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Abstract

Time-Lock Puzzles (TLPs) are a powerful tool for concealing messages until a predetermined point
in time. When solving multiple puzzles, it becomes crucial to have the ability to batch-solve puzzles,
i.e., simultaneously open multiple puzzles while working to solve a single one. Unfortunately, all
previously known TLP constructions that support batch solving rely on super-polynomially secure
indistinguishability obfuscation, making them impractical.

In light of this challenge, we present novel TLP constructions that offer batch-solving capabilities
without using heavy cryptographic hammers. Our proposed schemes are simple and concretely efficient,
and they can be constructed based on well-established cryptographic assumptions based on pairings
or learning with errors (LWE). Along the way, we introduce new constructions of puncturable key-
homomorphic PRFs both in the lattice and in the pairing setting, which may be of independent interest.
Our analysis leverages an interesting connection to Hall’s marriage theorem and incorporates an
optimized combinatorial approach, enhancing the practicality and feasibility of our TLP schemes.

Furthermore, we introduce the concept of "rogue-puzzle attacks", where maliciously crafted puzzle
instances may disrupt the batch-solving process of honest puzzles. We then propose constructions of
concrete and efficient TLPs designed to prevent such attacks.
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1 Introduction

A Time-Lock Puzzle (TLP) is a cryptographic primitive that allows one to hide a message for a pre-
determined amount of time (denoted by 𝑇 ). TLPs possess two essential characteristics efficency and
sequentiality. Efficiency requires that computing the puzzle is significantly faster, ideally in logarithmic
time, relative to 𝑇 . Sequentiality, on the other hand, demands that any potential adversary should not
be able to solve the puzzle in less time than the stipulated duration 𝑇 , even when employing parallel
computational resources. Rivest, Shamir, and Wagner [RSW96] constructed the first TLP based on the
conjectured sequentiality of repeated modular squaring in RSA groups. Ever since, TLPs have found a
staggering variety of applications, including sealed-bid auctions [MT19], e-voting systems [MT19], fair
contract signing [BN00], non-malleable commitments [LPS17], cryptocurrency payment systems [TMSS22],
distributed consensus algorithms [WXDS20], and byzantine consensus protocols [SLM+23], to name a few.
Time-lock puzzles have transitioned from theoretical constructs to practical tools and have been utilized in
real-world protocols such as private blockchain voting 1.

Solve one, open many. The fundamental characteristic of time-lock puzzles (TLPs) is their reliance
on a significant amount of sequential computation to be solved. However, this property can introduce
challenges in protocols involving multiple puzzles. As the number of puzzles to be solved increases, the
computational overhead required to complete the protocol can quickly become impractical. Moreover, this
efficiency bottleneck can be exploited as an attack vector, potentially obstructing the successful termination
of a protocol. For example, adversaries might flood the network with unopened puzzles, particularly in
cases where an unfavourable outcome is expected.

This limitation has recently motivated new TLP constructions [MT19, BDGM19, SLM+23, BF21] that
offer a way around this problem. They design a cryptographic protocol that allows the solver to open many
puzzles at the cost of a single puzzle opening. The work by [SLM+23] is particularly interesting, which
proposed the first construction of TLPs with batched solving. In this approach, when faced with multiple
puzzles 𝑛, each with a time-lock duration of𝑇 , a solver can recover all 𝑛 puzzles without solving all of them
individually. Remarkably, the computational effort required remains the same as solving a single puzzle.
Notably, the parties generating and computing these puzzles need not coordinate or even be aware of each
other’s participation.

While [SLM+23] establishes the theoretical feasibility of batched solving, their scheme relies on the
existence of general-purpose indistinguishability obfuscation [BGI+01, GGH+13]. Therefore, given the state
of affairs of current obfuscation constructions [JLS21, GJLS21, WW21, GP21, BDGM22, JLS22], it is fair to
say that their scheme is far from practically efficient and considered a heavyweight cryptographic primitive
not ready for efficient deployment (there are certain restricted functionalities [LMA+16, CMR17] but there
are no general purpose implementations). This motivates the following question:

Can we build concretely efficient TLPs with batch solving?

1.1 Our Results

In this work, we propose a new approach to construct TLPs with batch solving. Our contributions are
summarized below.
1https://cointelegraph.com/news/a16z-releases-anonymous-voting-system-for-ethereum.
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(1) Generic transformation for batch solving. We present a generic method for constructing TLPs
that support batch solving. Our construction builds upon and simplifies the concepts introduced in a
prior work [SLM+23]. The construction is based on the combination of two key components: linearly
homomorphic TLPs [MT19] and puncturable Key-Homomorphic PseudoRandom Functions (KH-PRFs).
The resulting scheme is conceptually simple, based on well-understood computational assumptions, and
concretely efficient. Depending on the number of homomorphic key operations allowed by our KH-PRF
and the domain size, we consider two flexible settings. In the "unbounded" setting, the solver can batch an
unlimited number of time-lock puzzles. In contrast, in the "bounded" setting, the setup phase of the TLP
imposes an apriori limit on the size of the number of puzzles that can be batched. Notably, the runtime of
the puzzle generation and the size of the puzzle are independent of this bound. Our solving algorithm for
the bounded settings leverages a novel connection to Hall’s marriage theorem. This connection allows us
to enhance the concrete parameters of our scheme, contributing to its practical efficiency.

(2) New Puncturable Key-Homomorphic PRFs. We present two constructions of KH-PRFs.

