
Revisit Two Memoryless State-Recovery
Cryptanalysis Methods on A5/1

Yanbin Xu2, Yonglin Hao1⋆, and Mingxing Wang1,3

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
2 College of Computer Science, Sichuan University, Chengdu 610065, China

3 The 6th Research Institute of China Electronics Corporation, Beijing 100083, China

Abstract. At ASIACRYPT 2019, Zhang proposed a near collision at-
tack on A5/1 claiming to recover the 64-bit A5/1 state with a time com-
plexity around 232 cipher ticks with negligible memory requirements.
Soon after its proposal, Zhang’s near collision attack was severely chal-
lenged by Derbez et al. who claimed that Zhang’s attack cannot have
a time complexity lower than Golic’s memoryless guess-and-determine
attack dating back to EUROCRYPT 1997. In this paper, we study both
the guess-and-determine and the near collision attacks for recovering
A5/1 states with negligible memory complexities. Firstly, we propose
a new guessing technique called the move guessing technique that can
construct linear equation filters in a more efficient manner. Such a tech-
nique can be applied to both guess-and-determine and collision attacks
for efficiency improvements. Secondly, we take the filtering strength of
the linear equation systems into account for complexity analysis. Such
filtering strength are evaluated with practical experiments making the
complexities more convincing. Based on such new techniques, we are able
to give 2 new guess-and-determine attacks on A5/1: the 1st attack recov-
ers the internal state s0 with time complexity 243.92; the 2nd one recovers
a different state s1 with complexity 243.25. We also revisit Golic’s guess-
and-determine attack and Zhang’s near collision attacks. According to
our detailed analysis, the complexity of Golic’s s1 recovery attack is no
lower than 246.04, higher than the previously believed 243. On the other
hand, Zhang’s near collision attack recovers s0 with the time complexity
253.19: such a complexity can be further lowered to 250.78 with our move
guessing technique.

Keywords: stream ciphers, A5/1, guess-and-determine, near collision
attack

1 Introduction

A5/1 is a typical LFSR-based stream cipher with an irregular clocking mecha-
nism designed in 1980’s for the GSM standard. Ever since its proposal, A5/1 has
been attacked with various cryptanalytic methods such as time/memory/data

⋆ Corresponding author email: haoyonglin@yeah.net

2 Yanbin Xu, Yonglin Hao, and Mingxing Wang

tradeoff attacks, guess-and-determine attacks, near collision attack (NCA) etc.
[1,2,3,4,5,6,7,8] Most of the practical attacks on A5/1 requires large precomputed
rainbow table which significantly increases the memory complexities [9,10,11].
Since the implementation of high-memory-requirement attacks are usually quite
expensive, the attacks with negligible memory complexities, which we refer in
this paper as the “memoryless” attacks, are usually preferable.

The 1st memoryless state-recovery attack on A5/1 is the guess-and-determine
attack proposed by Golic [1] at EUROCRYPT 1997. Such an attack requires
243.15 steps and each step involves to solve a linear system constructed according
to clock bit guesses which is much more complicated than a clock tick as pointed
out in [9].

In addition to the guess-and-determine, the near collision attack proposed
by Zhang at Asiacrypt 2019 [8] is another cryptanalytic method for recovering
A5/1 states with negligible memory complexities. Utilizing some near collision
properties in keystream bits and internal state bits, Zhang claimed to reduce
the complexity of A5/1 state recovery to only around 232 cipher ticks. The idea
of utilizing near collision properties for lowering complexities originate from the
cryptanalysis of Grain-v1 in EUROCRYPT 2018 [12]. However, both the Grain-
v1 and A5/1 near collision attacks are severely challenged by Derbez et al. in
[13]. According to theoretic analysis and practical experiments, Derbez et al.
pointed out in [13] that the non-randomness claimed by Zhang in [8] can hardly
exist so they draw the conclusion that Zhang’s near collision attack in [8] cannot
have a complexity lower than that of Golic’s basic guess-and-determine attack
in [1].

Motivations. Although [13] involves experiments disproving the non-randomness
claimed in [8], Derbez et al. did not fully implement the near collision attack
or specify an exact complexity leaving it unknown whether the near collision
method can still be regarded as an effective cryptanalysis tool for A5/1 state
recoveries. It is noticeable that both Golic’s attack and Zhang’s attack use a
system of linear equations as a filter for wrong guesses. But neither Golic nor
Zhang has ever evaluated the strength of such a filter in practice. The original
complexity evaluation in [8] is based on the assumption that the linear system
filter act randomly for wrong guesses with a rank growing linearly to 64: such an
assumption is also the foundation of the 243.15 complexity of Golic’s guess-and-
determine attack [1]. Therefore, Derbez et al.’s work has challenged not only the
near collision attack but the complexity evaluation of the original memoryless
guess-and-determine attack as well indicating that the previous assumption on
wrong-guess based linear system may not be true. Therefore, the complexities of
both the guess-and-determine and near collision attacks should be reevaluated
in a more detailed and accurate manner by taking the filtering strength of the
linear systems into account.

Our Contributions. In this paper, we revisit the 2 kinds of memoryless state
recovery attacks on A5/1 namely the guess-and-determine attack and the near
collision attack. We not only propose new attacks but thoroughly revisit Golic’s
and Zhang’s existing results as well. We first propose a new state bit guessing

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 3

strategy called the move guessing technique: instead of the conventional practice
of guessing 3-bit clocks, we encode the move pattern to 2-bit moves for deducing
linear equations of state bits. Since both guess-and-determine and near collision
attacks require the process of constructing linear equation systems for filtering,
our move guessing technique can be applied to both methods for efficiency im-
provements. Our 2nd contribution is a more convincing complexity evaluation
technique based on practical evaluations to the filtering strength of linear system.
Previous works [1,8] implicitly regard the wrong-guess oriented linear system as
random whose ranks are assumed to grow linearly. According to our practical
experiments, the rank growth and filtering strength of the wrong-guess oriented
linear systems are not so random as expected. Based on such techniques, we are
able to give 2 new guess-and-determine attacks on A5/1: the 1st attack recovers
the initial state s0 with complexity 243.92 and the 2nd recovers s1–the state di-
rectly used for computing the 1st keystream bit–with complexity 243.25. We also
revisit Golic’s guess-and-determine attack and our complexity evaluation reveals
that Golic’s method can recover the internal state s1 with a complexity 246.04,
higher than the previously believed 243.15. Then, we analyze the near collision
attack on A5/1 only to find that the complexity evaluations in [8] are somewhat
optimistic. We point out the mistakes made in [8] and give corrections. Accord-
ing to our detailed analysis, the near collision attack in [8] has a time complexity
253.19 which can be further reduced to 250.78 using our move guessing technique.
The C++ source codes for computing the statistics in this paper are available
online 4.
Outline. This paper is organized as follows. Section 2 provides brief intro-
duction to the A5/1 stream cipher and general process of the two categories of
memoryless state-recovery attacks. Then, we introduce our move guessing tech-
nique in Section 3 and propose our 2 new guess-and-determine attacks on A5/1
in Section 4. After that, we thoroughly revisits Golic’s guess-and-determine at-
tack in Section 5: the effect of branching technique is taken into account for
complexity evaluations. Section 6 revisits Zhang’s near collision attack: we point
out the mistakes made in [8], provide corrected complexity evaluations and make
slight improvements using our move guessing technique. Section 7 concludes the
paper.

1.1 Differences between This Paper and Its Conference Version

This paper is an expanded version of the conference paper [14] presented at
Inscrypt 2021. In comparison with the conference version, this paper involves
new results as follows:

1. New guess-and-determine attack on internal state s1 of A5/1 with the cur-
rent lowest complexities.

2. Revisit Golic’s guess-and-determine attack in [1] with practically verified
complexity evaluations only to prove that the complexity of Golic’s attack
is higher than previously expected.

