
Key Filtering in Cube Attacks from the
Implementation Aspect

Hao Fan1, Yonglin Hao2(�), Qingju Wang3, Xinxin Gong2, and Lin Jiao2

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
2 State Key Laboratory of Cryptology, Beijing, 100878, China

3 Telecom Paris, Institut Polytechnique de Paris, France
yykdszniao@gmail.com, haoyonglin@yeah.net, qjuwang@gmail.com,

xinxgong@126.com, jiaolin_jl@126.com

Abstract. In cube attacks, key filtering is a basic step of identifying
the correct key candidates by referring to the truth tables of superpolies.
When terms of superpolies get massive, the truth table lookup complex-
ity of key filtering increases significantly. In this paper, we propose the
concept of implementation dependency dividing all cube attacks into two
categories: implementation dependent and implementation independent.
The implementation dependent cube attacks can only be feasible when
the assumption that one encryption oracle query is more complicated
than one table lookup holds. On the contrary, implementation indepen-
dent cube attacks remain feasible in the extreme case where encryption
oracles are implemented in the full codebook manner making one encryp-
tion query equivalent to one table lookup. From this point of view, we
scrutinize existing cube attack results of stream ciphers Trivium, Grain-
128AEAD, Acorn and Kreyvium. As a result, many of them turn out
to be implementation dependent. Combining with the degree evaluation
and divide-and-conquer techniques used for superpoly recovery, we fur-
ther propose new cube attack results on Kreyvium reduced to 898, 899
and 900 rounds. Such new results not only mount to the maximal number
of rounds so far but also are implementation independent.

Keywords: Stream ciphers · Cube attacks · Division property · Super-
poly · Key filtering

1 Introduction

Cube attack was proposed by Dinur and Shamir in [2] at EUROCRYPT 2009 and
has become one of the most efficient cryptanalysis methods against primitives
taking public initial values (IV) and secret key as inputs. For a cipher with public
IV v = (v0, v1, . . . , vm−1) ∈ Fm

2 and secret key x = (x0, x1, . . . , xn−1) ∈ Fn
2 , an

output bit generated by the cipher can be regarded as a polynomial of v,x
denoted as f(x,v). In cube attacks, a set of IV indices, referred to as the cube
indices, is selected as I = {i0, i1, . . . , i|I|−1} ⊂ {0, 1, . . . ,m − 1}. Such a set
I determines a specific structure called cube, denoted as CI , containing 2|I|

values: the cube variables in {vi0 , vi1 , . . . , vi|I|−1
} take all possible combinations
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of values while the key and non-cube IV variables are static. It is proved that
the summation of f over the cube CI equals a particular polynomial p(x,v),
commonly referred as the superpoly of cube I, denoted as pI(x,v) or p(x,v) when
I is clear from the context. The superpoly pI also defines a set J ⊆ {0, . . . , n−1}
such that the algebraic normal form ANF of pI is only related to the key bit
variable xj for j ∈ J .

The general process of cube attacks can be naturally summarized into the
4 phases namely superpoly recovery, key filtering, cube sum computation and
exhaustive search. The superpoly recovery recovery phase is carried out offline
for determining I and the ANF (or truth table) of the corresponding superpoly
pI . Then, the cube summation over CI , denoted as θ, is computed by querying
the targeted encryption oracle for 2|I| times. After that, the key filtering phase
filter the correct key candidates satisfying p(x,v) = θ so as to recover 1 bit of
secret key information. Finally, the exhaustive search recovers the remaining key
bits through the exhaustive search with 2n−1 encryption oracle queries.

The superpoly recovery phase is crucial and used to dominate the overall
complexity. Originally, the superpolies in cube attacks can only be recovered
with repeated cube summation experiments restricting the superpoly ANFs to
linear/quadratic form and limiting the cube dimensions within practical reach
[2,13]. Theoretic deduction remains infeasible until the proposal of the divi-
sion property based cube attack [18]: a combination of the division property
[17,16,19,22] and cube attacks. Such a new cryptanalysis method enables us
to conduct cube attacks with the mixed integer linear programming (MILP)–a
mature technique that have been widely in the security evaluations of symmet-
ric primitives against differential, linear and many other cryptanalysis methods
[12,14,4]. The original division property based cube attacks suffer from extremely
high offline complexities and a significant loss of accuracy [20,21]. After years’ de-
velopment, the state-of-art three-subset division property based cube attack [6]
has been combined with the divide-and-conquer model solving technique [9,15,7]
enabling us to recover the accurate ANFs of superpolies within a practical com-
plexity, even when the superpolies are massive with |J | ≈ n and high algebraic
degrees.
Motivations. Now that the superpoly recovery is no longer the complexity
dominant, researchers turn to use smaller dimensional cubes with massive super-
polies so as to conduct cube attacks covering more rounds. Following such a strat-
egy, the current best cube attacks on Trivium, Grain-128AEAD, Kreyvium
and Acorn, etc. [9,7] are all using massive superpolies related to almost all key
bits, i.e., |J | ≈ n, resulting in 2n truth table lookups in the key filtering phase.
Adding the 2n−1 queries in the exhaustive search phase, there is an obvious chal-
lenge that the overall complexity of cube attacks using massive superpolies may
have exceeded the generic complexity bound of 2n. According to the explanations
in [9,7], the feasibility of such attacks is based on the assumption that 1 query
to the encryption oracle is much more complicated than 1 table lookup: for ex-
ample in [7], 1 query to the 848-round Trivium encryption oracle is regarded as
848× 9 = 7632 XORs while a table lookup only contains 1 XOR. However, from
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the adversary’s view, a query to the oracle does not take more effort than the
execution of an XOR operation. Besides, such a bitwise and roundwise imple-
mentation is not the only way to realize cryptographic primitives: the selection
of tags in Trivium naturally supports a 64-time acceleration [1] for fast software
speeds; the time for an unrolled hardware implementation of the full encryption
is exactly 1 clock tick which is equal to that of a XOR. Therefore, the applicabil-
ity of massive superpolies to cube attacks heavily relies on the implementations
so the following 2 questions should be discussed in detail:

1. Whether the existing cube attacks are feasible for arbitrary implementations.
2. Whether there exist implementation-independent cube attacks that can reach

more rounds.

Our Contributions. In this paper, we answer the above questions and scru-
tinize the existing cube attacks on several ciphers. Our contributions can be
summarized as follows:

– We give the concept of implementation dependency and divide cube attacks
into two categories, namely the implementation dependent cube attacks and
the implementation independent cube attacks. Implementation dependent cube
attacks can only be feasible when a query to the encryption oracle is more
expensive than a table lookup while the implementation independent cube
attacks remain feasible in the extreme case where the encryption oracle is
implemented as the full codebook making one oracle query equivalent to one
table lookup.

– Following the above new concepts for cube attacks, we revisit the latest three-
subset division property based cube attacks on several symmetric primitives.
According to our evaluations, many current best results using massive super-
polies, such as all attacks on Trivium in [9], are implementation dependent.

– We also propose new implementation independent results on 898-, 899-, 900-
round Kreyvium using the methods in [9,7]: superior to their massive-superpoly
based, implementation dependent counterparts.

We list all our results in Table 1.
Organization of the Paper. Sect. 2 provides the necessary background in-
formation. Then, we describe our new three-subset division property based cube
attacks on round-reduced Kreyvium in Sect. 3. After that, we introduce the
concept of implementation dependency and detail the evaluation of an existing
cube attack on Trivium in Sect. 4. Thorough implementation dependency eval-
uations of current best cube attack results for our targeted primitives are given
in Sect. 5 and we conclude the paper in Sect. 6.

2 Preliminary

In this section, we first summarize the general procedure of cube attacks in
Sect. 2.1. Then, we briefly review the technique details of division property based
superpoly recovery (Sect. 2.2) and table-lookup based key filtering (Sect. 2.3).
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Table 1. The complexity and implementation dependency of cube attacks. The com-
plexities are evaluated with the number of instructions.

