
Check Alternating Patterns: A Physical
Zero-Knowledge Proof for Moon-or-Sun⋆

Samuel Hand1 , Alexander Koch2 , Pascal Lafourcade3 , Daiki
Miyahara4,5 , and Léo Robert6

1 University of Glasgow, Glasgow, UK
2 Paris Cité University, Paris, France

3 University Clermont Auvergne, LIMOS, CNRS UMR 6158, Aubière France
pascal.lafourcade@uca.fr

4 The University of Electro-Communications, Tokyo, Japan
miyahara@uec.ac.jp

5 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
6 University of Limoges, XLIM, Limoges, France

Abstract. A zero-knowledge proof (ZKP) allows a party to prove to
another party that it knows some secret, such as the solution to a dif-
ficult puzzle, without revealing any information about it. We propose a
physical zero-knowledge proof using only a deck of playing cards for so-
lutions to a pencil puzzle called Moon-or-Sun. In this puzzle, one is given
a grid of cells on which rooms, marked by thick black lines surrounding
a connected set of cells, may contain a number of cells with a moon or a
sun symbol. The goal is to find a loop passing through all rooms exactly
once, and in each room either passes through all cells with a moon, or
all cells with a sun symbol.
Finally, whenever the loop passes from one room to another, it must go
through all cells with a moon if in the previous room it passed through
all cells with a sun, and visa-versa. This last rule constitutes the main
challenge for finding a physical zero-knowledge proof for this puzzle, as
this must be verified without giving away through which borders the loop
enters or leaves a given room. We design a card-based zero-knowledge
proof of knowledge protocol for Moon-or-Sun solutions, together with an
analysis of their properties. Our technique of verifying the alternation of
a pattern along a non-disclosed path might be of independent interest
for similar puzzles.

Keywords: Physical Zero-knowledge Proof · Pencil Puzzle · Card-based
Cryptography · Moon-or-Sun · Nikoli Puzzle
⋆ This paper appears in Proceedings of IWSEC 2023. This version of the contri-
bution has been accepted for publication, after peer review but is not the Ver-
sion of Record and does not reflect post-acceptance improvements, or any correc-
tions. The Version of Record is available online at: https://doi.org/10.1007/

978-3-031-41326-1_14. Use of this Accepted Version is subject to the pub-
lisher’s Accepted Manuscript terms of use: https://www.springernature.com/gp/
open-research/policies/accepted-manuscript-terms.

https://orcid.org/0000-0001-8021-249X
https://orcid.org/0000-0002-3510-9669
https://orcid.org/0000-0002-4459-511X
https://orcid.org/0000-0002-5818-8937
https://orcid.org/0000-0002-9638-3143
https://doi.org/10.1007/978-3-031-41326-1_14
https://doi.org/10.1007/978-3-031-41326-1_14
https://www.springernature.com/gp/ open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/ open-research/policies/accepted-manuscript-terms

1 Introduction

A Zero-Knowledge Proof (ZKP) protocol is a cryptographic tool enabling
a party to prove a statement without revealing information about it. Due
to their versatility, numerous variants of these protocols exist with differ-
ent possible applications. For instance, a ZKP could help to determine if
a database contains information without revealing it. A ZKP protocol is
also used for e-voting system to ensure that ballots are correctly shuffled.
Lastly, ZKP protocols are also used for cryptocurrencies like Monero or
ZCash to allow anonymous transactions.

We focus on a particular ZKP: interactive Zero-Knowledge Proof of
Knowledge protocols. In this context, there are two parties involved: a
prover P and a verifer V . The prover wishes to convince the verifier that
it knows specific information without revealing it. These protocols have
three properties:

– Completeness: if P knows a secret s then the protocol ends without
failure (meaning that V is convinced P has s);

– (Perfect) Soundness: if P does not have the solution s then the pro-
tocol will abort (with probability 1);

– Zero-Knowledge: V learns nothing about s.

We design a ZKP protocol for the Moon-or-Sun puzzle. The goal of
our protocol is that if a prover P has the solution for a given instance of
the Moon-or-Sun puzzle, then it will be able to convince a verfier V of
this fact, and the protocol will end (as stated by the completeness prop-
erty). Further, any information revealed during the protocol should not
leak any information about the solution (as stated by the zero-knowledge
property). Finally, if P does not have the solution, then the protocol
should abort (as stated by the soundness property).

In a nutshell, the protocol is done in two major steps: (1) the prover
P commits its solution, and (2) the verifier V checks that the commited
values are respecting the rules.

The Moon-or-Sun rules are given in Fig. 1. We also illustrate an ex-
ample in Fig. 2 taken from Nikoli’s webgpage7.

In [10], the Moon-or-Sun puzzle is proven to be NP-complete which
implies that a ZKP protocol exists, as proved in [2]. While the latter work
is a constructive proof which implies the existence of a ZKP protocol,
there is always the need to design a specific protocol for a given problem.
Indeed, the generic construction is not efficient, nor interesting in itself.

