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Abstract. Byzantine atomic broadcast (ABC) is at the heart of per-
missioned blockchains and various multi-party computation protocols.
We resolve a long-standing open problem in ABC, presenting the first
information-theoretic (IT) and signature-free asynchronous ABC proto-
col that achieves optimal O(n2) messages and O(1) expected time. Our
ABC protocol adopts a new design, relying on a reduction from—perhaps
surprisingly—a somewhat neglected primitive called multivalued Byzan-
tine agreement (MBA).

1 Introduction

Byzantine atomic broadcast (ABC) protocols, or Byzantine fault-tolerant (BFT)
protocols, are at the core of state machine replication, permissioned blockchains,
and various cryptographic protocols such as multi-party computation (MPC).
Among these ABC protocols, completely asynchronous ABC protocols with no
timing assumptions [3,7,9,16,24,28,29,35,37,47] have been receiving considerable
attention, due to their intrinsic robustness against performance and denial-of-
service (DoS) attacks.

IT and signature-free settings. The celebrated FLP impossibility result rules
out the possibility of deterministic asynchronous consensus protocols [26], so
asynchronous consensus protocols must be randomized to be probabilistically
live. In practice, one can use either local coins (flipping a coin locally and inde-
pendently at each replica) or common coins (using a common coin available for
all replicas) [43]. Consensus protocols using local coins, however, terminate in
exponential expected time [18,38,48]. Thus, to avoid exponential running time,
asynchronous consensus protocols need to use common coins.

We follow a long line of work in consensus [7, 9, 18, 19, 36, 39–42, 47] and call
the setting using common coins only the information-theoretical (IT) setting,
the signature-free setting, or the cryptography-free setting (which we will use
interchangeably in the paper).

Known results in the signature-free setting. In the consensus problem,
every replica holds a message, and all replicas want to agree on one (or a set of)
message(s). Notable asynchronous consensus primitives include asynchronous bi-
nary agreement (ABA), asynchronous multivalued Byzantine agreement (MBA),
and asynchronous ABC. Informally speaking, ABA reaches agreement on binary



values and MBA reaches agreement on values from an arbitrary domain, while
ABC reaches agreement on the order of a sequence of messages.

As one of the most celebrated (and also surprising) results in consensus,
Mostéfaoui, Moumen, and Raynal (MMR) demonstrated that by relying on
common coins only, one can build a signature-free ABA protocol with optimal
resilience, optimal O(n2) messages and O(1) expected time [39, 40]. The work
is enormously impactful in both theory and practice: the state-of-the-art ABC
protocols either use their ABA protocols or their derivatives (such as Cobalt
ABA [36], Crain’s ABA [19], Pillar [47]). In the same setting, Mostéfaoui and
Raynal (MR) presented the first signature-free asynchronous multivalued Byzan-
tine agreement (MBA) with optimal O(n2) messages and O(1) expected time [42]
by reducing MBA to ABA.

The open problem. Unlike ABA and MBA, the following problem remains
open for ABC:

Does there exist a signature-free ABC protocol with the optimal O(n2) mes-
sages and O(1) expected time?

Note that the problem for ABC appears harder than that of ABA and MBA.
Intuitively, ABC is concerned about ordering a sequence of messages, while ABA
and MBA aim to achieve consensus for one-shot messages.

To the best of our knowledge, no solutions are known for the open problem
for ABC, even if we relax it to consider sublinear time complexity. Indeed, as
surveyed in Table 1, existing ABC protocols in the signature-free setting have
O(n3) messages, and O(1) or O(log n) expected time. This is in sharp contrast
to the computational setting (that uses threshold signatures and trusted setup),
the paradigm proposed by Cachin, Kursawe, Petzold, and Shoup [16]—using
multivalued validated Byzantine agreement (MVBA)—leads to ABC protocols
with O(1) expected time and optimal O(n2) messages.

This paper solves this long-standing open problem, demonstrating the first
signature-free ABC protocol called SQ with the optimal O(n2) messages and
O(1) expected time.

Our approach: ABC from MBA. Despite being a natural and classic primi-
tive in consensus, multivalued Byzantine agreement (MBA) does not seem to be
as “useful” as its binary counterpart (ABA). Indeed, while there exist transfor-
mations from MBA to ABC [18, 38], these ABC protocols have O(n) time and
O(n4) messages (even if we instantiate them using best-available subprotocols)—
far more expensive than any of the ABC protocols in Table 1. Note that the
situation for MBA is also in sharp contrast to its computational and validated
version—multivalued validated Byzantine agreement (MVBA) [16] which can be
used to build various high-level protocols such as state-of-the-art ABC proto-
cols [3, 35]. Indeed, despite the similarities between MBA and MVBA, they are
fundamentally different primitives: MBA does not directly imply MVBA, and
MVBA does not directly imply MBA either3.

3 In particular, there exist MVBA protocols such that their non-validated versions do
not satisfy the validity property of the MBA (see Sec. 2 for the definition of validity).
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paradigm protocol time message

Computational MVBA-based

CKPS [16] O(1) O(n2)
Dumbo [29] O(1) O(n3)

Speeding-Dumbo [28] O(1) O(n2)
AMS [3] O(1) O(n2)

Dumbo-MVBA [35] O(1) O(n2)

Information-
Theoretic
(by design)

ABA-based

BKR [9] O(logn)/O(1) O(n3)/O(n4)
HoneyBadger [37] O(logn) O(n3)

BEAT [24] O(logn) O(n3)
EPIC [33] O(logn) O(n3)

RABA-based
PACE [47] O(logn) O(n3)
FIN [25] O(1) O(n3)

DAG-based DAG-Rider [31] O(1) O(n3)
MBA-based SQ (this work) O(1) O(n2)

Table 1: Comparison of ABC protocols with sublinear time complexity. RABA
denotes reproposable ABA [25, 47]. DAG denotes directed acyclic graph. Note
that the implemented systems in the information-theoretic (IT) category (Hon-
eyBadger, BEAT, EPIC, PACE, FIN) are not IT-secure systems, but they—“by
design”—are IT-secure; here in this table we mean the underlying, “ideal” proto-
cols in these systems by assuming ideal building blocks such as reliable broadcast
(RBC), ABA, and common coins. As mentioned in BKR [9], their protocol can
have either O(log n) expected time and O(n3) messages, or O(1) expected time
and O(n4) messages (if using the protocol of Ben-Or and El-Yaniv [8]).

(a) Our toy construction. (b) Overview of SQ.

Fig. 1: Overview of our approach.

In this paper, we challenge the conventional wisdom and show that we can
use MBA to build a signature-free ABC protocol with optimal message and time
complexity. Our starting point, as illustrated in Figure 1a, is a toy construction
attempting to reduce ABC to MBA. In this construction, replicas proceed in
epochs. In an epoch r, each replica pi broadcasts its proposed message mi.
After receiving n− f proposed messages, replicas run a random leader election
protocol which outputs a random leader pkr . If a replica has previously received
the proposed message from pkr , it provides the received proposed message as
input to MBA. Otherwise, the replica simply waits until it receives the proposed
message from pkr

. If MBA outputs some value m, pi delivers m as the ABC
output. Meanwhile, a replica can start a new epoch before the MBA instance in
the current epoch terminates.
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Note that if the leader pkr
is correct, every correct replica eventually receives

the proposed message from pkr
, provides the same input to MBA, and MBA will

eventually output mkr . However, if a faulty replica pkr is selected, we cannot
guarantee the termination of the protocol. Indeed, under the scenario, correct
replicas in asynchronous environments cannot decide whether they should input
⊥ (and complete the epoch) or simply wait for mkr

(and stay in the epoch).
In our SQ protocol, we further develop the above idea, as depicted in Fig-

ure 1b. At the core of our fully-fledged protocol is ensuring the existence of a
key set consisting of at least f + 1 correct replicas for each epoch r, such that
if any replica in the key set is selected by the random leader election protocol,
MBA will output a non-⊥ value.4 Meanwhile, we ensure that if a replica outside
the key set is selected, every correct replica will provide some input to MBA,
so every MBA instance will terminate (and we are done). For this purpose, we
introduce a new primitive called parallel consistent broadcast with weak agreed
set (PCBW) and an exchange phase between the election phase and the MBA
phase. PCBW has a nice feature we need for building ABC: once at least one
correct replica terminates the PCBW instance in epoch r, a key set must have
existed. If a replica in the key set is elected as the leader, the exchange phase
further allows correct replicas that have not received the proposed message from
the leader to provide the correct input to MBA, so MBA outputs a non-⊥ value!

In summary, we reduce the problem of ABC to PCBW and MBA. By pro-
viding an efficient PCBW construction with O(n2) messages and O(1) time and
using the state-of-the-art MBA construction, we are able to build an ABC pro-
tocol with O(n2) messages and O(1) time. Additionally, the PCBW primitive
itself might be of independent interest.

Summary of our contributions. In this paper, we present SQ, the first IT-
secure and signature-free asynchronous ABC protocol that achieves optimal re-
silience, O(n2) messages, and O(1) expected time (Sec. 4). In light of the lower
bound result [3], our protocol is optimal in both time and message complexity.

We also suggest a communication-efficient variant of our SQ protocol, SQh,
by additionally using hash functions (Sec. 5).

Additional remarks. We provide additional remarks about our protocols on
quantum safety and communication complexity.

Quantum safety. In practice, signature-free ABC may instantiate the underlying
common coins using threshold PRF [5,17]. In this case, in contrast to computa-
tional ABC protocols using threshold signatures, signature-free ABC protocols
achieve the desirable quantum safety property as defined in [31] (but not quan-
tum liveness), where the safety of the protocols is always attained even in the
presence of a quantum adversary.

SQ, to our knowledge, is the first quantum-safe ABC protocol with optimal
O(n2) messages and O(1) expected time. SQh (Sec. 5) achieves quantum safety
too, as hash functions—with appropriately chosen parameters—are believed to
defend against quantum adversaries.

4 Note here that we only need to ensure the existence of such a set instead of finding
such a set.
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Communication complexity. We discuss the communication complexity of SQ
and its hash-based variant SQh.

• If directly assuming the existence of the common coin object (Rabin dealer):
� SQ achieves O(Ln3) communication, where L is the length of a replica’s
input. The cost is the same as all other signature-free ABC protocols if instan-
tiating the underlying RBC (reliable broadcast) using Bracha’s RBC [12,13]
(an IT-secure RBC).
� SQh achieves O(Ln2 + κn3) communication, where κ is the security pa-
rameter (i.e., the output length of hash functions). The cost is the same as all
signature-free ABC protocols if instantiating the underlying RBC using the
most efficient hash-based RBC protocol—CCBRB [4].

• If we instantiated common coins using a classic threshold PRF (e.g., the
scheme based on the CDH assumption [17]), SQ achieves O(Ln2+κn2) com-
munication and SQh achieves O(Ln2 + κn3) communication, matching the
communication of state-of-the-art signature-free ABC protocols [25, 37, 47]
using the above-mentioned CCBRB protocol.

