Exploiting Small-Norm Polynomial Multiplication

with Physical Attacks
Application to CRYSTALS-Dilithium

Olivier Bronchain, Melissa Azouaoui, Mohamed ElGhamrawy, Joost Renes
and Tobias Schneider

NXP Semiconductors
firstname.lastname@nxp.com

Abstract. We present a set of physical attacks against CRYSTALS-Dilithium that
accumulate noisy knowledge on secret keys over multiple signatures, finally leading
to a full recovery attack. The methodology is composed of two steps. The first
step consists of observing or inserting a bias in the posterior distribution of sensitive
variables. The second step of an information processing phase which is based on belief
propagation, which allows effectively exploiting that bias. The proposed concrete
attacks rely on side-channel information, injection of fault attacks, or a combination
of the two. Interestingly, the adversary benefits from the knowledge on the released
signature, but is not dependent on it. We show that the combination of a physical
attack with the binary knowledge of acceptance or rejection of a signature also leads to
exploitable information on the secret key. Finally, we demonstrate that this approach
is also effective against shuffled implementations of CRYSTALS-Dilithium.

Keywords: Lattice-based Cryptography - Post-Quantum Cryptography - Side-
Channel Attacks - Fault Attacks - CRYSTALS-Dilithium

1 Introduction

Over the last years, quantum computing has witnessed significant advances. In turn this
has accelerated the research, adoption and standardization of Post-Quantum Cryptography
(PQC) schemes: cryptographic schemes that are believed to be secure even when facing an
adversary with access to a quantum computer. The selection and standardization of PQC
schemes is driven by the National Institute of Standard and Technology (NIST), and as
of July 2022 the lattice-based schemes CRYSTALS-Kyber and CRYSTALS-Dilithium have
been selected as the primary PQC standards for key establishment and digital signatures,
respectively.

In particular, PQC schemes have garnered the interest of the cryptographic community
with respect to their efficient and secure embedded implementations. The main security
threats and countermeasures thereof investigated are Side-Channel Attacks (SCA) and Fault
Attacks (FA). Notably for CRYSTALS-Kyber, additional vulnerabilities are introduced by the
use of the Fujisaki-Okamoto (FO) transform [FO99] in the decapsulation process [RRCB20,
XPR*T22, SCZT23]. Other works also describe how to target the Number Theoretic
Transform (NTT) which is the main arithmetic building block in implementations of
lattice-based schemes such as CRYSTALS-Kyber and CRYSTALS-Dilithium [HHP*21]. The
protection of CRYSTALS-Kyber against SCA is also a relatively active research area as
illustrated by this non-exhaustive list of recent publications [BGR*21, HKL 122, ABHT 22,
BC22].

mailto:{firstname.lastname@nxp.com}

2 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

This work focuses on CRYSTALS-Dilithium, and compared to CRYSTALS-Kyber or other
Key Encapsulation Mechanisms (KEMs), it initially did not receive as much attention.
Nonetheless, it has been the target of substantial contributions from the embedded
cryptographic community. Notably, the work of Ravi et al. [RJHT 18] has shown that it is
possible to forge signatures by recovering only half of CRYSTALS-Dilithium’s secret key.
Marzougui et al. [MUTS22] have demonstrated that leakage of zero values in the masking
vector in CRYSTALS-Dilithium leads to key recovery. A similar attack is described
in [BVC*23]. In addition, the analysis from Islam et al. [IMS*22], ElGhamrawy et
al. [EAB'23] and Ulitzsch et al. [UMB™23] illustrate that there many approaches to
recovering CRYSTALS-Dilithium’s secret signing key by exploiting the effects of fault
injections. When it comes to masked implementation of CRYSTALS-Dilithium hardened
against SCAs, very recently, Coron et al. [CGTZ23] revisited the work of Azouaoui et
al. [ABC™23], which is in turn a revised masked implementation of the initial masking
CRYSTALS-Dilithium proposal by Migliore et al. MGTF19].

From a high level, all known attacks exploit specific attack vectors or leakages to extract
some information which is then used to reduce the hardness of the cryptographic problem
CRYSTALS-Dilithium is based on. For instance, in [MUTS22] it is the knowledge that a
coefficient of the masking vector y is equal to zero. In [EABT23], it is the fault-induced
equality of two polynomials in y. Generally, to recover the full secret key most known
attacks rely on some algebraic post-processing, such as lattice reduction [DDGR20] or
least squares [BDET18]. However, such techniques are only slightly resilient to the noise
inherent to SCAs and FAs.