Cipher #Rounds Cube Exhaustive Implement. SourceAttack Search† Dependency‡

Trivium

843 282.99 281 ✓ [9]
844 282.84 281 ✓ [9]
845 284.92 281 ✓ [9]
846 284.58 281 ✓ [7]
847 284.58 281 ✓ [7]
848 284.58 281 ✓ [7]

Grain-128AEAD 191 2131.55 2129 ✓ [9]
192 2133.17 2129 ✓ [7]

Acorn 776 2128.58 2129 × [7]

Kreyvium

894 2128 2129 × [9]
895 2133.17 2129 ✓ [7]
898 2128.58 2129 × Sect. 3
899 2128.58 2129 × Sect. 3
900 2128.58 2129 × Sect. 3

† One query of the cipher considered is a table lookup and equals two instructions,
then the brute force attack of the cipher needs 2κ+1 instructions where κ is the key
size.
‡ ✓ denotes implementation dependent and × denotes implementation independent.
The details of our analysis can be found in Sect. 5.

We first define some notations used in the remainder of this paper. We con-
sider the stream ciphers with n-bit secret key x = (x0, . . . , xn−1) and m-bit
public IV v = (v0, . . . , vm−1). For arbitrary positive integer t > 1, we denote the
set of integers {0, . . . , t− 1} as [0, t) hereafter.

2.1 The Main Procedures of Cube Attacks

In cube attacks, the adversary is faced with an encryption oracle of the targeted
stream cipher, denoted as E. The adversary can query E with a public IV vector
v and acquire the key stream bits corresponding to v and an embedded secret
key xe, denoted as z (v,xe) = E(v). When queried with a key-IV pair (x,v),
the oracle E outputs the corresponding key stream bits z (v,x) = E(v,x).
The target for the adversary is to retrieve the embedded key xe within feasi-
ble complexity limits. The procedures of cube attacks for recovering xe can be
summarized as follows:

1. Superpoly Recovery. Recover the ANF of the superpoly pI(x, IV ) where
IV is a known constant and pI can be a simple and low-degree polynomial
related to key bits x[J ] where J ⊆ [0, n − 1]. Such a superpoly can be
recovered with division property based techniques that we will detail in.

2. Cube Sum Computation. For all 2|I| v ∈ CI(IV ), query E(v) and sum the
output keystream bits for the exact value of superpoly pI(IV ,xe) = θ.
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3. Key Filtering. For involved candidate bits: construct lookup tables for
identifying the correct key candidate xc’s, s.t. pI(IV ,xc) = θ.

4. Exhaustive Search. find the only correct key xe from the remaining keys.

2.2 Division Property based Superpoly Recoveries

In the view of Boolean function for describing division property, the monomial
prediction technique is developed to evaluate the degree of Boolean functions
and is soon applied to recovery target polynomials, mainly for the polynomials
after many rounds of iteration in stream or block ciphers. Hu et al. proposed the
monomial prediction technique in [10], then developed it to the Nested Frame-
work, which was used to recover the exact ANFs of massive superpolies [9].

(Bit-Based) Division Property. Before giving a brief introduction to division
property, we need some notations for bit-vectors. For any bitvector x ∈ Fm

2 , x[i]
denotes the ith bit of x where i ∈ {0, 1, . . . ,m−1}. Given two bitvectors x ∈ Fm

2

and u ∈ Fm
2 , πu(x) = xu =

∏m−1
i=0 x[i]u[i]. Moreover, x ⪰ u denotes x[i] ≥ u[i]

for all i ∈ {0, 1, . . . ,m− 1}; otherwise we denote x ̸⪰ u.
The (conventional) division property, a.k.a two-subset division property, was

proposed at Eurocrypt 2015 [17], and it is regarded as the generalization of the
integral property.

Definition 1 (Two-subset division property). Let X be a multiset whose
elements take a value of Fm

2 , and K = {k | k ∈ Fm
2 } be a set of m-dimension

bit vectors. When the multiset X has the division property D1m

K , it fulfills the
following conditions:

⊕
x∈X

xu =

{
unknown if there are k ∈ K s.t. u ⪰ k,

0 otherwise.

To improve the accuracy of the division property propagation, the three-
subset division property was proposed in [19], where the number of divided
subsets is extended from two to three.

Definition 2 (Three-subset division property). Let X be a multiset whose
elements take a value of Fm

2 , and K = {k | k ∈ Fm
2 } and L = {ℓ | ℓ ∈ Fm

2 } be
two sets of m-dimension bit vectors. Define xu :=

∏m−1
i=0 xui

i , u ∈ Fm
2 . When

the multiset X has the three-subset division property D1m

K,L, it fulfills the following
conditions:

⊕
x∈X

xu =


unknown if there are k ∈ K s.t. u ⪰ k,

1 else if there is ℓ ∈ L s.t. u = ℓ,

0 otherwise.

Xiang et al. introduced MILP-based method to automatically search integral dis-
tinguishers (based on two-subset division property) for several block ciphers [22].
They modeled the propagation rules of basic operations such as COPY, AND,
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and XOR by MILP. Later the MILP division property method was further ap-
plied to cube attacks on stream ciphers [18,20]. For the three-subset division
property and the variant without unknown (removing the unknown set K from
the Definition 2 for make cube attacks based on three-subset division property
infeasible and/or practical), the detailed propagation rules and the MILP mod-
elings can be found in [21,6].

Monomial Prediction. The monomial prediction technique [10] can be used
to determine that the coefficient of an involved monomial is 0 or 1 in the ANF
of a given Boolean function, which can be applied to the construction of SAT
models for block ciphers taking the key schedule into consideration in order to
find refined integral distinguishers [5], or to recover the ANF of the superpoly
of the cube attacks. In this paper, we focus on the latter application.

Let f : Fn
2 → F2 be a Boolean function whose algebraic normal form (ANF)

is
f(x) = f(x0, x1, . . . , xn−1) =

⊕
u∈Fn

2

auπu(x)

where au ∈ F2, πu(x) =
∏n−1

i=0 xui
i is defined as before and is a monomial.

Let f : Fn
2 → Fm

2 be a vectorial Boolean function with y = (y0, y1, . . . , ym−1) =
f(x) = (f0(x), f1(x), . . . , fm−1(x)), where fi : Fn

2 → F2 is a Boolean function.
For u ∈ Fn

2 and v ∈ Fm
2 , we use xu → yv to denote that monomial xu appears

in yv.
We are interested in the following case: Let f be a composition of a sequence

of r vectorial Boolean functions

y = f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x).

For 0 ≤ i ≤ r−1, suppose x(i) ∈ Fni
2 and x(i+1) ∈ Fni+1

2 are the input and output
of the ith component function f (i). We are interested in whether a monomial
of x(0), say πu(0)(x(0)), appears in one monomial of x(r), i.e., πu(0)(x(0)) →
πu(r)(x(r)). To make it happen, for one monomial in πu(i)(x(i)), there must exist
at least one monomial in πu(i+1)(x(i+1)), i.e., for every 0 ≤ i ≤ r−1, a transition
πu(i)(x(i)) → πu(i+1)(x(i+1)) must be guaranteed.

Definition 3 (Monomial Trail [10]). Let x(i+1) = f (i)(x(i)) for 0 ≤ i ≤ r−1.
We call a sequence of monomials (πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))) an r-
round monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)) under the composite
function f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) if there exist

πu(0)(x(0)) → · · ·πu(i)(x(i)) → · · · → πu(r)(x(r)).

If there exist at least one monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)),
we write πu(0)(x(0))⇝ πu(r)(x(r)). Otherwise, πu(0)(x(0)) ̸⇝ πu(r)(x(r)).

We describe the following theorem that is integrated from [6,8,10].
Theorem 1. Let f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) defined as above. Denote
all the trails from πu(0)(x(0)) to πu(r)(x(r)) by πu(0)(x(0)) 1 πu(r)(x(r)). Then
πu(0)(x(0))⇝ πu(r)(x(r)) if and only if

|πu(0)(x(0)) 1 πu(r)(x(r))| ≡ 1 (mod 2).
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Degree Evaluation for Superpoly. The technique of the superpoly degree
evaluation for cube attacks was proposed in [20], to avoid constructing the whole
truth table of the superpoly using cube summations which can eventually reduce
the entire complexity of cube attacks.

Based on the MILP-aided two-subset division property, the upper bound for
the algebraic degree, denoted as d, of the superpoly can be derived. With the
knowledge of its degree d (and J as the set of the indices of key involved), the
superpoly can be completely represented with its

(|J|
≤d

)
coefficients rather than

the whole truth table, where
(|J|
≤d

)
:=

∑d
i=0

(|J|
i

)
. If d < |J |, which is true for

lightweight ciphers because the algebraic degrees of their round functions are
usually quite low, the coefficients of the monomials with degrees higher than
d are constantly 0. Thus, the complexity of superpoly recovery can be reduced
from 2|I|+|J| to 2|I|×

(|J|
≤d

)
. Therefore, the degrees d are often much smaller than

|J |, especially when high-dimensional cubes are used.