Additional related work. This and prior works [7,9,18,19,36,39–42] assume
the common coin object providing global random coins that are visible to all
replicas. The common coin object was originally proposed in Rabin’s pioneering
work [43], where a trusted dealer distributes coins to replicas. The common coin
object can also be realized in various other ways, such as threshold PRF [5,17],
threshold signatures [6,17,45], random beacons [23,30], dedicated common coin
protocols [10,27], and ones based on trusted execution environments (TEEs).

Recently, some signature-free MVBA protocols have been proposed [1,20,21,
25], but they all have O(n3) message complexity and the ABC protocols relying
on them would at least have O(n3) messages. In particular, Duan, Wang, and
Zhang (DWZ) recently proposed a new asynchronous common subset (ACS)
protocol that leads to a signature-free ABC protocol with O(n3) messages and
O(1) expected time [25]. We compare our work with theirs in the following:

• DWZ is an ACS protocol and also leads to an ABC protocol, but SQ is not an
ACS protocol. We do not know how to efficiently transform a signature-free
ABC protocol to a signature-free ACS protocol without increasing the time
or message complexity.

• The underlying techniques of DWZ and ours are different: DWZ uses the con-
ventional n parallel RBC instances for replicas to disseminate their proposed
messages, while SQ cannot use parallel RBC for the goal of achieving O(n2)
messages, and to reach consensus, SQ uses MBA.

2 Model and Definitions

2.1 System and Threat Model

We consider protocols with n replicas {p1, · · · , pn} running over authenticated
channels. Among the n replicas, at most f of them may fail arbitrarily (Byzantine
failures). Replicas that are not faulty are correct. We consider an asynchronous
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network with no timing assumptions. We assume n ≥ 3f + 1, which is optimal
in this setting. For simplicity, we may let n = 3f + 1.

Our protocol is secure under an adaptive adversary, where an adaptive adver-
sary can choose the set of corrupted replicas at any moment during the execution
of the protocol (as long as we assume an adaptively secure common coin protocol
available or directly assume adaptively secure common coins).

Throughout the paper, we use the term broadcast to represent best-effort
broadcast, i.e., the sender multicasts a message to all replicas.

2.2 Definitions and Building Blocks

Atomic Broadcast (ABC). Atomic broadcast allows replicas to reach an
agreement on the order of messages (values). An atomic broadcast protocol Π
is specified by a-broadcast and a-deliver . When a replica is provided (by an ad-
versary) with a queue of payload messages of the form m ∈ {0, 1}∗, we say the
replica a-broadcasts the messages. Correct replicas should a-deliver the same
sequence of messages in the same order.

Definition 1 (ABC). Let Π be a protocol executed by replicas p1, · · · , pn, where
each replica a-broadcasts a queue of payload messages and a-delivers messages
in a particular order. Π should achieve the following properties:

− Agreement: If any correct replica a-delivers a message m, then every correct
replica a-delivers m.

− Total order: If a correct replica a-delivers a message m before a-delivering
m′, then no correct replica a-delivers m′ without first a-delivering m.

− Liveness: If a correct replica a-broadcasts a message m, then it eventually
a-delivers m.

− Integrity: Every correct replica a-delivers a message at most once. If a correct
replica a-delivers m, then m was previously a-broadcast by some replica.

The size of the a-delivered messages depends on the concrete constructions. In
some protocols, every correct replica a-delivers the payload message a-broadcast
by one replica at a time. Meanwhile, in some protocols, every correct replica a-
delivers a union of several payload messages a-broadcast by some replicas. Our
work considers the former case. Our protocols, however, can be transformed to
the latter case.

Multivalued Byzantine Agreement (MBA). MBA allows replicas to reach
an agreement on a value v ∈ {0, 1}∗. An MBA protocol is specified by mba-
propose and mba-decide. For a protocol instance, each replica is provided an
input value v ∈ {0, 1}∗ or ⊥ (a distinguished symbol), where we say the replica
mba-proposes v or ⊥. When a replica terminates the protocol and outputs a
non-empty value v or ⊥, we say the replica mba-decides v or ⊥.

Definition 2 (MBA). Let Π be a protocol executed by replicas p1, · · · , pn,
where each replica mba-proposes a value v ∈ {0, 1}∗ ∪ {⊥}, and each correct
replica mba-decides a value v ∈ {0, 1}∗ or ⊥. Π should satisfy the following
properties:
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− Agreement: If a correct replica mba-decides v, then any correct replica that
terminates mba-decides v.

− Termination: If all correct replicas mba-propose some value, every correct
replica eventually mba-decides.

− Integrity: Every correct replica mba-decides at most once.
− Validity: If all correct replicas mba-propose v, then any correct replica that

terminates mba-decides v.
− Non-intrusion: If a correct replica mba-decides v such that v ̸= ⊥, then v

is mba-proposed by a correct replica.

Due to the validity property, if all correct replicas mba-propose the same
non-⊥ value, ⊥ cannot be decided. Meanwhile, the non-intrusion property is
a strong “validity” property as defined in [18, 41, 42]: a decided value must be
a value proposed by a correct replica or a default value denoted ⊥. The two
properties prevent a value proposed only by faulty replicas from being decided.

Asynchronous binary Byzantine agreement (ABA) [14] can be viewed as a
special case of MBA by restricting the input to a binary value.

(Strong) common coins. We consider a common coin primitive, a notion first
introduced by Rabin [43]. Following the definitions in prior works [15,19,40,43],
we distinguish (regular) common coins (corresponding to a low f +1 threshold)
from strong common coins (corresponding to a high 2f +1 threshold). A regular
common coin primitive is invoked by triggering a release event at every correct
replica. Here we say a correct replica “releases” the coin, as we require that the
coin’s value should be unpredictable before the first replica invokes the coin. The
common coin protocol outputs a coin value b ∈ B at each correct replica. We
define the common coin primitive as follows.

Definition 3 (Common coin). Let Π be a protocol executed by replicas p1, · · · ,
pn, where each replica releases the coin and outputs a coin value b ∈ B. Π should
satisfy the following properties.

• Termination. Every correct replica eventually outputs a coin value.
• Agreement. If a correct replica outputs b and another correct replica outputs
b′, b = b′.

• Bias-resistance. If any correct replica outputs b, the distribution of the coin
is uniform over B.

• Unpredictability. Unless at least one correct replica has released the coin,
no replica has any information about the coin output by a correct replica.

The definition of the strong common coin differs in the unpredictability only,
requiring that unless at least f + 1 correct replicas have released the coin, no
replica has any information about the coin output by a correct replica.

The common coin abstraction encapsulates various ways of concrete imple-
mentations, e.g., by assuming a cryptographic trusted setup, where a trusted
dealer prepares a one-time setup for a cryptographic threshold common coin
protocol (e.g., [17] for static security, [6, 32, 34] for adaptive security). In this
case, for each common coin instance, each replica broadcasts a κ-bit string and
the total communication is κn2, where κ is a security parameter.
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Leader election from common coins. Our protocol uses a leader election
protocol Election() that can be built from a common coin object or a strong
common coin object. Each time the Election() function is queried, the function
outputs a random leader pk ∈ {p1, · · · , pn}. When calculating the communica-
tion complexity, we assume that the Election() function is instantiated from a
Rabin dealer [43], where the dealer sends a log n-bit random coin to each replica.
The dealer in total sends at most n log n bits.

Consistent Broadcast (CBC). In consistent broadcast (CBC) [16, 44, 46], a
designated replica broadcasts a message to a group of replicas. A CBC protocol
is specified by c-broadcast and c-deliver.

Definition 4 (CBC). Let Π be a protocol executed by replicas p1, · · · , pn, where
a replica ps c-broadcasts a message m ∈ {0, 1}∗ or ⊥, and each correct replica
c-delivers m ∈ {0, 1}∗ ∪ {⊥}. Π should satisfy the following properties:

− Validity: If a correct replica ps c-broadcasts a message m, then any correct
replica pi eventually c-delivers m.

− Consistency: If two correct replicas c-deliver two messages m and m′, then
m = m′.

− Integrity: For any message m, every correct replica pi c-delivers m at most
once. Moreover, if pi c-delivers m, m was previously c-broadcast by ps.

CBC guarantees only that the delivered message is the same for all receivers,
but it does not ensure totality (a property requiring either all correct replicas
to deliver some message or none to deliver any message) needed for reliable
broadcast (RBC). Therefore, it is easier to implement CBC than RBC. For
instance, Bracha’s RBC [12,13] requires three communication rounds, while the
corresponding CBC requires two rounds only.

3 Review of Existing ABC Protocols and Overview of
Our Approach

3.1 Review of ABC Approaches

As depicted in Figure 2, we divide existing ABC protocols into four categories: 1)
MVBA-based; 2) ABA-based; 3) RABA-based; and 4) DAG-based. From the se-
curity model perspective, MVBA-based ABC protocols are sharply distinguished
from the rest of ABC protocols: MVBA based protocols rely on threshold sig-
natures that require trusted setup and strong models such as random oracles,
while the rest of them assume common coins only.

MVBA-based (Figure 2a). All MVBA-based ABC leverage (non-interactive)
threshold signatures to achieve O(n2) messages and O(1) expected time. How-
ever, threshold signatures require trusted setup, strong models (e.g., random
oracles), and assume the hardness of computational problems [6, 11,32,45].

ABA-based (Figure 2b). The BKR paradigm due to Ben-Or, Kelmer, and
Rabin relies on n parallel reliable broadcast (RBC) instances and n paral-
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(a) MVBA-based
paradigm (CKPS [16]).

(b) ABA-Based paradigm
(BKR [9]).

(c) RABA-based paradigm
(PACE [47]).

(d) RABA-based paradigm (FIN [25]). (e) DAG-based paradigm (DAG-Rider [31]).

Fig. 2: Comparison of asynchronous atomic broadcast paradigms. The figures
are best viewed in color. Primitives that are computational are represented in
bold boxes. Primitives that make the paradigm achieve O(n3) complexity are
represented in blue boxes.

lel asynchronous binary agreement (ABA) instances.5 HoneyBadgerBFT [37],
BEAT [24], EPIC [33] follow the BKR paradigm. ABA-based ABC has O(n3)
messages and O(log n) expected time (due to the n parallel ABA instances).

RABA-based. Zhang and Duan [47] improved the BKR framework and pro-
posed PACE. As shown in Figure 2c, PACE replaces ABA using a variant of
the ABA primitive called reproposable asynchronous binary agreement (RABA)
and makes the RABA instances fully parallel. Very recently, Duan, Wang, and
Zhang use (two consecutive) parallel RBC instances and a constant number of
RABA instances to build a new ABC protocol achieving O(n3) messages and
O(1) expected time, as illustrated in Figure 2d.