• Lattice-based puncturable KH-PRFs: We propose a new construction of KH-PRF based on the
hardness of the standard learning with errors (LWE) problem, with superpolynomial modulus to
noise ratio. Compared with prior work [BV15], our scheme is conceptually simpler, practically more
efficient, and does not need to assume the hardness of the 1D-SIS problem, which was required
in [BV15]. 3𝜆 matrix multiplications dominate the computational cost of evaluating our KH-PRF.
Additionally, this puncturable key-homomorphic PRF incorporates a transparent setup.

In the bounded setting (where the number of homomorphic operations is apriori bounded), we devise
a puncturable PRF based on the LWE assumption with a polynomial modulus. Proving security
requires care in resampling keys.

• Pairing-based puncturable KH-PRFs: We also show how to build the first puncturable KH-PRF
from bilinear groups where the domain size is polynomially bounded. Prior to our work, group-
based PRFs were either key-homomorphic [NPR99] or puncturable [SW14] but did not satisfy both
properties. We present two constructions based on standard assumptions in bilinear groups featuring
quadratic and linear public parameters, respectively. Notably, the evaluation of these PRFs requires
just a single pairing operation.

We note that our pairing-based construction requires a trusted setup. However, the setup is structured
and more desirable than an "arbitrary" structured distribution. The structured reference string in
the linear-CRS construction can be jointly sampled by mutually distrustful parties in an efficient
manner [NRBB22]. Once the reference string has been sampled, we do not make additional trust
assumptions. The same reference string can also be reused across multiple independent protocol
instantiations. Furthermore, it can be updated if more parties wish to join the system using techniques
in [GKM+18]. Additionally, batched TLPs also have applications in the setting with a private-coin
setup. For instance, auctions and e-voting can also be realized using a TLP with batch solving and
trusted setup.

(3) Security against rogue-puzzle attacks. We initiate the study of batch-solving algorithms secure
against "rogue-puzzle attacks". In this scenario, we consider attackers capable of crafting malicious puzzles
with the intent of disrupting the batch-solving process of legitimately generated puzzles. This notion
is particularly relevant in large-scale scenarios, where one cannot trust users to generate their puzzles
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honestly, yet we want to guarantee correct termination for honest participants. Without this guarantee,
batch-solving provides little advantage compared to the trivial solution since an adversary may stall the
protocol by tampering with the output of the batch-solving procedure. Identifying and addressing this
notion represents a primary conceptual contribution to the deployment of a batchable time lock puzzle.

In this context, we provide formal definitions of security against rogue-puzzle attacks and demonstrate
how to enhance our TLP constructions to meet this security requirement. Along the way, we propose
efficient zero-knowledge protocols for verifying the integrity of a puzzle to ensure that it is well-formed.

(4) Implementation and performance evaluation. To substantiate our claims for practicality, we
present the first implementation of time-lock puzzles with batch solving. We consider two main parameters:
batch-solving time and communication size. We present our results in Section 7.1 and mention some key
takeaways below. For batching 500 puzzles where the hardness of the puzzle has to compute 500 million
exponentiations, our batch-solving algorithm runs in 22.5 minutes. In comparison, a single puzzle takes
18.5 minutes to solve. For growing time parameter 𝑇 , we expect the gap to narrow down. In terms of
communication, for batching 7𝑘 puzzles, we only transmit a total size of 40MB. We also discuss different
tradeoffs between communication size and computational time (as highlighted in Remark 7.2) to cater
to specific application requirements. Our code demonstrates that time-lock puzzles with batch solving
can be implemented with currently available hardware, and have the potential for substantial savingss in
large-scale protocols.

1.2 Technical Overview

In this section, we’ll provide a technical overview of our solutions and the techniques developed within
our work. This overview will encompass our main construction template, the efficient instantiation of
underlying building blocks, and the concept of security against rogue-puzzle attacks.

A strawman solution. Before explain our construction, let us show how existing tools already give a
weak form of batch solving. If we start from a homomorphic time-lock puzzle [MT19] over Z𝑁 (for a large
enough 𝑁 ), one way to batch puzzles is to homomorphically evaluate the packing function. In more details,
given 𝑛 puzzles 𝑍1, . . . , 𝑍𝑛 (of some linearly homomorphic time-lock puzzle) where each puzzle contains
some 𝜆-bit message, we can evaluate homomorphicaly the following linear function:

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

2(𝑖−1) ·𝜆 · 𝑥𝑖 .

We can then solve the resulting puzzle 𝑍 ∗ to obtain all the 𝑛 messages, encoded in different portions of the
bit-string. While syntactically correct, this solution suffers from two important limitations:

• Bounded batching: Since the plaintext space needs to be large enough to accommodate all of the
𝑛 messages, this means that at puzzle generation time one has to fix a bound on the number of
batchable puzzles 𝑛.

• Quadratic overhead: In settings where 𝑛 parties compute the puzzles separately, each puzzle must
be of size at least 𝑛 (for the reason specified above) and therefore the total communication of the
protocol grows with 𝑂 (𝑛2).

Given this baseline, our objective is to improve on either of these properties (ideally both), without sacrificing
the practical efficiency of the scheme.
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Our Construction. Our generic construction is inspired by the work of [SLM+23], and our main ob-
servation is to decouple the task of assigning a unique identifier to each user from the batch-solving
mechanism. We start by explaining our construction in the simplified settings where all parties computing
a puzzle are associated with a unique index 𝑖 ∈ [𝑛], and we assume that there are no collisions. Later in this
overview, we will show how to remove this assumption. We will also assume the existence of a puncturable
key-homomorphic PRF (KH-PRF) with domain at least 𝑛, where the adjective puncturable means that we
can create a punctured version of the PRF key k at some point 𝑖∗, in such a way that the punctured key
k∗ allows one to evaluate the PRF at all points, except for PRF(k, 𝑖∗). Furthermore, the PRF must be key
homomorphic in the sense that for any two keys k0 and k1 and all points 𝑖 it holds that

PRF(k0, 𝑖) + PRF(k1, 𝑖) ≈ PRF(k0 + k1, 𝑖).