4 https://github.com/peterhao89/A51Attacks

https://github.com/peterhao89/A51Attacks

4 Yanbin Xu, Yonglin Hao, and Mingxing Wang

3. More detailed analysis to the effect of branching technique resulting in tighter
complexity evaluations on Golic’s and Zhang’s attacks.

2 Preliminary

In this part, we first give a brief introduction to the keystream generation phase
of the A5/1 stream cipher in Section 2.1. Then, we review the general processes
of the guess-and-determine (Section 2.2) and the near collision (2.3) attacks.
Section 2.4 discuss the unit of time for complexity evaluations in this paper.

2.1 The Keystream Generation Procedure of A5/1

A5/1 is a typical LFSR based stream cipher. Its 64-bit internal state consists of
3 LFSR registers R1,R2,R3 of sizes 19, 22, 23 respectively. Therefore, we can
define the A5/1 64-bit state at time t (t = 0, 1, 2, . . .) as

st =(R1t,R2t,R3t)

=(st[0, . . . , 18], st[19, . . . , 40], st[41, . . . , 63])

=(R1t[0, . . . , 18],R2t[0, . . . , 21],R3t[0, . . . , 22])

(1)

We uniformly use st[i] to represent the i-th bit of the whole state hereafter.
Before generating the output bit zt, A5/1 round function will update the internal
state st → st+1 in a stop-and-go manner as follows:

1. Compute majt as

majt =(R1t[8] ·R2t[10])⊕ (R1t[8] ·R3t[10])⊕ (R2t[10] ·R3t[10])

=(st[8] · st[29])⊕ (st[8] · st[51])⊕ (st[29] · st[51])
(2)

where · is the AND of 2 bits.
2. IfR1t[8] = st[8] ̸= majt,R1t+1 ← R1t, otherwise, call updateR1 as follows:

R1t+1[i]←

{
R1t[i− 1] i ∈ [1, 18]

R1t[18]⊕R1t[17]⊕R1t[16]⊕R1t[13]
(3)

3. If R2t[10] = st[29] ̸= majt, R2t+1 ← R2t, otherwise, call updateR2 as
follows:

R2t+1[i]←

{
R2t[i− 1] i ∈ [1, 21]

R2t[21]⊕R2t[20]
(4)

4. If R3t[10] = st[51] ̸= majt, R3t+1 ← R3t, otherwise, call updateR3 as
follows:

R3t+1[i]←

{
R3t[i− 1] i ∈ [1, 22]

R3t[22]⊕R3t[21]⊕R3t[20]⊕R3t[7]
(5)

Then, the output keystream bit zt is generated as

zt =R1t+1[18]⊕R2t+1[21]⊕R3t+1[22]

=st+1[18]⊕ st+1[40]⊕ st+1[63]
(6)

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 5

2.2 A Brief Review of Golic’s Guess-and-Determine Attack

For each step i = 0, 1, 2 . . ., whether the registers R1,R2,R3 are updated or
not depends on the three clock bits si[8, 29, 51]. Such 3-bit clocks can also be
regarded as a 3-bit integer ci ∈ {0, . . . , 7} defined as the following Eq. (7):

ci[0, 1, 2] = si[8, 29, 51] = (ρ, ϱ, σ) (7)

In Golic’s guess-and-determine model [1], the adversary aims at recovering the
initial state s1: the state right before the generation of z0. So the to-be-guessed
clocks are ci’s for i = 1, 2, With the knowledge of ci, each bit of si+1 can
be represented as a linear combination of si bits and, following Eq. (7), the
adversary can deduce 3 linear equations:

si[8] = ρ

si[29] = ϱ

si[51] = σ

From the output zi, the adversary can further deduce 1 linear equation:

zi = si+1[18]⊕ si+1[40]⊕ si+1[63]

In other words, by guessing 3-bit ci, the adversary can deduce 4 linear equations
of state bits. Therefore, in [1], Golic propose a basic attack that guess 3t clock
bits c1, . . . ct. Based on the t+1 output bits z0, . . . , zt, the adversary can deduce a
system of averaging 1+3t+ 4

3 t linear equations. According to [1], for t ≥ 14.38, the
system can involve 1+3t+ 4

3 t ≥ 63.32 equations which is sufficient for identifying
the correct guess uniquely with “high probability”. Although the number of
equations and the “high probability” have never been verified, the complexity of
Golic’s attack is usually believed as 23t ≥ 243.15 steps where each step involves
the solution of a linear system. Apparently, such a complexity evaluation is
based on the assumption that the wrong-guess oriented linear equation system
act randomly and its rank grows linearly with t to 63.32. It is later proved that
such an assumption is not true for A5/1.

Besides, Golic also notices that not all 3t clock bits c1, . . . , ct are to be guessed
independently. According to the sopt-and-go mechanism in Section 2.1, there are
occasions where only 2 out of the 3 LFSRs are updated (ci /∈ {0, 7}) and 1 out
of the 3 ci+1 bits are already known in ci. In order to avoid such redundant bit
guesses, Golic propose “branching technique” where a tree structure is applied
to track the known bits so as to further lower the complexity. However, since
the branching technique depends on the clock dynamic values, the complexities
in[1] did not take the effect of the branching technique into the evaluations.

2.3 The General Process of Zhang’s Near Collision Attack

Different from [1], Zhang’s near collision attack in [8] aims at recovering the init
state s0. The 64-bit s0 is divided into the 33-bit constraint part (CP) and the

6 Yanbin Xu, Yonglin Hao, and Mingxing Wang

Level 1

Level 3

Level 2

Level 4

Fig. 1. The general process of Zhang’s attack in [8]

31-bit rest part (RP). According to [8], the CP part are the bits related to the
5 output bits namely z0, . . . , z4.

The most crucial step in Zhang’s attack in [8] is the recovery of the 33-bit
CP based on the first 5 keystream bits z0, . . . , z4. The CP-recovery phase of
Zhang’s near collision attack can be summarized as the list-merging process in
Fig. 1. Each list Lzi...zj (i < j) consists of si’s with partially known state bits:
such known bits are determined by the output bits zi, . . . , zj . The positions of
known bits are denoted as the subset λ ⊆ [0, 63] s.t. the knowledge of si[λ]
guarantees the production of outputs zi, . . . , zj . For example, at Level 1, zizi+1

can be related at most 15 s0 denoted as s0[λ0] where

λ0 = {7, 8, 16, 17, 18, 28, 29, 38, 39, 40, 50, 51, 61, 62, 63} (8)

So the list Lzizi+1 contains all the s0[λ0] candidates. Similarly, there are at most
21, 27 and 33 known bits for 3/4/5 consecutive keystream bits. Therefore, by
the end of the CP-recovery, the list Lz0z1z2z3z4 in Fig. 1 contains s0’s with 33
known bits at positions s0[λ] where

λ ={4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 35,
36, 37, 38, 39, 40, 47, 48, 49, 50, 51, 58, 59, 60, 61, 62, 63}

(9)

It is noticeable that the known bits s0[λ] include involve the clock bits c0, . . . , c4.
The list merging operations in Fig. 1 takes overlapped bits as filters and, accord-
ing to [8], each elements in Lzi...zj can be represented with 5 bytes. Unfortu-
nately, the CP-recovery of Fig. 1 is not fully implemented: the source codes in [8]

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 7

only involves Level 1. There is only a theoretic evaluation that the CP-recovery
can be accomplished with 228.3 cipher and |Lz0z1z2z3z4 | = 216.6.

The 4 initial lists Lz0z1 , . . . , Lz3z4 are constructed utilizing the low-hamming-
weight internal state difference (ISD) ∆s as follows:

D2 := {∆s|hw(∆s) ≤ 2 and ∆s[i] = 0 for all i /∈ λ0} (10)

where λ0 is defined in Eq. (8). Among the
(
15
0

)
+
(
15
1

)
+
(
15
2

)
= 121 ISD elements,

only the 99 can result in the output difference 0x3 which can be defined as the
set T in Eq. (11).