Contributions. In this work, we propose generalized side-channel and fault attacks against
CRYSTALS-Dilithium that scale well with noise and/or precision. The core observation
leading to these attacks is that several polynomials are required to follow uniform distribu-
tion to ensure black-box security of CRYSTALS-Dilithium. Yet, both side-channel or fault
attacks (next denoted together as physical attacks) create a bias on these polynomials,
which then lead to exploitable information on the secret key. In short, we summarize our
contributions as follows:

e Generic Attack Framework. In Section 3, we describe a new generic methodology
to accumulate information on the secret key polynomial from noisy knowledge of
polynomials. This approach is based on the Belief Propagation (BP) algorithm
which is leveraged for Soft Analytical Side-Channel Attacks (SASCA) introduced
in [VGS14]. As demonstrated in this work, it enables a large variety of attack
scenarios that we systematically study through simulated experiments. For each of
these, we evaluate the number of signatures to recover a single key polynomial.

e Physical Attacks with Accepted Signatures. In Section 4, we apply the framework
to the case where the adversary gets access to released signatures. For side-channel
attacks against Dilithium Level-2, we show that for low noise (SNR = 100) only ~ 4
traces are needed to recover a secret key polynomial. For higher noise levels (e.g.,
SNR = 0.01), a total of ~ 700 traces are needed. For fault attacks, between 23 and
2000 faults are needed depending on the fault precision.

e Physical Attacks without Accepted Signatures. In Section 5, we study the case of
attacks without released signatures. When the signature is not accepted, but the
index of the rejected coefficient is leaked (e.g., through an early-abort strategy),
~ 6-10° traces are needed in the low noise settings. Eventually, we target a weakened
parameter set and show that the knowledge of whether a full polynomial is rejected
(e.g., when no early-abort strategy is implemented), while having no knowledge of
which coefficient lead to this rejection, can still lead to key recovery. Fault attacks

Bronchain, Azouaouzi, ElIGhamrawy, Renes, Schneider 3

are also similarly exploitable, but we do no include these experiments in the paper
because of space limitations.

e Physical Attacks with Shuffled Computation. In Section 6, we demonstrate that
shuffled implementations of CRYSTALS-Dilithium, as suggested in [ABCT22], are
also vulnerable to physical attacks using our framework. More precisely, for side-
channel attacks against Dilithium Level-2, with SNR = 100, a total of ~ 5 - 103
traces are needed to recover the secret key polynomial. For SNR = 0.5, ~ 1.2 - 10°
measurements are needed. Similarly results also apply to fault attacks.

Put all together, our attack is a step forward in the direction of the evaluation of
hardened implementation of CRYSTALS-Dilithium against physical attacks. Concretely,
the impact of our contribution on the attack surface and countermeasures for variables
within CRYSTALS-Dilithium is summarized in Table 1. Again, while attacks on some
variables were known (e.g., fault attacks on c osq), we extend and generalize these attacks
and provide a framework to exploit the leakage that scales efficiently with respect to noise.
In Table la, we summarize the types of attack that are known in the literature, and what
our framework is able to perform. In Table 1b, we summarize the type of countermeasure
that should be applied to these variables. In particular, in this paper we conclude that
shuffling is not effective for y and wg, hence we recommend to use masking for all the
sensible variables as hinted in [ABCT23].

Table 1: Summary of sensitivity and countermeasure effectiveness in CRYSTALS-Dilithium
for valid and rejected signatures.

‘ Yy Wo COS3y COS2 ‘ Yy Wo COS1 COS2
Valid Sig. Valid Sig.
SCA * * * * Masking
FA * * Shuff.
Rej. Sig. Rej. Sig.
SCA * * * * Masking
FA * * Shuffling

(a) Sensitivity: red for effective attack, gray
for no effective attack, x attack included in

(b) Countermeasure: green for effective, red
for not effective, gray for no concrete attacks.

this work.

2 Background

In this section, we describe the necessary background to understand the contributions of
this paper. We start by introducing the general notations used in the paper. We then
recall the main step of the signature generation process in CRYSTALS-Dilithium and some
of its specific details and properties relevant to the remainder of this work. Afterwards, we
describe side-channel attacks and the SASCA methodology.