We are now ready to describe how to augment a linearly homomorphic time-lock puzzle with the batch
solving algorithm. We outline the algorithms below.

• Puzzle Generation: On input a message𝑚𝑖 and a unique index 𝑖 , the puzzle generation algorithm
samples a random PRF key k𝑖 and computes the punctured key k∗𝑖 at point 𝑖 . Then it computes 𝑍𝑖 as
the time-lock puzzle containing the key k𝑖 and returns{

𝑍𝑖 , k∗𝑖 , 𝑖, 𝑐𝑖 = PRF(k𝑖 , 𝑖) +𝑚𝑖

}
.

• Batch Solving: To solve 𝑛 puzzles as defined above, one can sum the puzzles homomorphically to
obtain

(𝑍1, . . . , 𝑍𝑛)
Sum−−−→ 𝑍 ∗ ∈ Gen

(∑︁
𝑖

k𝑖

)
and solve 𝑍 ∗ to recover �̃� =

∑
𝑖 k𝑖 . The solver can recover each message𝑚𝑖 individually by computing

𝑐𝑖 +
∑︁
𝑗≠𝑖

PRF(k∗𝑗 , 𝑖) + PRF(�̃�, 𝑖) = PRF(k𝑖 , 𝑖) +𝑚𝑖 +
∑︁
𝑗≠𝑖

PRF(k∗𝑗 , 𝑖) − PRF(�̃�, 𝑖)

= PRF(k𝑖 , 𝑖) +𝑚𝑖 +
∑︁
𝑗≠𝑖

PRF(k𝑗 , 𝑖) − PRF
(∑︁

𝑖

k𝑖 , 𝑖

)
≈ PRF(k𝑖 , 𝑖) +𝑚𝑖 +

∑︁
𝑗≠𝑖

PRF(k𝑗 , 𝑖) −
∑︁
𝑖

PRF(k𝑖 , 𝑖)

=𝑚𝑖

Where the (approximate) equalities follow from the puncturable correctness and the approximate
key homomorphism of the PRF.

This should be contrasted with the scheme from [SLM+23], which is based on a similar principle, but instead
of sending the puzzles in the plain, it sends an obfuscated circuit that samples a different puzzle for a given
index 𝑖 . Additionally, our work introduces a novel mechanism for uniquely assigning indices to parties
(detailed below).
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Batchingwithout coordination. Weobserve that our batching algorithm requires the following property
- when any subset of users S ⊆ [𝑛] come together to batch a puzzle, each puzzle 𝑖 ∈ S should have a
unique identifier at which it is evaluated. If 𝑛 = 2𝜆 , i.e., our batching scheme and the underlying key
homomorphic PRF can support unbounded users, then simply sampling a random index of 𝜆 bits is enough.
In such a setting, if any polynomial number of parties S come together, then the probability for any two
parties to have a collision in their random sampling is ≤ |S|2/𝑛. Since 𝑛 is exponential, we only fail with
negligible probability. Unfortunately this trivial solution fails when our scheme can support bounded users.
Specifically, we won’t be able to batch with a non-negligible loss.

Our main observation is a connection between the existence of a unique identifier for each party and
the problem of perfect matching in a bipartite graph. Let𝑈 and 𝑉 be the two parts of the bipartite graph
where 𝑈 is the set of parties in a system i.e. |𝑈 | = 𝑛 and 𝑉 is some expanded index set where |𝑉 | = 𝑛new.
Instead of sampling a single random index in the trivial solution, we assume that each party on the left
samples 𝑑 numbers randomly in [𝑛new]. Note that each party possessing a unique index is equivalent to the
existence of a perfect matching in the bipartite graph. We ask what’s the optimal setting for 𝑛new and 𝑑
where growing 𝑑 will increase the time to generate puzzles and the communication cost between parties,
while growing 𝑛new will grow the public parameters pp of our batching scheme. In our main technical
section, we apply Hall’s marriage theorem in our probabilistic analysis to show that we can set 𝑛new ≥ 3 · 𝑛
and 𝑑 = 𝜆/log(𝑛new). Hall’s marriage theorem states that for every subset X ⊆ S, there exists a perfect
matching if |Γ(X)| ≥ |X|, where Γ(X) denotes the set of neighbouring vertices to X.

KH-PRFs: Lattice-Based Constructions. Brakerski and Vaikuntanathan [BV15] showed how to con-
struct a constrained-key almost key-homomorphic PRF secure from lattice-based assumptions. However,
this construction is designed for general constraints and hence impractical for our specific use case for
puncturing. Their construction uses (1) a universal circuit for constraining general circuits, (2) makes
non-black-box use of a cryptographic hash function, and additionally, (3) their security relies on LWE and
1D-SIS, which limit parameter choices and introduce additional security features. In contrast, we simplify
their construction for the functionality and security we need. As a result, our construction is more efficient,
makes black-box use of cryptography and eliminates the reliance on 1D-SIS. Our main changes include (1)
replacing the universal circuit with a much simpler equality-check circuit, (2) removing the use of a hash
function, and (3) not requiring 1D-SIS for our security proof. At a high level, last two modifications are
possible because a puncturable PRF is a selective notion, whereas the construction of constrained-key PRF
in [BV15] achieves adaptive security.