T :=
{
∆s ∈ D2|∃s0 ⇒ z0z1(s0)⊕ z0z1(s0 ⊕∆s) = 0x3

}
(11)

For 2 consecutive output bits z0z1, the list Lz0z1 can be generated with Algo-
rithm 1.

Algorithm 1 Generate the internal states resulting in the given 2-bit output

1: procedure getList(output bits z0z1 ∈ F2
2, the number limit T)

2: Initialize an empty list Lz0z1 ← ϕ
3: Declare ẑ0ẑ1 ← z0z1 ⊕ 0x3

4: Generate T states ŝ0 that only have non-zero elements at positions λ1 and can
result in the output ẑ0ẑ1

5: for ∆s ∈ T do
6: Construct state s0

7: if s0 can result in the output z0z1 then
8: Update Lz0z1 ← Lz0z1 ∪ {s0}
9: end if
10: end for
11: Return Lz0z1

12: end procedure

According to [8], by setting T = 4 · 215/99 = 1323, the output Lz0z1 is of
size 7963 and there is a probability p1 = 0.9835 for Lz0z1 to contain the correct
state. In order to further improve the success probability, [8] proposes a distilling
process. Let η and ζ be positive integers. The Lz0z1 generation with distilling
can be summarized as Lz0z1 ← distill(z0z1, T, η, ζ) as defined in Algorithm 2.
By setting η = 2, ζ = 6, the parameter p1 can be improved to 0.9903 according
to [8].

After the CP-recovery phase, the adversary has already acquired 216.6 s0’s
in Lz0z1z2z3z4 . For each such s0, the corresponding s5 can be directly computed
with the knowledge of 33 bits in CP. For RP-recovery, Zhang guess the 3(t− 5)
clock bits c5, . . . , ct−1 and observe the outputs z5, . . . , zt−1 for deducing linear
system for key filtering. According to [8], such RP-recovery can be accomplished
within 232 cipher ticks dominating the overall complexity of the near collision
attack. However, [8] does not provide further details on the filtering strength of

8 Yanbin Xu, Yonglin Hao, and Mingxing Wang

Algorithm 2 Distilling process in [8]

1: procedure distill(output bits z0z1 ∈ F2
2, the number limit T , integers η, ζ.)

2: Initialize U ← ϕ
3: for i = 1, . . . , η do
4: for j = 1, . . . , ζ do
5: Call Algorithm 1 as Li,j

z0z1
← getList(z0z1, T)

6: end for
7: Compute the set Ui ←

⋂ζ
j=1 L

i,j

z0z1

8: end for
9: Compute U ←

⋃η
i=1 Ui

10: Return U
11: end procedure

the linear system or the effect of t settings on overall complexities. Therefore,
the optimal t setting of the near collision attack is still unspecific.

According to our revisit in Section 6.1, the parameter evaluations in [8] has
accuracy issues. The detailed evaluations of t settings further given in Section 6.2
for correct complexity evaluations .

2.4 Unit of the Time Complexity

In [1], Golic takes the solving process of the linear equation system as the unit
of time complexities. On the contrary, the unit of time complexity in [8] is the
cipher tick. It is noticeable that the near collision attack in [8] also involves the
process of solving linear systems but such a process has not been transformed
cipher ticks: each linear system solving is still regarded as 1 time unit.

For fair comparison, we uniformly regard the cipher tick and the linear system
solving as the time complexity unit.

3 Move Guessing Technique

The introduction of the move guessing technique is in Section 3.1. We further
compare the move guessing with the conventional clock guessing technique in
Section 3.2.

3.1 Encoding Move Patterns

We define the 2-bit move pattern mt ∈ {0, . . . , 3} according to the 3-bit clock
ct = st[8, 29, 51] in Eq. (7). Such move pattern can be equivalently regarded as
binary vector of dimension 2 defined as follows:

mt = mt[0, 1] = (st[8]⊕ st[29], st[8]⊕ st[51]) = (µ, ν) ∈ F2
2 (12)

With the knowledge of mt in Eq. (12), 2 equations are deduced as follows:{
st[8]⊕ st[29] = µ

st[8]⊕ st[51] = ν
(13)

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 9

The 4 possible values of mt, referred as Move 0-3, corresponds to different move-
ments in A5/1 LFSRs transforming st to st+1.

Move 0 From the LFSR action aspect, updateR1 in (3), updateR2 in (4) and
updateR3 in (5) are all called. This corresponds to clock values ct ∈ {0, 7}
or equivalently st[8, 29, 51] ∈ {(0, 0, 0), (1, 1, 1)}.

Move 1 Only updateR2 and updateR3 are called corresponding to ct ∈ {1, 6}
or equivalently st[8, 29, 51] ∈ {(0, 1, 1), (1, 0, 0)}.

Move 2 Only updateR1 and updateR3 are called corresponding to ct ∈ {2, 5}
or equivalently st[8, 29, 51] ∈ {(1, 0, 1), (0, 1, 0)}.

Move 3 Only updateR1 and updateR2 are called corresponding to ct ∈ {3, 4}
or equivalently st[8, 29, 51] ∈ {(1, 1, 0), (0, 0, 1)}.

According to the definition, the LFSR actions before generating the output
keystream bits z0, . . . , zt can be represented as m0, . . . ,mt. In our guess and
determine attack, we first guess the movement mt corresponding to the trans-
formation st → st+1 and maintains a linear equation set BC by adding new
equations according to mt and the output zt. For each step t, there are 3 linear
equations: 2 are from Eq. (13) according to the move guess and the rest is from
the output zt as

st+1[18]⊕ st+1[40]⊕ st+1[63] = zt (14)

So each 2-bit move guess result in 3 equations. In Section 4, we guess the moves
m0, . . . ,mt−1 and maintain a linear equations system for recovering correct state
s0; we can also guess m1, . . . ,mt−1 for recovering s1.

3.2 Move Guessing v.s. Clock Guessing

We now draw links between the conventional clock guessing technique and our
move guessing technique. For time instance t, with the knowledge of clock ct =
(ρ, ϱ, σ) in Eq. (7), the corresponding 2-bit move pattern mt = (µ, ν) ∈ F2

2 in
Eq. (12) can be deduced as {

µ = ρ⊕ ϱ

ν = ρ⊕ σ
(15)

Adding the linear equations of the output in Eq. (14), we know that each 3-
bit guess of ct can deduce 4 equations while each of our 2-bit guess of mt can
deduce 3 equations. Therefore, our move guessing method seems more efficient
because each move bit guess can result in 1.5 equations while the number of
linear equations for each clock bit guess is no more than 1.34. But it remains
to be checked whether the clock-oriented equations can also be better filters
for eliminating wrong internal states. On the other hand, the consecutive clocks
ct, ct+1 are not independent: when ct ̸∈ {0, 7}, there is mt ̸= 0 and only 2 out of
3 LFSRs are updated so 1 out of the 3 ct+1 bits are equal to the corresponding
ct bit. For example, when ct ∈ {1, 6} there is m = 1, LFSR R1 is not updated
so ct[0] = ct+1[0]. From this aspect, the knowledge of the t consecutive clocks
c0, . . . , ct−1 do not need to guess all 3t bits independently. To identify the clock

10 Yanbin Xu, Yonglin Hao, and Mingxing Wang

guesses, both Golic and Zhang use a branch based method whose complexity is
to be evaluated in detail as well. In order to make a fair comparison between
the two strategies, we apply both move and clock guessing techniques to dif-
ferent cryptanalysis of A5/1 and provide detailed and convincing complexity
evaluations. The results show that move guessing can result in slightly lowered
complexities than its clock counterpart.

4 Move Guessing based Guess-and-Determine Attacks

Since Golic’s attack aims at s1 and Zhang’s attack recovers s0, we provide 2
guess-and-determine attacks recovering s0 (Section 4.1) and s1 (Section 4.2)
respectively utilizing the move guessing technique.

