
Exploiting Small-Norm Polynomial Multiplication
with Physical Attacks

Application to CRYSTALS-Dilithium

Olivier Bronchain, Melissa Azouaoui, Mohamed ElGhamrawy, Joost Renes
and Tobias Schneider

NXP Semiconductors
firstname.lastname@nxp.com

Abstract. We present a set of physical attacks against CRYSTALS-Dilithium that
accumulate noisy knowledge on secret keys over multiple signatures, finally leading
to a full recovery attack. The methodology is composed of two steps. The first
step consists of observing or inserting a bias in the posterior distribution of sensitive
variables. The second step of an information processing phase which is based on belief
propagation, which allows effectively exploiting that bias. The proposed concrete
attacks rely on side-channel information, injection of fault attacks, or a combination
of the two. Interestingly, the adversary benefits from the knowledge on the released
signature, but is not dependent on it. We show that the combination of a physical
attack with the binary knowledge of acceptance or rejection of a signature also leads to
exploitable information on the secret key. Finally, we demonstrate that this approach
is also effective against shuffled implementations of CRYSTALS-Dilithium.
Keywords: Lattice-based Cryptography · Post-Quantum Cryptography · Side-
Channel Attacks · Fault Attacks · CRYSTALS-Dilithium

1 Introduction
Over the last years, quantum computing has witnessed significant advances. In turn this
has accelerated the research, adoption and standardization of Post-Quantum Cryptography
(PQC) schemes: cryptographic schemes that are believed to be secure even when facing an
adversary with access to a quantum computer. The selection and standardization of PQC
schemes is driven by the National Institute of Standard and Technology (NIST), and as
of July 2022 the lattice-based schemes CRYSTALS-Kyber and CRYSTALS-Dilithium have
been selected as the primary PQC standards for key establishment and digital signatures,
respectively.

In particular, PQC schemes have garnered the interest of the cryptographic community
with respect to their efficient and secure embedded implementations. The main security
threats and countermeasures thereof investigated are Side-Channel Attacks (SCA) and Fault
Attacks (FA). Notably for CRYSTALS-Kyber, additional vulnerabilities are introduced by the
use of the Fujisaki-Okamoto (FO) transform [FO99] in the decapsulation process [RRCB20,
XPR+22, SCZ+23]. Other works also describe how to target the Number Theoretic
Transform (NTT) which is the main arithmetic building block in implementations of
lattice-based schemes such as CRYSTALS-Kyber and CRYSTALS-Dilithium [HHP+21]. The
protection of CRYSTALS-Kyber against SCA is also a relatively active research area as
illustrated by this non-exhaustive list of recent publications [BGR+21, HKL+22, ABH+22,
BC22].

mailto:{firstname.lastname@nxp.com}

2 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

This work focuses on CRYSTALS-Dilithium, and compared to CRYSTALS-Kyber or other
Key Encapsulation Mechanisms (KEMs), it initially did not receive as much attention.
Nonetheless, it has been the target of substantial contributions from the embedded
cryptographic community. Notably, the work of Ravi et al. [RJH+18] has shown that it is
possible to forge signatures by recovering only half of CRYSTALS-Dilithium’s secret key.
Marzougui et al. [MUTS22] have demonstrated that leakage of zero values in the masking
vector in CRYSTALS-Dilithium leads to key recovery. A similar attack is described
in [BVC+23]. In addition, the analysis from Islam et al. [IMS+22], ElGhamrawy et
al. [EAB+23] and Ulitzsch et al. [UMB+23] illustrate that there many approaches to
recovering CRYSTALS-Dilithium’s secret signing key by exploiting the effects of fault
injections. When it comes to masked implementation of CRYSTALS-Dilithium hardened
against SCAs, very recently, Coron et al. [CGTZ23] revisited the work of Azouaoui et
al. [ABC+23], which is in turn a revised masked implementation of the initial masking
CRYSTALS-Dilithium proposal by Migliore et al. [MGTF19].

From a high level, all known attacks exploit specific attack vectors or leakages to extract
some information which is then used to reduce the hardness of the cryptographic problem
CRYSTALS-Dilithium is based on. For instance, in [MUTS22] it is the knowledge that a
coefficient of the masking vector y is equal to zero. In [EAB+23], it is the fault-induced
equality of two polynomials in y. Generally, to recover the full secret key most known
attacks rely on some algebraic post-processing, such as lattice reduction [DDGR20] or
least squares [BDE+18]. However, such techniques are only slightly resilient to the noise
inherent to SCAs and FAs.

Contributions. In this work, we propose generalized side-channel and fault attacks against
CRYSTALS-Dilithium that scale well with noise and/or precision. The core observation
leading to these attacks is that several polynomials are required to follow uniform distribu-
tion to ensure black-box security of CRYSTALS-Dilithium. Yet, both side-channel or fault
attacks (next denoted together as physical attacks) create a bias on these polynomials,
which then lead to exploitable information on the secret key. In short, we summarize our
contributions as follows:

• Generic Attack Framework. In Section 3, we describe a new generic methodology
to accumulate information on the secret key polynomial from noisy knowledge of
polynomials. This approach is based on the Belief Propagation (BP) algorithm
which is leveraged for Soft Analytical Side-Channel Attacks (SASCA) introduced
in [VGS14]. As demonstrated in this work, it enables a large variety of attack
scenarios that we systematically study through simulated experiments. For each of
these, we evaluate the number of signatures to recover a single key polynomial.

• Physical Attacks with Accepted Signatures. In Section 4, we apply the framework
to the case where the adversary gets access to released signatures. For side-channel
attacks against Dilithium Level-2, we show that for low noise (SNR = 100) only ≈ 4
traces are needed to recover a secret key polynomial. For higher noise levels (e.g.,
SNR = 0.01), a total of ≈ 700 traces are needed. For fault attacks, between 23 and
2000 faults are needed depending on the fault precision.

• Physical Attacks without Accepted Signatures. In Section 5, we study the case of
attacks without released signatures. When the signature is not accepted, but the
index of the rejected coefficient is leaked (e.g., through an early-abort strategy),
≈ 6 ·105 traces are needed in the low noise settings. Eventually, we target a weakened
parameter set and show that the knowledge of whether a full polynomial is rejected
(e.g., when no early-abort strategy is implemented), while having no knowledge of
which coefficient lead to this rejection, can still lead to key recovery. Fault attacks

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 3

are also similarly exploitable, but we do no include these experiments in the paper
because of space limitations.

• Physical Attacks with Shuffled Computation. In Section 6, we demonstrate that
shuffled implementations of CRYSTALS-Dilithium, as suggested in [ABC+22], are
also vulnerable to physical attacks using our framework. More precisely, for side-
channel attacks against Dilithium Level-2, with SNR = 100, a total of ≈ 5 · 103

traces are needed to recover the secret key polynomial. For SNR = 0.5, ≈ 1.2 · 105

measurements are needed. Similarly results also apply to fault attacks.

Put all together, our attack is a step forward in the direction of the evaluation of
hardened implementation of CRYSTALS-Dilithium against physical attacks. Concretely,
the impact of our contribution on the attack surface and countermeasures for variables
within CRYSTALS-Dilithium is summarized in Table 1. Again, while attacks on some
variables were known (e.g., fault attacks on c ◦ s1), we extend and generalize these attacks
and provide a framework to exploit the leakage that scales efficiently with respect to noise.
In Table 1a, we summarize the types of attack that are known in the literature, and what
our framework is able to perform. In Table 1b, we summarize the type of countermeasure
that should be applied to these variables. In particular, in this paper we conclude that
shuffling is not effective for y and w0, hence we recommend to use masking for all the
sensible variables as hinted in [ABC+23].