2.1 Notations

We denote by Z, the integer ring modulo the prime ¢, and by Z,[X]/(X™+1) the polynomial
ring in X modulo X” + 1. Polynomials in Z,[X]/(X™ + 1) are written in bold, e.g., p,
with n being the degree of the polynomial. For CRYSTALS-Dilithium, ¢ = 223 — 213 + 1
and n = 256, and we will fix them for the remainder of the paper. The i-th coefficient of a
polynomial is denoted p;. The multiplication between two polynomials a and b is written

4 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

as ¢ = aob and addition as ¢ = a + b. The infinity norm of a polynomial is expressed as
[|P|loo and is the maximum absolute value of its coefficients. Constants are denoted with
Greek letters. A half-open interval containing all elements in the range {a,..., 8 — 1} is
denoted as [a, B]. A closed interval is denoted as [«, 3], where S is included. The variables
x mod q are in the range [0, ¢[, variables x mod ¢ in the interval [—(q — 1)/2, (g — 1)/2[.
The j-th bit of the i-th coefficient in a polynomial p is denoted as p;[j]. We denote random
variables with upper case letters, e.g., X, and their realizations with a lower case, e.g.,
X = x. The probability of a realization is given as Pr[X = z]. When clear from the
context, we also use the more concise notation Pr[z]. Similarly, the probability conditional
to a realization of another random variable is given as Pr[X = z|Y = y|, or Pr[z|y]. The

sampling of a random variable x from a set X is denoted as x &x.

2.2 Signature Generation and Rejection in CRYSTALS-Dilithium

In this section we detail the CRYSTALS-Dilithium operations required for the understanding
of the remaining sections. More specifically, we describe generation of the signature
polynomials z and rg. As both are computed and bound checked similarly, we use
generic parameters that can apply to both cases. We refer to the CRYSTALS-Dilithium
specifications for additional details [DLLT17].

In a valid signature, the signature polynomial z must satisfy

z=|ly+soclle <v-5 (1)

During the signing operation, first the polynomial z =y + s o ¢ is computed and bound
checked, i.e., the norm of all its coefficients has to be strictly smaller than v — 3. If the
bound check does not pass, the signature process is repeated until the aforementioned
property is fulfilled (see Section 2.2.2). The same process is applied to the other signature
polynomial ro with slightly different parameters. Note that there are further rejection
checks during the CRYSTALS-Dilithium signature generation, e.g., the number of ones in
the hint. However, these are not relevant for our attacks and are omitted for simplicity.

In this work, we will discuss the recovery of a single secret key polynomial. Note that
CRYSTALS-Dilithium is based on MLWE hence the secret key is composed of a small
vector of polynomials. As a result, the experiments on a single polynomial can be used to
derive the number of measurements and/or faults needed to mount the attack on the full
CRYSTALS-Dilithium secret key.

2.2.1 Relevant Polynomials Properties

Next, we describe in detail the properties of the polynomials involved in the computation
of z as well as the polynomial operations used. We refer to Table 2 for the Dilithium
parameters that are relevant to our attack.

Secret key s. The long term secret key polynomial is denoted as s. This polynomial
has a small norm such that ||s|lcc < 7. All the coefficients in this polynomial are
independently drawn from a uniform distribution thanks to ExpandS during KeyGen such

that s; & {=n,...,n} for all indexes i. The parameter n depends on the parameter set
with n € {2,4}. The distribution of the coefficients has a mean ps = 0 and a standard
deviation og = \/n(n+1)/3.

Challenge c. During Sign, a fresh challenge c is generated deterministically from a random
bitstring thanks to SampleInBall. The obtained challenge has a special structure. It has
exactly 7 coefficients that are different from zero and are equal to either 1 or —1. Again,
7 € {39,49,60} depending on the parameter set. The polynomial c is part of the signature,

Bronchain, Azouaouzi, ElIGhamrawy, Renes, Schneider 5

hence c is given for valid signatures (when the bound check is passed). This polynomial is
considered as non-sensitive in protected implementations [MGTF19, ABC*T23].

Mask polynomial y. During Sign, a fresh mask polynomial y is derived for every new
signature generation. The coefficients of these polynomials are uniformly distributed on
the interval [—~,~[. This polynomial is not part of the valid signature and must remain
secret.

Product x = s o c. The signature generation involves computing the polynomial multi-
plication between s and c. Concretely, each coeflicient in the resulting polynomial x is

defined as
% n—1
X; = E S;Ci—5 — E SiCnti—j- (2)
7=0 Jj=i+1

As a result, each x; is a weighted sum of secret key coefficients. Since ¢ only contains
exactly 7 non-zero coeflicients, each x; is the weighted sum of a subset of 7 secret key
coefficients. Hence, x satisfies the property that ||x||oc < S where § = 7n. By the
central limit theorem, the distribution of x; can be estimated by a normal distribution
~ N(0,+/7 -n(n+1)/3). However, its distribution can also be explicitly computed by
using convolutions of probability tables as detailed in Section 3.