Although such degree d’s are only upper bounds for the degree of superpolies,
the superpolies with a lower degree are more likely to be simpler than those with
higher ones. This technique is used to help us heuristically filter out superpolies
with a higher degree which potentially lead to massive superpolies. The effective-
ness of using this technique is verified by simple superpolies we finally obtained
for more rounds of Kreyvium in Sect. 3.

Divide-and-Conquer Strategy for Recovering ANFs of Superpolies. As
the number of rounds evaluated grows, the superpolies for certain cubes become
increasingly complex. Many existing methods for superpoly recovery quickly hit
their bottlenecks. Motivated by this, Hu et al. [9] proposed a framework with
nested monomial predictions that scales well for massive superpoly recovery. The
nested method actually is a hybrid of four popular methods in this area, namely
Wang et al.’s pruning method [21], Ye and Tian’s algebraic method [24], Tian’s
recursively-expressing method [23] and Hao et al.’s PoolSearchMode method
[6]. Later, He et al. [7] improved the nested monomial prediction framework to
further simplify the MILP model and speed up the model solving. Sun [15] also
used a similar technique to handle the heavy search in the superpoly recovery. In
this paper, we do not go deep into their respective details and uniformly called
them the divide-and-conquer techniques, and we briefly describe the main idea
of the strategy they follow.

In this kind of frameworks, the targeted output bit is first expressed as a
polynomial of the bits of some intermediate state. For each term appearing in
the polynomial, the monomial prediction technique is applied to determine its
superpoly if the corresponding MILP model can be solved within a given time
limit. Terms that cannot be resolved within the time limit are further expanded
as polynomials of the bits of some deeper intermediate states with symbolic
computation, whose terms are again processed with monomial predictions. The
above procedure is iterated until all terms are resolved. Finally, all the sub-
superpolies are collected and assembled into the superpoly of the targeted bit.
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2.3 Table Lookup based Key Filtering Techniques

In order to identify the xc’s satisfying pI(x, IV ) = θ, one has to refer to the truth
table of pI , denoted as TI . Such TI is of size 2|J|. It also takes 2|J| table lookups
so as to identify the x[J ] candidates. However, for the massive superpolies with
J = [0, n), tricks can be played to avoid storing and traversing the whole TI .
In [9], the disjoint set was used to decompose the whole superpoly into several
sub-superpolies, thus the task of constructing a huge truth table for a massive
superpoly can be divided into several smaller scale tasks of constructing smaller
truth tables, which reduces the entirety of the complexity. We recall the idea of
superpoly recovery using a disjoint set briefly in the following.

Disjoint Set based Key Filtering. Given a polynomial p(x) with n variables,
if for 0 ≤ i ̸= j < n, xi and xj are never multiplied mutually in all monomials
of p(x), then we say xi and xj are disjoint. For a subset of variables D ⊆
{x0, x1, · · · , xn−1}, if every pair of variables like (xi, xj) ∈ D are disjoint, we
call D a disjoint set. Given the disjoint set D = {x0, x1, . . . , xℓ−1}, denote the
set of the rest of the key variables not in D as D = {x0, x1, . . . , xn−1}\D, the
superpoly can be re-written as a linear combination:

p(x) = x0 · p0(D) + x1 · p1(D) + · · ·+ xℓ−1 · pℓ−1(D) + pℓ(D) ,

where p(D) is a polynomial of the variables only in D, which is usually simplier
than p(x). By this the huge truth table of p(x) can be replaced by smaller
sub-tables corresponding to p0(D), p1(D), . . . , pℓ−1(D) and the residue pℓ(D).
In the key filtering phase, the bits in disjoint set are guessed and refer to the
corresponding sub-tables sequentially.

The key filtering procedures based on a single superpoly can easily be ex-
tended to multiple superpolies. In addition to the key filtering method based
on the disjoint set, improvement was further proposed in [7] for key filtering:
they choose to guess some key bits for simplifying the massive superpoly and
construct truth tables on the fly for filtering keys.

Note that all truth tables are constructed using the Möbius transformation
technique in [9]: for a Boolean function with n variables, the Möbius transfor-
mation algorithm can be used to construct its truth table with n · 2n−1 XOR
operations.

3 New Attacks on Kreyvium

So far, cube attacks on stream ciphers are conducted the following two main
strategies:

– The massive superpoly strategy uses low dimensional cubes but the super-
polies are usually complicated;

– On the contrary, the conventional strategy turns to using high dimensional
cubes so as to acquire low-degree superpolies related to very few key bits.
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In the high-level view, our new cube attacks on 898-, 899- and 900-round Kreyvium
follow the conventional strategy. The reason we choose this strategy will be given
in Sect. 4.1. In the low-level view, we propose our own specific procedures for
constructing the cubes utilized in our cube attacks on Kreyvium. We summarize
them in the following:

– Since the key and IV of Kreyvium share the same length of 128 bits, we
decide to use the largest possible dimension of cubes as |I| = m− 2 = 126.

– The cube indices are selected so as to result in lower superpoly degrees which
are evaluated naturally with the two-subset division property based degree
evaluation technique [20].

– After finding cubes with low-degree superpolies, the superpolies recovery can
be accomplished directly with the methods in [9,7].

In the following, we give the 898-, 899- and 900-round cube attacks on
Kreyvium, with the corresponding balanced superpolies. So far as we know,
these are the best cube attacks on Kreyvium.

3.1 New Results for 898-Round Kreyvium

For 898-round Kreyvium, there are plenty of 126-dimensional cubes with sim-
ple superpolies so we randomly pick several 126-dimensional cubes, run degree
evaluation procedures and select the cubes with the lowest degrees. After exam-
ining several trials, we find two cubes, denoted as I0 and I1 respectively, with
degree evaluations 2 and 3. The cube I0 is defined as I0 = [0, 127]\{5, 56}, the
superpoly pI0(x,0) of 898-round Kreyvium is determined as the follows

pI0(x,0) = x11 + x13 + x28 + x37 + x38 + x39 + x53 + x53x54 + x55 + x62x63 + x70+

x72 + x87 + x97 + x98 + x112 + x54x112 + x113 + x53x113 + x112x113 + x114 + x123.

The definition of I1 is I1 = [0, 127]\{38, 86} and the superpoly pI1(x,0) is
derived as Eq. (7) in App. A.2.

3.2 New Results for 899-Round Kreyvium

Following the procedure for the 898-round case, we still hope to find a cube of
dimension 126 whose superpoly has a considerably lower degree, for instance, 2
or 3. However, when we ran similar procedures directly for 899-round Kreyvium,
we found that low-degree superpolies became quite rare given 126-dimensional
cubes.Instead of constructing a 126-dimensional cube directly, we have to exploit
new methods.

First, wes run degree evaluation procedure for all 127-dimensional cubes so
as to find good indices for further exclusions. To be more specific, for all the
128 cubes Iλ = [0, 127]\{λ} with λ = 0, . . . , 127, we acquire the degree upper
bounds of their corresponding superpolies, denoted as deg(pIλ), using the degree
evaluation based on the conventional division property in [20]. We find that only
13 λ’s satisfy deg(pIλ) ≤ 3 and we store such 13 λ’s in the set Λ below:

Λ = {λ ∈ [0, 127] : deg(pIλ) ≤ 3} = {28, 29, 41, 47, 48, 49, 52, 55, 60, 61, 70, 74, 75, 79}.