Table 1: Summary of sensitivity and countermeasure effectiveness in CRYSTALS-Dilithium
for valid and rejected signatures.

y w0 c◦s1 c◦s2

Valid Sig.
SCA ⋆ ⋆ ⋆ ⋆

FA ⋆ ⋆

Rej. Sig.
SCA ⋆ ⋆ ⋆ ⋆

FA ⋆ ⋆

(a) Sensitivity: red for effective attack, gray
for no effective attack, ⋆ attack included in
this work.

y w0 c◦s1 c◦s2

Valid Sig.
Masking
Shuff.

Rej. Sig.
Masking
Shuffling

(b) Countermeasure: green for effective, red
for not effective, gray for no concrete attacks.

2 Background
In this section, we describe the necessary background to understand the contributions of
this paper. We start by introducing the general notations used in the paper. We then
recall the main step of the signature generation process in CRYSTALS-Dilithium and some
of its specific details and properties relevant to the remainder of this work. Afterwards, we
describe side-channel attacks and the SASCA methodology.

2.1 Notations
We denote by Zq the integer ring modulo the prime q, and by Zq[X]/(Xn+1) the polynomial
ring in X modulo Xn + 1. Polynomials in Zq[X]/(Xn + 1) are written in bold, e.g., p,
with n being the degree of the polynomial. For CRYSTALS-Dilithium, q = 223 − 213 + 1
and n = 256, and we will fix them for the remainder of the paper. The i-th coefficient of a
polynomial is denoted pi. The multiplication between two polynomials a and b is written

4 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

as c = a ◦ b and addition as c = a + b. The infinity norm of a polynomial is expressed as
||p||∞ and is the maximum absolute value of its coefficients. Constants are denoted with
Greek letters. A half-open interval containing all elements in the range {α, . . . , β − 1} is
denoted as Jα, βJ. A closed interval is denoted as Jα, βK, where β is included. The variables
x mod q are in the range J0, qJ, variables x mod ±q in the interval J−(q − 1)/2, (q − 1)/2J.
The j-th bit of the i-th coefficient in a polynomial p is denoted as pi[j]. We denote random
variables with upper case letters, e.g., X, and their realizations with a lower case, e.g.,
X = x. The probability of a realization is given as Pr[X = x]. When clear from the
context, we also use the more concise notation Pr[x]. Similarly, the probability conditional
to a realization of another random variable is given as Pr[X = x|Y = y], or Pr[x|y]. The
sampling of a random variable x from a set X is denoted as x

$← X .

2.2 Signature Generation and Rejection in CRYSTALS-Dilithium

In this section we detail the CRYSTALS-Dilithium operations required for the understanding
of the remaining sections. More specifically, we describe generation of the signature
polynomials z and r0. As both are computed and bound checked similarly, we use
generic parameters that can apply to both cases. We refer to the CRYSTALS-Dilithium
specifications for additional details [DLL+17].

In a valid signature, the signature polynomial z must satisfy

z = ||y + s ◦ c||∞ < γ − β. (1)

During the signing operation, first the polynomial z = y + s ◦ c is computed and bound
checked, i.e., the norm of all its coefficients has to be strictly smaller than γ − β. If the
bound check does not pass, the signature process is repeated until the aforementioned
property is fulfilled (see Section 2.2.2). The same process is applied to the other signature
polynomial r0 with slightly different parameters. Note that there are further rejection
checks during the CRYSTALS-Dilithium signature generation, e.g., the number of ones in
the hint. However, these are not relevant for our attacks and are omitted for simplicity.

In this work, we will discuss the recovery of a single secret key polynomial. Note that
CRYSTALS-Dilithium is based on MLWE hence the secret key is composed of a small
vector of polynomials. As a result, the experiments on a single polynomial can be used to
derive the number of measurements and/or faults needed to mount the attack on the full
CRYSTALS-Dilithium secret key.

2.2.1 Relevant Polynomials Properties

Next, we describe in detail the properties of the polynomials involved in the computation
of z as well as the polynomial operations used. We refer to Table 2 for the Dilithium
parameters that are relevant to our attack.

Secret key s. The long term secret key polynomial is denoted as s. This polynomial
has a small norm such that ||s||∞ ≤ η. All the coefficients in this polynomial are
independently drawn from a uniform distribution thanks to ExpandS during KeyGen such
that si

$← {−η, . . . , η} for all indexes i. The parameter η depends on the parameter set
with η ∈ {2, 4}. The distribution of the coefficients has a mean µs = 0 and a standard
deviation σs =

√
η(η + 1)/3.

Challenge c. During Sign, a fresh challenge c is generated deterministically from a random
bitstring thanks to SampleInBall. The obtained challenge has a special structure. It has
exactly τ coefficients that are different from zero and are equal to either 1 or −1. Again,
τ ∈ {39, 49, 60} depending on the parameter set. The polynomial c is part of the signature,

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 5

hence c is given for valid signatures (when the bound check is passed). This polynomial is
considered as non-sensitive in protected implementations [MGTF19, ABC+23].

Mask polynomial y. During Sign, a fresh mask polynomial y is derived for every new
signature generation. The coefficients of these polynomials are uniformly distributed on
the interval J−γ, γJ. This polynomial is not part of the valid signature and must remain
secret.

Product x = s ◦ c. The signature generation involves computing the polynomial multi-
plication between s and c. Concretely, each coefficient in the resulting polynomial x is
defined as

xi =
i∑

j=0
sjci−j −

n−1∑
j=i+1

sjcn+i−j . (2)

As a result, each xi is a weighted sum of secret key coefficients. Since c only contains
exactly τ non-zero coefficients, each xi is the weighted sum of a subset of τ secret key
coefficients. Hence, x satisfies the property that ||x||∞ ≤ β where β = τη. By the
central limit theorem, the distribution of xi can be estimated by a normal distribution
≈ N (0,

√
τ · η(η + 1)/3). However, its distribution can also be explicitly computed by

using convolutions of probability tables as detailed in Section 3.

Signature z = y + s ◦ c. Thanks to the norm-check performed during signature genera-
tion, one ensures that for all valid signatures we have −γ + β < ||z||∞ < γ − β. Putting it
all together, the coefficients in z are given by

zi = yi +
i∑

j=0
sjci−j −

n−1∑
j=i+1

sjcn+i−j . (3)

2.2.2 Rejection Probability in a Blackbox Setting

The rejection probability of polynomials can be derived analytically (see [ABD+19, Section
3.4] for details). In the following, Ri stands for the random variable denoting the rejection
event. That is, ri = 1 (resp. ri = 0) denotes that the i-th coefficient has been rejected
(resp. accepted). Concretely, this probability is given by

Pr[Ri = 1] = 1− Pr[Ri = 0] = 1− 2(γ − β)− 1
2γ

(4)

since for a given value of xi, exactly 2(γ − β)− 1 of the 2γ possible values of yi lead to a
zi contained within the bounds. Similarly, we denote the rejection of a full polynomial
with the random variable R. Concretely, the rejection probability is given by

Pr[R = 1] = 1−
n∏

i=0
Pr[Ri = 0] = 1−

(
2(γ − β)− 1

2γ

)n

(5)

since it requires that all the coefficients are within the bounds.1 Putting all together, we
observe that the rejection probability of polynomials or coefficients is independent of the
secret key s when the adversary only has access to c and z.