DAG-based (Figure 2e). The DAG-Rider paradigm relies on RBC and DAG-
based data structures to build ABC [31]. The paradigm builds two layers. In the
first layer, replicas reliably broadcast their proposals and use DAG to store the
received proposals. In the second layer, replicas deliver the proposals accordingly.
DAG-Rider achieves O(n3) message complexity and O(1) time.

In summary, there is a mismatch in the message and time complexity between
the MVBA-based approach and the other three signature-free approaches. The
common characteristic of all signature-free ABC approaches is that they all
use parallel RBC protocols, which leads to O(n3) message complexity for these
protocols. We aim to remove this message complexity bottleneck.

5 Prior to the construction in BKR, Ben-Or, Canetti, and Goldreich proposed an ABC
protocol using n2 RBC instances and achieving O(n4) message complexity [7].
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3.2 Pathway to Our MBA-based ABC

A recap of our toy construction in Figure 1a. As described in our toy
construction in the introduction, the major challenge is to handle the case where
pkr is faulty. Indeed, if pkr is faulty, we cannot guarantee that every epoch will
complete. It is possible that none of the correct replicas will a-deliver any value,
as the termination property of MBA requires all correct replicas to mba-propose.

As an alternative, we could ask replicas that have not received the proposed
messages from pkr

to directly mba-propose ⊥ for MBA after the election phase.
However, this alternative solution has a liveness issue as well: replicas may a-
deliver ⊥ in all epochs and make no progress. We demonstrate the issue via
an example in Figure 3 with four replicas, where p4 is faulty and broadcasts
inconsistent messages to the replicas. In the figure, each element indexed by
(i, j) represents whether pi has received the proposed message from pj right
before the election phase, after receiving n − f messages. We observe from the
figure that if any correct replica pj (i.e., p1, p2, or p3) is selected, at least one
correct replica fails to receive the message from pj and provides ⊥ as input to
MBA, and other replicas provide the same non-⊥ value as input. In this case,
MBA may output ⊥. Meanwhile, the same claim holds if the faulty replica p4
is selected: as correct replicas provide inconsistent inputs to MBA, MBA may
output ⊥. In both cases, correct replicas may a-deliver ⊥ for all epochs.

p1

p2

p3

p4

√

√

√

√

√

√

√

√ √ √

√

√

√

p1 p2 p3 p4

Fig. 3: A livenes
issue for the
alternative con-
struction. Fig. 4: The SQ0 protocol.

The crux: ensuring the existence of a key set for each epoch. In SQ,
based on our toy construction, we will ensure the existence of a key set consisting
of at least f + 1 correct replicas for each epoch. Our goal is that if any replica
pkr in the key set is selected by the random leader election protocol, any correct
replica mba-proposes mkr and hence epoch r completes with a non-⊥ output.
(In SQ, a correct replica mba-proposes mkr

, either because it has received mkr

directly from pkr , or has received mkr from other replicas.) Meanwhile, if any
replica outside the key set is selected, we need to ensure that all correct replicas
still mba-propose some values. Thus, every MBA instance will terminate and
our protocol is live. Below we first introduce a warm-up protocol SQ0 and then
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(a) Bracha’s broadcast. (b) Our CBW construction.

Fig. 5: RBC vs. CBW.

briefly describe how we transform it into our fully-fledged protocol SQ.

A warm-up protocol SQ0 with O(n3) messages and O(1) time. In SQ0

(described in Figure 4), we introduce two new building blocks: a new primitive
called consistent broadcast with weak agreed set (CBW) and an additional ex-
change phase. We comment that SQ0 is of independent interest and (already)
outperforms the state-of-the-art MBA-based ABC protocol that has O(n4) mes-
sages and O(n) time [18,38].

� Consistent broadcast with weak agreed set (CBW). As introduced in Sec. 2.2,
the classical CBC primitive is a weaker version of reliable broadcast. CBW fur-
ther extends CBC by introducing an additional output satisfying “weak agree-
ment.” The primitive is specified by three events: cbw-broadcast , cbw-deliver ,
and cbw-s-deliver . Specifically, a designated sender ps cbw-broadcasts a message
m. Every correct replica pi may output two values: it cbw-delivers a primary
output m and cbw-s-delivers a secondary output v. Correct replicas that cbw-
deliver some value always cbw-deliver the same value. However, they do not
necessarily cbw-s-deliver the same value.

Definition 5 (CBW). Let Π be a protocol executed by replicas p1, · · · , pn,
where a sender ps cbw-broadcasts a message m ∈ {0, 1}∗ or ⊥ to all replicas.
Every correct replica pi may cbw-deliver m ∈ {0, 1}∗ or ⊥ and cbw-s-deliver
v ∈ {0, 1}∗ or ⊥. Π should achieve the following properties:

− Validity: If a correct replica ps cbw-broadcasts a message m, then every
correct replica pi eventually cbw-delivers m and cbw-s-delivers m.

− Consistency: If a correct replica pi cbw-delivers message m, another correct
replica pj cbw-delivers message m′, then m = m′.

− Weak agreement: If a correct replica pi cbw-delivers message m, then every
correct replica pj eventually cbw-s-delivers some value.

− Integrity: Every correct replica cbw-delivers a message at most once. If a
correct replica cbw-delivers a message m or cbw-s-delivers m, then m was
previously cbw-broadcast by some replica.

An IT-secure CBW protocol can be built as follows, as shown in Figure 5b.
First, the sender ps broadcasts a (Send,m) message. Second, upon receiving a
(Send,m) message from ps, a correct replica pi broadcasts an (Echo,m) message.
Upon receiving 2f +1 (Echo,m) messages with the same m, pi cbw-delivers m.
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Additionally, upon receiving f +1 (Echo,m) messages with the same m for the
first time, pi cbw-s-delivers m.

For readers who are familiar with Bracha’s RBC (shown in Figure 5a), our
CBW protocol can be viewed as its two-phase version yet additionally having a
secondary output. Also, our CBW protocol can be viewed as a variant of (au-
thenticated) CBC, but carries “more information” that we need for our purpose.

ABC with O(n3) messages and O(1) expected time

− Initialize d← ∅ at the beginning of the protocol.
− Initialize the following parameter for each epoch r: CVr ← [⊥]n.

Epoch r

− (Propose) Upon a-broadcast(mi), cbw-broadcast mi for instance CBWr,i.
− (Confirm) Upon cbw-deliver(mj) for instance CBWr,j , set CVr[j] as mj . Send

a (Confirm, i) message to pj .
− (Commit) Upon receiving n−f (Confirm, j) messages from different pj , start

the election phase.
− Set r as r + 1 and start the next epoch.

Election, Exchange, and MBA phases

− (Election) Query the Election(r) function and obtain a random value kr such
that 1 ≤ kr ≤ n.

− (Exchange) Broadcast (Send, r, i, CVr[kr]).
− (MBA) If CVr[kr] ̸= ⊥, mba-propose CVr[kr] for instance MBAr. Otherwise,

wait until one of the following conditions is satisfied:

1) f + 1 (Send, r, ∗,m) are received, then mba-propose m for instance MBAr;
2) 2f + 1 (Send, r, ∗,⊥) are received, then mba-propose ⊥ for instance MBAr;
3) m is cbw-s-delivered in CBWr,kr , then mba-propose m for instance MBAr.

Output conditions
(Event 1) If MBAr outputs m ̸= ⊥ and m /∈ d, a-deliver m and set d as d ∪m.
(Event 2) If MBAr outputs ⊥, then a-deliver ⊥.
Clear parameter CVr.

Fig. 6: SQ0 that achieves O(n3) message complexity and O(1) time complexity.
The Election() function is built from strong common coins. Code for replica pi.
We use ∗ to denote any value.

� The SQ0 protocol. Based on CBW, we present SQ0 in Figure 6. The protocol
proceeds as follows. Every replica pi first cbw-broadcasts its value mi by start-
ing a CBW instance CBWr,i. Upon cbw-delivering some value mj for instance
CBWr,j , pi sets a local parameter CVr[j] as mj and we say mj is confirmed by
pi. Additionally, it also sends pj a (Confirm) message. Meanwhile, pi waits for
n − f (Confirm) messages, after which we say the value pi cbw-broadcasts is
committed. pi then starts the election phase. Here, we use an Election(r) function
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built from strong common coins, where the value kr is revealed after at least
f + 1 correct replicas have queried Election(r).

After the Election(r) function outputs kr, pi broadcasts a (Send, r, i, CVr[k])
message. pi then either directlymba-proposes its CVr[kr] to MBA instanceMBAr

or waits until one of the three conditions occurs: 1) pi receives f + 1 (Send)
messages with the same m and then mba-proposes m; 2) pi receives 2f+1 (Send)
message with ⊥ and then mba-proposes ⊥; 3) pi has cbw-s-delivered some value
m in instance CBWr,kr and then mba-proposes v. Finally, after MBAr outputs
some value, pi a-delivers the value output by MBAr.

� Analysis. We first argue that SQ0 is live. According to the validity property
of CBW, at least n− f CBW instances will complete. Thus, all correct replicas
eventually receive n− f (confirm) messages and enter the election phase. Here,
there are two scenarios for CBWr,kr , as shown below. In each scenario, we show
that every correct replica eventually mba-proposes some value toMBAr, so epoch
r eventually completes according to the termination property of MBA.

• Scenario 1: No correct replica cbw-delivers any value in CBWr,kr
. In this case,

condition 2) or 3) of Figure 6 will eventually be triggered and every correct
replica provides some input to MBAr.

• Scenario 2: At least one correct replica cbw-delivers some value in CBWr,kr

and either condition 1) or 3) will eventually be triggered. Condition 1) will
be triggered if at least f + 1 correct replicas cbw-deliver the same value.
Additionally, the weak agreement property of CBW ensures that every correct
replica will eventually cbw-s-delivers some value, i.e., condition 3) will be
triggered. Every correct replica thus provides some input to MBAr.

SQ0 achieves O(1) time because after f +1 correct replicas enter the election
phase, a key set with at least f+1 correct replicas must exist. Specifically, every
correct replica pi waits until n− f replicas have sent a (Confirm) message to it
before it enters the election phase. Each of the n− f replicas has cbw-delivered
some value in CBWr,i. Therefore, after f +1 correct replicas I enter the election
phase, for any pkr ∈ I, at least f + 1 correct replicas have cbw-delivered some
value in CBWr,kr

. They will send a (Send, r, ∗,mkr
) message with the same

mkr
according to the consistency property of CBW. Then condition 1) will be

eventually satisfied. Additionally, condition 2) will never be triggered. Indeed,
as at least f +1 correct replicas broadcast (Send, r, ∗,mkr

) messages, no replica
can collect more than 2f+1 (Send, r,−,⊥) messages as there are 3f+1 replicas
in total. Additionally, correct replicas will never provide m′

kr
̸= mkr as input to

MBAr after triggering condition 3). In particular, due to the validity property
and the integrity property of CBW, no correct replica will cbw-s-deliver m′

kr

such that m′
kr

̸= mkr
. Thus, MBAr will output a non-⊥ value mkr

with at least
1/3 probability.