To gain some context, we first give a brief overview of the techniques from [BV15]. Given matrices
{A𝑖}, they show how to compute a new matrix A𝐹 for some circuit 𝐹 . Additionally, given LWE samples{
s𝑇A𝑖 + 𝑥𝑖G + ei𝑇

}
𝑖∈[ℓ ] over the modulus 𝑞 for some 𝑥 = (𝑥1, . . . , 𝑥ℓ ), they give an algorithm to compute

s𝑇A𝐹 + 𝐹 (𝑥)G + e𝑇 for some small e and the gadget matrix G. In our construction, we focus on the equality-
check circuit 𝐸𝑄𝑦 (𝑥) with a hardcoded string 𝑦. The circuit outputs 1 if and only if 𝑥 = 𝑦. We compute our
PRF as,

PRF(s, 𝑥) = ⌊s𝑇A𝐸𝑄𝑥
𝐺−1(D)⌉𝑝 ,

for some uniformly random matrix D and the binary decomposition function𝐺−1. The notation ⌊·⌉𝑝 means
we multiply each component with 𝑝/𝑞 and round to the next integer where the choice of 𝑝 is elaborated
later in the overview. Puncturing the key s at point 𝑥∗ computes,

Puncture(s, 𝑥∗) =
{
s𝑇 (A𝑖 + 𝑥∗𝑖 G) + e𝑇𝑖

}
𝑖∈[ℓ ] .
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Given a punctured key k, we use the algorithm from [BV15] to compute s𝑇 (A𝐸𝑄𝑥
+ 𝐸𝑄𝑥 (𝑥∗)G + e𝑇 )𝐺−1(D).

Observe that if 𝑥 ≠ 𝑥∗ then, we can compute,

PuncturedEval(k∗, 𝑥) = ⌊(s𝑇 (A𝐸𝑄𝑥
+ 𝐸𝑄𝑥 (𝑥∗)G) + e𝑇 )𝐺−1(D)⌉𝑝

= ⌊s𝑇A𝐸𝑄𝑥
𝐺−1(D) + e𝑇𝐺−1(D)⌉𝑝

= ⌊s𝑇A𝐸𝑄𝑥
𝐺−1(D)⌉𝑝 + {−1, 0, 1}𝑚

where the last equality holds with if we set our parameters such that 𝑞/𝑝 is bigger than ∥e𝐺−1(D)∥∞.
Intuitively, security relies on the fact that when 𝑥 = 𝑥∗, an adversary can only compute ⌊s𝑇A𝐸𝑄𝑥

𝐺−1(D) +
s𝑇G 𝐺−1(D) + e𝑇𝐺−1(D)⌉𝑝 = ⌊s𝑇A𝐸𝑄𝑥

𝐺−1(D) + s𝑇D + e𝑇𝐺−1(D)⌉𝑝 . In our security proof, the intuition is
to add extra noise e′ to

s𝑇A𝐸𝑄𝑥
𝐺−1(D) + s𝑇D + e𝑇𝐺−1(D) (1)

while maintaining the rounded expression. If we can do this, then s𝑇D + e′𝑇 is a valid LWE sample , and we
can use LWE security to make the term pseudorandom and completing the proof. In the case where 𝑞/𝑝 is
superpolynomial, then adding error vector e′ is unlikely to change the rounded value through a standard
smudging argument.

Extending to a polynomial modulus-to-noise ratio. If we want the rely on LWE security that has a
modulus-to-noise ratio that is polynomial, two issues arise - (1) The key-homomorphic operation of the PRF
accumulates noise. Because our PRF is not perfectly key homomorphic but only almost key homomorphic
(i.e. PRF(s, 𝑥) + PRF(s′, 𝑥) = PRF(s + s′) + {−1, 0, 1}𝑚), summing these values accumulates noise. Our
solution is to choose a sufficiently large 𝑝 to minimize the impact of noise accumulation. In our application,
this translates into an upper bound on the number of parties in the batch-solving algorithm, so that we can
choose 𝑝 accordingly. (2) If 𝑞/𝑝 is polynomial, then adding extra noise to the term in Eq. (1) is likely to
change the rounded value. We resolve the second problem by resampling the key if adding noise to the
term in Eq. (1) might change the rounded value. This is possible because at key generation time we know
the point where we are going to puncture the PRF.

KH-PRFs: Pairing-Based Constructions. We also show a simple construction of key-homomorphic
puncturable PRFs from groups. Our starting point is the existing construction [NPR99, BLMR13] in the
random oracle model where

PRF(k, 𝑖) = H(𝑖)k and H(𝑖)k0 · H(𝑖)k1 = H(𝑖)k0+k1 .

Unfortunately it is not clear how to make this construction puncturable, without breaking the key ho-
momorphism. Our observation is that, if we restrict ourselves to a bounded domain 𝑛 = poly(𝜆), we can
precompute in the setup 𝑛 group elements

(𝑔𝑥1, . . . , 𝑔𝑥𝑛 ) and
{
𝑔𝑧𝑖/𝑥 𝑗

}
𝑗≠𝑖

where 𝑥𝑖 ← Z∗𝑝 and 𝑧𝑖 ← Z∗𝑝 . For a uniformly sampled key k, we will then define the PRF output to be

PRF(k, 𝑖) = 𝑒

(
𝑔𝑥 𝑗 , 𝑔𝑧𝑖/𝑥 𝑗

)k
= 𝑒 (𝑔,𝑔)𝑧𝑖 ·k
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for some 𝑗 ≠ 𝑖 . Notably, this scheme preserves key homomorphism, satisfying:

𝑒 (𝑔,𝑔)𝑧𝑖 ·k0 · 𝑒 (𝑔,𝑔)𝑧𝑖 ·k1 = 𝑒 (𝑔,𝑔)𝑧𝑖 · (k0+k1 ) .