1We use the same independence assumption as in the CRYSTALS-Dilithium specification [DLL+17,
Section 3.3].

6 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

Table 2: Relevant CRYSTALS-Dilithium parameters for this paper.
NIST Security level II III V

q (modulus) 223 − 213 + 1 223 − 213 + 1 223 − 213 + 1
τ (# of ± 1’s in c) 39 49 60

γ (y coefficient range) 217 219 219

η (secret key range) 2 4 2
β (= τ · η) 78 196 120

average number of signing iterations 4.25 5.1 3.85

Early-Abort. The performance impact of rejecting signatures is relatively significant
for CRYSTALS-Dilithium, since it requires to restart the signature generation process
from quite an early step. Hence, to speed up the Sign algorithm, implementations may
use an Early-Abort strategy. That is, as soon as a coefficient is out of bound, the
signature generation is aborted and a fresh y and c are sampled. As a result, the execution
time of Sign leaks which coefficient is rejected. This does not affect the security of
CRYSTALS-Dilithium in a blackbox setting [DLL+17].

2.3 Side-Channel Attacks
A common type of physical attacks are so-called side-channel attacks, that exploit in-
formation obtained through physical leakages such as power consumption or timing to
recover information on secret keys [KJJ99, CRR02]. Concretely, the adversary observes
the leakage Lj (where j indexes the physical observations, also referred to as traces, of the
cryptographic function’s different executions) which is a random variable corresponding
to the power consumption, electromagnetic radiation or timing of the execution of a
cryptographic function (e.g., an AES encryption). From this observation, she can obtain
partial information on ephemeral intermediate variables xj (e.g., an S-box output) given
by the conditional probability Pr[x|Lj]. Given some other public information pj (e.g., a
plaintext), she derives information on a long-term secret k (e.g., a secret key) summarized
by the conditional probability Pr[k|Lj , pi]. This estimated probability can be obtained
thanks to various tools such as Gaussian templates [CRR02].

However, a single leakage observation may not be enough to completely recover the
secret. Hence, the adversary can observe multiple (N) leakage traces and use a maximum
likelihood approach to accumulate information on the secret. Precisely, she computes the
likelihood of a secret k given the N leakage observations according to

Likelihood[k|L, p] ∝
N−1∑
j=0

log Pr[k|Lj , pj] (6)

and selects the most probable key according to

k∗ = max
k′

Likelihood[k′|L]. (7)

Overall, as the number of traces N increases, the probability that the guessed key k∗ is
the correct one increases. Hence, the more traces are available, the more successful the
attack will be.

2.4 Soft Analytical Side-Channel Attacks (SASCA)
The previously described generic side-channel attack leverages observations on a single
ephemeral variable x to recover information on the key. Yet, many variables in crypto-
graphic implementations are dependent on the secret key. In the following, we describe
SASCA [VGS14] which is a strategy to exploit simultaneously leakages on various variables.

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 7

First, we recall that the relationships between these sensitive variables can be represented
with a factor graph. A factor graph is composed of nodes and edges. It contains two
types of nodes. The first type is the variable node that represents a variable (or any value)
within the implementation that can have a given distribution. The second type of node is
the function node, that represents an operation between variables. These can typically be
XOR gates, AND gates, modular additions or modular multiplications. In the factor graph,
edges allow connecting variables with function nodes, hence forming a bipartite graph. A
side-channel adversary exploiting such a factor graph performs a so-called SASCA that
follows the next steps:

1. The adversary defines a factor graph that represents the implementation under
attack. It typically contains sub-parts of the secret key (e.g., secret key bytes), public
variables (e.g., plaintexts), and ephemeral secret variables (e.g, an S-box output). If
the operations are repeated (exploiting multiple traces), parts of the graph can be
duplicated.

2. Thanks to access to the leakage L, the adversary can gain partial knowledge on
intermediate variables within the factor graph. That is for a variable x, the adversary
derives Pr[x|L] from the leakage L similarly as in standard template attacks (see
Section 2.3). She then initializes the variable node x within the factor graph to
Pr[x|L]. We denote this distribution as the initial distribution of the variable node
and use the notation Prini[x].

3. Once all the information obtained from the leakage is encoded into the factor graph,
the adversary can run a Belief Propagation (BP) algorithm. Informally, BP iteratively
updates the distributions of intermediate variables thanks to messages received from
neighbor nodes, where messages are also distributions. In turn, the messages sent
from function to variable nodes and from variable to function nodes are updated.
Namely, the messaging passing rule from a variable node v to a function node f is
given by

mv→f [x] = Pr
ini

[x] ·
∏

fn∈δv\f

mfn→v[x] (8)

where δv denotes all the neighbors of v and δv\f denotes the set of all its neighbors
excluding f . The message passed from one variable to a function is the product of
all the other received messages and the initial distribution. The message passing rule
from a function to a variable node is given by

mf→v[x] =
∑
i∈I

ζ(i, x) ·
∏

vn∈δf \v

mvn→f [ivn
] (9)

where I denotes one combination of input/output values and ζ(,) is the compatibility
function of the function node (which is equal to 1 if the combination of input/output
values is possible and 0 otherwise).

This adversary is known to be optimal when the factor graph does not contain cycles
(i.e., is a tree). When the factor graph contains cycles, then this method becomes heuristic
but has been demonstrated to be effective in the context of side-channel attacks [VGS14,
HHP+21, BS21].

3 Generic Attack Framework
In this section, we describe the methodology for the attack. We first start with a high-level
introduction, followed by the description of the factor graph exploited by the SASCA
adversary. Eventually, we discuss optimizations used to compute the propagated messages.

8 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

3.1 High Level Description of the Attacks
All the attacks proposed in this work are based on SASCA. These attacks enable to recover
each of the secret key polynomials in CRYSTALS-Dilithium independently in a divide and
conquer fashion, hence we focus on the problem of recovering a single secret key polynomial
s. The attack can simply be repeated on each polynomial to recover the full secret key. As
illustrated in Figure 1, all the proposed attacks are performed in two phases.

Information Extraction. The first step consists of recovering partial information on each
of the coefficients in the polynomial x with x = s ◦ c. In each of the considered attacks,
the probability of some coefficient xi posterior to the physical attack is estimated. These
probabilities Prini[xi] are the actual ephemeral secret information that the adversary can
extract from the CRYSTALS-Dilithium signature generation. This can be obtained from
side-channel leakages on y and x, a fault attack biasing the distribution of y or their
combination. This can be used to recover the secret key either together with a valid
signature z or from a rejection event R when the signature is rejected. The information
extraction is specific to the adversarial capabilities, and we describe several scenarios in
the next sections.

Information Processing. The second step consists of leveraging all the obtained Prini[xi]
(possibly from several traces) to map them to information on the secret key s via SASCA.
This step is identical for every attack considered in this paper. In the remainder of this
section, we describe how information on Prini[x] can be efficiently accumulated to the
secret key Pr[s] by virtue of a dedicated factor graph.

3.2 Factor Graph Description
The factor graph is illustrated for a small example of a degree four polynomial in Figure 1.
The top variable nodes si denote the coefficients of a secret key polynomial (not to be
confused with the polynomials s1 and s2 in the description of Dilithium), and the bottom
variable nodes are coefficients of the polynomial x = s ◦ c. These are linked through the
weighted sum function nodes Σc,i. This function node Σc,i is graphically described in
Figure 2 and is the straightforward mapping of Equation 2. Concretely, it implements the
expression xi =

∑
j c′

jsj where the polynomial c′ = rot(c, i) is the rotation of c defined
as rot(c, i) = c ·Xi mod Xn + 1. As depicted by the color in Figure 1, each coefficient in
x is part of an independent sub-graph involving one single Σc,i node.