From SQ0 to SQ. We transform SQ0 in Figure 6 to SQ with O(n2) messages
and O(1) time. Additionally, SQ can be built from a leader election object from
regular common coins instead of the strong common coins as used in SQ0. Indeed,
SQ ensures that if at least one correct replica enters the election phase, the
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key set already consists of at least f + 1 correct replicas. This is achieved by
defining a new primitive called parallel consistent broadcast with weak agreed
set (PCBW) where each epoch r includes one PCBW instance (that has O(n2)
messages). Briefly speaking, PCBW can be viewed as n parallel CBW instances
with one additional feature that we need for our final design: if any correct
replica terminates the PCBW instance for epoch r, the replica has committed
n−f values and each of the values has been confirmed by n−f replicas. Among
the n − f committed values, at least f + 1 of them are proposed by correct
replicas which form a key set!

We then provide a PCBW construction with O(n2) messages. Our PCBW
protocol is instantiated using only one (Propose) message and two local pro-
cedures: an update procedure and a controlling procedure. As multiple PCBW
instances can be started concurrently (one for each epoch in SQ), the (Propose)
message together with the update procedure allow replicas to update their local
state about the PCBW instances that have not terminated yet. Each replica
further uses the controlling procedure to determine whether a PCBW instance
(in some epoch r) should terminate, after which we confirm the existence of a
key set for epoch r.

4 The SQ Protocol

We are now ready to present the SQ protocol that achieves optimal resilience,
O(1) expected time and O(n2) messages. In this section, we begin with the new
parallel consistent broadcast with weak agreed set (PCBW) primitive and define
its security properties. We then use PCBW in a black-box manner to build SQ.
Finally, we present our PCBW construction.

4.1 Parallel Consistent Broadcast with Weak Agreed Set (PCBW)

PCBW is specified by three events: pcbw-broadcast , pcbw-deliver , and pcbw-s-
deliver . Every correct replica pi pcbw-broadcasts a message mi. Meanwhile, every
correct replica pcbw-delivers a pair of values (m⃗, c⃗v), called primary outputs. For
each slot j ∈ [n], the values (m⃗[j], c⃗v[j]) correspond to the value pcbw-broadcast
by replica pj . Meanwhile, v⃗ is the secondary output of PCBW. The primary
outputs of each slot j (i.e., (m⃗[j], c⃗v[j]) satisfy a crusader agreement [2,22]: it is
possible that some correct replicas outputs m⃗[j] = mj (resp. c⃗v[j] = cvj) while
other correct replicas output m⃗[j] = ⊥ (resp. c⃗v[j] = ⊥), but for all correct repli-
cas that output non-⊥ values, they output the same value. Meanwhile, correct
replicas do not necessarily pcbw-s-deliver the same value for each v⃗[j]. Informally
speaking, each c⃗v[j] and v⃗[j] correspond to the cbw-delivered value and the cbw-
s-delivered value in CBW, respectively. The m⃗[j] captures the committed values
shown in Figure 6. We now specify the security properties of PCBW as follows.

Definition 6 (PCBW). Let Π be a protocol executed by replicas p1, · · · , pn.
Each replica pi pcbw-broadcasts a message mi to all replicas. Every correct replica
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pi may pcbw-deliver (m⃗, c⃗v) where |m⃗| = n and |c⃗v| = n. Additionally, pi may
pcbw-s-delivers v⃗ where |v⃗| = n. Π should achieve the following properties:

− Validity: If a correct replica pi pcbw-broadcasts a message mi, then every
correct replica pj eventually pcbw-s-delivers v⃗ where v⃗[i] = mi. If pj pcbw-
delivers (m⃗, c⃗v) where m⃗[i] ̸= ⊥ and c⃗v[i] ̸= ⊥, then m⃗[i] = c⃗v[i] = mi.

− Consistency: Suppose that a correct replica pi pcbw-delivers (m⃗, c⃗v) such
that c⃗v[k] = m ̸= ⊥ for slot k. For any correct replica pj:

(1) if pj pcbw-delivers (m⃗′, c⃗v′) where c⃗v′[k] ̸= ⊥, then c⃗v′[k] = m;

(2) if pj pcbw-delivers (m⃗′, c⃗v′) where m⃗′[k] ̸= ⊥, then m⃗′[k] = m.
− Weak agreement I: If a correct replica pi pcbw-delivers (m⃗, c⃗v) where c⃗v[k] ̸=

⊥ for slot k, then every correct replica pj eventually pcbw-s-delivers v⃗ where
v⃗[k] ̸= ⊥.

− Weak agreement II: Consider the first correct replica pi that pcbw-delivers
(m⃗, c⃗v). For any slot k, if m⃗[k] = mk ̸= ⊥, then there exists a set I of at

least f+1 correct replicas such that for any pj ∈ I, pj pcbw-delivers (m⃗′, c⃗v′),

where c⃗v′[k] = mk.
− Integrity: Every correct replica pcbw-delivers at most once. Every correct

replica pcbw-s-delivers v⃗ at most O(n) times. For any correct replica pi:
(1) if pi pcbw-delivers (m⃗, c⃗v), then for any m⃗[k] ̸= ⊥ (resp., c⃗v[k] ̸= ⊥),
m⃗[k] (resp., c⃗v[k]) was previously pcbw-broadcast by replica pk.
(2) if pi pcbw-s-delivers v⃗, then for any v⃗[k] ̸= ⊥, v⃗[k] was previously pcbw-
broadcast by replica pk.

− Termination: If every correct replica pcbw-broadcasts, every correct replica
eventually pcbw-delivers some values.

4.2 SQ

Using PCBW in a black-box manner, we show the pseudocode of SQ in Figure 7.
Compared to SQ0 presented in Figure 6, there are two major changes. First, we
replace the n parallel CBW instances and the confirm round with one PCBW
instance PCBWr. In particular, every replica pi starts a PCBW instance PCBWr,
using its mi as input. After receiving n− f pcbw-broadcast values in PCBWr, pi
can start the next epoch. Additionally, after pi pcbw-delivers (m⃗, c⃗v), it starts
the election phase. Second, we modify the third condition in the MBA phase,
where pi pcbw-s-delivers v⃗ such that v⃗[kr] is non-⊥. In this case, pi mba-proposes
v⃗[kr] in MBAr. We now describe SQ in detail as follows:

Propose phase. Each replica pi pcbw-broadcasts mi for instance PCBWr, where
mi is the value it a-broadcasts in epoch r. Here we assume each message mi

is unique (and in practice, mi may consist of a batch of transactions). Upon
receiving n− f messages in PCBWr, pi enters the next epoch before the current
epoch completes.

For the messages replicas a-broadcast in each epoch, we follow the approach
used in prior ABC protocols (e.g., [16]): in addition to keeping track of the
proposed messages, each replica also stores the proposed messages from other
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SQ with O(1) expected time and O(n2) messages

− Initialize d← ∅ at the beginning of the protocol.

Epoch r

− (Propose) Upon a-broadcast(mi), pcbw-broadcast mi for instance PCBWr.
− Upon receiving n− f values in PCBWr, set r as r + 1 and start epoch f + 1.

Election, Exchange, and MBA phases

− Wait until pi pcbw-delivers (m⃗, c⃗v) in PCBWr.
− (Election) Query the Election(r) function and obtain a random value kr such

that 1 ≤ kr ≤ n.
− (Exchange) Broadcast (Send, r, i, c⃗v[kr]).
− (MBA) If c⃗v[kr] ̸= ⊥, mba-propose c⃗v[kr] for MBAr. Otherwise, wait until

one of the following conditions is satisfied:

1) f + 1 (Send, r, ∗,m) messages are received such that m ̸= ⊥, then mba-
propose m for instance MBAr.

2) 2f + 1 (Send, r, ∗,⊥) messages are received, then mba-propose ⊥ for in-
stance MBAr.

3) v⃗ is pcbw-s-delivered such that v⃗[kr] ̸= ⊥, then mba-propose v⃗[kr] for in-
stance MBAr.

Output conditions for epoch r
(Event 1) If MBAr outputs m ̸= ⊥ and m /∈ d, a-deliver m and set d as d ∪m.
(Event 2) If MBAr outputs ⊥, then a-deliver ⊥.

Fig. 7: The SQ protocol for epoch r at replica pi. The Election() function is built
from regular common coins.

replicas locally in a buffer. After a proposed message is a-delivered , the proposed
message is removed from the buffer. We set a liveness parameter lp. If some
message in the buffer is proposed in epoch r and is not a-delivered by epoch
r + lp, each replica proposes the message until the message is a-delivered . This
approach ensures that a proposal will eventually be a-delivered .

Election phase. Every correct replica pi waits until it pcbw-delivers (m⃗r, c⃗vr)
in PCBWr before querying the Election(r) function.

Exchange phase and MBA phase. After Election(r) outputs kr, pi broadcasts
a (Send, r, i, c⃗v[kr]) message. pi then either directly mba-proposes its c⃗v[kr] to
MBAr or waits until one of the three conditions occurs: 1) pi receives f + 1
(Send) messages with the same m and then mba-proposes m; 2) pi receives 2f+1
(Send) message with ⊥ and then mba-proposes ⊥; 3) pi has pcbw-s-delivered v⃗
in instance PCBWr such that v⃗[kr] ̸= ⊥ and then mba-proposes v⃗[kr]. Finally,
after MBAr outputs some value, pi a-delivers the value output by MBAr.

� Analysis. We now briefly argue why SQ is live. First note that due to the ter-
mination condition of PCBW, every correct replica eventually enters the election
phase. We then distinguish the following two cases:
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• No correct replica pcbw-delivers (m⃗, c⃗v) in PCBWr such that c⃗v[kr] ̸= ⊥. In
this case, condition 2) or 3) of Figure 7 will eventually be satisfied and replicas
provide some input to MBAr.

• At least one correct replica pcbw-delivers (m⃗, c⃗v) such that c⃗v[kr] ̸= ⊥. Then
either condition 1) or 3) will eventually be triggered. Condition 1) will be

triggered if f +1 correct replicas pcbw-deliver (m⃗′, c⃗v′) such that c⃗v′[kr] ̸= ⊥.
Then due to the consistency property of PCBW, replicas provide c⃗v[kr] as
input toMBAr. Additionally, due to the weak agreement I property of PCBW,
every correct replica eventually pcbw-s-delivers v⃗ such that v⃗[kr] is non-⊥.
Thus, condition 3) will be satisfied.

Thus, every correct replica provides some input to MBAr. The termination
property of MBA thus ensures that epoch r completes.