7 https://www.nikoli.co.jp/en/puzzles/moon_or_sun/

2

https://www.nikoli.co.jp/en/puzzles/moon_or_sun/

Moon-or-Sun Rules:

1. Construct a loop.
2. The loop never crosses itself, branches off, or goes

through the same cell twice.
3. The loop goes through each room (i.e., continuous

cells delimited by thick edges) only once.
4. The loop goes through all moon or all sun for each

room. This means that the loop cannot pass through
moon and sun cells for a given room.

5. After the loop goes through the moons in one room it
has to go through all the suns in the next room it
enters and visa versa.

Fig. 1. Rules for Moon-or-Sun [1].

Fig. 2. Example of a Moon-or-Sun instance, with initial values on the left and the
solution on the right.

Related work. The first physical ZKP protocol [8] for a Sudoku grid
was constructed using a deck of cards. Since this novel protocol was de-
vised, several papers have proposed physical ZKP protocols using a deck
of cards for pencil puzzles, such as Sudoku [29,30], Akari [4], Takuzu [4],
Kakuro [4,14], KenKen [4], Makaro [5], Norinori [7], Slitherlink [13], Sug-
uru [21], Nurikabe [18], Ripple Effect [26], Numberlink [24], Bridges [25],
Cryptarithmetic [9], and Nonogram [6, 23]. More recent puzzles have
been considered such as Shikaku [27], Makaro (using a standard deck
of cards) [28], Nurimisaki [19], Topswops [11], Pancake Sorting [12], and
Usowan [20].

3

Contributions.We design a card-based, interactive ZKP protocol for the
Moon-or-Sun puzzle. We rely on some existing techniques, such as con-
structing a non-branching loop or computing the sum of multiple com-
mitments, but also propose original and simple sub-protocols, such as
showing alternating pattern, to obtain a secure ZKP protocol. Our de-
scription is also accompanied of security proofs to show the completeness,
perfect soundness and zero-knowledge of our protocol. An overview of our
proposed protocol is depicted in Fig. 3.

We also demonstrate that our proposed ZKP protocol is related to a
well-known NP-hard problem in graph theory. This may prove the signif-
icance of our protocol for a Moon-or-Sun puzzle.

Outline. We begin by introducing notations and existing protocols used
in our ZKP protocol in Sect. 2. In Sect. 3, we present our ZKP protocol for
a Moon-or-Sun puzzle. In Sect. 4, we prove that our ZKP protocol satisfies
the ZKP properties. In Sect. 5, we discuss about our ZKP protocol. We
conclude this study in Sect. 6.

Setup: P and V prepare the grid

• The loop is constructed
• A cell has a commitment equal to 1 if and only if the loop passes through it.

Verification: V verifies the remaining rules
• One enter, one exit: rule 3;
• Only moon or only sun: rule 4;
• Alternating Pattern: rule 5.

Protocol: How to form a loop (Sect. 2.3)
Protocol: Sum (Sect. 2.4)

Protocol: XOR (Sect. 2.2)

Fig. 3. Overview of our protocol. On the left with rounded corners are the main steps
of our construction, and on the right are the main sub-protocols used.

2 Preliminaries

We present the general notions needed for our ZKP protocol, such as
encoding and sub-protocols.

Cards and Encoding. We use a deck of cards consisting of two suits:
clubs ♣ and hearts ♡ . We then let an ordered pair of these cards repre-
sent a bit value according to the following encoding:

♣ ♡ → 0, ♡ ♣ → 1. (1)

Each card in the deck has an identical back ? , and we refer to an
ordered pair of face-down cards satisfying encoding (1) for a bit x ∈ {0, 1}

4

as a commitment to x. Such a commitment to a bit x is then denoted by:

? ?︸ ︷︷ ︸
x

.

We also define two converse encodings for integers modulo p [26]:

– ♣-scheme: to encode x ∈ Z/pZ use a row of p cards with one ♣ in
position (x+1) from the left and the remaining p−1 positions occupied
by ♡s. As an example, we would represent 2 with ♡ ♡ ♣ ♡ in Z/4Z.

– ♡-scheme: equivalently as above, but with ♡ and ♣ exchanged. Here
2 is instead represented by ♣ ♣ ♡ ♣ in Z/4Z.

2.1 Shuffle

We explain two types of shuffles that introduce randomness into the order
of a sequence of cards. These shuffles are usually employed in card-based
cryptography, particularly within ZKP protocols.

Consider a pile consisting of ℓ cards, where ℓ > 0. Both shuffles are
applied to multiple piles of cards, making the order of the piles unknown
to everyone, while preserving the order of cards within each pile. Suppose
that we have m piles denoted by (p1,p2, . . . ,pm), each containing ℓ cards.

Pile-scramble shuffle. This shuffling method, initially introduced in [16],
completely randomizes the order of piles. Applying a pile-scramble shuffle
to (p1,p2, . . . ,pm) yields (pr−1(1),pr−1(2), . . . ,pr−1(m)), where r is a ran-
dom permutation uniformly distributed in a symmetric group of degree
m, denoted by Sm. This shuffling is denoted by [·| . . . |·].

Pile-shifting shuffle. This shuffling method, initially introduced in [31],
randomly and cyclically shifts the order of piles. Applying a pile-shifting
shuffle to (p1,p2, . . . ,pm) yields (ps+1,ps+2, . . . ,ps+m), where s is chosen
randomly and uniformly from Z/mZ. This shuffling is denoted by ⟨·| . . . |·⟩.