When the challenge polynomial c is known, exactly τ of the edges of each independent
sub-graph in Figure 2 have to be kept as c contains only τ coefficients different from zeros.
For the non-zero coefficients, the function nodes ·c′

i denote the multiplication by either 1
or −1 depending on the value of c′

i. This function node can be simply implemented as a
re-ordering of the propagated messages. For efficiency, we merge the computation on this
function node with the subsequent addition as detailed in Section 3.3.

An important remark is that all the polynomials involved in the signature generation
have a small norm. As a result, all the intermediate variables are smaller than q meaning
that no modular reduction must be done. Therefore, we next discuss the propagation rules
and omit the (unnecessary) modular reductions.

3.3 Efficient Propagation Rule Computation
The previously described factor graph could be computed with a generic SASCA tool such
as SCALib [CB23]. However, it comes with drawbacks such as execution time and memory
consumption. Instead, we describe the propagation rules optimized for the previous factor
graph. That is, how both Equation 8 and Equation 9 are efficiently implemented in such a

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 9

s0 s1 s2 s3

Σ(c,0)

x0

Prini[x0]

Σ(c,1)

x1

Prini[x1]

Σ(c,2)

x2

Prini[x2]

Σ(c,3)

x3

Prini[x3]

Info. processing

Physical attack

Figure 1: Example factor graph for parameters N = 1 trace and polynomial of degree
n = 4.

+1

·c′
1

s1

+2

·c′
2

s2

+3

·c′
3

s3

·c′
0

s0

g1 g2

xi

Figure 2: Internal description of Σ(c,i) factor node used in Figure 1 and c′ = rot(c, i)

context. To this end, we take a bottom-up approach and first describe the propagation
rule for a single Σ(c,i) described in Figure 2. Then we discuss how multiple of these can be
combined as in Figure 1.

Propagation Rule for Σ(c,i). Starting with a single Σ(c,i), we detail the notations in
the corresponding visual representation (see Figure 2). There, every variable node gi

stands for the sum gi =
∑j=i

j=0 c′
j · sj where the weights c′

i are known. We start with the
propagation rules around +i, and continue with the propagation on the full factor graph.

The propagation rule that computes the message from the function node +i to the
following variable node gi is next denoted as convadd and is described in Algorithm 1. In
order to compute m+i→gi

, the other incoming messages to the function node +i are needed.
Hence convadd takes as input the incoming messages mgi→+i

and msi→+i
together with

the known value c′
i that multiplies si. From Equation 9, the outgoing message m+i→gi

is
computed by summing over the product of all the other combinations of incoming messages.
That is, the algorithm has two nested loops to cover all the input combinations of g′ and
s′.2 The corresponding output value o is computed as o = g′ + c′ · s′ and the value of the
outgoing message is updated for the value o. Eventually, we note that convadd can be
used to compute the messages m+i→gi−1 by negating c′

i and adapting the ranges for input
values.

2Note that the maximum non-zero value of both incoming messages are known. Hence the sum on the
possible input combinations can be adapted accordingly.

10 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

Algorithm 1 convadd (mgi−1→+i
,msi→+i

,ci’)

Input: Input messages mgi−1→+i
with ||mgi−1→+i

|| = 2(β − η) + 1 and msi→+i
with

||msi→+i
|| = 2η + 1. Weight c′

i ∈ J−1, 1K.
Output: Message m+i→gi

1: if ci’ = 0 then ▷ Quit early as output message will be the input message
2: return mgi−1→+i

3: m+i→gi ← 02β+1 ▷ Init message with zeros
4: for s′ ∈ J−η, ηK do
5: for g′ ∈ J−β + η, β − ηK do
6: o← g′ + c′ · s′

7: m+i→gi
[o]← m+i→gi

[o] + mgi−1→+i
[g′] ·msi→+i

[s′]
8: return m+i→gi

Next, we describe in Algorithm 2 the propagation rule on the full function node
Σ. First, the challenge polynomial c is rotated with rot with the appropriate index in
order to obtain c’. Then, all the messages m+i→gi

going from left to right in Figure 2
are computed. To do so, the mg0→+1 is initialized with the incoming message ms0→Σ
re-ordered according to c′

0. Then, we iterate in ascending order on all the +i. There, we
note that mgj→+j+1 ← m+j→gj

as per Equation 8 as there is no other incoming messages
to gj ’s. A similar iteration is applied in descending order (right to left on Figure 2) in
order to compute messages m+j→gj−1 . The last step is to compute the messages mΣ→sj

by computing the propagation rule around +j with the two already available messages
mgj→+j

and mgj−1→+j
. This is done thanks to convaddrev which is slightly adapted

convadd in order to include the effect of c′
i on the output variable.3

Algorithm 2 Propagation rules for Σ associated to xi.
Input: All input messages msj→Σ for j ∈ J0, nJ, challenge c, degree of exploited coefficient

i and its associated Prini[xi].
Output: Generates all the messages mΣ→sj

for j ∈ J0, nJ.

1: c′ ← rot(c, i)
2: mg0→+1 ← c′

0 ·ms0→Σ ▷ Prop. from s0 up to xi

3: for j from 1 to n do
4: m+j→gj

← convadd(mgj−1→+j
, msj→Σ, c′

j)
5: mgj→+j+1 ← m+j→gj

6: mgn→+n−1 ← Prini[xi] ▷ Prop. from xi up to s0

7: for j from n− 1 to 0 do
8: m+j→gj−1 ← convadd(mgj→+j

, msj→Σ,−c′
j)

9: mgj−1→+j−1 ← m+j→gj−1

10: mΣ→s0 ← m+1→g0

11: for j from 1 to n do
12: mΣ→sj

← convaddrev(mgj→+j
, mgj−1→+j

, ci)

Propagation Rule for Multiple Σ(c,i). In the above, we described the SASCA propagation
rule for a single function node Σ(c,i). Multiple of these factor nodes can be connected to
the variable nodes of the secret key coefficients si. This is the case for the factor graph of a

3The main difference is that the output message m+i→si is computed by using o = −c′(gi−1 − gi).

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 11

single polynomial multiplication as described in Figure 1. Concretely, the variable node si

receives multiple messages mΣ(c,j)→si
from all the Σ(c,j) nodes it is connected to (c′

i ̸= 0).
The messages msi→Σ(c,j) are then computed according to Equation 8 as the product of all
other incoming messages to si hence as msi→Σ(c,j) =

∏
n ̸=j mΣ(c,j)→si . This product of a

large number of small values can lead to computational errors. Therefore to compute these
messages, we first compute and store the sum of log-probabilities of all messages. Then the
outgoing messages are computed such as log(msi→Σ(c,j)) =

∑
n log(mΣn→si

)−log(mΣj→si
).

Eventually, the guessed value s∗
i for a secret key coefficient si is the value maximizing the

product of incoming messages similarly to Equation 7. It can be derived from this sum of
log-probabilities as

s∗
i = max

s′

∑
n

log(mΣn→si
[s′]). (10)

In the above, we only describe the case where a single signature corresponding to a
single product s ◦ c is observed, where one Σ(c,i) is added for each of the n coefficients in
the output polynomial x. Yet, additional Σ(c,i) nodes can also be added to the factor graph
by observing N signatures corresponding to different products s ◦ c for different challenges
c and a constant secret key polynomial s. In such a case, the factor graph contains at
most N × n different nodes Σ(c,i). All these Σ(c,i) must not necessarily be included in the
factor graph either. This can be the case if the associated Prini[xi] obtained through the
physical attack is known to be secret key independent (e.g., no leakage). In all cases, the
above propagation rules remain the same.

