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Abstract

In post-quantum cryptography, Learning With Errors (LWE) is one of the dom-
inant underlying mathematical problems. The dual attack is one of the main
strategies for solving the LWE problem, and it has recently gathered signicant
attention within the research community. A series of studies initially suggested
that it might be more ecient than the other main strategy, the primal attack.
Then, a subsequent work by Ducas and Pulles (Crypto’23) raised doubts on the
estimated complexity of such an approach. The dual attack consists of a reduction
part and a distinguishing part. When estimating the cost of the distinguishing
part, one has to estimate the expected cost of enumerating over a certain number
of positions of the secret key.
Our contribution consists of giving a polynomial-time approach for calculating
the expected complexity of such an enumeration procedure. This allows us to
decrease the estimated cost of this procedure and, hence, of the whole attack
both classically and quantumly. In addition, we explore dierent enumeration
strategies to achieve some further improvements. Our work is independent from
the questions raised by Ducas and Pulles, which do not concern the estimation
of the enumeration procedure in the dual attack. As our method of calculating
the expected cost of enumeration is fairly general, it might be of independent
interest in other areas of cryptanalysis or even in other research areas.

Keywords: Cryptography, Lattice-based cryptography, Learning with Errors, Dual
attacks.
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1 Introduction

Introduced by Regev in 2005 [1], the Learning With Errors Problem (LWE) is a compu-
tational problem that has been used as a building block for several quantum-resistant
cryptographic primitives. A consistent number of schemes in each round of NIST’s
Post-Quantum Standardization Process [2] base their security on the hardness of LWE.
One of them is Kyber, which was chosen as the standard algorithm for encryption.
Saber is another LWE-based scheme, which is very similar to Kyber and made it to
the third round of the competition. It is also possible to build Fully Homomorphic
Encryption (FHE) on LWE. TFHE is such an encryption scheme, based on [3].

Cryptanalysis of LWE is an active area of research that encompasses various
techniques, including combinatorial methods like the Blum-Kalai-Wasserman (BKW)
algorithm [4], algebraic methods [5], and lattice-reduction-based approaches, such as
the primal attack [6] and the dual attack [7–10]. Both BKW and the dual attack, in
their most recent variants, include a subroutine consisting of enumerating a vector
with entries from a non-uniform distribution. Previous works dealt with this problem
either using unexplained models for estimating the cost of enumeration [9], or using
unnecessarily pessimistic upper limit formulas [10].

Contribution. In this manuscript we give a new and more accurate method to esti-
mate the cost of such an enumeration procedure. Our key realization is that the
frequencies of the dierent possible secret coecient values follow a multinomial dis-
tribution, meaning that the number of unique probabilities for dierent possible keys
is only polynomial in the number of positions we enumerate over. This allows us to
precisely calculate the expected cost of key enumeration in polynomial time.

We integrate this new method into the complexity estimation of the dual attack
and obtain new security estimates for the widely studied lattice-based schemes Kyber,
Saber and TFHE, both for the classic and quantum case. Furthermore, our contribu-
tion is general enough that it can easily be applied to any situation where enumeration
over a vector sampled from a non-uniform distribution is needed.

Recent Related Work. Since publishing the conference version of this
manuscript [11], we have seen two interesting developments.

Firstly, Ducas and Pulles published a paper [12], where they questioned many of
the heuristics that recent complexity estimates of the dual attack in [8–10, 13] are
based on. The likely conclusion here is that the estimates in these works are too
optimistic and that the primal attack regains the status as the most ecient attack
on cryptographically relevant LWE-based schemes. A provably working dual attack,
without a corresponding time complexity analysis, was very recently introduced in [14]
in a rst attempt to address these issues. Further studying the details of the issues
covered in [12] is important, but outside the scope of this work. Important to notice
is that their paper does not aect the estimation of the cost of the enumeration block
within the dual attack.

Secondly, Glaser, May and Nowakowski published a paper [15] extending the tech-
niques introduced in the conference version of our paper [11]. Briey, their idea is to
enumerate over only the most likely keys and abort if the secret is not among them.
At the cost of reducing the success probability to around 1/2, they decrease the cost of
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the enumeration signicantly. They did not study the impact of this improvement on
the dual attack. In regards to this, we show that their approach can be stretched much
further. By making the success probability a lot lower we can reduce the expected time
complexity of enumeration even more. We also generalize our cost estimations from the
conference version to incorporate aborted enumeration into the dual attack. It turns
out that due to the cost of having to re-run lattice reduction, aborted enumeration
does not seem to improve the dual attack on LWE.

Organization. The remaining part of the paper is organized as follows. In Section 2,
we present notations and necessary background. In Section 3 we introduce our new key
enumeration approach, while in Section 4 we apply it to some lattice-based schemes.
In Section 5 we study and slightly generalize the idea of aborted enumeration, and
study its impact on the dual attack. Finally, in Section 6 we conclude the paper.