When m = 2, this shuffle is called a random bisection cut [17], i.e.,
bisecting a sequence of cards and randomly swapping the two halves.
When ℓ = 1, this shuffle is known as a random cut invented by Den
Boer [3].

2.2 XOR and Copy Protocols

Our protocol uses the existing card-based protocols for computing a logi-
cal function of two-input XOR and duplicating an input commitment [17].

5

Here, we briefly introduce them, and their full descriptions are in Ap-
pendix A.

Given commitments to a, b ∈ {0, 1}, the Mizuki–Sone XOR proto-
col [17] outputs a commitment to a⊕ b:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ · · · → ? ?︸ ︷︷ ︸
a⊕b

.

Given a commitment to a ∈ {0, 1} along with two commitments to 0,
the Mizuki–Sone copy protocol [17] outputs two commitments to a:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

→ · · · → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

.

2.3 How to Form a Loop

To verify rule 2, i.e., the loop condition, we use the existing protocol
from [13]. Let us introduce an overview of the protocol [13]. This protocol
enables a prover P to create any single loop without revealing information
about the loop shape, while simultaneously convincing a verifier V that
the resulting loop is indeed a single loop. That is, this protocol creates a
figure respecting rule 2 rather than verifying it.

Briefly, this protocol starts from the single loop going along the bound-
ary of the board. P and V interactively create the solution P has from
the single loop. During this process, V cannot obtain information other
than that the process proceeds correctly, and hence, the resulting shape
is indeed a single loop.

To represent a loop with a sequence of cards, we place a commitment
between each cell. The value of such a commitment represents the exis-
tence of line, i.e., line passes through them if the value is 1, and no line
passes if it is 0 as follows:

? ?︸ ︷︷ ︸
1

→

Thus, the protocol [13] begins by placing a commitment to 1 between
each cell adjacent to the border of a given board and commitments to 0
on the remaining positions, representing the single loop. Refer to [13] for
specific methods on creating the solution P has.

6

2.4 Sum of Commitments

This protocol is defined in [26]; we give a general description given as
an example. Suppose that we have commitments to a, b ∈ {0, 1}, and we
want to output a+ b ∈ Z/3Z (in the ♡-scheme, see encoding Eq. (2)):

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♡ → ? ? ?︸ ︷︷ ︸
a+ b

.

1. Swap the two cards of the commitment to a and add a ♣ face-down
to the right. Those three cards represent a in the ♡-scheme in Z/3Z:

−→←−
? ?︸ ︷︷ ︸
a

?
♣

→ ? ? ?︸ ︷︷ ︸
a

.

2. Add a ♡ on the right of the commitment to b. Those three cards
represent b in the ♣-scheme in Z/3Z: ? ?︸ ︷︷ ︸

b

?
♡

→ ? ? ?︸ ︷︷ ︸
b

.

3. Obtain three cards representing a+ r and those representing b− r for
a uniformly random value r ∈ Z/3Z as follows.

(a) Place in reverse order the three cards obtained in Step 2 below
the three cards obtained in Step 1:

? ? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
b

→

? ? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
2−b

.

(b) Apply a pile shifting shuffle as follows:

〈
?

?

∥∥∥∥ ?

?

∥∥∥∥ ?

?

〉
→

? ? ?︸ ︷︷ ︸
a+r

? ? ?︸ ︷︷ ︸
2−b+r

.

For a uniformly random value r ∈ Z/3Z, we obtain three cards
representing a+ r and 2− b+ r.

(c) Reverse the order of the three cards representing 2−b+r to obtain
b− r: ? ? ?︸ ︷︷ ︸

a+r

? ? ?︸ ︷︷ ︸
b−r

.

7

4. Reveal the three cards representing b − r, and shift to the right the
three cards representing a + r to obtain those representing a + b in
the ♡-scheme; apply the same routine for the remaining elements to
compute the final sum.

Notice that we described the sum protocol for an output of two bit
commitments in Z/3Z. We can generalize by inductively applying the
protocol for n bit commitments giving an output in Z/(n+ 1)Z.

3 ZKP Protocol for Moon-or-Sun

We present a card-based ZKP protocol for a Moon-or-Sun puzzle. As
shown in Fig. 3, our protocol has two phases: the setup and verification
phases. The setup phase constructs a loop with the interaction between
a prover P and a verifier V . The verification phase verifies all the rules
other than rules 1 and 2.

3.1 Setup

As introduced in Sect. 2.3, a solution is represented with a commitment
between each adjacent cells. Moreover, we place a commitment on each
cell to represent the loop passing through a symbol (i.e., moon or sun
symbol). The setup is done in two steps:

1. Constructing the loop using [13];
2. Placing the commitments inside the cells. Notice that we modify only

cells with moon or sun symbol.

Forming the loop. We directly use the construction of [13] described in
Sect. 2.3. At this point, there are commitments between the cells but no
commitment inside them.