4.1 Recovering s0 State

As can be seen, the move equations Eq. (13) and the output equation Eq. (14)
correspond to the internal states at different time instances. But our attack is
targeted to recovering the initial state s0. Therefore, the internal states st at
different time instance t should be represented by s0 bits for deducing s0-related
equations. The state st is deduced from s0 by taking the moves m0, . . . ,mt−1 as

s0
m0

−−→ s1
m1

−−→ . . .
mt−2

−−−→ st−1
mt−1

−−−→ st

The moves m0, . . . ,mt−1 corresponds to the linear transformations in LFSRs so
each st bit is a linear combination of s0 bits: such a linear combination can be
regarded as a inner-product of s0 and a 64-bit word w ∈ F64

2 . In order to track
all state bits in s0, . . . , st bits, we define 64× 64 binary matrices W 0, . . . ,W t ∈
(F64

2)64 s.t. si = W is0 for all i = 0, . . . , t. The row vector of W i is denoted as
W i[j] for j = 0, . . . , 63. In this way, the state bit si[j] can be computed as the
inner produce of initial s0 and row vector W i[j]. Apparently, there is W 0 = I
s.t. W 0[i] · s0 = ei · s0 = s0[i] for i = 0, . . . , 63. With the knowledge of W t−1

and mt−1 (t ≥ 1), the matrix W t can be deduced by calling Algorithm 3 as
W t ← UpdW(mt−1,W t−1). In this way, each state bit of st can be uniformly
expressed as a linear combination of s0 bits as

st[i] = W t[i] · s0, i = 0, . . . , 63, t = 0, 1, 2 . . . (16)

For t consecutive movementsm0, . . . ,mt−1 and the corresponding output z0, . . . , zt−1,
the corresponding linear equations set BC can be deduced as

BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1))

where getBC is defined as Algorithm 4. Such BC can be regarded as a linear
equation system in Eq. (17)

AxT = bT , where A ∈ F3t×64
2 ,x ∈ F64

2 , b ∈ F3t
2 (17)

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 11

and the solutions of Eq. (17) corresponds to all candidate s0’s. The number
of solutions depends on the rank of the matrix A and its extended matrix in
Eq. (18)

E = [A, bT] (18)

– If rank(A) = rank(E), there will be 264−βt solutions where βt is the positive
integer defined in Eq. (19) as the rank of the matrix A;

βt = rank(A) (19)

– If rank(A) ̸= rank(E), there will no solution at all.

With the guessed moves m0, . . . ,mt−1 and the observed output bits z0, . . . , zt−1,
we are now able to acquire both A and b along with the extended matrix E in
Eq. (18). We now discuss the probability of rank(A) = rank(E):

– For the correct guess of m0, . . . ,mt−1, rank(A) = rank(E) is constantly
true;

– If m0, . . . ,mt−1, the probability of rank(A) = rank(E) is defined as αt

(0 ≤ αt ≤ 1). According to our analysis, such αt’s grows gradually with t
and should be measured practically.

So the probability of rank(A) = rank(E) can be formally represented as Eq. (20).

Pr [rank(A) = rank(E)] =

{
1 m0, . . . ,mt−1 is correctly guessed

αt ∈ [0, 1] m0, . . . ,mt−1 is wrongly guessed
(20)

With techniques above, we propose our 1st guess-and-determine attack on
A5/1 targeting at recovering s0 within the generic bound 264. The general pro-
cess of such an attack can be summarized as follows:

S1 Guess m0, . . . ,mt−1, observe z0, . . . , zt−1 and deduce the linear system rep-
resented as AxT = bT

S2 Do the rank test checking whether rank(A) ̸= rank(E)
S3 Traversing the remaining s0 candidates and identify the correct s0 with

additional output bits zt, . . . , zℓ−1 generated by the encryption oracle

Attack Procedure. We further detail the attack as follows:

1. Acquire ℓ keystream bits z0, . . . , zℓ−1 by querying the A5/1 oracle
2. Initialize S ← ϕ for collecting s0 candidates
3. Guess (m0, . . . ,mt−1) and do the following substeps:

(a) Acquire the equations BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1)) by
calling Algorithm 4 (S1)

(b) Deduce the A and b in (17) according to BC and compute the extended
matrix E in (18)

(c) Compute rank(A) and rank(E), if rank(A) ̸= rank(E), such a move-
ment guess is wrong, go back to Step 3 for the next movement guess
(S2)

12 Yanbin Xu, Yonglin Hao, and Mingxing Wang

(d) For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate the
keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑℓ−1

(e) If (ẑt, . . . , ẑℓ−1) = (zt, . . . , zℓ−1), add such ŝ0 into S (S3)

4. Return S

When ℓ is large enough (ℓ > 64), there should be only 1 element in S which
is exactly the correct internal state s0. We further evaluate the complexity of
our attack as follows.
Complexity Analysis. In Step 3, there are 22t candidate (m0, . . . ,mt−1)’s.
According to Eq. (20), averaging αt · 22t move pattern candidates can pass the
test. Adding βt in Eq. (19), the averaging time complexity can be computed as
Eq. (21).

Comp = 22t + αt · 22t+64−βt = 22t + 22t+64−βt+logαt (21)

We randomly select 230 ((m0, . . . ,mt−1), (z0, . . . , zt−1)) pairs and do the 3.(c)
test to compute the averaging αt and βt for t’s and present the statistics in
Table 1. The lowest time complexity is 243.92 corresponding to t = 21. As can
be seen in Table 1, βt has already climbed to almost 64 for t = 27 enabling
us to set ℓ = 32 for identifying the correct s0. According to our experiments,
such ℓ = 32 setting is well enough for s0-recovery so the data complexity of our
attack is only 32 bits. The memory complexity is only BC and the corresponding
matrix A as well as its extended matrix E in Eq. (17) and Eq. (18), which is
2 · (64 + 1) · 3t ≤ 12480 bits bounded by 2KB.

Table 1. The averaging αt and βt in Eq. (21) with 230 random tests for our s0 recovery
guess-and-determine attack

t βt logαt logComp t βt logαt logComp

14 41.96 -0.03 50.01 21 59.86 -2.66 43.92

15 44.87 -0.09 49.04 22 61.60 -3.96 44.42

16 47.68 -0.23 48.08 23 62.78 -5.93 46.05

17 50.38 -0.47 47.15 24 63.43 -8.41 48.01

18 52.95 -0.81 46.24 25 63.76 -11.17 50.00

19 55.41 -1.27 45.33 26 63.90 -14.07 52.00

20 57.73 -1.86 44.48 27 63.97 -17.01 54.00

4.2 Recovering s1 State

For recovering s1 according to z0, . . . , zt−1, we do not need to guessm0. We guess
directly the t − 1 move patterns m1, . . . ,mt−1 and acquire the linear equation

system AxT = bT of sizes A ∈ F(2t−1)×64
2 , b ∈ F2t−1

2 . Therefore, the general
process has now become:

S1 Guess moves m1, . . . ,mt−1 and maintain a linear system AxT = bT

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 13

Algorithm 3 Deduce the matrix W t+11 according to W t and mt ∈ F2
2.