3.4 Discussion on the Factor Graph Selection
Knowledge of c. In the above, we assume that the adversary knows exactly c. In the
case of released signatures, this knowledge is trivial as it is embedded into the signature.
This case is studied in Section 4 and Section 6. When the adversary does not have access
to a released signature (see Section 5), c is not known but can potentially be recovered by
other means such as side-channel leakage. Since state-of-the-art hardened implementations
of CRYSTALS-Dilithium often do not protect the polynomial c against side-channel at-
tacks [MGTF19, ABC+23] and, in addition, the polynomial is being manipulated as single
bits per register, it is assumed to be a relatively easy target for side-channel adversaries.
The proposed attack also extends to the setting where only noisy leakage on c is obtained.
In such a case, the multiplication with a weight c′ is simply replaced by a multiplication
function node between si and c′

i making the propagation rule slightly more complex. We
leave such a detailed investigation to future work.

Impact of Fast Polynomial Multiplication with NTT. We notice that the factor graph
used for this attack implements a school-book polynomial multiplication. However, efficient
implementations of CRYSTALS-Dilithium usually leverage NTTs to perform polynomial
multiplications [AHKS22]. Yet, we stress that the attack methodology is independent of
the polynomial multiplication methodology as it is based on the definition of polynomial
multiplication itself. The only slight advantage of using NTT-based multiplication is that
direct leakage on x can be avoided as it is not explicitly computed in the standard domain
and only in NTT representation (this is not the case in [AHKS22]). Even in this case,
the attack is also applicable as direct leakage on y, which cannot be avoided, allows to
initialize the factor graph as discussed in the following sections.

Performance Considerations. A performance consideration is that only τ coefficients
are different from zero in c (see Table 2). When the challenge polynomial c is known,
exactly τ of the edges must be kept for each Σi. Overall, for each Σi node, only the
outgoing messages mΣi→si and the associated Prini[xi] must be stored in memory. This

12 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

leads to a total of τ(2η + 1) + 2β + 1 64-bit floats that need to be stored. For example,
if all the Σi are included and 1000 signatures are used for the attack, 0.72 gigabyte is
needed for Dilithium-2, 1.7 gigabyte is needed for Dilithium-3 and 1.1 gigabyte is needed
for Dilithium-5 to store the full factor graph.

Eventually, we note that the propagation rule for + (convadd) can also be implemented
by leveraging FFT-based convolutions as proposed in [PPM17]. However, the benefits are
not obvious as one of the inputs to the addition is always small (J−η, ηK). The study of
such an approach and the practical benefits it may bring is also left for future work.

4 Physical Attacks with Valid Signatures
In this section we detail the case where the adversary obtains the signature, i.e., both
polynomials z and c. We first describe the leakage and fault models we consider, and then
continue with the methodology used to initialize the factor graph described in Section 3
with Prini[xi]’s. Finally, we describe the results of simulated attacks for both side-channel
and fault attacks.

4.1 Leakage and Fault Models
We start by describing the leakage and fault models used for the simulated attacks. We
stress that the results presented in this paper are not restricted to these models and also
apply to others. In both cases, we assume that the adversary knows exactly the leakage
and faults models. We leave the study of unprofiled scenarios to future investigations.

Leakage Model. In this work, we consider leakage on polynomials x = c ◦ s and y
described in Section 2.2 in a similar way. For simplicity, we only describe the leakage for x.
The leakages under consideration are the sum of a deterministic data-dependent function
and Gaussian noise. We assume that the coefficients leak independently. The deterministic
component of the leakage function is denoted by

LB,±
xi

=
∑
b∈B

(xi mod ±q)[b], (11)

which is the sum of bits of xi mod ±q. The bits involved in the leakage are defined by the
list B where each value in B is a bit index. As an example, the leakage L31,±

xi corresponds
to the sign-bit of the coefficient xi in 32-bit two’s complement representation. In case the
data is represented in the interval J−(q − 1)/2, (q − 1)/2J, the notation LB,±

xi is used. If
the coefficients are represented in the interval J0, qJ, the notation LB,+

xi is used. From this,
the leakage on a polynomial coefficient is a random variable

Lxi ← L∗,∗
xi

+N (0, σ2
SNR) (12)

where σ2
SNR is the noise variance ensuring the SNR for the given deterministic leakage

function L∗,∗
xi .

Concretely to mount the attack, the adversary first computes the probability of
observing a leakage sample lxi

with standard Gaussian template attacks assuming a given
value for xi. That is

Pr[lxi
|xi,L∗,∗

xi
, σSNR] ∝ exp

(
−
(
lxi
− L∗,∗

xi

)2

2σ2
SNR

)
. (13)

Second, she computes the value of Pr[xi|lxi ,L
∗,∗
xi , σSNR] thanks to Bayes’s theorem (normal-

ization) over all the possible values xi such as

Pr[xi|lxi
,L∗,∗

xi
, σSNR] = Pr[lxi

|xi,L∗,∗
xi , σSNR]∑

x′∈X Pr[lx′ |x′,L∗,∗
x′ , σSNR]

(14)

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 13

Generally, we will assume that the polynomials have a signed representation (e.g., see
[AHKS22]) and that the device leaks the hamming weight of intermediates. The latter
deterministic leakage component is then denoted as L0:31,±

xi . In the following, the adversary
is able to exploit leakage on polynomials y and/or x = s ◦ c depending on the context.

Fault Model. Similarly to side-channel leakage models, the fault attacks detailed in this
work apply to various models. In this work, we assume that the adversary is able to insert
a fault that will induce a known bias on the bits of a polynomial coefficient. Concretely,
the fault adversary can set a bit b to zero with probability α such that:

Pr
bit

[b|Eα] =
{

α b = 0
1− α b = 1

(15)

As a result, the probability of a given faulted coefficient is proportional to

Pr[yi|FB,+
yi,α] ∝

∏
b∈B

Pr
bit

[(yi mod +q)[b]|Eα], (16)

which is the product of the probability on each of its (non-uniform) faulted bits. Similarly,
as for Equation 14, the actual Pr[yi] is obtained by normalization. As an example, the fault
model F0:31,±

yi,1 sets all the coefficients of yi to zeros with probability 1. In the following, we
will assume that a single coefficient is faulty in the polynomial y. Yet, multiple coefficients
in y can also be faulted in order to reduce the number of faulted signatures required. We
stress that faults can be inserted also with the signed representation of coefficients. In
the following, we only consider faults on y, as faults on x does not seem to be directly
exploitable with our framework. We leave the investigation of faults on x as an open
question.