This construction is puncturable, and a punctured key, and a punctured key k∗
𝑖∗ can be computed as 𝑔𝑥𝑖∗ ·k.

Observe that we can compute the PRF value at all points (by pairing it with the appropriate group element),
except at point 𝑖∗, since the term 𝑔𝑧𝑖∗/𝑥𝑖∗ is missing from the common reference string. It can be shown that
this scheme is a secure (puncturable) PRF from standard assumptions in bilinear groups. One drawback
of this construction is that the size of the common reference string is quadratic in 𝑛. We show how to
overcome this efficiency limitation by adding some more structure to the common reference string, at the
cost of relying on a 𝑞-type assumption. We refer the curious reader to the technical sections for more
details.

Security against rogue-puzzle attacks. We introduce a new concept called security against rogue-
puzzle attacks. This notion aims to ensure that the batch-solving algorithm correctly recovers the secret of
honestly generated puzzles, even when the batch contains puzzles generated adversarially. To achieve this,
we augment the syntax of the TLPs with an additional validity-check algorithm IsValid, that tests whether
the puzzle was well-formed. The adversary is then allowed to sample puzzles arbitrarily (even adaptively)
but contingent on passing this validity check. To build TLPs secure in this model, we have to worry about
two main attacks:

• Malformed homomorphic puzzles: An adversary may tamper with the batch-solving algorithm by
introducing malformed puzzles, leading to incorrect results upon homomorphic evaluation.

• Collision of indices: An adversary may attempt to force a collision of indices with an honest party,
thereby disrupting the batch-solving algorithm, as it only works when there are no collisions.

While the former class of attacks can be prevented by simply augmenting the puzzle with a non-interactive
zero-knowledge proof (NIZK). However, addressing the second type of attack is more intricate. Our solution
is to sample the index deterministically using a hash function applied to the index-independent part of the
puzzle. This approach reduces the collision of indices to a collision in the hash function, a computationally
challenging problem. However, this outline hides a crucial detail, namely that for the case of bounded
identities, the output domain of the hash function is of polynomial size. We carefully analyze the situation
in the random oracle model. Interestingly, our bipartitate matching algorithm turns out to be crucial to
derive a meaningful bound, whereas more crude approximations would yield trivial bounds on the success
probability of the adversary2.

As an additional contribution, we present efficient NIZK protocols tailored to our proposed constructions.
These protocols optimize efficiency, considering that general-purpose NIZKs may not be suitable for our
specific applications. In the pairing setting, the main idea is to use a variant of Schnorr protocol/Chaum
Pedersen protocol where the prover proves knowledge of an exponent 𝑘 in two different instances. In the
LWE setting, we utilize the (almost) key homomorphic property of our PRFs along with efficient range
proofs on time lock puzzles from [TBM+20].
2A trivial bound that handles malicious parties is by asking the degree to be equal to the number of puzzles batched. If every party
samples a puzzle for each index, we setup a complete bipartite graph and hence a perfect matching in the malicious setting. We
refer the interested reader to Appendix A for an alternate analysis.
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1.3 Related Work

Key-homomorphic PRFs. Beside the constrained-key key-homomorphic PRF of [BV15], that we men-
tioned earlier, there is another constrained-key key-homomorphic PRF of [BP14, BFP+15] that, with some
slight modifications, can be turned into puncturable key-homomorphic PRF. This construction accumulates
much more noise than our modification of [BV15], which translates into much worse parameters. There
are also multilinear map based constructions [BFP+15, CRV16]. Candidates of multilinear maps, however,
are far from practical.

Timed cryptography. In addition to constructions based on sequential squaring, several other approaches
have been proposed for creating time-lock puzzles, which we explore in this section. Bitansky et al. [BGJ+16]
proposed a scheme based on succinct randomized encodings [BGL+15] and the existence of non-parallelizable
languages. Recently, Burdges and De Feo [BF21] proposed the notion of delay encryption, which offers a
simliar "solve one, open many" functionality as batchable time-lock puzzles and can be seen as an identity-
based version of the standard time-lock puzzles. However, there are a few essential differences from our
approach. First, delay encryption necessitates all parties to encrypt the puzzle with respect to the same
identity, assuming some coordination among participants. Furthermore, the only known construction of
delay encryption is based on hard problems related to isogenies, which have garnered considerably less
attention than the sequential squaring problem.

Related to the notion of security against rogue puzzle attacks is the notion of non-malleable of time-lock
puzzle [FKPS21]. While conceptually related (both notions consider an adversary that generates possibly
corrupted puzzles), their objectives are quite different. Non-malleability aims to safeguard the confidentiality
of a legitimately sampled puzzle, even when a solving oracle is present. In contrast, security against rogue
puzzle attacks is concerned with ensuring the correctness of the batch-solving algorithm when maliciously
generated puzzles are introduced.

Beyond time-lock puzzles, the other paradigm of accounting for time is to have a trusted party that
regularly produces outputs and tie your cryptographic processes to that output [RSW96, CHSS02]. For
example, Liu et al. [LKW15] combine (extractable) witness encryption [GGSW13] and a public reference
clock, such as a blockchain. Given the heavy cryptographic machinery involved, we view these works as
mainly feasibility results. Following the same idea, Döttling et al. [DHMW22] construct witness encryption
for specific languages used in proof-of-stake blockchains, making it practically efficient. This work, however,
also has substantial limitations in that it only allows for encrypting to the near future.