10 H. Fan et al.

Details of the 128 deg(pIλ)’s can be seen in Table 2 of App. A.1.
Next, we further construct the 126-dimensional cube I = [0, 127]\{29, 47}

and the degree evaluation gives deg(pI) = 3. Therefore, we are able to recover
pI using the method of [9]. The ANF of pI(x,0) is as follows:

pI(x,0) = x2 + x3 + x8 + x10 + x11 + x10x11 + x15 + x18 + x19 + x20 + x6x20+

x21 + x24 + x28 + x29 + x6x30 + x28x34 + x20x37 + x30x37 + x34x37 + x24x38 + x39+

x20x40 + x30x40 + x41 + x28x44 + x37x44 + x45 + x51 + x52 + x39x52 + x51x52+

x34x53 + x44x53 + x34x54 + x38x54 + x44x54 + x52x54 + x34x53x54 + x44x53x54+

x34x55 + x44x55 + x20x56 + x30x56 + x62 + x54x62 + x61x62 + x63 + x34x62x63+

x44x62x63 + x34x64 + x44x64 + x63x64 + x24x63x64 + x20x65 + x24x65 + x30x65+

x20x66 + x30x66 + x66x67 + x68 + x71 + x70x71 + x72 + x74 + x77 + x78 + x77x78+

x39x77x78 + x39x79 + x80 + x79x80 + x38x79x80 + x52x79x80 + x62x79x80 + x81+

x38x81 + x52x81 + x62x81 + x83 + x38x83 + x63x64x83 + x65x83 + x86 + x87 + x34x87+

x44x87 + x88 + x87x88 + x89 + x6x89 + x37x89 + x40x89 + x56x89 + x65x89 + x66x89+

x90x91 + x92 + x95 + x20x96 + x30x96 + x89x96 + x97 + x54x97 + x79x80x97 + x81x97+

x98 + x52x98 + x77x78x98 + x79x98 + x20x99 + x30x99 + x89x99 + x28x103 + x37x103+

x53x103 + x54x103 + x53x54x103 + x55x103 + x62x63x103 + x64x103 + x87x103 + x111+

x53x111 + x112 + x34x112 + x44x112 + x52x112 + x34x54x112 + x44x54x112 + x103x112+

x54x103x112 + x111x112 + x34x113 + x44x113 + x34x53x113 + x44x53x113 + x103x113+

x53x103x113 + x34x112x113 + x44x112x113 + x103x112x113 + x34x114 + x44x114+

x103x114 + x120 + x121 + x54x121 + x79x80x121 + x81x121 + x20x124 + x30x124+

x89x124 + x20x125 + x30x125 + x89x125.

3.3 New Results for 900-Round Kreyvium

As for 900-round Kreyvium, the cube construction follows the same steps as
899-round in Sect. 3.2. The superpoly recovery is accomplished using the method
in [7]. We take I = [0, 127]\{38, 86} as the cube for 900-round Kreyvium, and
the superpoly pI(x,0) is given in App. A.2.

4 Implementation Dependency

The stream cipher E in Sect. 2.1 can be implemented in many different ways. In
codebook implementations, E is simply a lookup table storing all key-IV pairs
(x,v)’s along with the corresponding keystream z(x,v) values. In round-wise
implementations, E is simply executed by sequential assembly instructions de-
scribing the round functions of stream ciphers. In this case, E is implemented
round by round so a query of E seems more complicated than a table lookup.
However, for E’s implemented in a codebook manner, a query of E is simply a
table lookup. Therefore, for cube attacks, we propose the concept of implemen-
tation dependency revealing whether it can be feasible for both round-wise and
codebook implementation oracles.
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Implementation dependent cube attacks. When the number of table lookups
in the key filtering phase approaches the exhaustive search complexity, the cube
attack may become infeasible for codebook-implemented oracles. We refer to the
cube attacks that only work for round-wise implementations as implementation
dependent cube attacks.

Implementation independent cube attacks. On the contrary, those cube at-
tacks work for both round-wise and codebook implementation attacks are there-
fore called the implementation independent cube attacks.

Consider a cube attack using ℓ cubes I0, . . . , Iℓ−1 with superpolies correlated
to key bits J0, . . . , Jℓ−1. The cube attack in Sect. 2.1 requires 2|I0| + . . .+2|Iℓ−1|

oracle queries for Cube Sum Computation procedure, at least 2|J0|+ . . .+2|Jℓ−1|

table lookups in Key Filtering and another 2n−ℓ oracle queries for the last
Exhaustive Search procedure.

In fact, a table lookup takes two assembly instructions: one addition and one
comparison. We further assume that the implementation of querying E takes
α instructions. Besides, there may also involve basic operations such as XOR,
for constructing the lookup tables used in the Key Filtering phase and the
number of instructions for the table construction is denoted as β. Therefore, the
complexity of the cube attack in Sect. 2.1 has now become:

Cnew =

ℓ−1∑
j=0

2|Ij | + 2n−ℓ +
2

α

ℓ−1∑
j=0

2|Jj | +
β

α
(1)

The attack can only work when Cnew < 2n.

4.1 An Implementation Dependency Analysis Example

According to the concepts of implementation dependency, we find that the cube
attack on 845-round Trivium given in [9] is implementation dependent. We detail
such an implementation dependency analysis here as an example and leave the
same analysis of other cube attack results in Sect. 5.1.

Trivium [1] is a hardware oriented stream cipher. It has been selected as
part of the eSTREAM portfolio [3] and specified as an International Standard
under ISO/IEC 29192-3 [11]. Then key and IV of Trivium are both of 80 bits.
Both key and IV are first loaded in a 288-bit internal state and run 1152-round
initialization afterwards. The whole initialization process can be summarized as
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follows:

(s0, s1, . . . , s92)← (K0,K1, . . . ,K79, 0, . . . , 0)

(s93, s95, . . . , s177)← (IV0, IV1, . . . , IV79, 0, . . . , 0)

(s177, s179, . . . , s287)← (0, . . . , 0, 1, 1, 1)

for i = 0 to 1151 do
t1 ← s65 ⊕ s90 · s91 ⊕ s92 ⊕ s170 (2)
t2 ← s161 ⊕ s174 · s175 ⊕ s176 ⊕ s263 (3)
t3 ← s242 ⊕ s285 · s286 ⊕ s287 ⊕ s68 (4)
(s0, s1, . . . , s92)← (t3, s0, s1, . . . , s91)

(s93, s95, . . . , s177 ← (t1, s93, s94, . . . , s175)

(s177, s179, . . . , s287)← (t2, s177, s178 . . . , s286)

end for

After the initialization phase, one key stream bit is generated by

z = s65 ⊕ s92 ⊕ s161 ⊕ s176 ⊕ s242 ⊕ s287. (5)

When we say r-round Trivium, we mean after r times of updates in the initial-
ization phase, one key bit denoted by zr is generated.

If implementing Trivium bit-wisely, we can get quickly from Eqs. (2) to (5)
that each round of Trivium (one initialization and one keystream bit genera-
tion) requires 14 XORs, 3 ANDs and 288 rotates instructions, thus a total of
305 instructions. In fact, using parallel computing in a hardware environment
could give 64 times speed up for the iterations, which leads to about just 4.8
instructions for each round. So considering a codebook-implemented oracle, one
query of the Trivium is just a table lookup.

In [9], Hu et al. found two cubes I2 and I3 (notations exactly follow [9])
which have the same disjoint set D = {k1, k10}, then they used 2 corresponding
equations for the key recovery procedure of 845-round Trivium, where |I2| = 55
and |I3| = 54. Obviously, we can filter keys by half for the remaining keys once
we get another equation (if the equation is balanced). So three quarters of keys
will be filtered by two equations. For the 845-round attack on Trivium, the two
equations are: {

p(2) = k1 · p(2)0 ⊕ k10 · p(2)1 ⊕ p
(2)
2

p(3) = k1 · p(3)0 ⊕ k10 · p(3)1 ⊕ p
(3)
2

(6)

There are 6 truth tables in the equations and recovering them needs using
Möbius transformation technique. There are 3 tables for p(2) and 3 tables for
p(3). Let T1, T2, T0 are truth tables for p

(2)
1 , p(2)2 , p(2)0 , the size of them are 278,

277 and 278, and the probability of p(2) being balanced is 0.5. And there are
four tables of 278 size and 2 of 277 size in the 6 tables. In the table constructing
phase, the number of XORs is 4 · 78 · 276 + 2 · 77 · 275 ≈ 1.51 · 284.