Filling the grid. We want to put commitments inside the cells to model
the line passing through it (or not). For each cell (corresponding to a moon
or sun symbol), if the line passes through it, we observe that the sum of the
values of the four neighbour commitments on its edge is always equal to
two (otherwise, zero). Based on this observation, we place a commitment
inside every cell as follows. We note that we execute the Mizuki–Sone copy
protocol introduced in Sect. 2.2 whenever a commitment on the board is
taken, so that the same commitment can be used for several times.

1. Apply the sum protocol (Sect. 2.4) to the four neighbours of the tar-
geted cell ct . The result is in ♡-scheme:

8

? ?

? ?

? ? ? ?ct → ? ? ? ? ? .

Remember that if the sum is two, the third card from the left in the
resulting sequence is a ♡ .

2. Make a commitment consisting of the third and first cards in the
resulting sequence (in this order) by taking them and place it on ct .

V is convinced that each cell (containing a moon or a sun) is equal
to 1 = ♡ ♣ if and only if the line passes through it, i.e., there are two
neighbours equal to 1, exactly.

At this point, P has placed commitments according to its solution,
and V wants to check that each rule is respected.

3.2 Verification Phases

The loop has been constructed in the previous step, so V wants to check
if the other rules are respected.

Only moon or only sun (rule 4). The loop must pass through only
moon or only sun symbols in a given room but exactly one of them. The
following verification is done for each room:

1. Consider all the commitments on sun cells, and place them in a se-
quence (in any order). Apply a random cut introduced in Sect. 2.1
and reveal it. If the result has alternating pattern, then continue; oth-
erwise, abort.

We show an example when the room has three sun cells as follows:〈
? ? ? ? ? ?

〉
→ ♣ ♡ ♣ ♡ ♣ ♡ or ♡ ♣ ♡ ♣ ♡ ♣ .

2. Repeat the previous step for moon cells.

3. Execute the Mizuki–Sone XOR protocol [17] with a commitment on
any sun cell and a commitment on any moon cell. If the protocol
outputs a commitment to 1, then V continues; otherwise, V aborts.

Note that no information is leaked if the rule 4 is respected. Indeed,
if the commitments are equal (for a given symbol), the random cut hides
the initial values of commitments (V does not know if they are 0s or
1s). However, if the rule is not respected, then V knows the number of

9

commitments that are different (i.e., it can deduce the Hamming weight
of the sequence).

One enter, one exit (rule 3). The loop must be passing through a
room only once. This means that for each room, the loop crosses its edge
exactly twice (one for entering and one for exiting the room). The idea is
thus to shuffle the commitments located at the edge of a room and reveal
them. Formally, we proceed as follows:

1. Consider a room and take all the commitments located at the edge.
2. Apply a pile-scramble shuffle to them.
3. Reveal all the commitments. If exactly two commitments to 1 appears,

then continue; otherwise, abort.
4. Repeat the previous step until visiting all rooms.

Alternating pattern (rule 5). The loop must pass through a different
symbol to the one in the previous room it enters. Let us first present the
idea behind our verification for this rule.

Given a solution as in Fig. 2, consider verifying whether a room (re-
ferred to as the target) satisfies rule 5 or not. For this, we examine the
two rooms connected to the target room (i.e., those through which line
passes) and ensure that the loop passes through different symbols within
the target room and the connected rooms. That is, we determine whether
the two connected rooms are either both “sun rooms” or “moon rooms”
and both of them differ to the target room. Our approach follows a similar
logic: for every adjacent room, we collect a commitment on any sun cell8.
Subsequently, from among the commitments, we somehow choose two
commitments corresponding to the two connected rooms without leaking
any information. The remaining steps are simple; we confirm that the
values of the chosen commitments XORed with a commitment on any
sun cell within the target room both yields ones.

Now we are ready to describe the verification method. Suppose that
we verify the rule 5 for a target room R0 with k (≥ 2) adjacent rooms,
R1, R2, . . . , Rk. Let ni, 1 ≤ i ≤ k, denote the number of commitments on
the border between R0 and Ri. The verification proceeds as follows.

1. For every adjacent room Ri, let cj denote each of the ni commitments
on the border between R0 and Ri, for 1 ≤ j ≤ ni (in any order).
Collect one cj for every j and add “dummy” commitments to 0 so

8 Remember that the value of a commitment on a cell indicates the presence of line
passing through the cell.

10

that the total number of collected commitments (i.e., ni) becomes
nmax = max(n1, . . . , nk) as follows:

ni commitments︷ ︸︸ ︷
? ? ? ? · · · ? ? →

ni commitments︷ ︸︸ ︷
? ? ? ? · · · ? ?

nmax − ni commitments︷ ︸︸ ︷
? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

· · · ? ?︸ ︷︷ ︸
0

.

Let si denote the sequence of the nmax commitments. Apply a pile-
scramble shuffle to si as follows:

si :
[
? ?

∥∥ ? ?
∥∥ · · · ∥∥ ? ?

]
→ si : ? ? ? ? · · · ? ? .

2. For every adjacent room Ri, 1 ≤ i ≤ k, let c′i denote a commitment
on any sun cell within Ri. Place one c′i above si. (If Ri has no sun,
then let c′i denote a commitment on any moon cell and swap the two
cards constituting c′i before placing it.)

si : ? ? ? ? · · · ? ? →
c′i : ? ?

si : ? ? ? ? · · · ? ? .