Signature z = y + s o c. Thanks to the norm-check performed during signature genera-
tion, one ensures that for all valid signatures we have —y + 8 < ||z||c <y — (. Putting it
all together, the coefficients in z are given by

% n—1
Zi=Yi+ Y $iCij— Y $iCotij- (3)
§=0

j=it+1

2.2.2 Rejection Probability in a Blackbox Setting

The rejection probability of polynomials can be derived analytically (see [ABD¥ 19, Section
3.4] for details). In the following, R; stands for the random variable denoting the rejection
event. That is, r; = 1 (resp. r; = 0) denotes that the i-th coefficient has been rejected
(resp. accepted). Concretely, this probability is given by

C2(y—p) -1

Pr[R;=1]=1-Pr[R;=0] =1 5y

(4)

since for a given value of x;, exactly 2(y —) — 1 of the 27 possible values of y; lead to a
z; contained within the bounds. Similarly, we denote the rejection of a full polynomial
with the random variable R. Concretely, the rejection probability is given by

2(vy—8) - 1)”

= 5)

Pr[Rl]lﬁPr[R,;O]l(
1=0

since it requires that all the coefficients are within the bounds.! Putting all together, we
observe that the rejection probability of polynomials or coefficients is independent of the
secret key s when the adversary only has access to ¢ and z.

We use the same independence assumption as in the CRYSTALS-Dilithium specification [DLL117,
Section 3.3].

6 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

Table 2: Relevant CRYSTALS-Dilithium parameters for this paper.

NIST Security level II II1 \Y%
¢ (modulus) 223 o183 11 93 _ o811 9% _9B 19
7 (# of £ I's in ¢) 39 49 60
v (y coefficient range) 217 219 219
n (secret key range) 2 4 2
B(=7-n) 78 196 120
average number of signing iterations 4.25 5.1 3.85

Early-Abort. The performance impact of rejecting signatures is relatively significant
for CRYSTALS-Dilithium, since it requires to restart the signature generation process
from quite an early step. Hence, to speed up the Sign algorithm, implementations may
use an Early-Abort strategy. That is, as soon as a coefficient is out of bound, the
signature generation is aborted and a fresh y and c are sampled. As a result, the execution
time of Sign leaks which coefficient is rejected. This does not affect the security of
CRYSTALS-Dilithium in a blackbox setting [DLL*17].

2.3 Side-Channel Attacks

A common type of physical attacks are so-called side-channel attacks, that exploit in-
formation obtained through physical leakages such as power consumption or timing to
recover information on secret keys [KJJ99, CRR02]. Concretely, the adversary observes
the leakage L7 (where j indexes the physical observations, also referred to as traces, of the
cryptographic function’s different executions) which is a random variable corresponding
to the power consumption, electromagnetic radiation or timing of the execution of a
cryptographic function (e.g., an AES encryption). From this observation, she can obtain
partial information on ephemeral intermediate variables 27 (e.g., an S-box output) given
by the conditional probability Pr[x|L’]. Given some other public information p’ (e.g., a
plaintext), she derives information on a long-term secret k (e.g., a secret key) summarized
by the conditional probability Pr[k|L?, p’]. This estimated probability can be obtained
thanks to various tools such as Gaussian templates [CRR02].

However, a single leakage observation may not be enough to completely recover the
secret. Hence, the adversary can observe multiple (N) leakage traces and use a maximum
likelihood approach to accumulate information on the secret. Precisely, she computes the
likelihood of a secret k given the N leakage observations according to

N—-1
Likelihood[k|L, p] o Y _ log Pr[k|L7, p/] (6)
j=0
and selects the most probable key according to

k* = max Likelihood[£'|L]. (7)

Overall, as the number of traces IV increases, the probability that the guessed key k* is
the correct one increases. Hence, the more traces are available, the more successful the
attack will be.

2.4 Soft Analytical Side-Channel Attacks (SASCA)

The previously described generic side-channel attack leverages observations on a single
ephemeral variable x to recover information on the key. Yet, many variables in crypto-
graphic implementations are dependent on the secret key. In the following, we describe
SASCA [VGS14] which is a strategy to exploit simultaneously leakages on various variables.

Bronchain, Azouaouzi, ElIGhamrawy, Renes, Schneider 7

First, we recall that the relationships between these sensitive variables can be represented
with a factor graph. A factor graph is composed of nodes and edges. It contains two
types of nodes. The first type is the variable node that represents a variable (or any value)
within the implementation that can have a given distribution. The second type of node is
the function node, that represents an operation between variables. These can typically be
XOR gates, AND gates, modular additions or modular multiplications. In the factor graph,
edges allow connecting variables with function nodes, hence forming a bipartite graph. A
side-channel adversary exploiting such a factor graph performs a so-called SASCA that
follows the next steps:

1. The adversary defines a factor graph that represents the implementation under
attack. It typically contains sub-parts of the secret key (e.g., secret key bytes), public
variables (e.g., plaintexts), and ephemeral secret variables (e.g, an S-box output). If
the operations are repeated (exploiting multiple traces), parts of the graph can be
duplicated.