In the Cube Sum Computation phase, totally 255 + 254 = 1.5 · 255 queries
and XORs are used to get p(2) = θ2 and p(3) = θ3, and this complexity could be
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ignored comparing with the Key Filtering and the Exhaustive Search phase.
After we get the values of p(2) and p(3) by doing the Cube Sum Computation in
the online phase, we can filter and search 280 keys with the given equations.
We simply consider the complexity of lookup for one equation (that is to say
just use one single cube) first and then extend to that of two equations. There
are totally four cases for the table lookup: (k1, k10) = (0, 0), (0, 1), (1, 0), (1, 1).
Consider three kinds of operations: lookup, XOR and judgement. Let k be a
key which is filtered, and k = ∗k1 ∗ ∗ ∗ k10 ∗ ∗∗, where ∗ represents a bit not
belonging to the disjoint set. That is to say, we should give three lookups each
for T0, T1 and T2. Firstly, consider the first equation in Eq. (6). For the four
(k1, k10) situations in , we should compute the results and compare them with
p(2), and if one key leads to p(2) = θ2 ⊕ 1, there is no need to do anything for
the other equation with this key.

So the number of instructions of the first equation consists of three parts
according to three kind of operations we considered:

1. Table lookups for T0, T1 and T2. Totally 278 +277 +278 = 1.25 · 279 lookups,
and 1.25 · 280 instructions.

2. XORs in equation evaluation calculation. The four (k1, k10) cases need 0,
1, 1 and 2 XORs respectively. In total, there are 278 + 278 + 2 · 278 =
280instructions.

3. Judgements. After calculating k1 · p(2)0 ⊕ k10 · p(2)1 ⊕ p
(2)
2 , give a judgement to

check if it equals to p(2) so as to filter keys. There are totally 280 judgements
needed.

Now consider the situation for other equations. We need only to process the
keys that are filtered by the first equation, about 279 keys. This leads to a half
number of XORs and half number of the judgements but full table lookups for
the second equation. Totally it costs about 1.25 · 280 instructions for lookups,
279 instructions for XORs and 279 instructions for judgements.

After key filtering, we should exhaustively search the remaining (1/4) · 280
keys, which needs (1/4) · 280 oracle queries, scilicet, 279 instructions.

Totally, the process of key filtering and searching uses 1.5 · 282 instructions
and the full attack uses 1.89 · 284 = 284.92 instructions. Instead, using brute
force attack for the cipher needs 280 oracle queries. One query of the Trivium
is a table lookup and equals 2 instructions, then the full brute force attack
of Trivium needs 281 instructions. It means cube attack does not work for
codebook implementation Trivium over 845-round. We also find some other
cases to illustrate the universality of this phenomenon, and we put them in
Sect. 5.1.

5 Further Analysis for Cube Attacks

Similar to the analysis in Sect. 4.1, we further scrutinize existing cube attack
results of stream ciphers Trivium, Grain-128AEAD, Acorn and Kreyvium in
Sect. 5.1to see whether they are implementation independent. We also discuss if
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using multiple cubes (superpolies) can reduce the complexity of the key recovery
in Sect. 5.2. For the convenience of the explanation, we give a brief introduction
to Trivium in Sect. 4.1. However, due to page limits, we refer the specifications
for Kreyvium, Grain-128AEAD and Acorn to the respective design papers.

5.1 Analysis for More Cases of Cube Attacks

We recall the corresponding relationship between operations and the number of
instructions. All operations considered are: oracle query, table lookup, XOR, and
judgment.

As has been explicit in Sect. 2.1, there are four procedures in cube at-
tacks, namely Superpoly Recovery, Cube Sum Computation, Key Filtering
and Exhaustive Search. Now that we consider the complexity between oracle
and key filtering, which is important to justify what steps should be considered.

Oracle implementation is querying a stream cipher through a table lookup.
One query for one key so that total 2L queries for a cipher with an L-bit length
key. One oracle query equals m-instructions so there are total m ·2L instructions
for the whole search. And in this section we let one oracle query equal to one
table lookup, then we get m = 2. So in our analysis, we keep using: 1 oracle
query ≈ 1 table lookup ≈ 2 instructions.

– The step Superpoly Recovery uses the nest framework [9] in the offline
phase so its complexity is not involved.

– The step Cube Sum Computation needs to query the oracle 2|I| times where
|I| is the number of indices of the cube. For someone who has much smaller
cube sizes than L , the time cost for cube sum can be ignored. However, for
those using heavy cubes , the time cost should be considered.

– The step Key Filtering uses superpoly and its value to eliminate wrong
keys. One superpoly can filter half keys of the remaining keys (in most cases
the balancedness of a superpoly is 0.5).
Calculating instructions of the table lookups is easy, while the number of
XORs is calculated as follows: Suppose the superpoly can be re-written using
the common disjoint set containing ℓ keys k0, . . . , kℓ−1, it means 2ℓ keys share
the same table and just change the values of k0, . . . , kℓ−1. Obviously, there
are ℓ · 2ℓ/2 XORs for 2ℓ keys, so on average ℓ/2 XORs for each key.

– Finally, we should execute Exhaustive Search procedure for the remaining
keys. For one equation situation, there are still half of the total keys.

Note that for Trivium, we follow the same notations in [9]. The complexity
of the steps of Cube Sum Computation in cube attacks for 843- and 848-round
Trivium is negligible due to the small size of cubes.
The attack on 843-round Trivium in [9] uses three cubes I0, I2 and I3 with
sizes 56, 55, 54, and the corresponding superpolies p0, p2 and p3 all have 5 sub
truth tables(separated by their disjoint sets). The biggest truth table sizes of the
three superpolies are 75, 74 and 75 respectively, so the number of instructions
for table construction is 2 · 75 · 273 + 74 · 272= 1.46 · 280 .
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The Key Filtering uses three superpoly equations: the 1st equation involves
5 · 279 XORs, 275 table lookups and 280 judgements which is 3.5625 · 280 instruc-
tions in total; the 2nd involves 0.5·5·279 XORs, 0.5·280 judgements and 274 table
lookups so there are 1.78125 ·280 instructions; the 3rd involves 0.25 ·5 ·279 XORs,
0.25 · 280 judgements and 275 table lookups, totally 0.9375 · 280 instructions.

The Exhaustive Search for the remaining 1/8 · 280 keys requires 1/8 · 280
encryption oracle queries which is equivalent to 1/4 · 280 instructions.

To sum up, the total amount of instructions for the whole attack is (1.46 +
3.5625 + 1.78125 + 0.9375 + 0.25) · 280 = 282.99 which is higher than that of the
exhaustive search. So this is an implementation dependent result.
The attack on 844-Round Trivium in [9] uses 2 cubes I2 and I3 with size
55, 54, and the superpolies p2 and p3 have the same disjoint set with size 6. The
truth table sizes of the two superpolies are both 74 respectively, so the number
of instructions for table construction is 2 · 74 · 272 = 0.58 · 280.

The Key Filtering uses two superpoly equations : the 1st equation involves
6·279 XORs, 274 table lookups and 280 judgements which is 4.03·280 instructions
in total; the 2nd involves 0.5 · 6 · 279 XORs, 0.5 · 280 judgements and 274 table
lookups, totally 2.03 · 280 instructions.

The Exhaustive Search for the remaining 1/4 · 280 keys requires 1/4 · 280
encryption oracle queries which is equivalent to 1/2 · 280 instructions.

To sum up, the total amount of instructions for the whole attack is (0.58 +
4.03 + 2.03 + 0.5) · 280 = 282.84 which is higher than that of exhaustive search.
So this is an implementation dependent result.
The attacks on 846-, 847- and 848-round Trivium in [7] use the same
cube I with size 53, and the sizes of the corresponding superpolies are all 80 so
the number of instructions for table construction is 80 · 278 = 20 · 280.

The Key Filtering uses one superpoly equation: the equation involves 280

table lookups and 280 judgements, totally 3.5625 · 280 instructions.
The Exhaustive Search for the remaining 1/2 · 280 keys requires 1/2 · 280

encryption oracle queries which is equivalent to 280 instructions.
To sum up, the total amount of instructions for the whole attack is (20+3+

1) · 280 = 284.58 which is higher than that of the exhaustive search. So these are
implementation dependent results.
The attacks on 191-round Grain-128AEAD in [9] uses 2 cubes I0 and I1
with size 96 and 95, and the corresponding superpolies p0 and p1 have the same
disjoint set with size 12. The biggest truth table sizes of the two superpolies are
both 116 respectively, so the number of instructions for table construction can
be ignored.

The Key Filtering uses two superpoly equations: the 1st equation involves
12 · 2127 XORs, 2 · 2116+2115 table lookups and 2128 judgements which is 7 · 2128
instructions in total; the 2nd involves 0.58 ·12 ·2127 XORs, 0.58 ·2128 judgements
and 2 · 2116 + 2115 table lookups, totally 0.58 · 7 · 2128 = 4.06 · 2128 instructions.