3. Apply a pile-scramble shuffle to the nk piles consisting of si and c′i,
1 ≤ i ≤ k, as follows:[

c′1 : ? ?

s1 : ? ? ? ? · · · ? ?

∥∥∥∥∥· · ·
∥∥∥∥∥ c′k : ? ?

sk : ? ? ? ? · · · ? ?

]
.

4. Reveal all the commitments constituting si for all i, 1 ≤ i ≤ k. Then
exactly two commitments to 1 should be revealed, each appearing in
different si (rule 3)9. Denote these positions as a and b (a < b) as
follows:

· · ·
c′r−1(a) : ? ?

sr−1(a) : ♣ ♡ · · · ♡ ♣ · · · ♣ ♡
· · ·

· · ·
c′r−1(b) : ? ?

sr−1(b) : ♣ ♡ · · · ♡ ♣ · · · ♣ ♡
· · · ,

where r ∈ Sk is a random permutation generated through the appli-
cation of a pile-scramble shuffle at step 3.

9 This means that rule 3 can be simultaneously verified for the target room.

11

5. Let c′0 denote a commitment on any sun cell in the target room R0.
(If there is no sun, then denote a commitment on any moon cell by c′0
and swap the two cards constituting c′0.) Execute an extended version
of the Mizuki–Sone XOR protocol [17] with c′0, c

′
r−1(a), and c′r−1(b) as

follows.

(a) Place c′0, c
′
r−1(a), and c′r−1(b) and apply a random bisection cut as

follows:
c′0 : ? ?

c′r−1(a) : ? ?

c′r−1(b) : ? ?

→

 ?

?

?

∣∣∣∣∣∣
?

?

?

 →
? ?

? ?

? ? .

(b) Reveal all the cards. If the values of the middle and bottommost
commitments both differ from the value of the topmost commit-
ment, then continue; otherwise, abort.

? ?

? ?

? ?

→
♣ ♡
♡ ♣
♡ ♣

or

♡ ♣
♣ ♡
♣ ♡

→ Continue.

We execute these steps for all the rooms. If V does not abort, then V is
convinced that the commitments on the board respect rule 5. We discuss
on reducing the number of executions of these steps in Sect. 5.

3.3 Efficiency

Let us evaluate the number of required shuffles for our proposed ZKP
protocol for efficiency. Because the verification for rule 5 (alternating
pattern) can also verify rule 3 (one enter, one exit) as mentioned, our
protocol does not execute the verification for rule 3 in this evaluation.
Also, let us omit the evaluation of the part of constructing the single
loop [13] because it cannot be included in this paper due to the page
length limit.

Let nr denote the number of rooms in a given Moon-or-Sun puzzle
and p× q denote the size of the puzzle. For verifying rule 4, our protocol
uses two random cuts and one random bisection cut (for the XOR proto-
col [17]) for each room, i.e., 3nr. For verifying rule 5 for each room, our
protocol uses one pile-scramble shuffle, one random bisection cut, and a
number of pile-scramble shuffles corresponding to the number of adjacent
rooms. For duplicating commitments, our protocol applies the copy pro-
tocol [17], i.e., one random bisection cut, to each commitment between
each pair of adjacent rooms and on moon and sun cells. For making a

12

commitment placed on each of moon and sun cells, our protocol applies
the sum protocol [26] to the four neighbour commitments, i.e., three pile-
shifting shuffles. In total, because the number of commitments between
each pair of adjacent rooms (and on moon and sun cells) is less than
p2 × q2, our protocol uses O(p2q2) shuffles.

4 Security Proofs

Our protocol needs to verify three security properties given as theorems.

Theorem 1 (Completeness). If P knows a solution of a Moon-or-Sun
grid, then P can always convince V (i.e., V does not abort).

Proof. In the setup phase described in Sect. 3.1, constructing the loop is
directly taken from [13], so we refer readers to this paper for the proof.

For placing a commitment inside a cell, we use the sum protocol [26] so
that the value of the commitment represents the presence of line. Because
the configuration of the four neighbors is either the following two (up
to rotation), the resulting sequence at step 1 is always ♣ ♣ ♡ ♣ ♣ ,
representing two if line passes through the cell (the loop never branches
off):

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

or

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

If line does not pass, then the resulting sequence is ♡ ♣ ♣ ♣ ♣ because
all the four neighbors are commitments to 0. Therefore, constructing a
commitment with the first and third cards, from the previous sequence,
correctly represents the presence of line for a cell.

For the verification phase, described in Sect. 3.2, we divide the proof
into three parts, each corresponding to one rule.

Only moon or only sun (rule 4): Because P knows a solution, the
values of all the commitments on sun cells considered at step 1 are
either 0s or 1s, i.e., ♣ ♡ ♣ ♡ · · · or ♡ ♣ ♡ ♣ · · · . Thus, applying
a random cut to them always yields a sequence having an alternating
pattern. This holds true for moon cells at step 2 as well. Finally,

13

because rule 4 implies that the value of a commitment on any sun cell
must differ to that on any moon cell within the same room, the XOR
protocol [17] always outputs a commitment to 1 at step 3.