2 Preliminaries

2.1 Notation

We denote the set of the integer, rational and real numbers with Z,Q,R respectively.
For a positive integer p, we write Zp = Z/pZ. Upper case letters, e.g. M , denote
matrices, and bold lower case letters, e.g. v, represent column vectors. We represent
with vj the j-th component of v. We let log(·) denote the 2-logarithm. The notation
∥v∥ denotes the Euclidean norm of v ∈ Rn dened as

∥v∥ =


v21 + · · ·+ v2n.

For a discrete distribution X, its entropy is dened as

H(X) := −E(log(X)) = −


k

p(xk) · log(p(xk)). (1)

2.2 Quantum Search Algorithms

Grover’s algorithm is a way of eciently searching for elements in an unstructured set.
Let S be a nite set of N objects of which t ≤ N are targets. An oracle O identies the
targets if, for every s ∈ S, O(s) = 1 if s is a target, O(s) = 0 otherwise. Classically,
one needs O(N/t) oracle queries to identify a target. Grover provided a quantum
algorithm that identies a target with only O(



N/t) queries to the oracle [16].
Amplitude amplifcation is a subsequent work that generalizes Grover’s search algo-

rithm [17]. Let us informally explain which classical and quantum search problems
it allows us to speed up. Given a search algorithm with a success probability of p.
The algorithm is either classical or quantum without a need for intermediate mea-
surements. Naively the algorithm needs to be repeated on average 1/p times to nd a
solution. However, with amplitude amplication, this number is reduced to O(1/

√
p).
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2.3 Lattices and Reduction Algorithms

A lattice is a discrete additive subgroup of Rn. Let B = {b1, ..., bm} ∈ Rn be a set of
linearly independent vectors. We dene the lattice generated by B as

L(B) = L(b1, ..., bm) =



v ∈ Rn : v =

m


i=1

αibi, αi ∈ Z



.

Unless dierently specied, we will consider full-rank lattices, i.e. n = m.
Typically, lattice reduction algorithms such as LLL or BKZ [18–20], take as input

a basis B of the lattice and return another basis with short and nearly orthogonal
vectors. Lattice sieving consists of a class of algorithms, initiated with the work of
Ajtai et al. [21], to solve the Shortest Vector Problem (SVP). These are usually used
internally by BKZ as an SVP oracle . They allow us to compute a large number
of short vectors and they have an estimated complexity of 2cβ+o(β), where β is the
dimension of the lattice and c is a constant equal to 0.292 for classical computers [22].
This constant can be improved quantumly to 0.2653 using Grover’s algorithm [23]. It
was recently further improved to 0.2570 in [24] and 0.2563 in [25], using increasingly
sophisticated quantum methods.

2.4 Learning With Errors and Gaussian Distributions

Defnition 1 Let n be a positive integer, q a prime and χs,χe two probability distributions
over Zq. Fix a secret vector s ∈ Zn

q whose entries are sampled according to χs. Denote by
As,χe the probability distribution on Zn

q × Zq obtained by sampling a ∈ Zn
q uniformly at

random, sampling an error e ∈ Zq from χe and returning

(a, z) = (a, ⟨a · s⟩+ e mod q) ∈ Z
n
q × Zq.

• The search Learning With Errors (LWE) problem is to nd the secret vector s given
a xed number of samples from As,χe

.
• The decision Learning With Errors (LWE) problem is to distinguish between

samples drawn from As,χe
and samples drawn uniformly from Zn

q × Zq.

Consider m LWE samples

(a1, z1), (a2, z2), . . . , (am, zm) ← As,χ.

Then, one can represent such an LWE instance in a matrix-vector form as

(A, z) = (A,As+ e mod q) ∈ Zm×n
q × Zm

q

where A is an m× n matrix with rows aT1 , a
T
2 , . . . , a

T
m, z = (z1, z2, . . . , zm)T , and e is

the vector of errors (e1, e2, . . . , em)T .
In theory, one usually instantiates χs and χe as the discrete Gaussian distribution

on Zq with mean 0 and variance σ2 which is dened as follows. First, consider the
discrete distribution over Z, denoted with Dσ, as the probability distribution obtained
by assigning a probability proportional to exp



−x2/(2σ2)


to each x ∈ Z. Then,
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dene the discrete Gaussian distribution χ over Zq by folding Dσ and accumulating
the values of the probability mass function over all integers in their corresponding
residue class modulo q.

In practice, it is more common to use a centered Binomial distribution Bη, which
takes values in [−η, η] or a uniform distribution U{a, b}, which takes values in [a, b].

Given an LWE problem instance, there exists a polynomial-time transforma-
tion [26, 27] that makes the secret vector follow the same distribution as the error’s
distribution χe.

2.5 Distinguishing Attacks Against LWE

Dual Attack. The rst attack on LWE performed on the so-called dual lattice was
introduced in [7]. While the earlier versions of this attack were ecient only for
instances with very small coecients (e.g. s ∈ {−1, 0, 1}n), thanks to some recent
contributions [8–10, 13], the attack now applies also to secrets with not-so-small
coecients.