4.2 Initialization of the Factor Graph
The previous equations describe how to derive the probabilities on coefficients in x and
y from either side-channel leakages or induced faults. In the following, we describe how
these probabilities are used to derive the initial probabilities Prini[xi] for the SASCA
described in Section 3. Concretely, we observe that the knowledge of the released signature
polynomial z enables to directly translate information on y to information on x because
of the additive relation z = x + y. That is, in the case of side-channel leakage on y, the
equation

Pr[xi|zi, lyi
,L∗,∗

yi
, σSNR] ∝ Pr[yi = zi − xi|lyi

,L∗,∗
yi

, σSNR], (17)
is used to derive the probability on the corresponding xi. Similarly, when a fault is
introduced on a coefficient yi, the resulting posterior probability on xi is derived thanks to

Pr[xi|zi,F∗,∗
yi,∗] ∝ Pr[yi = zi − xi|F∗,∗

yi,∗]. (18)

All these probabilities on xi can be combined into the initial probability used by SASCA
according to

Pr
ini

[xi] ∝ Pr[xi|zi, lyi ,L∗,∗
yi

, σSNR] (19)

· Pr[xi|lxi ,L∗,∗
xi

, σSNR]
· Pr[xi|zi,F∗,∗

yi,∗]

where the two first terms represent the side-channel leakage on yi and xi, respectively.
The last term stands for the information on xi obtained from the fault injection on yi.
This equation puts forward that both information from side-channel and fault attacks can
be summarized in the same probability, which makes the extension to combined attacks
straightforward.

14 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

4.3 Experimental Results

In the following, we describe the results of both side-channel and fault attacks assuming
the model described in the previous section. In both cases, both the polynomials z and c
are assumed to be known (e.g., through a valid signature). The efficiency of the attack is
estimated through the median number of correctly recovered coefficients in the secret key
polynomial s among the 256 ones. This is estimated from 100 independent experiments
after 20 iterations of the BP algorithm described in Section 3.

Recent works such as [DDGR20] have shown how to integrate information extracted
from a side-channel into lattice reduction attacks against LWE-based schemes. However,
up to our knowledge, it is not yet fully understood how to accurately quantify the extent
of information required on the secret key coefficients to break CRYSTALS-Dilithium. This
is more so challenging when dealing with soft/probabilistic information as is the case for
common side-channel and fault attacks. This line of research is orthogonal to this work,
and we leave it as an open question. In the following, we will consider that an attack is
successful once the full secret key polynomial is recovered only from the physical attack.

Side-Channel Attacks. The results for side-channel attacks exploiting hamming weight
leakage on all the coefficients of both polynomials x and y are reported in Figure 3. On
these plots, each of the curves represents a different SNR. For level-2 parameters, only
4 traces are needed to obtain all the secret key polynomials when the noise is very low
(SNR = 100). For SNR = 0.1, around 70 traces are needed and around 700 are needed
with SNR = 0.01. As expected, as the noise increases, the number of traces required to
mount the side-channel attack increases with an inversely proportional relationship. From
these plots, we observe that both level-2 and level-5 have similar results, while level-3
requires slightly more traces. We expect that this difference is due to the larger secret key
coefficient size η (see Table 2).

Fault Attacks. Similarly, the results of fault attacks with a single faulted coefficient y0
in a valid signature are reported in Figure 4. As a single coefficient leads to key dependent
data, a single function node Σ0 is added to the factor graph in Figure 1 per challenge
c. Similarly, as for side-channel attacks, we observe that the less precise the fault is, the
less efficient the attack. As an example, when α = 1 meaning that y0 is always set to
zero, around 23 faulted and released signatures are required for level-2 parameter set.
When α = 0.6, meaning that the bias on y0 towards zero is weaker, around 2000 faults are
needed.

Note that we report the number of faulted and released signatures. However, as
CRYSTALS-Dilithium is a Fiat-Shamir with abort scheme, multiple signature trials are
performed. This means that the faulted signature might not be among the released ones.
Concretely, if a single fault is inserted during all signature attempts, the number of faults
to insert is derived by multiplying the numbers from Figure 4 by the average number of
repetitions from Table 2. We refer to [EAB+23] for an analysis of and strategies to deal
with CRYSTALS-Dilithium signature aborts in combination with faults.

Eventually, we stress that if multiple faults are injected in a single signature attempt,
then the same number of additional Σi nodes can be inserted in the factor graph. This
has the effect of decreasing proportionally the required number of faulted and released
signatures N . Indeed, the information extraction methodology is sensitive to the number
of Σ nodes, independently of whether they are added through additional challenges c or
through additional faults. Finally, we note that exactly the same methodology can be used
to mount combined attacks as illustrated with Equation 19.

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 15

100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

1

0.5

0.1

0.01

(a) Level-2

100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

1

0.5

0.1

0.01

(b) Level-3

100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

1

0.5

0.1

0.01

(c) Level-5

Figure 3: Side-channel attack with hamming weight leakages on polynomials L0:31,±
x

and L0:31,±
y . N is the number of released signatures. Curves correspond to the median

proportion of correctly recovered coefficients for various SNR values.

100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

1

0.95

0.9

0.8

0.7

(a) Level-2

100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

1

0.95

0.9

0.8

0.7

(b) Level-3

100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

1

0.95

0.9

0.8

0.7

(c) Level-5

Figure 4: Fault attack on y0 with model F0:23,+
yi,α . N is the number of faulted and released

signatures. Curves correspond to the median proportion of correctly recovered coefficients
for various induced bias α values.

16 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

5 Physical Attacks with Rejected Signatures
In the previous section, we demonstrated that leakage on y and/or x can be used in
combination with a valid signature (z, c) in order to retrieve the secret key polynomials.
In this section, we will demonstrate that the combination of leakage on y, the knowledge
of the challenge c (e.g., through side-channel analysis) and the fact that a polynomial
is rejected or not leads to exploitable information on the secret key. This applies to
implementations with and without an early-abort strategy.

5.1 Initialization of the Factor Graph with Early-Abort
We denote the event of a coefficient in the signature polynomial zi as being rejected as
Ri = ri. Namely, ri = 1 (resp. ri = 0) if the coefficient is rejected (resp. accepted). In
case the early-abort is implemented, the coefficients of z are checked individually and
sequentially. The process is aborted as soon as one coefficient is rejected, leaking ri through
timing. For consistency, we next denote the information induced by the physical attack
such as side-channel leakage or a fault as P . From this, we will estimate Pr[xi|Ri,P] which
is the probability distribution of the coefficient xi knowing if zi has been rejected and the
information extracted from the physical attack.

Concretely, the probability that the coefficient zi has been rejected given a value of xi

is expressed as

Pr[Ri = 1|xi,P] =
∑
yi

Pr[Ri = 1|xi, yi,P] · Pr[yi|P], (20)

which sums over all the combinations (yi, xi). In the previous expression, we note that
the term Pr[Ri = 1|xi, yi,P] is a compatibility function that is equal to one when
|xi + yi| ≥ γ − β and equal to zero otherwise. Similarly, the probability that the same
coefficient is accepted is given as

Pr[Ri = 0|xi,P] = 1− Pr[Ri = 1|xi,P]. (21)

Finally, the probability on xi can be obtained thanks to Bayes’s theorem according to

Pr[xi|Ri = ri,P] = Pr[Ri = ri|xi,P]∑
x∗ Pr[Ri = ri|x∗,P] , (22)

similarly to Equation 14. In this equation, values for Pr[Ri = ri|xi,P] are derived with
Equation 20 if ri = 1 and Equation 21 otherwise. This probability can then directly be
used to initialize the factor graph described in Section 3.