1: procedure UpdW(movement mt ∈ {0, 3}, the matrix W t ∈ (F64
2)64)

2: if mt = 0 then
3: At ← UpdWR(W t, 1)
4: Bt ← UpdWR(At, 2)

5: W t+1 ← UpdWR(Bt, 3)
6: end if
7: if mt = 1 then
8: Bt ← UpdWR(W t, 2)

9: W t+1 ← UpdWR(Bt, 3)
10: end if
11: if mt = 2 then
12: At ← UpdWR(W t, 1)

13: W t+1 ← UpdWR(At, 3)
14: end if
15: if mt = 3 then
16: At ← UpdWR(W t, 1)

17: W t+1 ← UpdWR(At, 2)
18: end if
19: Return W t+1

20: end procedure

1: procedure UpdWR(words W ∈ (F64
2)64, register number n ∈ {1, 2, 3})

2: Initialize X ∈ (F64
2)64 as X ← W

3: if n = 1 then
4: for i = 1, . . . , 18 do
5: Update the i-th entry of X as X[i]← W [i− 1]
6: end for
7: Compute the 0-th entry of X as X[0] ← W [18] ⊕W [17] ⊕W [16] ⊕W [13] according to

Eq. (3)
8: end if
9: if n = 2 then
10: for i = 20, . . . , 40 do
11: Update the i-th entry of X as X[i]← W [i− 1]
12: end for
13: Compute the 19-th entry of X as X[19]← W [40]⊕W [39] according to Eq. (4)
14: end if
15: if n = 3 then
16: for i = 42, . . . , 63 do
17: Update the i-th entry of X as X[i]← W [i− 1]
18: end for
19: Compute the 41-th entry of X as X[19]← W [63]⊕W [62]⊕W [61]⊕W [48] according to

Eq. (5)
20: end if
21: Return X
22: end procedure

S2 Do the matrix rank test and discard the wrong guesses satisfying rank(A) ̸=
rank(E)

S3 Traverse the remaining s1 candidates and identify the correct s1 with addi-
tional output bits zt, . . . , zℓ−1

In S1, we start from W 1 = I and acquire the bit conditions on (m1, . . . ,mt−1)
and (z1, . . . , zt−1) by calling Algorithm 4. Besides, letting s1 = x = (x0, . . . , x63),
there is also an equation deduced from z0 according to Eq. (14) as

x18 ⊕ x40 ⊕ x63 = z0 (22)

Same with our s0-recovery guess-and-determine attack in Section 4.1, we detail
the procedure and complexity analysis of our s1-recovery attack as follows.

14 Yanbin Xu, Yonglin Hao, and Mingxing Wang

Algorithm 4 Deduce the set of equations according to the given moves and
output bits

1: procedure getBC(movements (m0, . . . ,mt−1) ∈ {0, 3}t, output bits
(z0, . . . , zt−1) ∈ Ft

2)
2: Initialize the words W 0 ← I
3: Initialize the linear equations set BC ← ϕ
4: Initialize x = (x0, . . . , x63) as vector of 63 unknown boolean variables corre-

sponding to the 64 state bits of s0

5: for i = 0, 1, . . . , t− 1 do
6: Represent mi = (µ, ν) ∈ {0, . . . , 3} as Eq. (12)
7: Update BC by adding the following equations{

(W i[8]⊕W i[29]) · x = µ

(W i[8]⊕W i[51]) · x = ν

8: Deduce W i+1 according to W i by calling W i+1 ← UpdW(mi,W i) defined in
Algorithm 3

9: Update BC by adding the following linear equations corresponding to
Eq. (14)

(W i+1[18]⊕W i+1[40]⊕W i+1[63]) · x = zi

10: end for
11: Return BC
12: end procedure

Attack Procedure. So the detailed description of the s1 recovery attack has
become:

1. Acqurie ℓ keystream bits z0, . . . , zℓ−1 by calling the A5/1 oracle
2. Initialize S ← ϕ for containing s1 candidates
3. Guess (m1, . . . ,mt−1) and do the following substeps:

(a) Acquire BC ← getBC((m1, . . . ,mt−1), (z1, . . . , zt−1)) by calling Algo-
rithm 4

(b) Add an additional Eq. (22) to BC (S1)
(c) Deduce the A and b in Eq. (17) according to BC and compute the ex-

tended matrix E in Eq. (18)
(d) Compute rank(A) and rank(E), if rank(A) ̸= rank(E), such a move-

ment guess is wrong, go back to Step 3 for the next movement guess
(S2)

(e) For all 264−rank(A) solutions to AxT = bT , set ŝ1 ← x and generate the
keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑℓ−1

(f) If (ẑt, . . . , ẑℓ−1) = (zt, . . . , zℓ−1), add such ŝ1 into S (S3)
4. Return S

Complexity Analysis. Among the 22(t−1) moves m1, . . . ,mt−1, there is a
portion of αt passing the rank test and the averaging rank(A) is βt in Eq. (19).
So the complexity can be evaluated as:

Comp = 22(t−1) + αt2
2(t−1)+64−βt = 22(t−1) + 22(t−1)+64−βt+logαt (23)

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 15

The αt, βt parameters are practically evaluated and the corresponding complexi-
ties are deduced accordingly as shown in Table 2. The lowest complexity is 243.25

at t = 22.

Table 2. The averaging αt and βt in (21) with 230 random tests for our s1 recovery
guess-and-determine attack

t βt logαt logComp t βt logαt logComp

13 37.00 0.00 51.00 21 58.65 -1.93 43.55

14 39.99 -0.01 50.00 22 60.62 -2.93 43.25

15 42.96 -0.03 49.01 23 62.09 -4.53 44.22

16 45.87 -0.09 48.04 24 63.00 -6.74 46.03

17 48.68 -0.24 47.08 25 63.51 -9.32 48.00

18 51.38 -0.47 46.15 26 63.78 -12.06 50.00

19 53.94 -0.82 45.24 27 63.91 -14.85 52.00

20 56.38 -1.29 44.35 28 63.97 -17.61 54.00

5 Revisit Golic’s Memoryless Guess-and-Determine
Attack

Golic’s memoryless guess-and-determine attack guess state bits resembles our s1

recovery attack in Section 4.2. The differences lie in the guessing strategy: we
applies the move pattern guessing technique while Golic use the clock guessing
technique so the S1 of Golic’s attack has become

S1 Guess clocks c1, . . . , ct−1 and maintain a linear system AxT = bT

Resembling our move pattern based equation deduction method getBC in Al-
gorithm 4, we define the clock based equation deduction method getClockBC

in Algorithm 5 where each 3-bit clock ci (i = 1, . . . , t − 1) and the correspond-
ing output bit zi results in 4 equations in total. Adding the z0 based equation

Eq. (22), the linear system AxT = bT in S1 are of sizes A ∈ F(4t−3)×64
2 and

b ∈ F4t−3
2 . The difference of the detailed description lies in Step 3:

3. Guess (c1, . . . , ct−1) and do the following substeps:
(a) Acquire the equations BC ← getClockBC((c1, . . . , ct−1), (z1, . . . , zt−1))

by calling Algorithm 5
(b) Add an additional Eq. (22) to BC (S1)
(c) Deduce the A and b in Eq. (17) according to BC and compute the ex-

tended matrix E in Eq. (18)
(d) Compute rank(A) and rank(E), if rank(A) ̸= rank(E), such a move-

ment guess is wrong, go back to Step 3 for the next clock guess (S2)
(e) For all 264−rank(A) solutions to AxT = bT , set ŝ1 ← x and generate the

keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑℓ−1

16 Yanbin Xu, Yonglin Hao, and Mingxing Wang

(f) If (ẑt, . . . , ẑℓ−1) = (zt, . . . , zℓ−1), add such ŝ1 into S (S3)

The Effect of the Branching Technique. In Golic’s guess-and-determine
attack, as well as Zhang’s near collision attacks, the so-called “branching” tech-
nique when deducing equations [1,8]. The branching technique points out that
not all 3(t−1) bits in c1, . . . , ct−1 are to be guessed independently. However, the
effect of branching techniques is closely related to the actual clock values making
it hard to evaluate accurately. So all previous works still regard c1, . . . , ct−1 as
3(t−1)-bit guesses in complexity analysis. With the help of move pattern, we are
able give a tighter complexity evaluation to the branching technique. According
to Section 3.1, each clock ci uniquely defines the corresponding movement mi.
Different from the move guessing strategy where exactly 2 bits are guessed for
each move mi (i = 2, . . . , t−1), the number of guessed bits for ci can either be 2
or 3: when ci−1 /∈ {0, 7} (mi−1 ̸= 0), only 2 out of 3 LFSRs are updated so 1 out
of the 3 ci bits are already known from ci−1; otherwise, all 3 LFSRs are updated
so all 3 ci bits should be guessed. Therefore, the branching technique utilizes a
tree structure for tracking the clock bits that is already known, only averaging
7
3 (t− 1) bits are to be guessed for c1, . . . , ct−1 and the remaining 2

3 (t− 1) clock
bits are deduced from the guessed bits.
Complexity Analysis. According to Eq. (20), among the 2

7
3 (t−1) candidate

clocks (c1, . . . , ct−1), only averaging αt · 2
7
3 (t−1) of them can pass the rank test.