Let (A,b = As + e mod q) be an m × n LWE instance, for m ≥ n where the
secret s and the error e have been sampled from a discrete normal distribution with
mean zero and standard deviations σs and σe respectively. Partition the matrix A as
(A1 ∥ A2) and, in correspondence, the secret s as (s1 ∥ s2). Consider the following pair

(A2,b− A1s̃1 mod q). (2)

For s̃1 = s1 we have that

b− A1s̃1 = A2s2 + e mod q

and therefore (2) is a new LWE instance with reduced dimension. If s̃1 ̸= s1, then (2)
is uniform.

By enumerating over all possible vectors s̃1 of s1, one can distinguish the right
guess as follows. Let R be an algorithm (e.g. BKZ, lattice sieving) that returns pairs
(x,y) ∈ Zm×n such that yT = (y1 ∥ y2)

T = xTA mod q, and x and y2 are short.
Then, for s̃1 = s1, we have that

xT (b− A1s1) = xT (A2s2 + e) = yT
2 s2 + xT e. (3)

This quantity is distributed approximately according to a discrete normal distribution
with mean zero and variance ∥x∥2σ2

s + ∥y2∥2σ2
e . The choice of reduction algorithm R

determines the expected length of the vectors x and y2, and therefore, the ability to
distinguish (3) from uniformly random.

BKW Algorithm. In its original development, the Blum-Kalai-Wasserman (BKW)
algorithm was proposed as a subexponential algorithm for solving the Learning Parity
with Noise (LPN) problem [28]. Later, it has been applied to LWE [4], and further
developed with new ideas such as Lazy Modulus Switching, Coded BKW, Coded BKW
with Sieving and smooth Lazy Modulus Switching [29–34].
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The BKW algorithm can be seen as a variant of the dual attack where the reduction
is performed using combinatorial methods instead of lattice reduction. For this reason,
techniques and improvements developed for BKW on the distinguishing stage have
been successfully applied to the dual attack too. More generally, the BKW algorithm
has the disadvantage of requiring an exponential number of samples (m ≫ n) to
perform reduction when compared to lattice reduction techniques. On the other hand,
BKW allows tuning parameters in a way that oers a higher control on the magnitude
distribution of the resulting reduced vectors.

3 Improved Estimation of Key Enumeration

Consider the problem of guessing the random value X sampled from a discrete prob-
ability distribution with mass function pk := P (X = xk). Without loss of generality,
we assume it to be non-increasing (i.e. p0 ≥ p1 ≥ p2 ≥ . . . ). The optimal strategy is
obviously to guess that X = x0, followed by guessing that X = x1, and so on. The
expected number of guesses until the right value is found with this strategy is

G(X) =


i

i · pi. (4)

G(X) is called the guessing entropy of X. Massey showed in [35] that

G(X) ≥ 1

4
2H(X).

He also showed why there is no such formula for upper limiting G(X) in terms of
H(X).

Now consider a sample of n values, each one drawn independently from the same
distribution with mass function (p0, . . . , pr−1). When enumerating all the possible
values of s on these n positions, we want to do so in decreasing order of probability
until we nd the solution. Since the total number of outcomes is equal to rn, simply
computing the probability of every single outcome, sorting all the probabilities and
then computing the expectation directly according to (4), is inecient. However, we
can use the fact that the frequencies of each possible secret value follow the multinomial
distribution [36]. The number of outcomes where k0 values are equal to x0, k1 values

are equal to x1 and so on until kr−1 values are equal to xr−1, where
r−1

i=0 ki = n, is



n

k0, . . . , kr−1



=
n!

k0!k1! · · · kr−1!
. (5)

Notice that all these outcomes have exactly the same probability of

r−1


l=0

pkl

l . (6)

The total number of unique probabilities is only

µ =



n+ r − 1

n



=
(n+ r − 1) · · · (n+ 1)

(r − 1)!
=

(n+ r − 1)!

(r − 1)!n!
. (7)
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For a xed number r this expression is O(nr−1). Thus, for a sparse distribution the
number of unique probabilities is low enough to be computed and sorted eciently
(i.e. in polynomial time w.r.t. n).

Denote the unique probabilities by p′0, p
′

1, . . . , p
′

µ−1, such that p′0 ≥ p′1 ≥ · · · ≥
p′µ−1. Let fi denote the number of times p′i occurs. Also let Fi =

i−1
j=0 fj . Now we can

express the expected number of guesses to make until we nd the right one from (4), as

µ−1


i=0

p′i



Fi +

fi


j=1

j



=

µ−1


i=0

p′i



Fi +
fi(fi + 1)

2



. (8)

Since (8) has O(nr−1) terms and each term can be computed eciently, the whole
expression can be computed eciently for small values of r.

3.1 Quantum Setting

Consider again random values sampled from a discrete probability with probability
mass function (p0, . . . , pr−1). With a quantum computer, the most obvious approach
is to use Grover search over the entire sample space. However, employing Montanaro’s
algorithm [37] gives better results. On a high level, this consists of performing Grover
search over a sequence of sub-intervals of increasing length, until the target value is
found. The expected number of guesses using Montanaro’s algorithm to nd the right
key is

Gqc(X) =


i

√
i · pi. (9)

Using the Cauchy-Schwartz inequality we have that

Gqc(X) =


i



i · pi ·
√
pi ≤





i

i · pi ·


i

pi

=





i

i · pi =


G(X).