5.2 Initialization of the Factor Graph without Early Abort
We also study the case where the early-abort is not implemented. Hence, the adversary only
knows if the full z has been rejected (resp. accepted), denoted with R = 1 (resp. R = 0),
but does not have knowledge of which particular coefficient was rejected. Concretely, in
the following, we will derive the expression of Pr[xi|R,P]. To do so, we first describe the
expression for the probability that a coefficient is individually accepted which is

Pr[Ri = 0|P] =
∑

xi∈J−β,βK

Pr[xi] · Pr[Ri = 0|xi,P] (23)

where Pr[Ri = 0|xi,P] is obtained from Equation 21. The distribution Pr[xi] can be
analytically computed because xi is defined as the sum of τ uniform variables uniform on

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 17

J−η, ηK. Then, the probability that the polynomial is accepted given a single coefficient
value xi is given by

Pr[R = 0|xi,P] = Pr[Ri = 0|xi,P]
∏
j ̸=i

Pr[Rj = 0|P], (24)

because the polynomial is accepted only if all the coefficients are individually accepted.
Similarly to Equation 21, the probability that the polynomial is rejected is given by

Pr[R = 1|xi,P] = 1− Pr[R = 0|xi,P]. (25)

Finally, the posterior distribution of the coefficient xi given R = r can be expressed as

Pr[xi|R = r,P] = Pr[R = r|xi,P]∑
x∗ Pr[R = r|x∗,P] . (26)

Again, this expression can be directly used to initialize the factor graph.

5.3 Experimental Results

Side-Channel Attack with Early-Abort. In Figure 5, the results of side-channel attacks
against rejected signatures when early-abort is implemented are reported for all parameter
sets. Concretely, the target is assumed to leak L0:31,±

y as well as the index of the rejected
coefficient zj such that j = mini(Ri = 1). As a result, the adversary also gets knowledge
that Ri = 0, for all i < l. From this information, we leverage Equation 22 in order to
initialize the factor graph described in Section 3. Despite the fact that both accepted and
rejected coefficients could be exploited to mount the attack, we noticed that the coefficient
for which Rj = 1 provides the most information on xj . As a result, we only exploit
the rejected coefficient in order to reduce the size of the factor graph (and its memory
requirements). From these figures, we observe that with SNR = 100, around 7 · 105 (resp.
2.1 · 106) rejected polynomials are needed to recover the secret polynomial for Level-2 and
Level-5 (resp. Level-3). As expected, decreasing the SNR, hence increasing noise, leads to
an increased number of required signatures. Concretely, around 107 are required to recover
the secret key polynomial when SNR = 1.

Side-Channel Attack without Early-Abort. Next, we discuss the previously described
attack exploiting rejected polynomials when the early-abort is not implemented. That is,
the index(es) of the rejected coefficient(s) is unknown to the adversary. Accordingly, the
factor graph is initialized with Equation 26. As a result, the graph includes a node for
every xi as the adversary has no prior knowledge of which node is the most informative,
as opposed to when an early-abort strategy is used. This results in a large factor graph
which is challenging to process. We were not able to mount such an attack against
standard CRYSTALS-Dilithium parameter sets because of insufficient memory in our setup.
Therefore, we introduce a weakened parameter set called Level-0 which is equivalent to
Level-2 except that τ = 14. This weakened parameter set is used to put forward that secret
information can also be recovered even if only the knowledge that z has been rejected is
provided to the adversary in addition to leakage on y. This applies to all the parameter
sets despite the fact that we were not able to mount a full attack with our evaluation
setup. Results of this attack on the so-called Level-0 are given in Figure 6. There, we show
that for (almost) noise free Hamming Weight on y, around 5 · 105 rejected polynomials are
needed.

18 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

103 104 105 106 107 108

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

1

(a) Level-2

103 104 105 106 107 108

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

(b) Level-3

103 104 105 106 107 108

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

(c) Level-5

Figure 5: Side-channel attack with hamming weight leakages on polynomials L0:31,±
y with

rejected signatures. Early-abort is implemented and the index of the rejected coefficient
is known. N is the number of rejected signatures. Curves correspond to the median
proportions of correctly recovered secret key coefficients for various SNR values.

103 104 105

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

10000

Figure 6: CRYSTALS-Dilithium Level-0. Side-channel attack with hamming weight leak-
ages on polynomials L0:31,±

y with rejected signature. Early-abort is not implemented. N
is the number of rejected polynomials. Curves correspond to the median proportion of
correctly recovered coefficients for various SNR values.

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 19

6 Physical Attacks against Shuffled y
In this section, we apply the methodology described in Section 3 in order to target
an implementation where the polynomial y is protected with shuffling, as proposed
in [ABC+22]. Note that the later version of this work [ABC+23] does not rely on shuffling
anymore to protect the considered CRYSTALS-Dilithium implementation. In the following,
we demonstrate that shuffling y is indeed not sufficient to protect against side-channel
attacks. Next we follow the same approach as in previous section. Namely, we first describe
how to initialize the factor graph in that setting, and then provide the results.

6.1 Initialization of the factor graph
In a shuffled implementation, the adversary does not know the order in which the coefficients
in y are manipulated. That is, only the leakage of yj is available, which is the leakage of
the j-th manipulated coefficient. From this, the adversary can not relate this leakage to a
single specific coefficient yi. As a result, we leverage the approach from [VMKS12], later
refined in [ABG+22, Section 3], in order to attack shuffled implementations. The first step
is to compute the probability of yi given the leakage on all the coefficients of y. Assuming
that no leakage is available on the shuffle permutation itself, this expression is given by

Pr[yi|ly,L∗,∗
y , σSNR] ∝

n∑
i=0

Pr[yj |lyj ,L∗,∗
yj , σSNR], (27)

where each of the Pr[yj |lyj ,L∗,∗
yj , σSNR] is the probability for coefficient manipulated at index

j. Its expression can be obtained similarly as for standard template attacks (see Equa-
tion 14). From this estimated probability on yi, the probability on each of the coefficient
xi can be derived with

Pr[xi|zi, lyi ,L∗,∗
yi

, σSNR] ∝ Pr[yi = zi − xi|ly,L∗,∗
y , σSNR], (28)

which is exactly similar to Equation 17. These probabilities are then directly used to
initialize the factor graph. We note that Equation 27 is equivalent for every yi. As a
result, it can be computed only once. In case permutation leakage is available (which is not
assumed here), it can be incorporated into that equation, leading to different expression
for every yi [ABG+22].

6.2 Experimental Results
The result of the attacks against shuffled y are reported in Figure 7. There, we observe
that for Dilithium Level-2, around ≈ 5 · 103 traces are needed when SNR = 100. When
SNR = 0.5, around 1.2 · 105 are required. Interestingly we observe that when doubling
the SNR, the attack complexity is increased by two. Meaning that the noise only linearly
increase the complexity of the attack, as expected with shuffling [VMKS12]. These results
can also be compared with Figure 3 where the y was not shuffled. It shows that the attack
complexity is increased by a significant factor, but does not avoid the attack.

7 Conclusion
We put forward several new fault and side-channel attack vectors against CRYSTALS-Dilithium
signature generation leading to key recovery. We have shown that even a slight bias on
the distribution of y posterior to a physical attack leaks sensitive information. This is
an improvement over previous work that requires high accuracy from the leakage traces

20 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

100 101 102 103 104 105 106

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

1

0.5

(a) Level-2

100 101 102 103 104 105 106

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

1

0.5

(b) Level-3

100 101 102 103 104 105 106

0

0.2

0.4

0.6

0.8

1

N

#
of

co
ef

.
/

n

100

10

1

0.5

(c) Level-5

Figure 7: Side-channel attack with hamming weight leakages L0:31,±
y on shuffled polynomial.