2. Thanks to access to the leakage L, the adversary can gain partial knowledge on
intermediate variables within the factor graph. That is for a variable x, the adversary
derives Pr[z|L] from the leakage L similarly as in standard template attacks (see
Section 2.3). She then initializes the variable node z within the factor graph to
Pr{z|L]. We denote this distribution as the initial distribution of the variable node
and use the notation Pr;,;[z].

3. Once all the information obtained from the leakage is encoded into the factor graph,
the adversary can run a Belief Propagation (BP) algorithm. Informally, BP iteratively
updates the distributions of intermediate variables thanks to messages received from
neighbor nodes, where messages are also distributions. In turn, the messages sent
from function to variable nodes and from variable to function nodes are updated.
Namely, the messaging passing rule from a variable node v to a function node f is
given by

mysple] = Prla] - [T mpola] (8)
m
In€8,\f

where ¢, denotes all the neighbors of v and d,\ f denotes the set of all its neighbors
excluding f. The message passed from one variable to a function is the product of
all the other received messages and the initial distribution. The message passing rule
from a function to a variable node is given by

myo[z] = ZC(Z,QS) : H M, — f [iv,] 9)

i€l Un €55 \v

where Z denotes one combination of input/output values and ¢(,) is the compatibility
function of the function node (which is equal to 1 if the combination of input/output
values is possible and 0 otherwise).

This adversary is known to be optimal when the factor graph does not contain cycles
(i.e., is a tree). When the factor graph contains cycles, then this method becomes heuristic
but has been demonstrated to be effective in the context of side-channel attacks [VGS14,
HHP*21, BS21].

3 Generic Attack Framework
In this section, we describe the methodology for the attack. We first start with a high-level

introduction, followed by the description of the factor graph exploited by the SASCA
adversary. Eventually, we discuss optimizations used to compute the propagated messages.

8 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

3.1 High Level Description of the Attacks

All the attacks proposed in this work are based on SASCA. These attacks enable to recover
each of the secret key polynomials in CRYSTALS-Dilithium independently in a divide and
conquer fashion, hence we focus on the problem of recovering a single secret key polynomial
s. The attack can simply be repeated on each polynomial to recover the full secret key. As
illustrated in Figure 1, all the proposed attacks are performed in two phases.

Information Extraction. The first step consists of recovering partial information on each
of the coefficients in the polynomial x with x = s o c. In each of the considered attacks,
the probability of some coefficient x; posterior to the physical attack is estimated. These
probabilities Pr;,;[x;] are the actual ephemeral secret information that the adversary can
extract from the CRYSTALS-Dilithium signature generation. This can be obtained from
side-channel leakages on y and x, a fault attack biasing the distribution of y or their
combination. This can be used to recover the secret key either together with a valid
signature z or from a rejection event R when the signature is rejected. The information
extraction is specific to the adversarial capabilities, and we describe several scenarios in
the next sections.

Information Processing. The second step consists of leveraging all the obtained Pr;y,; [x;]
(possibly from several traces) to map them to information on the secret key s via SASCA.
This step is identical for every attack considered in this paper. In the remainder of this
section, we describe how information on Pr;,;[x] can be efficiently accumulated to the
secret key Pr[s] by virtue of a dedicated factor graph.

3.2 Factor Graph Description

The factor graph is illustrated for a small example of a degree four polynomial in Figure 1.
The top variable nodes s; denote the coefficients of a secret key polynomial (not to be
confused with the polynomials s; and sy in the description of Dilithium), and the bottom
variable nodes are coefficients of the polynomial x = s o c. These are linked through the
weighted sum function nodes ;. This function node X ; is graphically described in
Figure 2 and is the straightforward mapping of Equation 2. Concretely, it implements the
expression x; = Zj c}s; where the polynomial ¢’ = rot(c, i) is the rotation of ¢ defined
as rot(c,i) = c¢- X*mod X" + 1. As depicted by the color in Figure 1, each coefficient in
x is part of an independent sub-graph involving one single ¥ ; node.

When the challenge polynomial ¢ is known, exactly 7 of the edges of each independent
sub-graph in Figure 2 have to be kept as ¢ contains only 7 coefficients different from zeros.
For the non-zero coefficients, the function nodes ¢ denote the multiplication by either 1
or —1 depending on the value of c¢,. This function node can be simply implemented as a
re-ordering of the propagated messages. For efficiency, we merge the computation on this
function node with the subsequent addition as detailed in Section 3.3.

An important remark is that all the polynomials involved in the signature generation
have a small norm. As a result, all the intermediate variables are smaller than ¢ meaning
that no modular reduction must be done. Therefore, we next discuss the propagation rules
and omit the (unnecessary) modular reductions.