1.4 Open Questions

In this work, we leave an interesting question unanswered: is it possible to batch puzzles of varying levels
of difficulty? Specifically, if two puzzles are generated such that one requires time 𝑇 to open and the other
requires time 𝑇 ′, is there a way to combine them such that only a single puzzle needs to be solved, which
will open the first puzzle at time 𝑇 and the second puzzle at time 𝑇 ′? Addressing this question would
necessitate a departure from the existing body of work, including homomorphic time-lock puzzles, as these
conventional methods do not readily apply to this scenario.

2 Preliminaries

Throughout this work, we write 𝜆 to denote the security parameter. We say a function 𝑓 is negligible in
the security parameter 𝜆 if 𝑓 = 𝑜 (𝜆−𝑐) for all 𝑐 ∈ N. We denote this by writing 𝑓 (𝜆) = negl(𝜆). We write
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poly(𝜆) to denote a function that is bounded by a fixed polynomial in 𝜆. We say an algorithm is efficient if
it runs in probabilistic polynomial time (PPT) in the length of its input. A runtime of a PPT algorithm A
on input 𝑥 is denoted by Time(A(𝑥)). Throughout this work, we consider security against non-uniform
adversaries (indexed by 𝜆) that are represented by the circuit model of computation where the circuit size
is polynomial in the length of their input.

For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set {1, . . . , 𝑛} and [0, 𝑛] to denote the set
{0, . . . , 𝑛}. For a distribution 𝐷 , we write 𝑥 ← 𝐷 to denote that 𝑥 is sampled from 𝐷 . We now review the
main cryptographic primitives we use in this work.

2.1 Puncturable Pseudorandom Functions.

A puncturable pseudorandom function (PRF) [BW13, KPTZ13, BGI14, SW14] is a PRF [GGM84] that has an
additional puncturing algorithm, which produces a punctured version of the key. The punctured key can
evaluate the PRF at all points except for the punctured one. For security, it is required that the PRF value at
that specific point is pseudorandom, even given the punctured key.

Definition 2.1 (Puncturable PRFs). A puncturable pseudorandom function family on key space K =

{K𝜆}𝜆∈N, domain X =
{
X𝜆,𝑛

}
𝜆,𝑛∈N and range Y = {Y𝜆}𝜆∈N, consists of a tuple of PPT algorithms ΠPRF =

(Setup, Puncture, PRF, PuncturedEval) defined as follows.

• pp← Setup(1𝜆, 1𝑛) a probabilistic algorithm that takes as input the security parameter 𝜆, domain
index 𝑛 and outputs public parameters pp.

• k∗ ← Puncturepp(k, 𝑖∗) a deterministic algorithm that takes as input a key k ∈ K𝜆 and a position
𝑖∗ ∈ X𝜆,𝑛 and returns a punctured key k∗.

• 𝑦 ← PRFpp(k, 𝑖) a deterministic algorithm that takes as input a key k ∈ K𝜆 and an index 𝑖 ∈ X𝜆,𝑛 and
returns a string 𝑦.

• 𝑦 ← PuncturedEvalpp(k∗, 𝑖∗, 𝑖) a deterministic algorithm that takes as input a punctured key k∗, a
punctured index 𝑖∗ ∈ X𝜆,𝑛 , an index 𝑖 ∈ X𝜆,𝑛 and returns a string 𝑦.

In addition, ΠPRF must satisfy the following properties.

• Functionality Preserving: We say that ΠPRF satisfies functionality preserving if there exists a negl
function such that for all 𝜆, 𝑛 ∈ N, all keys k ∈ K𝜆 , all points 𝑖∗ ≠ 𝑖 ∈ X𝜆,𝑛 , it holds that,

Pr
[
PRFpp(k, 𝑖) ≠ PuncturedEvalpp(Puncturepp(k, 𝑖∗), 𝑖∗, 𝑖) : pp← Setup(1𝜆, 1𝑛)

]
is negligible in 𝜆, where the probability is over the random coins of Setup. If functionality preserving
holds with probability 1, we say ΠPRF is perfectly functionality preserving.

• Security: We say that ΠPRF is secure if for any polynomially bounded adversaries A = {A𝜆}𝜆∈N,
any polynomially bounded function 𝑛(𝜆), for all 𝑖∗ ∈ X𝜆,𝑛 , there exists a negligible function negl(·),
such that for all 𝜆 ∈ N, it holds that,������Pr

𝑏 ← A(pp, k∗, 𝑦) :
pp← Setup(1𝜆, 1𝑛); k← K𝜆 ;𝑏 ← {0, 1}

k∗ ← Puncturepp(k, 𝑖∗)
if 𝑏 = 0 then 𝑦 ← Y𝜆, else 𝑦 ← PRFpp(k, 𝑖∗)

 −
1
2

������
is negligible in 𝜆
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(Almost) Key-Homomorphism [NPR99, BLMR13, BP14, BV15, BFP+15]. We also require that the
puncturable PRF satisfies a notion of key-homomorphism.