(10)

Here, our method for computing the estimated cost of the enumeration of (9) still
applies, with a minor twist. In this setting (8) changes to

µ−1


i=0

p′i



fi


j=1



Fi + j



. (11)

We can rewrite
fi

j=1

√
Fi + j =

Fi+fi
j=1

√
j −

Fi

j=1

√
j. Now, to compute (11)

eciently we only need to have an ecient and precise formula for computing f(n) =
n

i=1

√
i. For n ≤ 30 we can pre-compute the expression. For n > 30 using the

Euler-Maclaurin formula [38], we can derive the function

f(n) ≈ ζ(−0.5) +
1

2
n

1
2 +

2

3
n

3
2 +

1

24
n−

1
2 − 1

1920
n−

5
2 +

1

9216
n−

9
2 , (12)
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where ζ(·) is the Riemann zeta function, which approximates the sum with a
relative error that is smaller than or equal to machine epsilon.

3.2 Further Optimizations

If for two outcomes x1 and x2 we have P (x1) = P (x2), then we can merge these terms
to speed up the calculation of the enumeration. The most obvious example of this is
a symmetric distribution, where P (xi) = P (−xi), for all xi.

Also, more generally, if throughout the enumeration we have two lists of values
[x1, x2, . . . , xk] and [x′

1, x
′

2, . . . , x
′

k] and P ([x1, x2, . . . , xk]) = P ([x′

1, x
′

2, . . . , x
′

k]), then
we can also merge these two terms.

3.3 Related Work on Guessing Entropy

Guessing entropy has been studied in subsequent works after the initial paper by
Massey [35], but generally in dierent settings and with dierent focus than ours.
In [39] guessing entropy was studied in the context of side-channel attacks on for
example AES. Unfortunately our method does not apply in their setting. Also, the
authors only give lower limit formulas, whereas we are more interested in either upper
limit formulas or precise estimates. Finally, the authors do not study the guessing
entropy of quantum algorithms.

Recently, in [40] guessing entropy was extensively studied, with the quantum set-
ting of (9) corresponding to setting ρ = 0.5 in Section 5D. However, also in this paper
there is no upper limit formulas or methods to calculate the guessing entropy exactly.

4 Application to Lattice-based Schemes

In the Matzov version of the dual attack on LWE, the n positions of the secret s

are divided up into three parts, klat, kt and kenum. The attack rst performs lattice
reduction on klat positions. In the second phase it enumerates, in decreasing order of
probability, all possible secrets on kenum positions. For each such secret it performs
an FFT on kt positions and checks if it has found the correct solution. Rewrit-
ing [9, Theorem 5.1] asymptotically we get the following formula for the cost of the
distinguishing part of the dual attack.

O


G(χkenum) · (D + pkfft)


, (13)

where D is the number of samples needed to distinguish the secret and χkenum

refers to the distribution of kenum values sampled independently from the distribution
χ. The fact that the cost is additive in D and pkfft means that it is best to keep these
two terms of similar size. Quantumly however, the cost is proportional to the square
root of the number of samples needed to distinguish the secret, the cost of enumeration
and the cost of performing the FFT quantumly [10, (4)]. More concretely the cost is

O
√

D · pkfft/2 ·Gqc(χ
kenum) · poly(log(n))



. (14)
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The drastically reduced cost of distinguishing is the main source of the quantum
improvement that [10] achieves compared to [9]. Notice the more than quadratic speed-
up of Gqc(χ

kenum) over G(χkenum), as shown in (10). In practice this speed-up means
that it is optimal for the schemes studied in this paper to do enumeration only and
let kt = 0.

In Matzov [9], it was assumed that the expected cost of enumerating over kenum
positions is 2kenum·H(χ), without any explanation. In [10], this problem was addressed.
They developed an upper limit formula for the expected cost of enumerating over kenum
positions sampled from a Discrete Gaussian distribution with a specied standard
deviation σ. When estimating the expected cost of enumerating over the secret of an
actual scheme, they simply approximated the secret distribution as a Discrete Gaussian
with the same standard deviation, according to Table 3. In the quantum setting they
developed a similar model.

Using the method detailed in Section 3, in both the classical and quantum setting
we can calculate the expected cost of enumeration numerically with arbitrarily good
precision, to compare against the models of [9, 10]. Since all the schemes use sparse
(and symmetric/uniform) distributions for the secret, our method is very ecient at
computing the expectations.

A classical comparison is illustrated in Figure 1, for the expected cost of enu-
meration for Kyber512/FireSaber. The exhaustive cost is the obvious upper limit of
guessing every possible key. Notice that while the Matzov numbers are a bit too opti-
mistic, they are actually closer to the exact numbers than the Albrecht/Shen model
is. Notice that the gaps between the dierent models increase with the dimension.

Figure 2 covers the quantum setting. Notice that there is a consistent gap between
the expected cost according to the Albrecht/Shen model and the exact value, which
increases very slowly with the number of dimensions.

