack timing for 100 instances of the 3WISE digital signature scheme
for parameters claiming NIST level 2, 4 and 5 parameters.

Lin. Alg. Search
3WISE(q, n) Sec. Level Least(ms) Average(ms) Most(ms)

3WISE(17, 32) 2 1960 2315 2850
3WISE(17, 48) 4 13900 17534 47120
3WISE(17, 64) 5 38120 59104 83040

Minors
3WISE(q, n) Sec. Level Least(ms) Average(ms) Most(ms)

3WISE(17, 32) 2 720 1219 1620
3WISE(17, 48) 4 5460 7017 15990
3WISE(17, 64) 5 18550 20392 25390

We should note explicitly that the first step of the attack, the MinRank
step, depends only poly-logarithmically on q, the field size. So the first step of
the attack works the same way with minors modeling and with essentially the
same complexity with any value of q. Furthermore, the attack works for even
higher exponents than 3 by choosing projections down to 2-tensors. Thus, there
is no hope in protecting the scheme even if one were willing to have completely
unrealistic parameters.

6 Conclusion

The 3WISE scheme is an original attempt to produce a secure multivariate
digital signature scheme. One could consider it like a version of the famous C∗

scheme, see [11], but with the power map working on a different Fq algebra than
an extension field and with a cubic key instead of quadratic.

Interestingly, even though the key is cubic, we can apply standard MinRank
techniques to break the scheme completely. We verify that not only are the
proposed parameters completely and practically broken, but that there is no set
of parameters that will secure 3WISE in its current state without some sort of
modification.

3 Certain equipment, instruments, software, or materials, commercial or non-
commercial, are identified in this paper in order to specify the experimental pro-
cedure adequately. Such identification is not intended to imply recommendation or
endorsement of any product or service by NIST, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for the purpose.
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