Adding the knowledge of βt in Eq. (19), we are able to give the complexity
evaluation of Golic’s attacks as Eq. (24)

Comp = 2
7
3 (t−1) + αt · 2

7
3 (t−1)+64−βt = 2

7
3 (t−1) + 2

7
3 (t−1)+64−βt+logαt (24)

We practically evaluated the αt, βt parameters and deduced the corresponding
complexities. As can be seen in Table 3, the optimal complexity is 246.04 at
t = 20, higher than the previously believed 243 [1] and that of our s1 recovery
attack in Section 4.2. Such a revisit indicates that our move guessing technique
has advantages over the conventional clock guessing technique in guess-and-
determine attacks on A5/1.

Table 3. The averaging αt and βt in Eq. (21) with 230 random tests for Golic’s s1

recovery guess-and-determine attack

t βt logαt logComp t βt logαt logComp

14 43.99 -0.01 50.34 22 62.09 -6.76 49.05

15 47.14 -0.08 49.45 23 62.79 -9.14 51.34

16 50.09 -0.30 48.61 24 63.27 -11.73 53.67

17 52.77 -0.74 47.82 25 63.60 -14.36 56.00

18 55.23 -1.40 47.05 26 63.81 -16.88 58.33

19 57.49 -2.25 46.34 26 63.81 -16.90 58.33

20 59.48 -3.34 46.04 27 63.92 -19.33 60.67

21 61.04 -4.81 47.02 28 63.97 -21.48 63.00

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 17

Algorithm 5 Deduce the set of equations according to the given clocks and
output bits

1: procedure getClockBC(movements (c1, . . . , ct−1) ∈ {0, . . . , 7}t, output bits
(z1, . . . , zt−1) ∈ Ft

2)
2: Initialize the matrix W 1 ← I
3: Initialize the linear equations set as empty: BC ← ϕ
4: Initialize x = (x0, . . . , x63) as vector of 64 unknown boolean variables corre-

sponding to the 64 state bits of s1

5: for i = 1, . . . , t− 1 do
6: Represent ci = (ρ, ϱ, σ) and deduce the movement mi = (µ, ν) according to

Eq. (15)
7: Update BC by adding the following equations:

W i[8] · x = ρ

W i[29] · x = ϱ

W i[51] · x = σ

8: Deduce W i+1 according to W i by calling W i+1 ← UpdW(mi,W i) defined in
Algorithm 3

9: Update BC by adding the following linear equations corresponding to
Eq. (14)

(W i+1[18]⊕W i+1[40]⊕W i+1[63]) · x = zi

10: end for
11: Return BC
12: end procedure

6 Revisit Zhang’s Near Collision Attack

In this part, we fully implement Zhang’s near collision attack originally given
in [8]. Firstly, Section 6.1 reveals that several crucial parameters are wrongly
evaluated in [8] resulting in underestimated complexities. Then, we thoroughly
revisit Zhang’s near collision attack in Section 6.2. We further propose an im-
proved near collision attack by replacing Zhang’s RP-recovery with our move
guessing technique.

6.1 Inaccurate Evaluations of Parameters

There are 2 categories of wrongly evaluated parameters: the p1 used in the
distilling phase along with corresponding success probability; the 4 parameters
related to the complexities of the CP-Recovery process.

p1 and the Success Probability. According to [8], the randomly constructed
list Lz0z1 ← getList(z0z1, T) acquired by calling Algorithm 1 is of size 7963
when T = 4 · 215/99, and the probability for Lz0z1 to contain correct s0 is
p1 = 0.9835. However, among 106 times’ repeated experiments, the correct state

18 Yanbin Xu, Yonglin Hao, and Mingxing Wang

lies in Lz0z1 for only 972436 times. So we safely claim the actual p1 as 0.9725:
Zhang’s evaluation in [8] is inaccurate. The reason of such inaccuracy is unknown.
One possible explanation is the usage of RC4 as the source of randomness which
is not so qualified. We have tried various random generators including SNOW-V
[15], AES [16] etc. All experiments indicate that the actual p1 is 0.9725 rather
than 0.9835.

With p1 corrected, the probability that the correct state lies in the distilled
list U ← distill(z0z1, T, η, ζ) should be reevaluated as well. We compare our
probability evaluations and the original one in Table 4. By analyzing the source
codes 5 given in [8], we conclude that the wrong |U | evaluations result from
wrong implementations: when they try to get (η, ζ), they actually do ζ intersect
operations so they actually acquire the U(η, ζ+1) instead. As a consequence, the
size |U |’s are smaller than expected. The near collision in [8] can only succeed
when the correct s0 lies in U so the Prob in Table 4 is the overall success prob-
ability which should be corrected to 0.9761 rather than the previously claimed
0.9903.

Table 4. Our evaluation (left) v.s. Zhang et al.’s (right, quoted from [8])

η ζ |U | Prob.

2 3 8109 0.9935
2 4 8050 0.9887
2 5 8009 0.9830
2 6 7948 0.9761

η ζ |U | Prob.

2 3 8065 0.9940
2 4 7989 0.9927
2 5 7934 0.9912
2 6 7835 0.9903

4 Parameters Related to the CP-Recovery Process. The original paper
[8] does not involve the full implementation. We reveal that the theoretically
deduced values of 4 CP-recovery related parameters are inaccurate. We list such
parameters and compare their theoretic evaluated values with our practically
acquired values in Table 5. As can be seen, the 2 evaluations are quite different
and we provide detailed explanations as follows.

Merging of two lists L1, L2 requires |L1| · |L2| (the time complexity of the
merging algorithm in [8] is |L1| + |L2|) operations so the exact complexity of
the merging cannot be acquired without the knowledge of all list sizes. We fully
implement the merging process in Fig. 1 and acquire the sizes of the lists are as
follows:

|Lzizi+1
| ≈ 212.95, for i = 0, 1, 2, 3

|Lzizi+1zi+2 | ≈ 216.70, for i = 0, 1, 2

|Lzizi+1zi+2zi+3 | ≈ 220.46, for i = 0, 1

|Lz0z1z2z3z4 | ≈ 224.21

(25)

5 https://github.com/martinzhangbin/gsmencryption

https://github.com/martinzhangbin/gsmencryption

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 19

Table 5. 4 Parameters Related to the CP-Recovery Process: [8]’s evaluations v.s. Ours

Parameter Eval. in [8] Our Eval.

Cipher ticks for the merging process
in Fig. 1

228.3 240.92†

The number of Lz0z1z2z3z4 candi-
dates

216.6 224.21

Bytes for storing a Lz0z1z2z3z4 ele-
ment

5 9

The number of known bits for each
Lz0z1z2z3z4 element (|λ|)

33 30.14

†: quadratic time implementations

The complexity of the merging process is dominated by the procedure from Level
3 to 4 which is approximately 220.46×2 = 240.92 using the C++ implementation
which is far beyond 228.3 claimed in [8]. The size of Lz0z1z2z3z4 is 224.21, also
larger than the 216.6 in [8]. The reason is that [8] ignored the fact that the
middle lists are used more than once in the merging phase. [8] did not realize
that such repeated use of lists cannot provide extra filtering strength.

Each merging step in Fig. 1 takes two lists denoted as Lt and Lt+1 where Lt

contains the partial states of st while Lt+1 contains those of st+1. According to
Section 3, the st to st+1 transformation takes a move pattern mt ∈ {0, 1, 2, 3}
and such mt is decided by 3-bit clock ct = st[8, 29, 51]. So the merging step
L̃t ← merge(Lt, Lt+1) is as follows:

1. Initialize the list L̃t ← ϕ.
2. For all (st, st+1) ∈ Lt × Lt+1, do the following substeps:

(a) Identify the positions of the known bits in st denoted as λ0 ⊆ [0, 63].
(b) Compute mt according to 3-bit clock ct = st[8, 29, 51] as Eq. (15).