Now we analyze why SQ achieves O(1) time. Recall that our goal is that if
at least one correct replica queries the Election(r) function, a key set I exists.
We consider the first correct replica pi that queries Election(r) (after which kr is
revealed). Let (m⃗, c⃗v) be the values pi pcbw-delivers. If we require that m⃗ has
at least n − f non-⊥ values, at least f + 1 components in m⃗ correspond to the
values pcbw-broadcast by correct replicas. Now we consider these correct replicas
forming the key set I and explain why MBAr outputs non-⊥ if pkr

∈ I. Let
m⃗[kr] = mkr . The weak agreement property II of PCBW ensures that there exist
f+1 correct replicas and for any pj among these correct replicas, pj pcbw-delivers

(m⃗′, c⃗v′) and c⃗v′[kr] = mkr
. Therefore, condition 2) will never be triggered and

condition 1) will be eventually triggered. Additionally, the validity property of
PCBW further ensures that mkr

is indeed sent by the correct replica pkr
and

no other correct replicas will pcbw-delivers (−, ⃗cv′′) where ⃗cv′′[kr] = m′
kr

̸= ⊥
and m′

kr
̸= mkr

. Furthermore, no correct replica will pcbw-s-deliver v⃗′ where

v⃗′[kr] = m′
kr

and m′
kr

̸= mkr . Therefore, correct replicas will never trigger
condition 3) and use m′

kr
̸= mkr

as input to MBAr. In all the cases, if pkr
∈ I,

all correct replicas will provide mkr
as input to MBAr and MBAr thus outputs

mkr
according to the validity property of MBA. Therefore, SQ achieves O(1)

time. We provide the proof of the protocol in Sec. 4.4.
Now, we are left to show a secure PCBW protocol and additionally ensure

that m⃗ has at least n− f non-⊥ values.

4.3 The PCBW Construction

We are now ready to present our PCBW construction and we show the pseu-
docode of PCBWr in Figure 8. As mentioned in Sec. 3.2, our PCBW protocol
involves only one (Propose) message and two procedures: an update procedure
and a controlling procedure. Multiple PCBW instances can be started in parallel
and the information exchanged in the (Propose) message in PCBWr may make
prior PCBW instances (that have not terminated yet) terminate, with the help
of the update procedure. Additionally, for each PCBWr, the controlling proce-
dure enables the termination of PCBWr while ensuring that the value m⃗ each
correct replica pcbw-delivers has at least n− f non-⊥ values.
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Notations. We use ∗ to denote any value. We use || to denote the concatenation
of values. For instance, m||∗ represents m concatenating any value. For any
matrix Mm×n and i ∈ [1,m], we use M [i][−] to denote the i-th row of M ,
represented as a vector. For example, let m⃗ = M [i][−]. Then |m⃗| = n and
m⃗[j] = M [i][j] for any j ∈ [1, n]. To facilitate the exposition of the protocol, we
also introduce the following two functions.

Definition 7 (Col Sum function). For any matrix Mm×n of bits, if k ∈ [1, n],
then Col Sum(M,k) = Σm

i=1M [i][k]. Namely, Col Sum(M,k) returns the sum of
all the elements in the kth column of M .

Definition 8 (Col Comp function). For any matrix Mm×n, Col Comp(M,k, v)
returns the number of elements in the kth column of M that have value v, i.e.,
Σm

i=1|M [i][k] = v|.

Initialization. Each replica pi initializes three parameters: E, EV , and LE.
Here, the values stored in EV are also called echo values. Moreover, for each
instance PCBWr, pi initializes three parameters: Vr, Mr, and CVr. The three
parameters will be cleared when PCBWr terminates. We call each element in
CVr a confirmed value and Mr the state matrix.

Broadcast phase and update procedure. In PCBWr, each replica pi pcbw-
broadcasts mi by broadcasting a (Propose, r, i,mi, E,EV, LE) message to all
replicas. Upon receiving a message (Propose, r, j,mj , E

j , EV j , LEj) from pj , pi
starts the update procedure. Below we describe the intuition behind each step
in the procedure with examples on how the local parameters are updated.

− (i) State update according to received values. Vr serves two purposes:
the i-th row stores the pcbw-broadcast messages pi directly receives from the
replicas; the j-th row stores the messages pj claims to have received. We
call the values each replica claims to have received echo values. Informally
speaking, echo values serve the same purpose as the values carried in the
(Echo) messages in our CBW construction. pi stores its echo values (the
pcbw-broadcast messages it receives) in EV .

� Example (Figure 9a).We show an example where pi updates the parameters
using mj as input. pi sets Vr[i][j] as mj , and pcbw-s-delivers vector Vr[i][−]
in PCBWr. pi also sets EV [j] as EV [j]||mj and E[j][2] as r.

− (ii) State update according to received echo values. This step updates
the j-th row in V according to the echo values EV j (and the corresponding
epoch numbers in Ej). Note that the echo values in EV j are values pj receives
in prior PCBW instances. Accordingly, for any PCBWe where e < r, if pi has
seen f + 1 matching echo values m (in column k of Ve) corresponding to
some replica pk, pi pcbw-s-delivers m. Informally speaking, this matches the
cbw-s-deliver event in CBWe,k.

� Example (Figure 9b). In the example, based on row 1 of Ej , ek,1 = r − 2
and ek,2 = r. Also, EV j [1] can be parsed as mr−1,1||mr,1. pi sets Vr−1[j][1]
as mr−1,1 and Vr[j][1] as mr,1. Then there exists a set S of f+1 replicas (i.e.,
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Initialization:
− E ← [⊥]n×2. Each element of E stores a PCBW instance id.
− EV ← [⊥]n. Each element of EV stores a constant number of pcbw-broadcast mes-

sages.
− LE ← [⊥]n. Each element of LE stores a PCBW instance id.

− Initialize the following parameters for PCBWr:

− Vr ← [⊥]n×n. Each element of Vr is a pcbw-broadcast message.
− CVr ← [⊥]n. Each element of CVr is a confirmed value.
− Mr ← [⊥]n×n. Each element of Mr is a binary value.

Let confirm(r, k,mk) be the following predicate:
confirm(r, k,mk) ≡(Vr[i][k] = mk ∧mk ̸= ⊥ ∧ Col Comp(Vr, k,mk) ≥ 2f + 1)

− (Broadcast) Upon pcbw-broadcast(mi) in PCBWr:
Broadcast (Propose, r, i,mi, E,EV, LE). For every k ∈ [1, n], set E[k][1] as E[k][2],
and set EV [k] as ⊥.

− Upon receiving (Propose, r, j,mj , E
j , EV j , LEj) from pj :

Let PCBWr′ be the instance s.t. every PCBWr′′ with r′′ < r′ has completed.
If Vr−1[i][j] ̸= ⊥ and Vr[i][j] = ⊥, then start the update procedure for
(Propose, r, j,mj , E

j , EV j , LEj) as follows:

(state update according to received values)

− Set Vr[i][j] as mj and pcbw-s-deliver Vr[i][−] in PCBWr.
− Set EV [j] as EV [j]||mj , set E[j][2] as r.

(state update according to received echo values)
For k ∈ [1, n], let ek,1 be Ej [k][1] and ek,2 be Ej [k][2]:

− Parse EV j [k] as a set of values mek,1+1||...||mek,2 .
− For every e ∈ [ek,1 + 1, ek,2], if Ve[j][k] = ⊥, then:
• set Ve[j][k] as me.
• if Ve[i][k] = ⊥ and there exists a set S s.t. |S| ≥ f + 1 and for every pj′ ∈ S,
Vr[j

′][k] = m, then set Ve[i][k] as m and pcbw-s-deliver Ve[i][−] in PCBWe.

(state refresh)
For k ∈ [1, n], r′′ ∈ [r′, r], if confirm(r′′, k, Vr′′ [i][k])= 1, then
− Set CVr′′ [k] as Vr′′ [i][k] and set Mr′′ [i][k] as 1.
− Set LE[k] as the largest r∗ s.t. for every r′′ ∈ [r′, r∗], Mr′′ [i][k] = 1.
(state matrix update)
For k∈ [1, n], let ek denote LEj [k]: for any r′′∈ [r′, ek], set Mr′′[j][k] as 1.

Controlling procedure for PCBWr

− If there exists a set S of replicas s.t. |S| ≥ 2f + 1 and for every pk ∈ S,
Col Sum(Mr, k) ≥ 2f + 1 and Mr[i][k] = 1, then the controlling procedure returns
1 and pi pcbw-delivers (m⃗r, c⃗vr) in PCBWr where:

− for any k ∈ [1, n], if pk∈S, then set both m⃗r[k] and c⃗vr[k] as CVr[k]; otherwise
set c⃗vr[k] as CVr[k] and set m⃗r[k] as ⊥.

Fig. 8: The PCBWr protocol at replica pi. PCBW events are highlighted in blue.
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(d) State matrix update. We use r′′ to denote any epoch in [r′, r − 1].

Fig. 9: The update procedure at replica pi upon receiving a
(propose, r, j,mj , E

j , EV j , LEj) message from pj . In this example, j = 2.

20



p1 and pj) such that for any pj′ ∈ S, Vr[j
′][k] = m2. As Vr[i][k] = ⊥, pi sets

Vr[i][k] as m2.

− (iii) State refresh. This step further checks whether any value(s) in prior
PCBW instances can be confirmed, so CV is updated. In particular, given
PCBWr′′ where r′′ < r, if there exist 2f + 1 matching values m in Vr′′ in
column k, m is confirmed and CVr′′ [k] is updated accordingly. Informally
speaking, this matches the cbw-broadcast event in CBWr′′,k. We further up-
date the state matrix M and use M to count the number of confirmed values
for each (r′′, k) pair.

� Example (Figure 9c). Based on columns 1 and 2 of the Vr′′ matrix, values
m1 and m2 are confirmed. Then pi sets CVr′′ [1] as m1 and CVr′′ [2] as m2. pi
also sets Mr′′ [i][1] and Mr′′ [i][2] as 1. Moreover, since LE[1] = r′′ − 1, pi sets
LE[1] as r′′. For LE[2], as LE[2] = r′′ − 2, no value from p2 for PCBWr′′−1

has been confirmed by pi yet, so pi does not update LE[2].

− (iv) State matrix update. Finally, the state matrix Mr′′ for each PCBWr′′

(where r′′ < r) is updated. With the help of the state matrix, we can count the
number of replicas that have confirmed each value. As discussed in Sec. 3.2,
once 2f + 1 replicas have confirmed a value, the value is committed. Our
ultimate goal is to ensure that 2f +1 values have been committed before any
correct replica pcbw-delivers.

� Example (Figure 9d). For each row k = 1, 2, 3, we have LEj [k] = r. Then
pi sets Mr′′ [j][k] as 1 for any r′′ ∈ [r′, r]. For k = n, as LEj [k] = r − 1, pi
sets Mr′′ [j][k] as 1 for r′′ ∈ [r′, r − 1].

The controlling procedure. If PCBWr has not terminated yet, every time
replica pi modifies the local parameters Vr, CVr, andMr in the update procedure,
pi also checks whether the controlling procedure is satisfied—after which pi pcbw-
delivers (m⃗r, c⃗vr) in PCBWr and m⃗ contains at least n− f non-⊥ values.