One enter, one exit (rule 3): The number of commitments to 1 among
all the commitments located at the edge must be two for every room.
Therefore, two commitments to 1 always appear when revealing all of
them at step 3.

Alternating pattern (rule 5): At step 5, c′r−1(a) and c′r−1(b) come from
commitments on any sun cell within different rooms such that lines
exist between each of them and R0. This is because a commitment
to 1 is revealed among each of sr−1(a) and sr−1(b), and si comes from
commitments on the border between R0 and Ri. Rule 5 implies that
the values of c′r−1(a) and c′r−1(b) must be both different to the value of

c′0, i.e., the first configuration at step 5(a) is as follows:

c′0 : ♡ ♣
c′r−1(a) : ♣ ♡
c′r−1(b) : ♣ ♡

or

c′0 : ♣ ♡
c′r−1(a) : ♡ ♣
c′r−1(b) : ♡ ♣ .

Thus, V never aborts when revealing all the cards at step 5(b). ⊓⊔

Theorem 2 (Soundness). If P does not know a solution of a Moon-
or-Sun grid, then V always rejects (i.e., the protocol aborts).

Proof. Our protocol is a proof-of-knowledge because commitments placed
on the grid after the setup phase represent a solution. Thus, in the re-
maining part of this proof, we prove that V always aborts if P does not
provide a solution, i.e., at least one rule is not respected. Because rule 2
is always respected due to [13], we consider the case that each of the
remaining rules is not respected as follows.

Only moon or only sun (rule 4): For a given room, two cases are
considered: (1) the loop does not pass through all suns (or moons)
but only some of them, and (2) the loop passes through all moons
and suns (or nothing). The first case can be detected at either step 1
or step 2 because a sequence of commitments on all sun (moon) cells
does not have an alternating pattern, e.g., ♣ ♡ ♣ ♡ ♡ ♣ . The sec-
ond case can be detected at step 3 because the value of commitment
on any sun cell is the same as on any moon cell.

One enter, one exit (rule 3): Because all commitments located at the
edge of a given room and the target room are revealed at step 3, the

14

number of times the loop enters the given room is revealed. Thus, V
always detect the case in which rule 3 is violated.

Alternating pattern (rule 5): If this rule is violated, it means that
for a given room, there is at least one adjacent room such that line
exists between them but the loop passes through the same symbol
(assuming that rule 4 is respected). As stated in the above proof,
because c′r−1(a) and c′r−1(b) come from commitments on any sun cell
within such rooms at step 5, V learns whether the values of them are
equal to c′0 using the XOR protocol [17]. Thus, V always aborts.

In any case, the verifier always rejects. ⊓⊔

Theorem 3 (Zero-knowledge). V learns nothing about P ’s solution
of the given grid G.

Proof. We use the same proof technique as in [8], namely the description
of an efficient simulator which simulates the interaction between an hon-
est prover and a cheating verifier. As described in [8], this simulator does
not have a correct solution, but has an ability that a sequence of cards
can be swapped with the same number of cards during the application
of shuffling; this ability is the replaced one with the rewind ability in
cryptographic ZKP protocols.

Informally, our protocol is zero-knowledge because it applies an ap-
propriate shuffling to a sequence of cards before revealing them. The
simulator can always swap the sequence such that the real and simulated
protocols are indistinguishable.

Formally, in the setup phase, the simulator first constructs arbitrary
loop executing [13]. Subsequently, it applies the sum protocol [26] intro-
duced in Sect. 2.4. Note that this existing protocol [26] is proved to be
zero-knowledge. In the verification phase, for each of the remaining rules,
it acts as follows.

Only moon or only sun (rule 4): At steps 1 and 2, during each ap-
plication of a random cut, the simulator swaps the commitments with
commitments to 1. Because a random cut cyclically and randomly
shifts a sequence of cards, this swapping results in any of the alter-
nating patterns with a probability of 1/2, which is indistinguishable
from a real execution. At step 3, it executes the Mizuki–Sone XOR
protocol [17] that is zero-knowledge.

One enter, one exit (rule 3): At step 2, the simulator swaps the com-
mitments with the ones where the number of commitments to 1 is

15

exactly two. Because a pile-scramble shuffle randomly rearranges the
order of piles consisting cards, the two commitments to 1 appear in
random positions.

Alternating pattern (rule 5): At step 1, the simulator swaps the nmax

commitments with the ones having exactly one commitment to 1 if
i = 1, 2 and with nmax commitments to 0 otherwise. At step 3, it
acts nothing, but applying pile-scramble shuffles results in the case
where the two commitments to 1 appears in different sequences of
random positions. Finally, at step 5, it swaps c′0, c

′
r−1(a), and c′r−1(b)

with commitments to 1, 0, and 0, respectively. Because applying a
random bisection cut to them results in either commitments to 1, 0,
and 0 or commitments to 0, 1, and 1 with a probability of 1/2, V learns
nothing other than that the value of c′0 differs to those of c′r−1(a) and

c′r−1(b). ⊓⊔

5 Discussion

Here, we discuss whether we can reduce the number of executions of our
method for rule 5 described in Sect. 3.2. Suppose that we execute the
verification phase described in Sect. 3.2 for all rooms surrounding a given
room. Then we prove that such a room does not need to be verified for
rule 5 as in the following theorem.