The Exhaustive Search for the remaining (1 − 0.42)2 · 2128 keys requires
(1 − 0.42)2 · 2128 encryption oracle queries which is equivalent to 0.67 · 2128
instructions.
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To sum up, the total amount of instructions for the whole attack is 7 · 2128 +
4.06 · 2128 + 0.67 · 2128 = 2131.55 which is higher than that of the exhaustive
search. So this is an implementation dependent result.

Remark 1. The balancedness for p0 is 0.31 and 0.30 for p1, so using the knowl-
edge of classical models of probability, we can filter 0.3 · 0.7 + 0.7 · 0.3 = 0.42 of
the total keys using one equation with the mathematic expectation (more details
referring to [9]). And it means the best balancedness is 0.5 in this attack.

The attacks on 192-round Grain-128AEAD [7] uses one cube I with size
94, and the size of the corresponding superpoly is 128 so the number of instruc-
tions for table construction is 128 · 2126 = 32 · 2128.

The Key Filtering uses one superpoly equation: the equation involves 2128
table lookups and 2128 judgements, totally 3 · 2128 instructions.

The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is (32+3+
1) · 2128 = 2133.17 which is higher than that of the exhaustive search. So this is
an implementation dependent result.
The attacks on 776-round Acorn in [7] uses 2 cubes I1 and I2 with both
size 126, so the complexity of the two cubes sum computation is 2·2126 encryption
oracle queries which is equivalent to 2128 instructions, and the corresponding
superpolies are p0 and p1. The biggest truth table sizes of the two superpolies
are 120 and 119, so the number of instructions for table construction could be
ignored and so as the Key Filtering.

The Exhaustive Search for the remaining (1/4) · 2128 keys requires (1/4) ·
2128 encryption oracle queries which is equivalent to (1/2) · 2128 instructions.

To sum up, the total amount of instructions for the whole attack is 2128 +
(1/2) · 2128 = 2128.58 which is lower than that of the exhaustive search. So this
is an implementation independent result.
The attacks on 894-round Kreyvium in [9] uses 1 cube I with size 119,
and the corresponding superpoly is p. The truth table size of the superpoly is
77, so the number of instructions for table construction could be ignored and so
as the Key Filtering.

The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is 2128

which is lower than that of the exhaustive search. So this is an implementation
independent result.
The attacks on 895-round Kreyvium in [7] uses one cube I with size 120,
and the corresponding superpoly p has a single truth table. The truth table size
of the superpoly is 128, so the number of instructions for table construction is
128 · 2126 = 32 · 2128.

The Key Filtering uses one superpoly equation: the equation involves 2128
table lookups and 2128 judgements, totally 3 · 2128 instructions.
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The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is the equa-
tion involves 2128 table lookups and 2128 judgements, totally 3 ·2128 instructions,
which is higher than that of the exhaustive search. So this is an implementation
dependent result.

The attack on 898-round Kreyvium in this paper uses two cubes I0 and I1
with sizes both 126, so the complexity of the two cubes sum computation requires
2 ·2126 encryption oracle queries which is equivalent to 2128 instructions, and the
corresponding superpolies p0 and p1 both have one truth table. The truth table
sizes of the superpolies are far smaller than 128, so the number of instructions
for table construction can be ignored and so as the Key Filtering.

The Exhaustive Search for the remaining 1/4 · 2128 keys requires 1/4 · 2128
encryption oracle queries which is equivalent to (1/2) · 2128 instructions.

To sum up, the total amount of instructions for the whole attack is 2128 +
(1/2)·2128 = 1.5·2128 = 2128.58 which is lower than that of the exhaustive search.
So this is an implementation independent result.

The attack on 899-round Kreyvium in this paper uses one cube I with
size 126, so the complexity of the cube sum computation requires 2126 encryption
oracle queries which is equivalent to 2127 instructions, and the corresponding
superpoly p have one truth table. The truth table size of the superpoly is far
smaller than 128, so the number of instructions for table construction can be
ignored and so as the Key Filtering.

The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is (1/2) ·
2128+2128 = 1.5·2128 = 2128.58 which is lower than that of the exhaustive search.
So this is an implementation independent result.

The attack on 900-round Kreyvium in this paper uses one cube I with
size 126, so the complexity of the cube sum computation requires 2126 encryption
oracle queries which is equivalent to 2127 instructions, and the corresponding
superpoly p have one truth table. The truth table size of the superpoly is far
smaller than 128, so the number of instructions for table construction can be
ignored and so as the Key Filtering.

The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is (1/2) ·
2128+2128 = 1.5·2128 = 2128.58 which is lower than that of the exhaustive search.
So this is an implementation independent result.

A summary of all the analyzed results is given in Table 1 in the Introduction.



18 H. Fan et al.

5.2 Multiple Cubes vs Single Cube

We find using multiple cubes may not result in more efficient key recoveries than
its single-cube counterpart, and examples are 843, 844, 845-Round Trivium,
898-round Kreyvium and 776-round Acorn.

We find the interesting property firstly in studying key filtering. For a cipher
with several cubes that can be exploited, such as N cubes, which correspond
to N equations. Each equation could reduce half of the remaining keys. That
means for an equation in the latter of the key filtering procedure, the cost of
constructing its truth table and doing the cube summation might be unbearable.
Though we handle corresponding fewer key bits for the equation in the back, we
must pay for full time constructing its truth table and doing cube sum just like
what we did for the first equation. And we give several examples.

The cube attack on 843-round Trivium uses 3 cubes, which means the third
equation could only filter 1/8 keys from the remaining 1/4 keys but should pay
the whole expenses of truth table constructions.The cost is 75 · 273 = 1.17 · 279
XORs while the exhaustive search for (1/8) keys costs only (1/8) · 280 oracle
queries, equals to 0.5 · 279 instructions. And this does not consider the cost of
table lookups, XORs and judgments for the third equation.

843, 844 and 845-round Trivium are typical cases. And unexpectedly, even
in the feasible cube attack on 898-round Kreyvium, though the total complexity
is less than exhaustive search, its second equation corresponds to a cube of size
126, which queries 2126 times Kreyvium, and it just filters half of the rest keys,
that is 2126 keys. And querying the Kreyvium 2126 times is just the same as
the exhaustive search. So using multiple cubes may not surpass using a single
cube. A similar situation happens to the attack on 776-round Acorn, as the
cube sum invokes oracle as that for an exhaustive search.

6 Conclusions

In this paper, we focused on the real performance of cube attacks for ciphers
with massive superpolies or heavy cubes. We analyzed a dozen recent cube at-
tack results on Trivium, Kreyvium, Grain-128AEAD and Acorn, and found
cube attacks are ineffective against some of them in the situation of code-book
implementation. We also gave some new results on 898-, 899- and 900-round
Kreyvium. In addition, we discussed the efficiency of cube attacks between
multiple cubes and one single cube, and found sometimes the number of cubes
used should be limited.
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Table 2: The upper bound degree deg(pIλ) of superpolies pIλ for
899-round Kreyvium, with cube dimension 127.