3.3 Efficient Propagation Rule Computation

The previously described factor graph could be computed with a generic SASCA tool such
as SCALib [CB23]. However, it comes with drawbacks such as execution time and memory
consumption. Instead, we describe the propagation rules optimized for the previous factor
graph. That is, how both Equation 8 and Equation 9 are efficiently implemented in such a

Bronchain, Azouaouzi, ElIGhamrawy, Renes, Schneider 9

Info. processing

Physical attack

Figure 1: Example factor graph for parameters N = 1 trace and polynomial of degree

n =4.

¢
s @ 282

Figure 2: Internal description of ¥ ;) factor node used in Figure 1 and ¢’ = rot(c,)

context. To this end, we take a bottom-up approach and first describe the propagation
rule for a single ¥ ;) described in Figure 2. Then we discuss how multiple of these can be
combined as in Figure 1.

Propagation Rule for 3. ;). Starting with a single ¥ ;), we detail the notations in
the corresponding visual representation (see Figure 2). There, every variable node g;
stands for the sum g; = >3/7(c’; - s; where the weights ¢} are known. We start with the
propagation rules around +;, and continue with the propagation on the full factor graph.

The propagation rule that computes the message from the function node +; to the
following variable node g; is next denoted as convadd and is described in Algorithm 1. In
order to compute m, g, , the other incoming messages to the function node +; are needed.
Hence convadd takes as input the incoming messages mg, 4, and ms, 4, together with
the known value ¢} that multiplies s;. From Equation 9, the outgoing message m,_,g, is
computed by summing over the product of all the other combinations of incoming messages.
That is, the algorithm has two nested loops to cover all the input combinations of ¢’ and
s'.2 The corresponding output value o is computed as 0 = ¢’ + ¢’ - s’ and the value of the
outgoing message is updated for the value o. Eventually, we note that convadd can be
used to compute the messages m., g, , by negating c; and adapting the ranges for input
values.

2Note that the maximum non-zero value of both incoming messages are known. Hence the sum on the
possible input combinations can be adapted accordingly.

10 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

Algorithm 1 convadd (mg, ,—+,,Ms;—+,,Ci)

Input: Input messages mg, , 4, with ||mg, ,4,|| = 2(8 —n) + 1 and mg, 4, with
[|ms; -+, || = 27+ 1. Weight ¢} € [-1,1].

Output: Message my, g,

1: if ¢;” = 0 then > Quit early as output message will be the input message
2 return mg, | .y,

3 My, g, 020+1 > Init message with zeros
4: for s’ € [-n,n] do

5: for ¢ e [-8+n,8—1n] do

6: o+ g +c ¢

7 Mg [O] —Myg; [O] + Mg -+, [g/] T Ms;—+; [S/}

8

: return my,

Next, we describe in Algorithm 2 the propagation rule on the full function node
>.. First, the challenge polynomial c is rotated with rot with the appropriate index in
order to obtain ¢’ Then, all the messages m,,_,¢, going from left to right in Figure 2
are computed. To do so, the mg,_,, is initialized with the incoming message ms,_,x
re-ordered according to c{. Then, we iterate in ascending order on all the +;. There, we
note that mg, .., M, g, as per Equation 8 as there is no other incoming messages
to g;’s. A similar iteration is applied in descending order (right to left on Figure 2) in
order to compute messages my g, ,. The last step is to compute the messages msx_,s;
by computing the propagation rule around +; with the two already available messages
Mg, +; and mg, , .. This is done thanks to convaddrev which is slightly adapted
convadd in order to include the effect of ¢/ on the output variable.3

Algorithm 2 Propagation rules for ¥ associated to x;.

Input: All input messages ms, 5 for j € [0,n[, challenge c, degree of exploited coefficient
i and its associated Pr;,;[x;].
Output: Generates all the messages ms_s; for j € [0,n][.

¢’ « rot(c,i)
Mgg—+, C6 cMgy—3x > Prop. from sp up to x;
for j from 1 to n do
/

My, g, < convadd(mg, , s ,, Mg, 5%, cj)

Mg;—tjp1 < Mg,
Mg, —tn,_1 Pri.; [Xl} > Prop. from x; up to sg
for j from n —1 to 0 do

!
My, g, , < convadd(mg; sy, ,Ms; ¥, —cj)

Mg 1—+;1 A Myj—g;

,_.
=

my—s, — erl*)go
: for j from 1 to n do
my_s; < convaddrev(mg; 54 ,;, Mg, | +;,Ci)

=
N =

Propagation Rule for Multiple 3. ;). In the above, we described the SASCA propagation
rule for a single function node ¥ ;). Multiple of these factor nodes can be connected to
the variable nodes of the secret key coefficients s;. This is the case for the factor graph of a