N is the number of released signatures. Curves correspond to the median proportion of
correctly recovered coefficients for various SNR values.

or fault precision. Up to our knowledge, this work is the first one to demonstrate physi-
cal attacks exploiting rejected signatures, putting forward that all the iterations of the
Fiat-Shamir with Abort are sensitive. Eventually, similar attacks should be applicable to
various schemes such as Raccoon [dPPRS23] or HAETAE [CCD+23].

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 21

References
[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,

Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schneider, François-
Xavier Standaert, and Christine van Vredendaal. Leveling dilithium against
leakage: Revisited sensitivity analysis and improved implementations. Fourth
PQC Standardization Conference, 2022.

[ABC+23] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,
Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schönauer, François-
Xavier Standaert, and Christine van Vredendaal. Protecting dilithium against
leakage revisited sensitivity analysis and improved implementations. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):58–79, 2023.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber algorithm specifications and supporting documentation.
NIST PQC Round, 3:4, 2019.

[ABG+22] Melissa Azouaoui, Olivier Bronchain, Vincent Grosso, Kostas Papagiannopou-
los, and François-Xavier Standaert. Bitslice masking and improved shuffling:
How and when to mix them in software? IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2022(2):140–165, 2022.

[ABH+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova,
Tobias Schneider, and François-Xavier Standaert. Systematic study of decryp-
tion and re-encryption leakage: The case of kyber. In Josep Balasch and Colin
O’Flynn, editors, Constructive Side-Channel Analysis and Secure Design -
13th International Workshop, COSADE 2022, Leuven, Belgium, April 11-12,
2022, Proceedings, volume 13211 of Lecture Notes in Computer Science, pages
236–256. Springer, 2022.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster kyber and dilithium on the cortex-M4. In Giuseppe Ateniese
and Daniele Venturi, editors, ACNS 22: 20th International Conference on
Applied Cryptography and Network Security, volume 13269 of Lecture Notes in
Computer Science, pages 853–871. Springer, Heidelberg, June 2022.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553–588, 2022.

[BDE+18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and
Mehdi Tibouchi. LWE without modular reduction and improved side-channel
attacks against BLISS. In Thomas Peyrin and Steven Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, Part I, volume 11272 of Lecture
Notes in Computer Science, pages 494–524. Springer, Heidelberg, December
2018.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–214, 2021.

[BS21] Olivier Bronchain and François-Xavier Standaert. Breaking masked implemen-
tations with many shares on 32-bit software platforms. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(3):202–234, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8973.

https://tches.iacr.org/index.php/TCHES/article/view/8973

22 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

[BVC+23] Alexandre Berzati, Andersson Calle Viera, Maya Chartouni, Steven Madec,
Damien Vergnaud, and David Vigilant. A practical template attack on
CRYSTALS-dilithium. Cryptology ePrint Archive, Report 2023/050, 2023.
https://eprint.iacr.org/2023/050.

[CB23] Gaëtan Cassiers and Olivier Bronchain. Scalib: A side-channel analysis library.
Journal of Open Source Software, 8(86):5196, 2023.

[CCD+23] Jung Hee Cheon, Hyeongmin Choe, Julien Devevey, Tim Güneysu, Dongyeon
Hong, Markus Krausz, Georg Land, Marc Möller, Damien Stehlé, and MinJune
Yi. HAETAE: shorter lattice-based fiat-shamir signatures. IACR Cryptol.
ePrint Arch., page 624, 2023.

[CGTZ23] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.
Improved gadgets for the high-order masking of dilithium. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2023(4):110–145, 2023.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
CHES, volume 2523 of Lecture Notes in Computer Science, pages 13–28.
Springer, 2002.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with
side information: Attacks and concrete security estimation. In Daniele Miccian-
cio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part II, volume 12171 of Lecture Notes in Computer Science, pages 329–358.
Springer, Heidelberg, August 2020.

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS - dilithium: Digital signatures from
module lattices. IACR Cryptol. ePrint Arch., page 633, 2017.

[dPPRS23] Rafaël del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani O. Saarinen.
High-order masking of lattice signatures in quasilinear time. In SP, pages
1168–1185. IEEE, 2023.

[EAB+23] Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost Renes, To-
bias Schneider, Markus Schönauer, Okan Seker, and Christine van Vredendaal.
From MLWE to RLWE: A differential fault attack on randomized & determin-
istic dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):262–286,
2023.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 537–554. Springer, 1999.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure ky-
ber. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2021(4):88–113, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/9061.

[HKL+22] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Amber Sprenkels. First-order masked kyber on ARM
cortex-m4. IACR Cryptol. ePrint Arch., page 58, 2022.

https://eprint.iacr.org/2023/050
https://tches.iacr.org/index.php/TCHES/article/view/9061
https://tches.iacr.org/index.php/TCHES/article/view/9061

Bronchain, Azouaouzi, ElGhamrawy, Renes, Schneider 23

[IMS+22] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar.
Signature correction attack on dilithium signature scheme. In 7th IEEE
European Symposium on Security and Privacy, EuroS&P 2022, Genoa, Italy,
June 6-10, 2022, pages 647–663. IEEE, 2022.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19: 17th International Conference on Applied Cryptography
and Network Security, volume 11464 of Lecture Notes in Computer Science,
pages 344–362. Springer, Heidelberg, June 2019.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling side-channel attacks on Dilithium: A small bit-fiddling leak breaks
it all. Cryptology ePrint Archive, Report 2022/106, 2022. https://eprint.
iacr.org/2022/106.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems – CHES 2017,
volume 10529 of Lecture Notes in Computer Science, pages 513–533. Springer,
Heidelberg, September 2017.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel assisted existential forgery attack on
dilithium - A NIST PQC candidate. IACR Cryptol. ePrint Arch., page 821,
2018.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based PKE and kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[SCZ+23] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang. Find the
bad apples: An efficient method for perfect key recovery under imperfect SCA
oracles - A case study of kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2023(1):89–112, 2023.

[UMB+23] Vincent Quentin Ulitzsch, Soundes Marzougui, Alexis Bagia, Mehdi Tibouchi,
and Jean-Pierre Seifert. Loop aborts strike back: Defeating fault countermea-
sures in lattice signatures with ILP. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(4):367–392, 2023.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In ASIACRYPT (1), volume 8873 of Lecture
Notes in Computer Science, pages 282–296. Springer, 2014.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes
in Computer Science, pages 740–757. Springer, Heidelberg, December 2012.

https://eprint.iacr.org/2022/106
https://eprint.iacr.org/2022/106

24 Exploiting Small-Norm Polynomial Multiplication with Physical Attacks

[XPR+22] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David F. Oswald, Wang
Yao, and Zhiming Zheng. Magnifying side-channel leakage of lattice-based
cryptosystems with chosen ciphertexts: The case study of kyber. IEEE Trans.
Computers, 71(9):2163–2176, 2022.

	Introduction
	Background
	Notations
	Signature Generation and Rejection in CRYSTALS-Dilithium
	Side-Channel Attacks
	Soft Analytical Side-Channel Attacks (SASCA)

	Generic Attack Framework
	High Level Description of the Attacks
	Factor Graph Description
	Efficient Propagation Rule Computation
	Discussion on the Factor Graph Selection

	Physical Attacks with Valid Signatures
	Leakage and Fault Models
	Initialization of the Factor Graph
	Experimental Results

	Physical Attacks with Rejected Signatures
	Initialization of the Factor Graph with Early-Abort
	Initialization of the Factor Graph without Early Abort
	Experimental Results

	Physical Attacks against Shuffled y
	Initialization of the factor graph
	Experimental Results

	Conclusion