Definition 2.2 (Key-Homomorphism). Let K = {K𝜆}𝜆∈N be a family such that for every 𝜆 ∈ N, (K𝜆, +)
is a finite group. We say ΠPRF defined on key space K = {K𝜆}𝜆∈N, domain X =

{
X𝜆,𝑛

}
𝜆,𝑛∈N and range

Y = {Y𝜆}𝜆∈N, satisfies the key homomorphic property if for all 𝜆, 𝑛 ∈ N every k0, k1 ∈ K𝜆 , all indices
𝑖 ∈ X𝜆,𝑛 , it holds that,

Pr
[
PRFpp(k0, 𝑖) + PRFpp(k0, 𝑖) = PRFpp(k0 + k1, 𝑖) : pp← Setup(1𝜆, 1𝑛)

]
= 1.

We can also relax this notion to almost key-homomorphism by requiring that the above equality almost
holds, for all 𝜆, 𝑛 ∈ N every k0, k1 ∈ K𝜆 , all indices 𝑖 ∈ X𝜆,𝑛 , it holds that,

Pr
[
∥PRFpp(k0, 𝑖) + PRFpp(k0, 𝑖) − PRFpp(k0 + k1, 𝑖)∥∞ ≤ 1 : pp← Setup(1𝜆, 1𝑛)

]
= 1.

2.2 Time-Lock Puzzles

We follow the syntax from Srinivasan et al, [SLM+23] where we consider the standard notation for time-lock
puzzles except there is an additional setup phase that depends on the hardness parameter but not on the
secret.

Definition 2.3 (Time-Lock Puzzles [RSW96]). A time-lock puzzle (TLP) with solution space {S𝜆}𝜆∈N is a
tuple of four algorithms ΠTLP = (Setup,Gen, Sol) defined as follows:

• pp← Setup(1𝜆,𝑇 ) a probabilistic algorithm that takes as input a security parameter 1𝜆 and a time
hardness parameter 𝑇 , and outputs public parameters pp.

• 𝑍 ← Gen(pp, 𝑠) a probabilistic algorithm that takes as input public parameters pp, and a solution
𝑠 ∈ S𝜆 , and outputs a puzzle 𝑍 .

• 𝑠 ← Sol(pp, 𝑍 ) a deterministic algorithm that takes as input public parameters pp and a puzzle 𝑍
and outputs a solution 𝑠 .

In addition, ΠTLP should satisfy the following properties:

• Correctness: We say ΠTLP is correct if for all 𝜆,𝑇 ∈ N, all secrets 𝑠 ∈ S𝜆 , it holds that,

Pr
[
Sol(pp,Gen(pp, 𝑠)) = 𝑠 : pp← Setup(1𝜆,𝑇 )

]
= 1.

• Security: We say ΠTLP is secure with gap 𝜀 ∈ (0, 1), if there exists a polynomial 𝑇 (·) such that
for for all polynomially bounded functions where 𝑇 (·) ≥ 𝑇 (·), any polynomially bounded adver-
saries, (A1,A2) = (

{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), where the depth of A2,𝜆 is atmost 𝑇 𝜀 (𝜆), there exists a

negligible function negl(·), such that for all 𝜆 ∈ N, it holds that,������Pr
 𝑏 ← A2(pp, 𝑍, st)
∧ (𝑠0, 𝑠1) ∈ S2𝜆

:
pp← Setup(1𝜆,𝑇 (𝜆))
(st, 𝑠0, 𝑠1) ← A1(1𝜆, pp)

𝑏 ← {0, 1}, 𝑍 ← Gen(pp, 𝑠𝑏)

 −
1
2

������ ≤ negl(𝜆) .

• Efficiency: We say ΠTLP satisfies efficiency if
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(a) There exists a polynomial 𝑝1(·, ·, ·) such that for all 𝜆,𝑇 ∈ N, inputs 𝑠 ∈ S𝜆 , it holds that,

Pr
[
Time (Gen(pp, 𝑠)) ≤ 𝑝1(𝜆, log |S𝜆 |, log𝑇 ) : pp← Setup(1𝜆,𝑇 )

]
= 1.

(b) There exists a polynomial 𝑝2(·, ·, ·) such that for all 𝜆,𝑇 ∈ N, inputs 𝑠 ∈ S𝜆 , it holds that,

Pr
[
Time (Sol(pp, 𝑍 )) ≤ 𝑝2(𝜆, log |S𝜆 |,𝑇 ) :

pp← Setup(1𝜆,𝑇 )
𝑍 ← Gen(pp, 𝑠)

]
= 1.

Homomorphic Time-Lock Puzzles. We also recall the definition of homomorphic time-lock puz-
zles [MT19], which allows one to compute functions on secrets homomorphically, without solving the
puzzles first.

Definition 2.4 (Homomorphic TLPs [MT19]). We say ΠhTLP = (Setup,Gen, Sol, Eval) is homomorphic
for the circuit family, C = {C𝜆,𝑛}𝜆,𝑛∈N and solution space {S𝜆}𝜆∈N, if the syntax is augmented with the
following algorithm:

• 𝑍 ′ ← Eval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛) a probabilistic algorithm that takes as input a circuit 𝐶 ∈ C𝜆,𝑛 where
𝐶 : S𝑛

𝜆
→ S𝜆 , public parameters pp and a set of 𝑛 puzzles (𝑍1, . . . , 𝑍𝑛) and outputs a puzzle 𝑍 ′.

In addition, ΠhTLP should satisfy the following evaluation property:

• Evaluation Correctness: We say ΠhTLP satisfies evaluation correctness if for all 𝜆, 𝑛,𝑇 ∈ N, for all
circuits 𝐶 ∈ C𝜆,𝑛 , inputs (𝑠1, . . . , 𝑠𝑛) ∈ S𝑛𝜆 , it holds that,

Pr
[
Sol(pp, Eval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛)) = 𝐶 (𝑠1, . . . , 𝑠𝑛) :

pp← Setup(1𝜆,𝑇 )
∀𝑖 ∈ [𝑛], 𝑍𝑖 ← Gen(pp, 𝑠𝑖)

]
= 1.