Table 1 shows the state-of-the-art of solving the underlying LWE problem using
the dual attack for the dierent schemes and models considered in [10]. We briey
summarize the models here. The models CC, CN and C0 are increasingly optimistic
models for the cost of the dual attack on classical computers. GE19 refers to the most
pessimistic quantum model from [41]. QN and Q0 correspond to CN and C0, but
with the classical lattice sieving of [22] replaced by the quantum lattice sieving of [24].
Finally, QN[10] and Q0[10] refer to the works of [10], where quantum speed-ups of the
FFT and the enumeration are applied. All the numbers are computed using the script
from [10].

Table 2 shows the updated state-of-the-art. These are achieved by replacing
Albrecht’s and Shen’s upper limit formulas for enumeration by the exact values, as
described in Section 31. For all schemes and all models we show improvements, but
the magnitude of the improvements vary. Our largest improvements are for the TFHE
schemes, where the secret follows a uniform distribution, meaning that a Discrete
Gaussian is a particularly bad approximation.

Recently, another preprint of an improved version of the dual attack of Matzov was
published [13]. There they introduce a modied way of enumerating over the secret.
Compared to the results from [10] they achieve comparable levels of improvements to

1See https://github.com/ErikMaartensson/ImprovedKeyEnumeration for the source code.
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us, in the classical setting. They enumerate over the secret in a dierent way, meaning
that our improved estimate of the cost of enumeration does not apply in their setting.
However, they do not provide a quantum version of their improved algorithm, which
is the setting where our contribution has the largest impact.

Given the recent work by Ducas and Pulles [12], the complexity numbers of Tables 1
and 2 should only be viewed as lower limits of the costs of the dual attack. However, we
do still believe that they give a good estimate of the impact of our new estimations on
the enumeration part of the dual attack. We leave studying the more detailed impact
of [12] on the dual attack for future work.

Table 1 Previous state-of-the-art bit complexities for breaking
cryptographic schemes using the dual attack.

Scheme CC CN C0 GE19 QN Q0 Q0[10] QN[10]
Kyber512 139.2 134.4 115.4 139.5 124.4 102.7 119.3 99.7
Kyber768 196.1 190.6 173.7 191.9 175.3 154.6 168.3 150.0
Kyber1024 262.4 256.1 241.8 252.0 234.5 215.0 225.6 208.4
LightSaber 138.5 133.1 113.7 138.4 122.7 101.1 118.9 98.9

Saber 201.4 195.9 179.2 196.2 179.9 159.4 173.8 155.0
FireSaber 263.5 258.2 243.8 253.1 235.9 216.7 228.1 210.8
TFHE630 118.2 113.3 93.0 120.2 105.2 83.0 100.8 80.7
TFHE1024 122.0 117.2 95.4 123.9 108.5 84.8 105.6 83.2

Table 2 Updated state-of-the-art bit complexities for breaking
cryptographic schemes using the dual attack.

Scheme CC CN C0 GE19 QN Q0 Q0[10] QN[10]
Kyber 512 138.7 133.8 115.0 139.1 123.6 102.4 118.0 98.4
Kyber 768 194.8 190.0 172.9 190.6 174.5 154.5 166.3 148.0
Kyber 1024 260.6 254.5 240.6 251.0 233.4 214.5 223.2 206.2
LightSaber 137.5 132.6 113.3 138.0 122.3 101.0 117.6 97.7

Saber 200.9 195.6 178.5 196.1 179.3 159.2 172.4 153.8
FireSaber 262.9 256.9 242.6 252.8 235.3 216.4 226.2 208.8
TFHE630 115.7 111.3 92.1 118.2 103.9 82.8 95.6 76.8
TFHE1024 120.4 115.6 94.8 122.8 107.7 84.5 101.7 80.4

4.1 Applications to BKW

As discussed in Section 2.5, the techniques introduced in Section 3 apply to the BKW
algorithm too. In the setting of [33, 34], the secret coecients are discrete Gaussian
with a relatively large standard deviation, taken from the distributions of the LWE
Darmstadt Challenges [42]. The authors perform enumeration over all possible secret
values within 3 standard deviations for each position. By instead enumerating over
the secret coecients in decreasing order of probability, one would see improvements
similar to those of the dual attack.
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Table 3 The secret distribution and its standard
deviation, for each scheme.

Scheme Distribution Standard deviation

Kyber512 B3

√

6/2
Kyber768 B2 1
Kyber1024 B2 1

LightSaber B5

√

10/2

Saber B4

√

2

FireSaber B3

√

6/2
TFHE630 U{0, 1} 1/2
TFHE1024 U{0, 1} 1/2

Fig. 1 The expected cost of enumeration in the classic setting for Kyber512/FireSaber.

5 Aborted Enumeration

In [15] the authors studied the expected cost of aborted key enumeration. The idea is
to abort the search for the key once we have concluded that none of the most probable
keys are equal to the secret key. Let us state their nding slightly more precisely.