Theorem 4. A room always satisfies rule 5 if all rooms surrounding the
room satisfy all the rules.

Proof. Suppose, for the sake of contradiction, that there exists a room R
that does not satisfy rule 5, while all rooms surrounding R are verified
to satisfy all the rules through the execution of our verification phase
described in Sect. 3.2. Then, as R does not satisfy rule 5, there should
exist a room R′ such that the line passes between R and R′, passing
through the same symbol in both.

However, R′ surrounds R, and this contradicts our assumption that
all rooms surrounding R satisfy all the rules. Therefore, our initial as-
sumption must be false, and hence, R satisfies rule 5. ⊓⊔

Theorem 4 implies that we do not need to verify all rooms for rule 5.
We observe that optimally reducing the number of rooms for which rule 5
is verified in our protocol is related to one of the classical NP-hard
problems, namely, the minimum vertex cover problem. This connection
emerges if we consider a Moon-or-Sun puzzle as an undirected graph,

16

wherein a vertex set comprises rooms, and an edge denotes the adjacency
of rooms. A vertex cover of graph is a set of vertices where every edge of
the graph has at least one vertex in the set. The minimum vertex cover
problem asks the minimum size of such vertex covers if they exist.

Because a vertex cover represents rooms surrounding all the remaining
rooms, it suffices to verify whether such rooms satisfy rule 5, as indicated
in Theorem 4. However, if we wish to verify rule 5 for a minimum number
of rooms we must initially find a minimum vertex cover. As mentioned,
finding such a cover is an NP-hard problem, even on planar graphs, thus
we are unable to perform this initial step efficently. Although techniques
for evaluating the execution time of card-based protocols exist [15], doing
so in this case is non-trivial, due to this additional computationally in-
tensive step. Additionally, constructing ZKP protocols for a Moon-or-Sun
puzzle may prove more challenging than those in existing work because
in essence, rule 5 involves not verifying a given room itself but comparing
a given room with all of its adjacent rooms.

It is still possible to bound the number of rooms that we must verify
rule 5 for, without requiring a computational step of infeasible running
time. To begin, we note that any planar graph always has a vertex cover
with at most 3n

4 vertices, and thus we have the following theorem:

Theorem 5. It is possible to convince the verifier that all rooms satisfy
rule 5 by checking this rule for at most 3

4 of the rooms.

Proof. It follows from theorem 4 that it suffices to verify rule 5 only for
rooms in a vertex cover. Furthermore every planar graph has a vertex
cover containing at most 3

4 of the vertices. Thus it is only ever necessary
to verify rule 5 for only 3

4 of the rooms. ⊓⊔

Furthermore, we know that we can find a cover of this size in polyno-
mial time. To do so, we find a four coloring of the graph, and then take
our cover to be the union of the three smallest color classes, yielding a
cover that is of size most 3n

4 . It is possible to compute a four coloring for
a planar graph in polynomial (quadratic) time [22].

6 Conclusion

We proposed a ZKP protocol for Moon-or-Sun, which has an interesting
rule: the loop must pass through different symbols within two consecu-
tive rooms. Through the construction, we found this rule to be related
to a well-known problem in graph theory, which leads some challenging
problems.

17

Acknowledgements. We thank the anonymous referees, whose com-
ments have helped us improve the presentation of the paper. The fourth
author was supported in part by Kayamori Foundation of Informational
Science Advancement and JSPS KAKENHI Grant Number JP23H00479.
The third and fifth authors were partially supported by the French ANR
project ANR-18-CE39-0019 (MobiS5). Other programs also fund to write
this paper, namely the French government research program “Investisse-
ments d´Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP
20-25) and the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01).
Finally, the French ANR project DECRYPT (ANR-18-CE39-0007) and
SEVERITAS (ANR-20-CE39-0009) also subsidize this work.

References

1. https://www.nikoli.co.jp/en/puzzles/moon_or_sun/, Nikoli, Moon-or-Sun.
2. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S., Ro-

gaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) Advances in Cryptology—CRYPTO’88. LNCS, vol. 403, pp. 37–56. Springer
(1988)

3. den Boer, B.: More efficient match-making and satisfiability: The Five Card Trick.
In: Quisquater, J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Berlin, Heidelberg (1989)

4. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Fun with Algorithms. LIPIcs, vol. 49,
pp. 8:1–8:20. Schloss Dagstuhl, Dagstuhl (2016)

5. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P., Miyahara, D., Mizuki, T., Nagao,
A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for Makaro.
In: SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018)

6. Chien, Y.F., Hon, W.K.: Cryptographic and physical zero-knowledge proof: From
Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) Fun with Algorithms. LNCS,
vol. 6099, pp. 102–112. Springer, Berlin, Heidelberg (2010)

7. Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: In-
teractive physical zero-knowledge proof for Norinori. In: Du, D.Z., Duan, Z., Tian,
C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019)

8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009)

9. Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol for
Cryptarithmetic using dihedral cards. In: Kostitsyna, I., Orponen, P. (eds.) UCNC
2021. LNCS, vol. 12984, pp. 51–67. Springer, Cham (2021)