(c) Determine the state ŝt s.t. ŝt
mt

−−→ st+1

(d) Identify the positions of the known bits in ŝt denoted as λ1 ⊆ [0, 63]
(e) If ŝt[i] = st[i] for all i ∈ λ0 ∩ λ1, store the vector s̃t ← ŝt ∨ st in L̃t

where ∨ is bitwise OR. The known bits of the newly generated s̃t is
λ̃← λ0 ∪ λ1.

3. Return L̃t

According to the description above, an element s ∈ L contains both the values
of known bits but the set λ ⊆ [0, 63] containing the positions of known bits as
well. At Level 1, all list are generated with Algorithm 1 so all s’s share the same
known-bit positions λ0 in Eq. (8). But at Levels 2-4, different moves will result
in different λ’s. Example 1 indicates that the known bits of the merged partial
state s̃t may not be exactly the 21 bits as believed in [8]: the λ’s are also likely
to be subsets of the 21 bits.

Example 1. Let (s0, s1) ∈ Lz0z1×Lz1z2 . The known bits are at positions λ = λ0

defined in Eq. (8). We consider the merged elements s̃0 ∈ Lz0z1z2 as well as the
known bit positions λ̃ ⊆ [0, 63]. We consider the 2 situations corresponding to
m0 = 0 and m0 = 1 as follows:

20 Yanbin Xu, Yonglin Hao, and Mingxing Wang

1. For m0 = 0 (ct ∈ {0, 7}), the known bit positions for s1 should be λ = λ1

where

λ1 := {7−1, 8−1, 16−1, 17−1, 18−1, 28−1, 29−1, 38−1, 39−1, 40−1, 50−1, 51−1, 61−1, 62−1, 63−1}.

and λ̃ = λ0 ∪ λ1 is of size |λ̃| = 21.
2. For m0 = 1 (c0 ∈ {3, 4}), the λ1 becomes

λ1 := {7, 8, 16, 17, 18, 28−1, 29−1, 38−1, 39−1, 40−1, 50−1, 51−1, 61−1, 62−1, 63−1}.

and λ̃ = λ0 ∪ λ1 is of size |λ̃| = 19.

As can be seen from Example 1, different moves can result in different known bit
position λ’s so all elements in the merging lists in Level 2-4 should contain not
only the bit values but the positions as well. Since the elements in Lz0z1z2z3z4

are partial states of at most 33 bits, the corresponding λ can also be stored with
33 bits. So an element in the lists in Fig. 1 requires at most ⌈2 · 33/8⌉ = 9 bytes.
Same with Example 1, the λ for s0 ∈ Lz0z1z2z3z4 are more likely to be subsets of
the 33 bits. According to our experiments, the Lz0z1z2z3z4 elements has averaging
|λ| ≈ 30.14 known bits: |λ| = 33 can only happen when m0 = . . . = m4 = 0 (or
equivalently c0, . . . , c4 ∈ {0, 7}) which is of probability 2−10.

6.2 The Original Near Collision Attack Revisit

With the supplementations in Section 6.1, the whole CP-recovery phase can be
carried out. After CP-recovery, the adversary is equipped with the list Lz0z1z2z3z4

containing 224.21 elements. Each s̃0 ∈ Lz0z1z2z3z4 is also equipped with a set
λ̃ ⊆ [0, 63] containing the positions of known state bits. The known s̃0[λ̃] bits
guarantee the first 5 output bits z0, . . . , z4. Let x = (x0, . . . , x63) be targeted
state s0, the known bits s̃0[λ̃] corresponds to |λ̃| equations of the form:

xi = s̃0[i], for i ∈ λ̃ (26)

Note that the known bits s̃0[λ̃] involve clocks c0, . . . , c4 based on which can
deduce directly the first 5 moves m0, . . . ,m4.

Then, according to [8], the RP-recovery process is carried out by guessing
c5, . . . , ct−1 and constructing the corresponding equation system according to
clock bits and output bits. So the whole process of the original near collision
attack in [8] can now be summarized as follows:

1. Acquire the keystream bits z0, . . . , zℓ−1 by querying A5/1 oracle
2. Acquire the list Lz0z1z2z3z4 by running the CP-recovery process in Fig. 1
3. Initialize S ← ϕ for containing the s0 candidates
4. For each s̃0 ∈ Lz0z1z2z3z4 , do the following substeps (RP-Recovery)

(a) Extract the 5 clocks c0, . . . , c4 from the known bits s̃0[λ̃]
(b) Guess the clock c5, . . . , ct−1 and do the following substeps:

i. Deduce equations BC ← getClockBC((c0, . . . , ct−1), (z0, . . . , zt−1))
ii. Add the linear equations in Eq. (26) to BC

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 21

iii. Deduce the A and b in Eq. (17) according to BC and compute the
extended matrix E in Eq. (18)

iv. Compute rank(A) and rank(E), if rank(A) ̸= rank(E), such a clock
guess is wrong, go back to Step (b) for the next guess of c5, . . . , ct−1

v. For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate
the keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑℓ−1

vi. If (ẑt, . . . , ẑℓ−1) = (zt, . . . , zℓ−1), add such ŝ0 into S
5. Return S

Complexity Analysis. According to Eq. (25), there are 224.21 candidate s̃0

in Lz0z1z2z3z4 . Same with the analysis in Section 5, there are averaging 2
7
3 (t−5)

possible c5, . . . , ct−1 guesses. According to Eq. (20), there are αt · 2
7
3 (t−5)+24.21

candidate s̃0’s can pass the rank test. According to the analysis in Section 6.1,
the CP-recovery process has complexity 240.92. Adding the βt in Eq. (19), the
time complexity can be computed as Eq. (28).

Comp = 240.92 + 224.21+
7
3 (t−5) + 224.21+

7
3 (t−5)+64−βt+logαt (27)

The practically evaluated αt, βt along with the corresponding complexities are
listed in Table 7. The lowest complexity is 253.19 at the t = 14 setting. Further-
more, the near collision attack needs to store the lists in Fig. 1 so the memory
complexity is 224.21 dominated by the size of Lz0z1z2z3z4 . The near collision at-
tack can only succeed when the correct si lies in the corresponding list Lzizi+1

for
i = 0, 1, 2, 3 so the success probability is p41 ≈ 0.8942 according to the Section 6.1.
In comparison, Golic’s guess-and-determine attack recovers s1 with complexity
246.19 which is lower than that of Zhang’s near collision attack which supports
the conclusion in [13].

Table 6. The averaging αt and βt in (27) with 230 random tests for Zhang’s near
collision attack in [8].

t βt logαt logComp t βt logαt logComp

6 31.98 -0.11 58.45 14 55.55 -0.47 53.19

7 34.84 -0.12 57.92 15 57.53 -0.75 53.29

8 37.95 -0.12 57.15 16 59.00 -1.28 53.70

9 41.14 -0.12 56.28 17 60.05 -2.08 54.43

10 44.31 -0.14 55.43 18 60.83 -3.10 55.58

11 47.38 -0.20 54.63 19 61.44 -4.33 57.25

12 50.34 -0.28 53.93 20 61.97 -5.72 59.32

13 53.10 -0.35 53.42 21 62.46 -7.25 61.57

6.3 Improved Near Collision Attack with Move-Based RP-Recovery

In this part, we propose an improved near collision attack by replacing the clock
guessing based RP-recovery phase with a move guessing one. The improved and

22 Yanbin Xu, Yonglin Hao, and Mingxing Wang

original attacks share the same CP-recovery process so we only detail the RP-
recovery phase of the improved attack as follows:

4. For each s̃0 ∈ Lz0z1z2z3z4 (RP-Recovery)
(a) Deduce the 5 moves (m0, . . . ,m4) from the known bits s̃0[λ̃]
(b) Guess the move patterns (m5, . . . ,mt−1) and do the following substeps:

i. Deduce the equations BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1))
ii. Add the linear equations of the form Eq. (26) to BC
iii. Deduce the A and b in Eq. (17) according to BC and compute the

extended matrix E in Eq. (18)
iv. Compute rank(A) and rank(E), if rank(A) ̸= rank(E), go back to

Step (b) for the next guess of moves m5, . . . ,mt−1

v. For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate
the keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑℓ−1

vi. If (ẑt, . . . , ẑℓ−1) = (zt, . . . , zℓ−1), add such ŝ0 into S
Complexity Analysis. There are 22(t−5) moves (m5, . . . ,mt−1) in total. Ac-
cording to Eq. (20), there are αt · 22(t−5)+24.21 candidate s̃0’s passing the rank
test. So the averaging time complexity can be computed as Eq. (28).