The authors enumerate over all n-dimensional keys sampled independently from a
non-uniform2, nite distribution X, according to the procedure described in Section 3.
If the secret key is not found after trying all keys with probabilities larger than or equal
to 2−H(X)n, then they abort the search. Let µ′ be the index such that pµ′ ≥ 2−H(X)n

and pµ′+1 < 2−H(X)n.
Clearly the maximum number of secret keys to enumerate over is upper limited

by 2H(X)n.3 The logarithm of this expression is in turn equal to the entropy of the
secret key. While the expression is still exponential in n, just like the case for full

2For a uniform distribution all keys are equally likely, making it pointless to abort the enumeration early.
3The upper limit is reached if and only if X comes from the uniform distribution.
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Fig. 2 The expected cost of enumeration in the quantum setting for Kyber512/FireSaber.

enumeration, the coecient H(X) is smaller than the corresponding coecient for
full enumeration. The authors of [15] show that the success probability of this aborted
enumeration procedure is roughly 1/2. Thus, they limit the cost of enumeration in
terms of the entropy of the secret4.

In case enumeration fails to nd the secret among the most probable keys, then
we have two options.

1. Either we accept that there is a risk of failure.
2. Or we restart the enumeration with a new sample. The details of how this works

depends on the context and will be discussed later in this section.

Let us generalize the setting from [15] a bit. Just like in Section 3, we are guessing
a random value X sampled from a known probability distribution. Now, we add the
option of re-sampling. At any point, we are allowed to discard the current value and
sample a new one from the same probability distribution. For now, we assume that
the cost of re-sampling is 0, but in certain settings it will be expensive. We will discuss
more details below. The expected cost of performing one iteration of enumeration is

µ′



i=0

p′i



Fi +
fi(fi + 1)

2



+



1−
µ′



i=0

fip
′

i



Fµ′+1. (15)

Here, the last term corresponds to the fact that if the secret is not among the most

probable keys, which happens with the probability 1 −
µ′

i=0 fip
′

i, then we need to
enumerate over all the Fµ′+1 most probable keys to nd this out. Now, the expected
cost of enumeration until we nd the secret key is

4This does not contradict the original result by Massey [35], saying that we cannot limit the guessing
entropy in terms of the entropy of the distribution. Firstly, [15] deals with distributions of special shapes
only. Secondly, Massey’s original result did not take aborted enumeration into consideration.

12



µ′

i=0 p
′

i



Fi +
fi(fi+1)

2



+


1−
µ′

i=0 fip
′

i



Fµ′+1

µ′

i=0 fip
′

i

. (16)

The idea of quantum enumeration can also be improved using aborted enumeration.
Here we have two possible algorithms to consider.

Montanaro’s Algorithm with Abortion

A rst option is an aborted version of Montanaro’s algorithm. Here we simply apply
Montanaro’s algorithm on the most likely keys only. If we fail to nd the key, then we
re-sample the secret and try again. The expected cost of it is

µ′

i=0 p
′

i



fi
j=1

√
Fi + j



+


1−
µ′

i=0 fip
′

i





Fµ′+1

µ′

i=0 fip
′

i

. (17)

Just like in the setting with full enumeration, the dierence between the classical
formula of (16) and the quantum formula is that we apply square roots to the Fi terms.

Grover’s Algorithm with Abortion

In [15], the authors suggested replacing Montanaro’s algorithm with abortion, with
simply performing Grover’s algorithm over the most likely keys. One iteration of this
type of enumeration then costs



Fµ′+1. (18)

Since Grover does not take the structure of the distribution into consideration,
its cost is independent of the probability distribution5. The success probability of

one iteration of aborted Grover is
µ′

i=0 fip
′

i. Grover’s algorithm does not require any
intermediate measurements. Thus, if we can get re-sampling for free, then we get a
cost of



Fµ′+1


µ′

i=0 fip
′

i

=



Fµ′+1
µ′

i=0 fip
′

i

, (19)

for aborted Grover using amplitude amplication [17]. Since Montanaro’s algo-
rithm uses intermediate measurements, we cannot get the corresponding speed-up for
aborted Montanaro.

5.1 An Illustration of the Cost of Aborted Enumeration

The suggestion of aborting once the success probability per key is less than 2−H(X)n,
leading to a total success probability of around 1/2, is of course arbitrary. It is
indeed chosen, by design, to show that aborted enumeration can achieve an expected
complexity upper limited by 2H(X)n.

We can generalize the idea to enumerating over the most likely keys and aborting
when the total success probability is equal to whatever success probability p that

5Except that Fµ′+1 does depend on the probability distribution.
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we want. The formulas in (16)-(19) are unchanged, except that µ′ is now the largest

positive integer such that
µ′

i=0 fip
′

i ≤ p.
In Figure 3 we compare the classical aborted enumeration algorithm against the

two aborted quantum algorithms. We enumerate over 30 positions of secrets sampled
from a centered Binomial distribution B2, which corresponds to the secret entries of
Kyber768 and Kyber1024. We plot the time complexity against the success probability.
The key assumption in this gure is that the cost of re-sampling is 0.

Fig. 3 The expected cost of aborted enumeration.