The rule of the controlling procedure is specified as follows: there exists a
set S of at least 2f + 1 replicas such that for any pk ∈ S, column k in Mr has
at least 2f + 1 1’s and Mr[i][k] = 1 (indicating the corresponding value CVr[k]
is committed). Then pi pcbw-delivers (m⃗r, c⃗vr) such that c⃗vr contains all the
confirmed value in CVr, and m⃗ contains all the committed values. Here, m⃗r and
c⃗vr are two vectors with n components. For any k ∈ [1, n], if pk ∈ S, set both
m⃗r[k] and c⃗vr[k] as CVr[k]. Otherwise, set c⃗vr[k] as CVr[k] and m⃗r as ⊥.

4.4 Proof

We use C to denote the set of correct replicas, where |C| ≥ 2f + 1. Our proof
consists of two parts. We first show that our PCBW construction achieves the
security properties defined in Sec. 4.1. We then show that for each epoch, using
PCBW in a black-box manner, our SQ protocol achieves the security properties
of ABC.

Lemma 1. In PCBWr, if a correct replica pj pcbw-delivers (m⃗, c⃗v) where c⃗v[i] ̸=
⊥, then at least f + 1 correct replicas have received c⃗v[i] from replica pi and
included c⃗v[i] in their EV parameters.
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Proof. If pj pcbw-delivers (m⃗, c⃗v) such that c⃗v[i] ̸= ⊥ for epoch r, from the
controlling procedure, we know that pj must have confirmed c⃗v[i] and set CVr[i]
as c⃗v[i] before it pcbw-delivers. Let mi denote CVr[i]. According to the update
procedure, pj has set Vr[j][i] as mi and Col Comp(Vr, i,mi) ≥ 2f + 1. Note
that for any k ̸= j, Vr[k][i] stores the value from pk as the echo value. Since
Col Comp(Vr, i,mi) ≥ 2f + 1, at least 2f + 1 replicas have included mi in their
EV [i] in the (Propose) messages—indicating that they have received mi from
pi for epoch r. Therefore, at least f + 1 correct replicas have received mi from
pi and included c⃗v[i] in their EV parameters in epoch r.

Lemma 2. In PCBWr, if a correct replica pi pcbw-delivers (m⃗i, c⃗vi), another
correct replica pj pcbw-delivers (m⃗j , c⃗vj), such that for any slot k ∈ [1, n],
c⃗vi[k] ̸= ⊥ and c⃗vj [k] ̸= ⊥, then c⃗vi[k] = c⃗vj [k].

Proof. We prove the lemma by contradiction. Let c⃗vi[k] = mi,k and c⃗vj [k] =
mj,k. Assume, on the contrary, that mi,k ̸= mj,k. As pi is a correct replica,
at least f + 1 correct replicas have received mi,k from pk and included mi,k in
their EV parameters by Lemma 1. Similarly, at least f +1 correct replicas have
received mi,k from pk and included mi,k in their EV parameters. As there are
2f+1 correct replicas, at least one correct replica has stored both mi,k and mj,k

in EV [k] for epoch r, a contradiction.

Theorem 1. (PCBW-Validity): In PCBWr, if a correct replica pi pcbw-broadcasts
a message mi, then every correct replica pj eventually pcbw-s-delivers v⃗ where
v⃗[i] = {mi}. If pj pcbw-delivers (m⃗, c⃗v) where m⃗[i] ̸= ⊥ and c⃗v[i] ̸= ⊥, then
m⃗[i] = c⃗v[i] = mi.

Proof. For each epoch r, if a correct replica pi pcbw-broadcasts a message mi,
pi broadcasts a (Propose, r, i,mi,−,−,−) message pmi. According to the as-
sumption of the network, every correct replica pj eventually receives pmi from
pi. Then pi executes the state update procedure using pmi as input. It is not
too difficult to see that pi eventually pcbw-s-delivers v⃗ such that v⃗[i] = {mi}.

Suppose pj pcbw-delivers (m⃗, c⃗v) such that m⃗[i] ̸= ⊥ and c⃗v[i] ̸= ⊥ for epoch
r. We prove the correctness by contradiction. By Lemma 1, c⃗v[i] is pcbw-broadcast
by pi and f + 1 correct replicas have received c⃗v[i] from pi. Since pi is a correct
replica, it pcbw-broadcasts only one message mi in PCBWr. Then c⃗v[i] = mi.
In addition, pj pcbw-delivers (m⃗, c⃗v) in the controlling procedure and for any k,
m⃗[k] is either ⊥ or c⃗v[k]. As m⃗[i] ̸= ⊥, we have m⃗[i] = c⃗v[i] = mi.

Theorem 2. (PCBW-Consistency): Suppose that a correct replica pi pcbw-
delivers (m⃗, c⃗v) such that c⃗v[k] = m ̸= ⊥ for slot k. For any correct replica pj:

(1) if pj pcbw-delivers (m⃗′, c⃗v′) where c⃗v′[k] ̸= ⊥, then c⃗v′[k] = m;

(2) if pj pcbw-delivers (m⃗′, c⃗v′) where m⃗′[k] ̸= ⊥, then m⃗′[k] = m.

Proof. Property (1) follows from Lemma 2. For (2), note that when pj pcbw-

delivers (m⃗′, c⃗v′) in the controlling procedure, m⃗′[k] is either set as c⃗v′[k] or ⊥.

As m⃗[i] ̸= ⊥, m⃗′[k] = c⃗v′[k] = m due to property (1). This completes the proof
of the lemma.
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Lemma 3. In PCBWr, if a correct replica pi pcbw-s-delivers v⃗r, then for any
slot k such that v⃗r[k] = mk ̸= ⊥, mk is pcbw-broadcast by pk.

Proof. Based on the update procedure, we distinguish two cases: (1) pi has
received mk from pk in a (Propose) message in PCBWr; (2) pi has received mk

from f + 1 replicas as echo values. In case (1), since pj is a correct replica, mk

is pcbw-broadcast by replica pk. In case (2), at least one correct replica receives
mk from pk and sends mk to pi as an echo value. Then mk is pcbw-broadcast by
replica pk.

Theorem 3. (PCBW-Weak agreement I ): In PCBWr, if a correct replica
pi pcbw-delivers (m⃗, c⃗v) where c⃗v[k] ̸= ⊥ for slot k, then every correct replica pj
eventually pcbw-s-delivers v⃗ where v⃗[k] ̸= ⊥.

Proof. Let c⃗v[k] = mk. By Lemma 1, at least f+1 correct replicas have received
mk from pk in PCBWr and will include mk in their (Propose) messages as echo
values in PCBWr′ where r′ > r. Let S denote the set of f + 1 correct replicas.

After receiving the (Propose) messages from S in epoch r′, every correct
replica pj executes the update procedure. If pj has not set Vr[j][k] as a non-⊥
value before receiving these messages, pj will update Vr[j][k] to mk and pcbw-s-
delivers Vr[j][−] according to our protocol. Otherwise, if pj sets Vr[j][k] as m′

k

and m′
k ̸= ⊥ before pj receives the (Propose) messages from S, then pj also has

pcbw-s-delivered its Vr[j][−]. In both cases, the lemma holds.

Theorem 4. (PCBW-Weak agreement II ): In PCBWr, considering the
first correct replica pi that pcbw-delivers (m⃗, c⃗v). For any slot k, if m⃗[k] = mk ̸=
⊥, then there exists a set I of at least f + 1 correct replicas such that for any
pj ∈ I, pj pcbw-delivers (m⃗′, c⃗v′), where c⃗v′[k] = mk.

Proof. According to the controlling procedure, for any slot k, if m⃗[k] = mk ̸= ⊥,
then there exists a set S of 2f + 1 replicas such that for each pj ∈ S, pi sets
Mr[j][k] as 1 before pi pcbw-delivers (m⃗, c⃗v). Note that pi ∈ S. Let I denote a
set of all correct replicas in S. We have I ≥ f + 1, as there are at most f faulty
replicas.

Now we prove that for any pj ∈ I, pj pcbw-delivers (m⃗′, c⃗v′), where c⃗v′[k] =
mk. When j = i, the statement simply follows, so we consider j ̸= i. According to
our protocol, before pcbw-delivering (m⃗, c⃗v), pi has received a (Propose) message
msg from pj , triggered the update procedure, and set Mr[j][k] as 1 in the state
matrix update step. Thus,msg can be parsed as (Propose, ∗, j,mj , E

j , PV j , LEj)
and LEj [k] ≥ r. Additionally, pj is correct. Before pj sends msg to pi, it must
have set its LE[k] as a value that is no less than r in the state refresh step. There-
fore, pj has confirmed the pcbw-broadcast value from pk in PCBWr. Also note
pi pcbw-delivers (m⃗, c⃗v) and c⃗v[k] = mk ̸= ⊥. By Lemma 2, pj has confirmed
mk and set CVr[k] as mk before sending msg to pi. As pj sent msg to pi before
pi pcbw-delivers (m⃗, c⃗v) and pi is the first correct replica that pcbw-delivers in
PCBWr, pj already sets its CVr[k] as mk before pi pcbw-delivers. By Lemma 6,
pj will eventually pcbw-delivers some value. The lemma thus holds.
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Theorem 5. (PCBW-Integrity): Every correct replica pcbw-delivers at most
once. Every correct replica pcbw-s-delivers v⃗ at most O(n) times. For any correct
replica pi:
(1) if pi pcbw-delivers (m⃗, c⃗v), then for any m⃗[k] ̸= ⊥ (resp., c⃗v[k] ̸= ⊥),
m⃗[k] (resp., c⃗v[k]) was previously pcbw-broadcast by replica pk.
(2) if pi pcbw-s-delivers v⃗, then for any v⃗[k] ̸= ⊥, v⃗[k] was previously pcbw-
broadcast by replica pk.

Proof. For any PCBW instance PCBWr, the controlling procedure returns only
once. Therefore, every correct replica pcbw-delivers at most once. From the up-
date procedure, each correct replica pi pcbw-s-delivers v⃗ for epoch r only after
pi sets Vr[i][k] as a non-⊥ value for some k ∈ [1, n]. Note that once pi sets its
Vr[i][k] to a non-⊥ value, pi does not change Vr[i][k] anymore. As |v⃗| = n, pi
pcbw-s-delivers v⃗ at most O(n) times.

Now we prove property (1). Let k0 denote a slot such that a correct replica
pcbw-delivers (m⃗, c⃗v) and c⃗v[k0] ̸= ⊥. Then we know that c⃗v[k0] was previously
pcbw-broadcast by replica pk0 from Lemma 1. Note that for any k such that
m⃗[k] ̸= ⊥, m⃗[k] equals c⃗v[k]. Therefore, m⃗[k] was previously pcbw-broadcast by
replica pk.

The correctness of property (2) follows from Lemma 3. This completes the
proof.

Theorem 6. (PCBW-Termination): In PCBWr, if every correct replica pcbw-
broadcasts, every correct replica eventually pcbw-delivers some values.