λ deg(pIλ) λ deg(pIλ) λ deg(pIλ) λ deg(pIλ)
0 5 32 6 64 4 96 4
1 6 33 5 65 5 97 5
2 6 34 4 66 6 98 4
3 4 35 5 67 4 99 5
4 4 36 4 68 4 100 4
5 5 37 5 69 4 101 5
6 5 38 5 70 3 102 5
7 4 39 4 71 4 103 6
8 7 40 4 72 4 104 6
9 6 41 3 73 4 105 5
10 4 42 4 74 3 106 5
11 5 43 4 75 2 107 6
12 4 44 4 76 4 108 4
13 5 45 5 77 5 109 4
14 4 46 4 78 5 110 4
15 5 47 2 79 3 111 4
16 5 48 3 80 4 112 4
17 5 49 3 81 4 113 6
18 5 50 4 82 6 114 6
19 5 51 4 83 7 115 6
20 5 52 3 84 5 116 6
21 6 53 4 85 4 117 5
22 5 54 4 86 4 118 5
23 4 55 3 87 4 119 5
24 6 56 4 88 5 120 4
25 6 57 4 89 4 121 5
26 6 58 4 90 5 122 5
27 4 59 4 91 5 123 6
28 3 60 2 92 5 124 5
29 3 61 3 93 4 125 4
30 5 62 4 94 6 126 4
31 4 63 5 95 6 127 4
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A.2 The ANFs of Superpolies corresponding to Attacks on 898- and
900-Round Kreyvium

For I1 = [0, 127]\{38, 86}, the superpoly pI1(x,0) for 898-round Kreyvium is
as Eq. (7)

pI1(x,0) = x12 + x20 + x21 + x20x21 + x23 + x31 + x36 + x11x36 + x12x36 + x26x36

+ x37 + x11x37 + x12x37 + x26x37 + x38 + x11x38 + x12x38 + x26x38 + x36x38

+ x37x38 + x41 + x45 + x45x46 + x47 + x46x47 + x48 + x47x48 + x49 + x48x49 + x50

+ x11x55 + x12x55 + x26x55 + x38x55 + x56 + x11x56 + x12x56 + x26x56 + x38x56

+ x57 + x58 + x59 + x64x65 + x66 + x67 + x66x67 + x68 + x36x70 + x37x70 + x38x70

+ x55x70 + x56x70 + x71 + x36x71 + x37x71 + x38x71 + x55x71 + x56x71 + x80x81

+ x11x80x81 + x12x80x81 + x26x80x81 + x38x80x81 + x70x80x81 + x71x80x81 + x82

+ x11x82 + x12x82 + x26x82 + x38x82 + x70x82 + x71x82 + x81x82 + x11x81x82

+ x12x81x82 + x26x81x82 + x38x81x82 + x70x81x82 + x71x81x82 + x83 + x11x83

+ x12x83 + x26x83 + x38x83 + x70x83 + x71x83 + x83x84 + x85 + x84x85 + x87 + x90

+ x89x90 + x91 + x95 + x11x95 + x12x95 + x26x95 + x38x95 + x70x95 + x71x95 + x96

+ x11x96 + x12x96 + x26x96 + x38x96 + x70x96 + x71x96 + x97 + x11x97 + x12x97

+ x26x97 + x36x97 + x37x97 + x55x97 + x56x97 + x70x97 + x71x97 + x80x81x97

+ x82x97 + x81x82x97 + x83x97 + x95x97 + x96x97 + x98 + x114 + x123 + x126. (7)

For I = [0, 127]\{38, 86}, the superpoly pI(x,0) for 900-round Kreyvium is
as Eq. (8).

pI(x,0) = x125 + x122 + x121 + x116 + x113x124 + x112 + x111 + x111x112x124+

x110x124 + x110x111x124 + x106 + x105x124 + x104 + x103 + x101 + x98x125 + x98x113+

x98x111x112 + x98x110 + x98x110x111 + x98x105 + x97x124 + x97x98 + x96 + x96x120+

x96x97 + x95 + x95x123 + x94 + x92 + x92x124 + x92x98 + x91x124 + x91x98 + x90+

x90x91 + x90x91x124 + x90x91x98 + x89x121 + x89x97 + x89x96 + x89x90 + x89x90x124+

x89x90x98 + x88 + x87 + x87x88 + x87x88x121 + x87x88x97 + x87x88x96 + x87x88x95+

x86 + x86x124 + x86x98 + x85 + x85x124 + x85x98 + x84 + x83 + x82x91 + x82x89x90+

x80x81x98 + x80x81x91 + x80x81x89x90 + x80x81x83 + x80x81x82 + x79x124 + x79x98+

x79x89 + x79x88 + x79x87x88 + x79x80 + x78x89 + x77x124 + x77x98 + x77x78+

x77x78x124 + x77x78x98 + x77x78x89 + x77x78x87x88 + x76x124 + x76x98 + x76x77+

x75x76 + x75x76x78 + x75x76x77 + x73 + x72 + x72x73 + x70 + x70x89 + x70x87x88+

x70x82 + x70x80x81 + x68x125 + x68x124 + x68x121 + x68x113x124 + x68x111x112x124+

x68x110x124 + x68x110x111x124 + x68x105x124 + x68x98x125 + x68x98x113+

x68x98x111x112 + x68x98x110 + x68x98x110x111 + x68x98x105 + x68x97 + x68x92x124+

x68x92x98 + x68x91x124 + x68x91x98 + x68x90x91x124 + x68x90x91x98+

x68x89x90x124 + x68x89x90x98 + x68x86x124 + x68x86x98 + x68x85x124 + x68x85x98+

x68x80 + x68x77x124 + x68x77x98 + x68x76x124 + x68x76x98 + x67x68 + x66 + x66x98+

x66x91 + x66x89x90 + x66x88 + x66x70 + x66x68 + x66x68x98 + x65x124 + x65x113+

x65x111x112 + x65x110 + x65x110x111 + x65x105 + x65x98 + x65x97 + x65x92 + x65x91+
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x65x90x91 + x65x89x90 + x65x85 + x65x79 + x65x77 + x65x77x78 + x65x76 + x65x70+

x65x68x124 + x65x68x113 + x65x68x111x112 + x65x68x110 + x65x68x110x111+

x65x68x105 + x65x68x98 + x65x68x92 + x65x68x91 + x65x68x90x91 + x65x68x89x90+

x65x68x86 + x65x68x85 + x65x68x77 + x65x68x76 + x64x124 + x64x98 + x64x95+

x64x82 + x64x80x81 + x64x68x124 + x64x68x98 + x64x66 + x64x65x91 + x64x65x89x90+

x64x65x88 + x64x65x70 + x64x65x68 + x63 + x63x124 + x63x98 + x63x68x124+

x63x68x98 + x63x65 + x63x65x68 + x63x64x86 + x63x64x70 + x63x64x66 + x63x64x65+

x62 + x62x124 + x62x121 + x62x98 + x62x97 + x62x96 + x62x95 + x62x89 + x62x87x88+