The key realization of [15] is that by reducing the success probability of aborted
classical enumeration to around 1/2, the overall computational cost decreases dramat-
ically. This principle can be extended much further. By stretching the enumeration
process all the way to guessing the all-zeros vector and re-sampling in case of failure,
we get the lowest possible time complexity. Also notice that the time complexity - for
the success probability around 1/2 - already is around 2H(X)n. Thus, we can clearly
go way below the this entropy limit.

For amplied Grover, we get the same pattern as for classical enumeration, except
that the absolute complexities are much lower. Looking at (19), we see that the
speed-up compared to classical enumeration is at best a square root, since the cost
corresponds to the square root of enumerating over all the most likely keys without
taking advantage of the structure of the probability distribution.

We see that aborted Montanaro is best for the highest success probabilities, but
it quickly starts to perform worse the lower the success probability is. The reason -
looking at (17) - is that aborted Montanaro cannot be improved with amplitude ampli-
cation. This means that we do not get a square root speed-up in the denominator.
When we only enumerate over the single most likely value (the all zeros vector), then
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aborted Montanaro breaks down to performing Grover’s algorithm over a single posi-
tion and re-sampling in case of failure. This is of course equivalent to classical aborted
enumeration over the zeros only vector.

5.2 Some Settings with Aborted Enumeration

So far, this section has assumed that re-sampling can be done as many times as you
want and at no cost. Whether this is reasonable depends on the context.

In the context of cracking passwords, this is typically reasonable. Given a large
set of users and the task of cracking the password an arbitrary user, re-sampling
corresponds to start guessing another user’s password. The task is achieved much
easier by trying a small number of very common passwords for each user, rather than
by brute-forcing for a single user’s password.

In the context of using lattice enumeration6 as an SVP oracle, pruning of the search
tree is applied to speed up the enumeration. Pruning here corresponds to aborting.
While pruning creates a risk that the enumeration fails, it compensates by lowering
the enumeration cost. Taking advantage of the low cost of re-sampling in this setting,
it was showed in [43] that by doing extreme pruning - even though each iteration of
enumeration had a very low success probability - the reduced cost was so drastic that
a signicant improvement in performance was achieved.

5.3 Implications of Aborted Key Enumeration on Dual Attacks

For us, the most interesting setting is aborted enumeration as a subroutine for dual
attacks on LWE. Notice that if going from full enumeration to aborted enumeration, in
case the enumeration fails, then we need to re-sample somehow. This can be achieved
by performing the enumeration part of the dual attack on another subset of the secret
key entries.

As enumeration is only performed on a small subset of the entire key, this approach
allows us to re-sample quite a few times, but there is of course a clear limit. Pushing
aborted enumeration as far as in Figure 3 and only guessing that the secret is the all
zeros vector fails miserably in this context for two reasons.

1. We can only re-sample a very limited number of times.
2. The cost of re-sampling is way too high, due to having to perform lattice reduction

again for each failed enumeration.

The dual attack with full enumeration has a cost of

Tred + Tguess,

where Tred is the cost of lattice reduction and Tguess is the cost of the guessing
procedure. Now, if we do aborted enumeration, then this expression changes to

T ′

red + T ′

guess

p
,

6Notice that the word enumeration has a dierent meaning in this paragraph compared to the rest of the
paper.
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where T ′

red is the cost of lattice reduction, T ′

guess is the cost of the guessing pro-
cedure and p is the success probability of the enumeration. Here, on one hand, the
cheaper cost of enumeration means that the algorithm will enumerate over slightly
more positions and do lattice reduction on slightly fewer positions, mean that T ′

red <
Tred. On the other hand, since the success probability p < 1, to nd the secret means
that we might need to re-run lattice reduction. Exactly how these two changes aects
the overall cost is non-trivial. We use a slightly modied version of the script by [10]
to optimize the cost of the dual attack when using aborted enumeration to nd the
more precise estimate of this eect7.

See Table 4 for complexity numbers for the dual attack with aborted enumeration,
with a success probability of 50 %. Here we leave out the TFHE schemes, as these
have secret entries sampled from a uniform distribution, making aborted enumeration
pointless.

Note that due to the recent work by Ducas and Pulles [12], just like in Tables 1
and 2, the complexity numbers in Table 4 should be seen as optimistic lower limits.
However, the dierence between Table 4 and table 2 should still give a good comparison
between the full and aborted enumeration subroutine within the dual attack.

Comparing Table 4 to Table 2, for some schemes and settings, the bit complexity is
marginally better, while for other schemes and settings it is marginally worse. However,
in all cases the dierence is very modest. We tried using other success probabilities,
also with results very marginally dierent from using full enumeration.

Lattice reduction on a certain number of positions is much cheaper than enumer-
ation on the same number of positions (we do both only because the costs of lattice
reduction and guessing are additive). Enumerating a few more positions means that we
get to do lattice reduction on a few less positions. The problem with trying to reduce
the guessing cost by lowering the success probability of aborted enumeration is that
the cost of the risk of having to re-run lattice reduction roughly neutralizes the gain.