Proof. If every correct replica pcbw-broadcasts, each correct replica pi will even-
tually receive n−f (Propose) messages. We now prove that every correct replica
pi eventually pcbw-delivers some values. According to our protocol in Figure 8,
pi pcbw-delivers some values if there exists a set S consisting of at least of
2f + 1 replicas such that for any pk ∈ S, Mr[i][k] = 1 and Col Sum(Mr, k)
≥ 2f + 1. In the following, we prove that for each correct replica pi, it will hold
that Mr[i][k] = 1 and Col Sum(Mr, k) ≥ 2f + 1 for any k where pk ∈ C. As
|C| ≥ 2f + 1, pi eventually pcbw-delivers some values.

We first prove that for any pk ∈ C, pi will eventually set Mr[i][k] as 1. First
note that every correct replica pi eventually receives the (Propose) messages
from any replicas in C. In our protocol, after pi receives the (Propose, r, k,mk, ∗,
∗, ∗) message from pk ∈ C, pi sets Vr[i][k] and EV [k] as mk. The EV vector is
included in the (Propose) message in some epoch r′′ > r. Therefore, every
correct replica in C eventually receives the proposed messages for epoch r from
every other replica in C, includes them in its EV vector, and then broadcasts
them to all replicas. For each pj ∈ C, after receiving EV j from pj , pi updates
its Vr. Eventually, for any pj ∈ C and pk ∈ C, pi sets Vr[j][k] as mk, where mk

is proposed by pk in epoch r. Then pi eventually sets Mr[i][k] as 1 in the state
refresh step.

We now prove that for any pk ∈ C, the matrixMr at pi eventually satisfies the
condition that Col Sum(Mr, k) ≥ 2f+1. As any correct replica pj eventually sets
Mr′′ [j][k] as 1 for every epoch r′′ ≤ r and pk ∈ C, pj will set LE[k] as r, include
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its LE in the (Propose) message in some epoch, and broadcast the (Propose)
message to all replicas. As pi eventually receives the (Propose) messages from
pj , pi will set its Mr[j][k] as 1 in the state matrix update step. Therefore, pi
eventually sets its Mr[j][k] as 1 for any pj , pk ∈ C.

Therefore, the controlling procedure returns 1 at any correct replica pi and
pi eventually pcbw-delivers some values.

Lemma 4. In epoch r, if Election(r) returns k and a correct replica pi mba-
proposes m for MBAr where m ̸= ⊥, then m was a-broadcast by pk for epoch r.

Proof. Every correct replica pi mba-proposes m if one of the three cases occurs:
(1) pi has pcbw-delivered (m⃗, c⃗v) and c⃗v[k] = m; (2) pi has received f + 1
(Send, r, ∗,m) messages; (3) pi has pcbw-s-delivers vr such that v⃗r[k] = m. We
show that in any of the three cases, m was a-broadcast by pk.

− Case 1: In this case, the integrity property (1) of PCBW ensures that m was
pcbw-broadcast by pk. As every replica pcbw-broadcasts its a-broadcast value,
m was a-broadcast by pk in epoch r.

− Case 2: Among the f +1 (Send, r, ∗,m) messages, at least one was sent by a
correct replica. The correct replica must have pcbw-delivered (m⃗r, c⃗vr) such
that c⃗vr[k] = m. The integrity property (1) of PCBW guarantees that m was
a-broadcast by pk in epoch r.

− Case 3: The integrity property (2) of PCBW guarantees that m was a-
broadcast by pk in epoch r.

Lemma 5. In epoch r, if Election(r) returns k and a correct replica pi broadcasts
a (Send, r, i,m) message in epoch r, then every correct replica eventually mba-
proposes a value or ⊥ for MBAr.

Proof. We show that condition 3) in the MBA phase is eventually satisfied. As
pi broadcasts a (Send, r, i,m) message for epoch r, pi must have pcbw-delivered
(m⃗r, c⃗vr) such that c⃗vr[k] = m. Due to the weak agreement I property of PCBW,
every correct replica eventually pcbw-s-delivers some value in PCBWr. Therefore,
condition 3) in the MBA phase for epoch r will eventually be satisfied.

Lemma 6. In epoch r, assuming that the Election(r) function is queried by at
least one correct replica and pi is the first correct replica that queries Election(r).
If Election(r) returns k and pi pcbw-delivers (m⃗r, c⃗vr) in PCBWr such that
m⃗r[k] = m ̸= ⊥, then all correct replicas mba-propose m for MBAr.

Proof. Our proof consists of three parts. First, we show that every correct replica
mba-proposes some value for MBAr. Second, we show that no correct replicas
mba-proposes ⊥. Last, we show that every correct replica mba-proposes m.

We begin with the first part. Since Election(r) returns k and pi pcbw-delivers
(m⃗r, c⃗vr) such that m⃗r[k] = m ̸= ⊥, in the exchange phase, pi will broadcast
(Send, r, i,m). By Lemma 5, every correct replica eventually mba-proposes some
value for MBAr.

We now show that no correct replica mba-proposes ⊥. As pi is the first correct
replica that queries Election(r), pi is also the first replica that pcbw-delivers a
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pair of output (m⃗, c⃗v) in PCBWr where m⃗r[k] = m ̸= ⊥. Due to the weak
agreement II property of PCBW, there exists a set I of f + 1 correct replicas
such that for any pj ∈ I, pj pcbw-delivers (m⃗′, c⃗v′) where c⃗v′[k] = m. Hence, at
least f + 1 correct replicas will broadcast (Send, r, ∗,m) in the exchange phase,
and condition 2) for MBAr will never be satisfied. Thus, no correct replica mba-
proposes ⊥ for MBAr.

Last, from Lemma 4, if a correct replica mba-proposes m, m is a-broadcast
by pk. As pk is correct, all correct replicas mba-propose the same value m.

Lemma 7. In epoch r, any correct replica eventually mba-decides for MBAr.

Proof. Note there are n − f correct replicas and each correct replica sends a
(Propose) message in each epoch r. Due to the termination property of PCBW,
every correct replica eventually pcbw-delivers some values.

Then according to our protocol, correct replicas will query the Election(r)
function. After k is returned by Election(r), every correct replica broadcasts
CVr[k] in its (Send) messages. We now show that every correct replica mba-
proposes some value.

After obtaining an output for Election(r), we distinguish two cases: 1) at least
one correct replica pi broadcasts (Send, r, i,m); 2) every correct replica broad-
casts (Send, r, ∗,⊥) for epoch r. We show that every correct replica eventually
mba-proposes so eventually every correct replica mba-decides according to the
termination property of MBA.

− Case 1: In this case, according to Lemma 5, any correct replica eventually
mba-proposes a value (or ⊥) for MBAr.

− Case 2: In this case, after receiving all the (Send) messages from correct repli-
cas for epoch r, condition 2) in the MBA phase will eventually be satisfied.
Thus, every correct replica will mba-proposes some value for MBAr.

Lemma 8. In epoch r, if a correct replica pi a-delivers m and another correct
replica pj a-delivers m′, then m = m′.

Proof. We prove the lemma by contradiction. Assume, on the contrary, that
m ̸= m′. According to our protocol, if pi a-delivers m, itmba-decides m inMBAr.
If pj a-delivers m′, it mba-decides m′ ̸= m in MBAr, violating the agreement
property of MBA. Therefore, it holds that m = m′.

Theorem 7 (ABC-Agreement). If any correct replica a-delivers a message
m, then every correct replica a-delivers m.

Proof. If a correct replica a-delivers a message in epoch r, then according to
Lemma 7, any correct replica will eventually mba-decide for MBAr and then
a-deliver some value.

Moreover, if a correct replica pi a-delivers a message m in epoch r, it has
mba-decided m in MBAr. The termination and agreement properties of MBA
thus guarantee that any correct replica mba-decides m and then a-delivers m.
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Theorem 8 (ABC-Total order). If a correct replica a-delivers a message m
before a-delivering m′, then no correct replica a-delivers a message m′ without
first a-delivering m.

Proof. We prove the theorem by contradiction. Every correct replica a-delivers
the messages according to the sequence of epoch numbers. We assume that a
correct replica pi a-delivers m in epoch r1 and m′ in epoch r2 where r1 < r2.
Meanwhile, another correct replica pj a-delivers m′ in epoch r3 and m in epoch
r4 where r3 < r4. We consider two cases: (1) r1 < r4 or r1 > r4; (2) r1 = r4.

− Case 1: Without loss of generality, assume that r1 < r4. pi a-delivers m in
epoch r1 (and mba-decides m in MBAr1) and pj a-delivers m in epoch r4.
Since pj a-delivers m in epoch r4, it has not previously a-delivered m in any
prior epochs (due to the uniqueness of messages). Therefore, it must have a-
delivered m′′ in epoch r1 such that m′′ ̸= m and mba-decided m′′ in MBAr1 ,
a violation of the agreement property of MBA.

− Case 2: Since r1 < r2 and r3 < r4, we know that r3 < r2. Note that pi
a-delivers m′ in epoch r2 and pj a-delivers m′ in epoch r3. Similar to case
(1), there is a contradiction.

Theorem 9 (ABC-Integrity). Every correct replica a-delivers a message at
most once. If a correct replica a-delivers a message m, then m was previously
a-broadcast by some replica.

Proof. We first prove the first part. Every correct replica a-delivers a message
after it mba-decides. According to the integrity property of MBA, every correct
replica a-delivers a message once.

We now prove the second part. According to our protocol, if a correct replica
a-delivers a message m in epoch r, then MBAr outputs m. The non-intrusion
property of MBA ensures that m is mba-proposed by a correct replica. By
Lemma 4, m was previously a-broadcast by some replica.

Lemma 9. With a probability of at least 1/3, in every epoch r correct replicas
a-deliver a value a-broadcast by a correct replica.

Proof. According to Lemma 6, for any r, every correct replica eventually pcbw-
delivers some values and queries the Election(r) function. Let pi denote the first
correct replica that pcbw-delivers (m⃗, c⃗v) and then queries Election(r). When pi
queries Election(r), m⃗ has at least 2f + 1 non-⊥ values. Let the replicas that
propose these values in PCBWr be S. The probability that pk is a correct replica
and pk ∈ S is at least 1/3, as

Pr[Election(r) ∈ S ∩ C] ≥ 2f + 1 + 2f + 1− (3f + 1)

n
>

1

3
. (1)

Additionally, according to Lemma 6, if pk is a correct replica and pk ∈ S, all
correct replicasmba-propose the value proposed by pk. Then the validity property
of MBA ensures that any correct replica a-delivers a value proposed by pk in
epoch r. Therefore, the correct replicas contained in S form a key set.
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Let success be the event that correct replicas a-deliver a value a-broadcast
by a correct replica in epoch r. We have the following:

Pr[success] = Pr[success|Election(r) ∈ S ∩ C]Pr[Election(r) ∈ S ∩ C]+
Pr[success|Election(r) ∈ S ∩ C]Pr[Election(r) ∈ S ∩ C]

≥ Pr[success|Election(r) ∈ S ∩ C]Pr[Election(r) ∈ S ∩ C]

= Pr[Election(r) ∈ S ∩ C] > 1

3
.