x62x79 + x62x77x78 + x62x70 + x62x68 + x62x68x124 + x62x68x98 + x62x65+

x62x65x68 + x62x63 + x61x96 + x61x62x124 + x61x62x98 + x61x62x68x124+

x61x62x68x98 + x61x62x65 + x61x62x65x68 + x60 + x60x61x124 + x60x61x98+

x60x61x68x124 + x60x61x68x98 + x60x61x65 + x60x61x65x68 + x58x59 + x56x98+

x56x82 + x56x80x81 + x56x68 + x56x68x98 + x55 + x55x113 + x55x111x112 + x55x110+

x55x110x111 + x55x105 + x55x98 + x55x97 + x55x92 + x55x90x91 + x55x86 + x55x85+

x55x83 + x55x81x82 + x55x79 + x55x77 + x55x77x78 + x55x76 + x55x70 + x55x68+

x55x68x113 + x55x68x111x112 + x55x68x110 + x55x68x110x111 + x55x68x105+

x55x68x92 + x55x68x91 + x55x68x90x91 + x55x68x89x90 + x55x68x86 + x55x68x85+

x55x68x77 + x55x68x76 + x55x65 + x55x65x68 + x55x64x68 + x55x63 + x55x63x68+

x55x62 + x55x62x68 + x55x61x62 + x55x61x62x68 + x55x60x61 + x55x60x61x68+

x55x56 + x54 + x54x124 + x54x98 + x54x68x124 + x54x68x98 + x54x65 + x54x65x68+

x54x55 + x54x55x68 + x53 + x53x111x124 + x53x98x111 + x53x68x111x124+

x53x68x98x111 + x53x65x111 + x53x65x68x111 + x53x55x111 + x53x55x68x111 + x52+

x52x124 + x52x112x124 + x52x110x124 + x52x98 + x52x98x112 + x52x98x110 + x52x68+

x52x68x112x124 + x52x68x110x124 + x52x68x98x112 + x52x68x98x110 + x52x65+

x52x65x112 + x52x65x110 + x52x65x68x112 + x52x65x68x110 + x52x55 + x52x55x112+

x52x55x110 + x52x55x68x112 + x52x55x68x110 + x52x53x124 + x52x53x98+

x52x53x68x124 + x52x53x68x98 + x52x53x65 + x52x53x65x68 + x52x53x55+

x52x53x55x68 + x51x124 + x51x111x124 + x51x98 + x51x98x111 + x51x96 + x51x77+

x51x75x76 + x51x68x124 + x51x68x111x124 + x51x68x98 + x51x68x98x111 + x51x65+

x51x65x111 + x51x65x68 + x51x65x68x111 + x51x55 + x51x55x111 + x51x55x68+

x51x55x68x111 + x51x52x124 + x51x52x98 + x51x52x68x124 + x51x52x68x98+

x51x52x65 + x51x52x65x68 + x51x52x55 + x51x52x55x68 + x50 + x50x78 + x50x76x77+

x49 + x48 + x47x48 + x46x124 + x46x98 + x46x68x124 + x46x68x98 + x46x65+

x46x65x68 + x46x55 + x46x55x68 + x46x47 + x45 + x44 + x42 + x40 + x39 + x39x125+

x39x113 + x39x111x112 + x39x110 + x39x110x111 + x39x105 + x39x97 + x39x92+

x39x90x91 + x39x88 + x39x86 + x39x85 + x39x80x81 + x39x79 + x39x77 + x39x77x78+

x39x76 + x39x70 + x39x68x125 + x39x68x113 + x39x68x111x112 + x39x68x110+

x39x68x110x111 + x39x68x105 + x39x68x92 + x39x68x91 + x39x68x90x91+

x39x68x89x90 + x39x68x86 + x39x68x85 + x39x68x77 + x39x68x76 + x39x66+
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x39x66x68 + x39x65x68 + x39x64x68 + x39x63 + x39x63x68 + x39x63x64 + x39x62+

x39x62x68 + x39x61x62 + x39x61x62x68 + x39x60x61 + x39x60x61x68 + x39x56+

x39x56x68 + x39x55 + x39x54 + x39x54x68 + x39x53x111 + x39x53x68x111 + x39x52+

x39x52x112 + x39x52x110 + x39x52x68x112 + x39x52x68x110 + x39x52x53+

x39x52x53x68 + x39x51 + x39x51x111 + x39x51x68 + x39x51x68x111 + x39x51x52+

x39x51x52x68 + x39x46 + x39x46x68 + x38x124 + x38x98 + x38x96 + x38x89+

x38x87x88 + x38x86 + x38x70 + x38x68 + x38x66 + x38x65 + x38x64x65 + x38x62+

x38x55 + x37x120 + x37x97 + x37x89 + x37x87x88 + x37x62 + x37x61 + x37x51+

x37x38 + x36 + x36x123 + x36x87x88 + x36x64 + x36x62 + x35x124 + x35x98+

x35x68x124 + x35x68x98 + x35x65 + x35x65x68 + x35x55 + x35x55x68 + x35x39+

x35x39x68 + x34 + x33 + x32 + x31 + x30x95 + x30x78 + x30x36 + x29x79 + x29x66+

x29x64x65 + x29x39 + x28 + x27 + x27x124 + x27x98 + x27x68x124 + x27x68x98+

x27x65x68 + x27x63x64 + x27x55 + x27x55x68 + x27x39 + x27x39x68 + x27x38 + x26+

x26x124 + x26x98 + x26x68x124 + x26x68x98 + x26x65 + x26x65x68 + x26x55+

x26x55x68 + x26x39 + x26x39x68 + x25 + x23 + x23x98 + x23x39 + x22 + x21 + x21x68+

x20x95 + x20x88 + x20x78 + x20x36 + x20x29 + x19x89 + x19x30 + x19x20 + x18x124+

x18x98 + x18x68x124 + x18x68x98 + x18x65 + x18x65x68 + x18x55 + x18x55x68+

x18x39 + x18x39x68 + x17x124 + x17x98 + x17x68x124 + x17x68x98 + x17x65+

x17x65x68 + x17x55 + x17x55x68 + x17x39 + x17x39x68 + x15 + x14 + x13 + x11x89+

x11x87x88 + x11x82 + x11x80x81 + x11x68 + x11x66 + x11x65 + x11x64x65+

x11x63x64 + x11x62 + x11x55 + x11x39 + x11x38 + x10x88 + x10x29 + x9x125 + x9x124+

x9x121 + x9x113x124 + x9x111x112x124 + x9x110x124 + x9x110x111x124 + x9x105x124+

x9x98x125 + x9x98x113 + x9x98x111x112 + x9x98x110 + x9x98x110x111 + x9x98x105+

x9x97 + x9x92x124 + x9x92x98 + x9x91x124 + x9x91x98 + x9x90x91x124+

x9x90x91x98 + x9x89 + x9x89x90x124 + x9x89x90x98 + x9x86x124 + x9x86x98+

x9x85x124 + x9x85x98 + x9x80 + x9x77x124 + x9x77x98 + x9x76x124 + x9x76x98+

x9x66 + x9x66x98 + x9x65x124 + x9x65x113 + x9x65x111x112 + x9x65x110+

x9x65x110x111 + x9x65x105 + x9x65x98 + x9x65x92 + x9x65x91 + x9x65x90x91+

x9x65x89x90 + x9x65x86 + x9x65x85 + x9x65x77 + x9x65x76 + x9x64x124 + x9x64x98+

x9x64x65 + x9x63x124 + x9x63x98 + x9x63x65 + x9x62 + x9x62x124 + x9x62x98+

x9x62x65 + x9x61x62x124 + x9x61x62x98 + x9x61x62x65 + x9x60x61x124+

x9x60x61x98 + x9x60x61x65 + x9x56 + x9x56x98 + x9x55 + x9x55x113+

x9x55x111x112 + x9x55x110 + x9x55x110x111 + x9x55x105 + x9x55x92 + x9x55x91+

x9x55x90x91 + x9x55x89x90 + x9x55x86 + x9x55x85 + x9x55x77 + x9x55x76+

x9x55x65 + x9x55x64 + x9x55x63 + x9x55x62 + x9x55x61x62 + x9x55x60x61+

x9x54x124 + x9x54x98 + x9x54x65 + x9x54x55 + x9x53x111x124 + x9x53x98x111+

x9x53x65x111 + x9x53x55x111 + x9x52 + x9x52x112x124 + x9x52x110x124+

x9x52x98x112 + x9x52x98x110 + x9x52x65x112 + x9x52x65x110 + x9x52x55x112+

x9x52x55x110 + x9x52x53x124 + x9x52x53x98 + x9x52x53x65 + x9x52x53x55+
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x9x51x124 + x9x51x111x124 + x9x51x98 + x9x51x98x111 + x9x51x65 + x9x51x65x111+

x9x51x55 + x9x51x55x111 + x9x51x52x124 + x9x51x52x98 + x9x51x52x65+

x9x51x52x55 + x9x46x124 + x9x46x98 + x9x46x65 + x9x46x55 + x9x39x125+

x9x39x113 + x9x39x111x112 + x9x39x110 + x9x39x110x111 + x9x39x105 + x9x39x92+

x9x39x91 + x9x39x90x91 + x9x39x89x90 + x9x39x86 + x9x39x85 + x9x39x77+

x9x39x76 + x9x39x66 + x9x39x65 + x9x39x64 + x9x39x63 + x9x39x62 + x9x39x61x62+

x9x39x60x61 + x9x39x56 + x9x39x54 + x9x39x53x111 + x9x39x52x112 + x9x39x52x110+

x9x39x52x53 + x9x39x51 + x9x39x51x111 + x9x39x51x52 + x9x39x46 + x9x38+

x9x35x124 + x9x35x98 + x9x35x65 + x9x35x55 + x9x35x39 + x9x30 + x9x27x124+

x9x27x98 + x9x27x65 + x9x27x55 + x9x27x39 + x9x26x124 + x9x26x98 + x9x26x65+

x9x26x55 + x9x26x39 + x9x21 + x9x20 + x9x18x124 + x9x18x98 + x9x18x65+

x9x18x55 + x9x18x39 + x9x17x124 + x9x17x98 + x9x17x65 + x9x17x55 + x9x17x39+

x9x11 + x8x124 + x8x98 + x8x68x124 + x8x68x98 + x8x65 + x8x65x68 + x8x55+

x8x55x68 + x8x39 + x8x39x68 + x8x9x124 + x8x9x98 + x8x9x65 + x8x9x55 + x8x9x39+

x7 + x7x124 + x7x98 + x7x68x124 + x7x68x98 + x7x65 + x7x65x68 + x7x55 + x7x55x68+

x7x39 + x7x39x68 + x7x9x124 + x7x9x98 + x7x9x65 + x7x9x55 + x7x9x39 + x6+

x5x95 + x5x36. (8)
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