10. Iwamoto, C., Ide, T.: Moon-or-Sun, Nagareru, and Nurimeizu are NP-complete.
IEICE Trans. Fundamentals 105(9), 1187–1194 (2022)

11. Komano, Y., Mizuki, T.: Physical zero-knowledge proof protocol for Topswops. In:
Su, C., Gritzalis, D., Piuri, V. (eds.) Information Security Practice and Experience.
LNCS, vol. 13620, pp. 537–553. Springer (2022)

12. Komano, Y., Mizuki, T.: Card-based zero-knowledge proof protocol for Pancake
Sorting. In: Bella, G., Doinea, M., Janicke, H. (eds.) SecITC. LNCS, vol. 13809,
pp. 222–239. Springer (2023)

18

https://www.nikoli.co.jp/en/puzzles/moon_or_sun/

13. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to
construct physical zero-knowledge proofs for puzzles with a “single loop” condition.
Theor. Comput. Sci. 888, 41–55 (2021)

14. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundamentals 102-A(9), 1072–1078 (2019)

15. Miyahara, D., Ueda, I., Hayashi, Y., Mizuki, T., Sone, H.: Evaluating card-based
protocols in terms of execution time. Int. J. Inf. Secur. 20, 729–740 (2021)

16. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards.
In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) Unconventional
Computation and Natural Computation. LNCS, vol. 7956, pp. 162–173. Springer
(2013)

17. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Berlin, Heidelberg (2009)

18. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connec-
tivity: Applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40,
149–171 (2022)

19. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP protocol
for Nurimisaki. In: Devismes, S., Petit, F., Altisen, K., Luna, G.A.D., Anta, A.F.
(eds.) Stabilization, Safety, and Security of Distributed Systems. LNCS, vol. 13751,
pp. 285–298. Springer (2022)

20. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Hide a liar: Card-based
ZKP protocol for Usowan. In: Du, D., Du, D., Wu, C., Xu, D. (eds.) Theory and
Applications of Models of Computation. vol. 13571, pp. 201–217. Springer (2022)

21. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-
knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput. 285,
1–14 (2022)

22. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: Efficiently four-coloring
planar graphs. In: Miller, G.L. (ed.) ACM Symposium on the Theory of Comput-
ing. pp. 571–575. ACM (1996)

23. Ruangwises, S.: An improved physical ZKP for Nonogram. In: Du, D.Z., Du, D.,
Wu, C., Xu, D. (eds.) COCOA 2021. LNCS, vol. 13135, pp. 262–272. Cham (2021)

24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and
k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

25. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: Applica-
tions to Bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.)
UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021)

26. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. Theor. Comput. Sci. 887, 99–110 (2021)

27. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: A physical
ZKP for Shikaku. In: Fraigniaud, P., Uno, Y. (eds.) Fun with Algorithms. LIPIcs,
vol. 226, pp. 24:1–24:12. Schloss Dagstuhl (2022)

28. Ruangwises, S., Itoh, T.: Physical ZKP for Makaro using a standard deck of cards.
In: Du, D., Du, D., Wu, C., Xu, D. (eds.) Theory and Applications of Models of
Computation. LNCS, vol. 13571, pp. 43–54. Springer (2022)

29. Ruangwises, S., Itoh, T.: Two standard decks of playing cards are sufficient for a
ZKP for Sudoku. New Gener. Comput. 40(1), 49–65 (2022)

30. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

19

31. Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide,
T., Hanaoka, G., Okamoto, E.: Card-based protocols using regular polygon cards.
IEICE Trans. Fundamentals 100-A(9), 1900–1909 (2017)

A Full Description of XOR and Copy Protocols

XOR protocol. Given commitments to a, b ∈ {0, 1}, the Mizuki–Sone
XOR protocol [17] outputs a commitment to a⊕ b:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ · · · → ? ?︸ ︷︷ ︸
a⊕b

.

This protocol proceeds as follows.

1. Rearrange the sequence:
1

?
2

?
3

?
4

? →
1

?
3

?
2

?
4

? .
2. Apply a random bisection cut:

[
? ? | ? ?

]
→ ? ? ? ? .

3. Rearrange the sequence:
1

?
2

?
3

?
4

? →
1

?
3

?
2

?
4

? .
4. Reveal the first and second cards in the sequence to obtain the output

commitment as follows: ♣ ♡ ? ?︸ ︷︷ ︸
a⊕b

or ♣ ♡ ? ?︸ ︷︷ ︸
a⊕b

.

Copy protocol. Given a commitment to a ∈ {0, 1} along with two com-
mitments to 0, the Mizuki–Sone copy protocol [17] outputs two commit-
ments to a:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

→ · · · → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

.

This protocol proceeds as follows.

1. Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
5

?
2

?
4

?
6

? .

2. Apply a random bisection cut to the sequence as follows:[
? ? ? | ? ? ?

]
→ ? ? ? ? ? ? .

3. Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
4

?
2

?
5

?
3

?
6

? .

4. Reveal the first and second cards in the sequence to obtain the output
commitments as follows:

♣ ♡ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

or ♡ ♣ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

.

20

	Check Alternating Patterns: A Physical Zero-Knowledge Proof for Moon-or-Sun