Classically, the problem is that we can only aord enumerating over a fairly small
number of positions. The gains of being able to enumerate over a few more positions
get canceled out by having to re-run lattice reduction.

Quantumly, full enumeration using Montanaro’s algorithm is so cheap that it is
optimal to skip the FFT part and focus on enumeration only. The cost of quantum
enumeration is less than the square root of the cost of classical enumeration, as shown
in (10). The problem is that when doing aborted enumeration, the factor 1/p means
that aborted Montanaro benets only modestly from a reduced success probability. At
a fairly high success probability, aborted Montanaro even increases in time complexity
when further lowering the success probability, as illustrated in Figure 3. Aborted
Grover also does not work, as it performs worse than aborted Montanaro for the
success probabilities relevant for the dual attack.

5.3.1 Limiting the Number of Hypotheses

A potential improvement of using aborted enumeration - not covered in the estimation
of Table 4 - is the benet of using fewer hypotheses. The lower the success probability
we choose, the fewer hypotheses we make. Now let us assume that the secret, with

7See https://github.com/ErikMaartensson/ImprovedKeyEnumeration.
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Table 4 Bit complexities of breaking cryptographic schemes using the
dual attack with aborted enumeration.

Scheme CC CN C0 GE19 QN Q0 Q0[10] QN[10]
Kyber 512 139.2 134.5 115.8 139.8 124.4 103.4 118.2 99.0
Kyber 768 195.5 190.1 173.7 190.9 175.4 155.3 166.3 148.2
Kyber 1024 260.6 255.3 240.6 250.6 234.2 215.4 222.7 205.9
LightSaber 138.0 133.0 114.3 138.6 123.2 102.0 117.7 98.0

Saber 201.0 196.0 179.4 196.5 180.2 160.0 172.4 153.8
FireSaber 262.8 257.6 243.1 252.8 236.3 216.8 225.9 208.5

respect to the positions we apply enumeration on, is one of the most likely ones (in
other words, we do not miss it due to aborting early). Then the correct hypothesis
is competing against a smaller set of incorrect hypotheses, which makes choosing
the right one more likely. This idea was studied in a very similar setting for BKW
in [44, 45]. Since the distinguishing problem for BKW and the dual attack is the same,
these works should apply for the dual attacks too. This could lessen the impact of the
problems introduced in [12].

The idea of limiting the number of hypotheses can also be applied to the positions
on which we apply the FFT distinguisher. If the distinguisher suggests that the correct
guess is a highly unlikely combination of secret key entries, then we discard this guess,
assuming that an incorrect guess managed to perform the best by pure chance.

The improvement from lowering the number of samples needed for the guessing
phase can be pushed even further. Since we can rank the samples resulting from lattice
reduction (based on the Euclidean norm of the reduced positions), by only choosing
the best samples our distinguisher will do an even better job. However, as the number
of samples needed for guessing is roughly proportional to the logarithm of the number
of hypotheses we make, we can expect that the total impact of limiting the number
of hypotheses to be noticeable but not groundbreaking.

5.3.2 Re-sampling for Free in Dual Attacks

When the dual attack setting consists of applying the FFT on more positions than the
ones to be enumerated (which is typically the case in the classical setting, but not the
quantum one), then we can re-sample for free at least once. To re-sample we simply
enumerate over (parts of) the positions where we applied the FFT and move (parts
of) the FFT to the positions we used to enumerate over.

Unfortunately, this idea of swapping which positions we apply enumeration vs.
FFT on is incompatible with the idea of limiting the number of hypotheses on the
positions where we apply the FFT. We leave guring out which idea leads to the larger
improvement for future study.

6 Conclusions

The method presented in this paper improves upon previous estimations for key-
enumeration used in the literature. As a direct application, we used it to revise the
state-of-the-art complexities for the dual attack against Kyber, Saber and TFHE.
While the recent work by Ducas and Pulles [12] implies that these estimates are too
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optimistic, our enumeration strategy and estimation does still improve upon the dual
attack on LWE.

The recent work of aborted key enumeration [15] - while leading to interesting
results in the context of pure key enumeration - unfortunately does not seem to improve
the dual attack on LWE that much. However, the reduced number of hypotheses
needed when using aborted enumeration can lead to some improvement though, as
discussed in Section 5.3.1.

Future research directions include the application of this method - whether using
full or aborted enumeration - on other areas in cryptanalysis where enumeration of a
vector with non-uniform values is required. Furthermore, thanks to its generality, the
method might nd application also in areas outside the context of cryptography.
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supported by the project “Kvantesikker Kryptogra” from the National Security
Authority of Norway.

References

[1] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on
Theory of Computing. STOC ’05, pp. 84–93. Association for Computing Machin-
ery, New York, NY, USA (2005). https://doi.org/10.1145/1060590.1060603 .
https://doi.org/10.1145/1060590.1060603

[2] NIST: Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization

[3] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology – ASIACRYPT 2016, pp. 3–33. Springer, Berlin,
Heidelberg (2016)

[4] Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2), 325–354 (2015)

[5] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming, pp.
403–415. Springer, Berlin, Heidelberg (2011)
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