3The main difference is that the output message M4, s, is computed by using o = —¢/(gi—1 — gi)-

Bronchain, Azouaouzi, ElIGhamrawy, Renes, Schneider 11

single polynomial multiplication as described in Figure 1. Concretely, the variable node s;
receives multiple messages my, . . s, from all the ¥ ;) nodes it is connected to (ci #0).
The messages ms, x5, ;, are then computed according to Equation 8 as the product of all
other incoming messages to s; hence as Ms; %0y = Hn# M3 oy —si- This product of a
large number of small values can lead to computational errors. Therefore to compute these
messages, we first compute and store the sum of log-probabilities of all messages. Then the
outgoing messages are computed such as log(msi%g(c,j)) =, log(ms, 5s,) —log(ms; 5s,)-
Eventually, the guessed value s! for a secret key coeflicient s, is the value maximizing the
product of incoming messages similarly to Equation 7. It can be derived from this sum of
log-probabilities as

s; = H?XZ log(ms, s, [5']). (10)

In the above, we only describe the case where a single signature corresponding to a
single product s o c is observed, where one ¥ ;) is added for each of the n coefficients in
the output polynomial x. Yet, additional ¥ ;) nodes can also be added to the factor graph
by observing N signatures corresponding to different products s o ¢ for different challenges
c and a constant secret key polynomial s. In such a case, the factor graph contains at
most IV x n different nodes X ;). All these ¥ ;) must not necessarily be included in the
factor graph either. This can be the case if the associated Pr;,;[x;] obtained through the
physical attack is known to be secret key independent (e.g., no leakage). In all cases, the
above propagation rules remain the same.

3.4 Discussion on the Factor Graph Selection

Knowledge of c. In the above, we assume that the adversary knows exactly c. In the
case of released signatures, this knowledge is trivial as it is embedded into the signature.
This case is studied in Section 4 and Section 6. When the adversary does not have access
to a released signature (see Section 5), ¢ is not known but can potentially be recovered by
other means such as side-channel leakage. Since state-of-the-art hardened implementations
of CRYSTALS-Dilithium often do not protect the polynomial ¢ against side-channel at-
tacks [MGTF19, ABCT23] and, in addition, the polynomial is being manipulated as single
bits per register, it is assumed to be a relatively easy target for side-channel adversaries.
The proposed attack also extends to the setting where only noisy leakage on c is obtained.
In such a case, the multiplication with a weight ¢’ is simply replaced by a multiplication
function node between s; and ¢, making the propagation rule slightly more complex. We
leave such a detailed investigation to future work.

Impact of Fast Polynomial Multiplication with NTT. We notice that the factor graph
used for this attack implements a school-book polynomial multiplication. However, efficient
implementations of CRYSTALS-Dilithium usually leverage NTTs to perform polynomial
multiplications [AHKS22]. Yet, we stress that the attack methodology is independent of
the polynomial multiplication methodology as it is based on the definition of polynomial
multiplication itself. The only slight advantage of using NTT-based multiplication is that
direct leakage on x can be avoided as it is not explicitly computed in the standard domain
and only in NTT representation (this is not the case in [AHKS22]). Even in this case,
the attack is also applicable as direct leakage on y, which cannot be avoided, allows to
initialize the factor graph as discussed in the following sections.

Performance Considerations. A performance consideration is that only 7 coefficients
are different from zero in c¢ (see Table 2). When the challenge polynomial ¢ is known,
exactly 7 of the edges must be kept for each ¥;. Overall, for each ¥; node, only the
outgoing messages msy, s, and the associated Pr;,;[x;] must be stored in memory. This

12 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

leads to a total of 7(2n + 1) + 28 + 1 64-bit floats that need to be stored. For example,
if all the X; are included and 1000 signatures are used for the attack, 0.72 gigabyte is
needed for Dilithium-2, 1.7 gigabyte is needed for Dilithium-3 and 1.1 gigabyte is needed
for Dilithium-5 to store the full factor graph.

Eventually, we note that the propagation rule for + (convadd) can also be implemented
by leveraging FFT-based convolutions as proposed in [PPM17]. However, the benefits are
not obvious as one of the inputs to the addition is always small ([—n,7n]). The study of
such an approach and the practical benefits it may bring is also left for future work.

4 Physical Attacks with Valid Signatures

In this section we detail the case where the adversary obtains the signature, i.e., both
polynomials z and c. We first describe the leakage and fault models we consider, and then
continue with the methodology used to initialize the factor graph described in Section 3
with Pry,;[x;]’s. Finally, we describe the results of simulated attacks for both side-channel
and fault attacks.