Comp = 240.92 + 224.21+2(t−5) + αt · 224.21+2(t−5)+64−βt (28)

We list practical evaluated αt, βt along with the corresponding complexities in
Table 7. The lowest complexity is 250.78 at t = 16 setting: such a complexity
is lower than that of the original near collision attack in Section 6.2 but higher
than those of the guess-and-determine attacks in Section 4 and Section 5. The
memory complexity and the success probability are identical to those of the
original near collision attack which are 224.21 and 0.8942 respectively.

Table 7. The averaging αt and βt with 230 random tests for the new near collision
attack improved with the move guessing technique.

t βt logαt logComp t βt logαt logComp

6 31.95 -0.11 58.15 14 54.68 -0.37 51.17

7 34.68 -0.12 57.41 15 56.74 -0.66 50.83

8 37.58 -0.12 56.51 16 58.30 -1.19 50.78

9 40.55 -0.12 55.54 17 59.48 -1.96 50.99

10 43.52 -0.13 54.57 18 60.40 -2.95 51.57

11 46.46 -0.15 53.60 19 61.15 -4.14 52.71

12 49.37 -0.19 52.65 20 61.79 -5.50 54.35

13 52.16 -0.25 51.80 21 62.36 -7.01 56.24

7 Conclusion

In this paper, we propose new move guessing technique and revisit 2 categories
of memoryless state-recovery methods on A5/1 stream cipher namely the guess-
and-determine attack and the near collision attack. We propose 2 move guessing

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 23

based guess-and-determine attacks on A5/1 that can cover internal states s0

and s1 with the current lowest complexities. We further revisit Golic’s guess-
and-determine [1] and Zhang’s near collision [8] attacks. With practical filtering
strength evaluations, we are able to prove that the complexities of both Golic’s
and Zhang’s attacks are lower than expected: the complexity of Golic’s attack
is 246.04, higher than the previously believed 243; Zhang’s attack has complexity
253.19. Although its complexity is higher than the previously claimed 232, Zhang’s
near collision attack is still effective for recovering the internal state of A5/1.
We further propose an improved near collision attack with complexity 250.78.
According to our analysis, we claim that the filtering strength of linear equations
deduced from wrong guesses should be evaluated practically rather than simply
regarded as random because the rank growth of wrong guess oriented linear
systems may not be so fast as random linear systems.

Acknowledgement. Yonglin Hao is supported by National Natural Science
Foundation of China (Grant No. 62002024), National Key Research and Devel-
opment Program of China (No. 2018YFA0306404).

References

1. Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In Fumy, W., ed.: EURO-
CRYPT’97. Volume 1233 of LNCS., Springer, Heidelberg (May 1997) 239–255

2. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM stream cipher. In Roy,
B.K., Okamoto, E., eds.: INDOCRYPT 2000. Volume 1977 of LNCS., Springer,
Heidelberg (December 2000) 43–51

3. Shah, J., Mahalanobis, A.: A New Guess-And-Determine Attack On The A5/1
Stream Cipher. Cryptology ePrint Archive, Report 2012/208 (2012) https://

eprint.iacr.org/2012/208.

4. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1.
In Handschuh, H., Hasan, A., eds.: SAC 2004. Volume 3357 of LNCS., Springer,
Heidelberg (August 2004) 1–18

5. Li, Z.: Optimization of Rainbow tables for practically cracking GSM A5/1 based
on validated success rate modeling. In Sako, K., ed.: CT-RSA 2016. Volume 9610
of LNCS., Springer, Heidelberg (February / March 2016) 359–377

6. Gendrullis, T., Novotný, M., Rupp, A.: A real-world attack breaking A5/1 within
hours. In Oswald, E., Rohatgi, P., eds.: CHES 2008. Volume 5154 of LNCS.,
Springer, Heidelberg (August 2008) 266–282

7. Barkan, E., Biham, E.: Conditional estimators: An effective attack on A5/1. In
Preneel, B., Tavares, S., eds.: SAC 2005. Volume 3897 of LNCS., Springer, Heidel-
berg (August 2006) 1–19

8. Zhang, B.: Cryptanalysis of GSM encryption in 2G/3G networks without Rainbow
tables. In Galbraith, S.D., Moriai, S., eds.: ASIACRYPT 2019, Part III. Volume
11923 of LNCS., Springer, Heidelberg (December 2019) 428–456

9. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In Schneier, B., ed.: FSE 2000. Volume 1978 of LNCS., Springer, Heidelberg (April
2001) 1–18

https://eprint.iacr.org/2012/208
https://eprint.iacr.org/2012/208

24 Yanbin Xu, Yonglin Hao, and Mingxing Wang

10. Pornin, T., Stern, J.: Software-hardware trade-offs: Application to A5/1 crypt-
analysis. In Koç, Çetin Kaya., Paar, C., eds.: CHES 2000. Volume 1965 of LNCS.,
Springer, Heidelberg (August 2000) 318–327

11. Lu, J., Li, Z., Henricksen, M.: Time-memory trade-off attack on the GSM A5/1
stream cipher using commodity GPGPU - (extended abstract). In Malkin, T.,
Kolesnikov, V., Lewko, A.B., Polychronakis, M., eds.: ACNS 15. Volume 9092 of
LNCS., Springer, Heidelberg (June 2015) 350–369

12. Zhang, B., Xu, C., Meier, W.: Fast near collision attack on the Grain v1 stream
cipher. In Nielsen, J.B., Rijmen, V., eds.: EUROCRYPT 2018, Part II. Volume
10821 of LNCS., Springer, Heidelberg (April / May 2018) 771–802

13. Derbez, P., Fouque, P.A., Mollimard, V.: Fake near collisions attacks. IACR Trans.
Symm. Cryptol. 2020(4) (2020) 88–103

14. Wang, M., Hao, Y.: Revisit two memoryless state-recovery cryptanalysis meth-
ods on A5/1. In Yu, Y., Yung, M., eds.: Information Security and Cryptology -
17th International Conference, Inscrypt 2021, Virtual Event, August 12-14, 2021,
Revised Selected Papers. Volume 13007 of Lecture Notes in Computer Science.,
Springer (2021) 191–211

15. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher
called SNOW-V. IACR Trans. Symmetric Cryptol. 2019(3) (2019) 1–42

16. Standards, N.: Specification for the advanced encryption standard (aes). FIPS-197
(2001)

	Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1
	Introduction
	Differences between This Paper and Its Conference Version

	Preliminary
	The Keystream Generation Procedure of A5/1
	A Brief Review of Golic's Guess-and-Determine Attack
	The General Process of Zhang's Near Collision Attack
	Unit of the Time Complexity

	Move Guessing Technique
	Encoding Move Patterns
	Move Guessing v.s. Clock Guessing

	Move Guessing based Guess-and-Determine Attacks
	Recovering s0 State
	Recovering s1 State

	Revisit Golic's Memoryless Guess-and-Determine Attack
	Revisit Zhang's Near Collision Attack
	Inaccurate Evaluations of Parameters
	p1 and the Success Probability.
	4 Parameters Related to the CP-Recovery Process.

	The Original Near Collision Attack Revisit
	Improved Near Collision Attack with Move-Based RP-Recovery

	Conclusion