(2)

Thus, the probability that the success event occurs is at least 1/3.

Lemma 10 (Efficiency). If a correct replica a-delivers a message m, the prob-
ability that m is either ⊥ or a-broadcast by a faulty replica is at most 2/3, i.e.,
SQ achieves O(1) time complexity.

Proof. According to Lemma 9, for each epoch r, with a probability of at least
1/3, a correct replica a-delivers a message m a-broadcast by a correct replica.
Therefore, the probability that m is either ⊥ or a-broadcast by a faulty replica
is at most 2/3.

Theorem 10 (Liveness). If a correct replica a-broadcasts a message m, then
it eventually a-delivers m.

Proof. If a correct replica pi a-broadcasts m in epoch r, then it pcbw-broadcasts m
in PCBWr. The validity property ensures that every correct replica eventually
pcbw-s-delivers v⃗ such that v⃗[i] = m. Furthermore, if a correct replica pcbw-
delivers (m⃗, c⃗m) such that m⃗[i] = c⃗m[i] ̸= ⊥, m⃗[i] = c⃗m[i] = m.

Before m is a-delivered , any correct replica stores m in its echo buffer in
an epoch r1 ≥ r. Recall that there exists a predefined liveness parameter lp
(epoch number). If all the messages proposed in epochs lower than r have been
a-delivered and m has not been a-delivered by epoch r + lp, every replica that
stores m in its echo buffer will propose m.

We now prove the theorem by induction on epoch number r. We start from
r = 1. Let r∗ be max{r + lp, r1}. Before m is a-delivered , all correct replicas
will a-broadcast m in epochs higher than r∗. According to Lemma 10, pi will
eventually a-deliver m in some epoch.

Assume the theorem holds from r = 1 to r = r − 1. Then any message
proposed in an epoch lower than r is eventually a-delivered . Assume the messages
proposed in epoch 1 to epoch r − 1 have been a-delivered by a correct replica
when it is in epoch r2. Let r∗ be max{r + lp, r1, r2}. Before m is a-delivered ,
all correct replicas will a-broadcast m in epochs larger than r∗. According to
Lemma 10, pi will eventually a-deliver m in some epoch.

Theorem 11 (Complexity). SQ achieves O(n2) message complexity, O(Ln3)
communication complexity, and O(1) time complexity.

Proof. The first three phases in SQ all have O(n2) messages. As the MBA phase
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can be also realized using O(n2) messages [42], SQ has O(n2) messages.
We now analyze the communication complexity. Our PCBW construction

has O(Ln3) communication because the (Propose) message includes a proposed
value (length L), E (n epoch numbers), PV , and LE (n epoch numbers). For PV ,
each PV [k] for k ∈ [1, n] contains a constant number of L-bit values. Hence, the
communication of the propose phase is O(Ln3). For the election phase, assuming
a Rabin dealer, the communication complexity is O(n log n). In the exchange
phase, each (Send) message includes at most two proposed messages so the
communication complexity is O(Ln2). In the MBA phase, as the input to MBA
is either a proposed message or ⊥, the MBA phase has O(Ln2) communication.
Therefore, SQ achieves O(Ln3) communication complexity. Finally, SQ achieves
O(1) time complexity according to Lemma 9.

5 A Communication-Efficient Variant of SQ From Hash
Functions

In this section, we present SQh, a communication-efficient variant of SQ by
additionally using hash functions. Recall that SQ has O(Ln3) communication
complexity, because in our PCBW construction every replica broadcasts its re-
ceived values from all replicas in the (propose) message. In SQh, we modify our
PCBW construction by replacing the values included in the (propose) messages
with their hashes. SQh achieves O(Ln2 + κn3) communication, where κ is the
security parameter, i.e., the length of a hash digest. In this section, we present
the PCBW variant and the main protocol remains the same as that in Figure 7.

5.1 The PCBW Protocol

We present the pseudocode of the hash variant of PCBW in Figure 10. Here we
highlight the changes from Figure 8 to Figure 10.

First, we modify the parameters. We re-define the Vr parameter: Vr is now a
vector instead of a matrix that stores only the proposed message directly received
from each replica. For example, Vr[k] stores the proposed message received from
pk in epoch r. Moreover, we define a new vector EH for storing hashes of the
received messages (to replace EV ). We also introduce a new parameter Hr, an
n× n matrix storing hashes.

Among all the parameters in this variant, the E, EH, and LE parameters
are initialized at the beginning of the protocol. Meanwhile, for each PCBWr,
each replica initializes the Vr, Hr, Mr, and CVr parameters; these parameters
are cleared only after epoch r completes.

We explain the two new parameters EH and Hr in detail below.

• EH is an n-value vector that stores the hashes of the proposed messages
(also called echo hashes). For k ∈ [1, n], EH[k] contains a constant number
of hashes. Intuitively speaking, echo hashes are hashes of the echo values EV
used in SQ.
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Initialization:
− E ← [⊥]n×2. Each element of E stores a PCBW instance id.
− EH ← [⊥]n. Each element of PH stores a constant number of hashes.
− LE ← [⊥]n. Each element of LE stores a PCBW instance id.

− Initialize the following parameters for PCBWr:
− Vr ← [⊥]n. Each element of Vr is a proposed message from a replica.
− Hr ← [⊥]n×n. Each element of Hr is the hash of a proposed message.
− Mr ← [⊥]n×n. Each element of Mr is one bit.
− CVr ← [⊥]n. Each element of CVr is a confirmed value.

Let confirm(r, k,mk) be the following predicate: confirm(r,mk, k) ≡ (Vr[k] = mk ∧
mk ̸= ⊥ ∧Hr[i][k] = hr ∧ Col Comp(Hr, k, hr) ≥ 2f + 1)

− (Broadcast) Upon pcbw-broadcast(mi) in PCBWr: Broadcast (Propose, r, i,mi,
E,EH,LE) For every k ∈ [1, n], set E[k][1] as E[k][2], and set EH[k] as ⊥.

− Upon receiving (Propose, r, j,mj , E
j , EHj , LEj) from pj :

Let PCBWr′ be the instance such that every PCBWr′′ with r′′ < r′ has com-
pleted. If Vr−1[i][j] ̸= ⊥ and Vr[i][j] = ⊥, then start the update procedure for
(Propose, r, j,mj , E

j , EHj , LEj) as follows:

(state update according to received values)

− Set Vr[j] as mj and pcbw-s-deliver Vr in PCBWr.
− Set Hr[i][j] as hash(mj), set EH[j] as EH[j]||hash(mj), and set E[j][2] as r.

(state update according to received echo values)
For k ∈ [1, n], let ek,1 be Ej [k][1] and ek,2 be Ej [k][2]:
− Parse PHj [k] as a vector of hashes hek,1+1||...||hek,2 .
− For every e ∈ [ek,1 + 1, ek,2], if He[j][k] = ⊥, then:
• He[j][k] as he.
• if He[i][k] = ⊥ and there exists a set S such that |S| ≥ f + 1 and for every
pj′ ∈ S, He[j

′][k] = hash(m), then set He[i][k] as hash(m), set Ve[k] as m, and
pcbw-s-deliver Ve in PCBWe.

(state refresh)
For k ∈ [1, n], r′′ ∈ [r′, r], if confirm(r′′, Vr′′ [k], k)= 1, then
− Set CVr′′ [k] as Vr′′ [k] and set Mr′′ [i][k] as 1.
− Set LE[k] as the largest r∗ such that for every r′′ ∈ [r′, r∗], Mr′′ [i][k] = 1
(state matrix update)
For k∈ [1, n], let ek denote LEj [k]: for any r′′ ∈ [r′, ek], set Mr′′ [j][k] as 1.

Controlling procedure for PCBWr

− If there exists a set S of replicas such that |S| ≥ 2f + 1 and for every pk ∈ S,
Col Sum(Mr, k) ≥ 2f + 1 and Mr[i][k] = 1, then the controlling procedure returns
1 and pi pcbw-delivers (m⃗r, c⃗vr) in PCBWr where:

− for any k ∈ [1, n], if pk∈S, then set both m⃗r[k] and c⃗vr[k] as CVr[k]; otherwise
set c⃗vr[k] as CVr[k] and set m⃗r[k] as ⊥.

Fig. 10: The hash variant of PCBWr protocol at replica pi. PCBW events are
highlighted in blue.
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• Hr is an n×n matrix and each element is an echo hash. Informally speaking,
Hr is a matrix that stores the hashes of the values in Vr used in SQ. For
replica pi, row i stores the hashes of the values pi receives from other replicas
and other rows store the hashes of the received values by other replicas.

Second, we modify the parameters included in the (Propose) message. The
(Propose) message now includes E, EH, and LE. The update procedure differs
slightly from that in SQ. In particular, the step for state update according to
received values now updates Hr and EH. The step for state update according to
echo hashes now updates the Hr matrix using the hashes included in the EHj

parameter.

Finally, we change the definition of the confirm predicate. In PCBWr, each
replica pi confirms a value mk if pi has stored a non-⊥ value mk in Vr[k], and
there exists a set of at least 2f + 1 replicas such that for any pj in the set,
Hr[j][kr] = hash(mk).

5.2 Proof

Theorem 12. The hash variant of the PCBW protocol achieves validity, con-
sistency, weak agreement I, weak agreement II, integrity, and termination.

Proof. We first prove that Lemma 1 still holds for the new PCBW protocol.
Since pi pcbw-delivers (m⃗, c⃗v) for PCBWr and c⃗v[i] = mi ̸= ⊥, pi has confirmed
mi in PCBWr before it pcbw-delivers. Therefore, pi has received c⃗v[i] from pj
and at least 2f + 1 replicas included hash(mi) in their EH parameters. Due
to the collision resistance of hash function, these replicas store the same mi in
their Vr parameters with an overwhelming probability. As at least f +1 of these
replicas are correct, Lemma 1 holds.

Similarly, Lemma 2 and Lemma 3 can be proved for the hash-based variant
of PCBW. Accordingly, the proofs for the validity, consistency, weak agreement
I, weak agreement II, integrity, and termination properties follow from those of
the PCBW presented in Figure 8.

Theorem 13 (Complexity). SQh achieves O(n2) message complexity and O(Ln2+
κn3) communication complexity.

Proof. As we do not modify the message workflow, the message complexity of
the SQh remains O(n2). We focus on the communication complexity. In the
propose phase, the (Propose) message now includes a replica’s proposed value
(length L), E (n epoch numbers), PH, and LE (n epoch numbers). For PH,
as each PH[k] for k ∈ [1, n] contains a constant number of hash values, the
communication cost of PH is at most O(κn). Therefore, the communication
complexity of the propose phase is O(Ln2 + κn3). The communication for other
phases remains the same as that in SQ—O(Ln2). Hence, the hash variant of SQ
achieves O(Ln2 + κn3) communication complexity.
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