4.1 Leakage and Fault Models

We start by describing the leakage and fault models used for the simulated attacks. We
stress that the results presented in this paper are not restricted to these models and also
apply to others. In both cases, we assume that the adversary knows exactly the leakage
and faults models. We leave the study of unprofiled scenarios to future investigations.

Leakage Model. In this work, we consider leakage on polynomials x = cos and y
described in Section 2.2 in a similar way. For simplicity, we only describe the leakage for x.
The leakages under consideration are the sum of a deterministic data-dependent function
and Gaussian noise. We assume that the coefficients leak independently. The deterministic
component of the leakage function is denoted by

L= = Z<Xi mod *q)[b], (11)

beB

which is the sum of bits of x; mod *¢. The bits involved in the leakage are defined by the
list B where each value in B is a bit index. As an example, the leakage Eii’i corresponds
to the sign-bit of the coefficient x; in 32-bit two’s complement representation. In case the
data is represented in the interval [—(¢ — 1)/2, (¢ — 1)/2[, the notation £ZF is used. If
the coefficients are represented in the interval [0, ¢[, the notation Efﬁ is used. From this,
the leakage on a polynomial coefficient is a random variable

Ly, < Li}* + N(0, UgNR) (12)
where o2y is the noise variance ensuring the SNR for the given deterministic leakage
function £.

Concretely to mount the attack, the adversary first computes the probability of
observing a leakage sample Iy, with standard Gaussian template attacks assuming a given

value for x;. That is
%\ 2
Ix, — L]
Prlly,|xi, £, osip] o exp (—H>) (13)

2
208,

Second, she computes the value of Pr[x;|lx,, £, , osyz] thanks to Bayes’s theorem (normal-
ization) over all the possible values x; such as

*,
Prlly,|xi, £, osxa)

Prx;|lx,, L2 =
r[Xz| Xir ~x; 7USNR] Zz/ex Pr[lz’|w,7£;;*70'sm{]

(14)

Bronchain, Azouaouzi, ElIGhamrawy, Renes, Schneider 13

Generally, we will assume that the polynomials have a signed representation (e.g., see
[AHKS22]) and that the device leaks the hamming weight of intermediates. The latter
deterministic leakage component is then denoted as ﬁg’f’li. In the following, the adversary
is able to exploit leakage on polynomials y and/or x = s o ¢ depending on the context.

Fault Model. Similarly to side-channel leakage models, the fault attacks detailed in this
work apply to various models. In this work, we assume that the adversary is able to insert
a fault that will induce a known bias on the bits of a polynomial coefficient. Concretely,
the fault adversary can set a bit b to zero with probability « such that:

@ b=0
Prb|¢,] = 15
Pr{p|¢.] {1_a o (15)
As a result, the probability of a given faulted coefficient is proportional to
Prly 5] o« T] Pri(y: mod *a)p]|4a], (16)
beB

which is the product of the probability on each of its (non-uniform) faulted bits. Similarly,
as for Equation 14, the actual Pr[y;] is obtained by normalization. As an example, the fault
model Fy- 0 31 % gets all the coefficients of y; to zeros with probability 1. In the following, we
will assume that a single coefficient is faulty in the polynomial y. Yet, multiple coeflicients
in y can also be faulted in order to reduce the number of faulted signatures required. We
stress that faults can be inserted also with the signed representation of coefficients. In
the following, we only consider faults on y, as faults on x does not seem to be directly
exploitable with our framework. We leave the investigation of faults on x as an open
question.

4.2 Initialization of the Factor Graph

The previous equations describe how to derive the probabilities on coefficients in x and
y from either side-channel leakages or induced faults. In the following, we describe how
these probabilities are used to derive the initial probabilities Pr;,;[x;] for the SASCA
described in Section 3. Concretely, we observe that the knowledge of the released signature
polynomial z enables to directly translate information on y to information on x because
of the additive relation z = x +y. That is, in the case of side-channel leakage on y, the
equation

Prix;|z;, ly,, £y, osw] o< Prly; = zi — xi|ly,, L3, osna), (17)

is used to derive the probability on the corresponding x;. Similarly, when a fault is
introduced on a coefficient y;, the resulting posterior probability on x; is derived thanks to

Pr(x;|z;, Fy)"] oc Prly; = z; — x| Fy %] (18)

y *
All these probabilities on x; can be combined into the initial probability used by SASCA
according to
Pr[x;] oc Pr[x;|zi, ly,, L3, osng] (19)
) PI' [XZ |le) ‘C;Z*) USNR]

- Pr[x;l|zi, 7"

where the two first terms represent the side-channel leakage on y; and x;, respectively.
The last term stands for the information on x; obtained from the fault injection on y;.
This equation put