• Evaluation Efficiency: We say ΠhTLP satisfies evaluation efficiency if there exists a polynomial
𝑝1(·, ·, ·) such that for all 𝜆, 𝑛,𝑇 ∈ N, circuits 𝐶 ∈ C𝜆,𝑛 , inputs (𝑠1, . . . , 𝑠𝑛) ∈ S𝑛𝜆 , it holds that,

Pr
[
Time (Eval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛)) ≤ 𝑝1(𝜆, |𝐶 |, log𝑇 ) :

pp← Setup(1𝜆,𝑇 )
∀𝑖 ∈ [𝑛], 𝑍𝑖 ← Gen(pp, 𝑠𝑖)

]
= 1.

We require homomorphic TLPs specifically that support homomorphic evaluations of linear functions
over the puzzles, that are secure against depth bounded adversaries. We have such constructions from RSA
groups [MT19] and class groups with imaginary quadratic order [TCLM21]. We also mention that both
works show how to extend the message space, and therefore the linear space, to Z𝑁 𝑐 (and Z𝑝𝑐 , respectively)
for any 𝑐 without changing the atomic operation in the sequential computation; which is still repeated
squaring over the base modulus.

Theorem 2.5 ([MT19]). Assuming that the strong sequential squaring assumption in RSA groups, the
DDH assumption, and the DCR assumption hold, there exists a time lock puzzle scheme that supports linear
homomorphic evaluations over Z𝑁 , where 𝑁 is an RSA modulus.

Theorem 2.6 ([TCLM21]). Assuming that the strong sequential squaring assumption in class groups and the
HSM assumption hold, there exists a time lock puzzle scheme that supports linear homomorphic evaluations
over Z𝑝 , where 𝑝 is a prime.
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Time-Lock Puzzles with Batch Solving. We present a modified notion of TLPs with batched solving
from [SLM+23] where Setup is allowed to take the maximum batch size as input.

Definition 2.7 (TLPs with batch solving). We say ΠbatchTLP = (Setup,Gen,BatchPSol) supports batch
solving with solution space {S𝜆}𝜆∈N, if the syntax is augmented with the following algorithm:

• pp ← Setup(1𝜆,𝑇 , 𝑛) a probabilistic algorithm that takes as input a security parameter 1𝜆 , a time
hardness parameter 𝑇 , bound on the maximum batch size 𝑛, and outputs public parameters pp.

• 𝑍 ← Gen(pp, 𝑠) a probabilistic algorithm that takes as input public parameters pp, and a solution
𝑠 ∈ S𝜆 , and outputs a puzzle 𝑍 . 𝑍 and outputs a solution 𝑠 .

• {(𝑠𝑖 , 𝑍𝑖)}𝑖∈S ← BatchPSol(pp, {𝑍𝑖}𝑖∈S) a deterministic algorithm that takes as input the combined
public parameters pp, a set S ⊆ [𝑛] of puzzles 𝑍𝑖 and outputs for each puzzle a solution 𝑠𝑖 ∈ S𝜆 .3

We require ΠbatchTLP to hold the same correctness, security and efficiency properties from Definition 2.3
with the modified syntax. In addition, ΠbatchTLP should satisfy the following property:

• Batch solving correctness: We say ΠbatchTLP satisfies batch solving correctness if for all 𝑇, 𝑛 ∈ N,
any subset S ⊆ [𝑛], there exists a negligible function negl(·), such that, for all 𝜆 ∈ N, solutions
𝑠𝑖 ∈ S𝜆 , it holds that,

Pr
[
BatchPSol(pp, {𝑍𝑖}𝑖∈S) ≠ {(𝑠𝑖 , 𝑍𝑖)}𝑖∈S : pp← Setup(1𝜆,𝑇 , 𝑛)

∀𝑖 ∈ S, 𝑍𝑖 ← Gen(pp, 𝑠𝑖)

]
is negligible in 𝜆.

• Batch solving efficiency: We say ΠbatchTLP satisfies batch solving efficiency if there exists poly-
nomials 𝑝1(·, ·, ·),𝑝2(·, ·, ·, ·), such that for all 𝜆,𝑇 , 𝑛 ∈ N, any subset S ⊆ [𝑛], for all solutions
(𝑠1, . . . , 𝑠𝑛) ∈ S𝑛𝜆 , it holds that,

Pr
[

Time
(
BatchPSol(pp, {𝑍𝑖}𝑖∈S)

)
≤ 𝑝1(𝜆, log |S𝜆 |,𝑇 ) + 𝑝2(𝜆, log |S𝜆 |, log𝑇, 𝑛)

: pp← Setup(1𝜆,𝑇 , 𝑛)
∀𝑖 ∈ S, 𝑍𝑖 ← Gen(pp, 𝑠𝑖)

]
= 1.

Definition 2.8 (Batching TLPs with unbounded number of parties). We say that our batched time lock
puzzle scheme ΠcobatchTLP supports an arbitrary polynomial number of parties if the algorithms Gen, Sol in
Definition 2.7 run in time poly(𝜆, log |S𝜆 |, log𝑇, log𝑛). Similarly, our security property allows the adversary
to submit a larger bound on the number of parties 𝑛(·) i.e. now the function could be bounded by 2poly(𝜆)
instead of a polynomial in 𝜆.

Remark 2.9. The syntax for ΠbatchTLP can support public parameters that depend on 𝑛, thus the efficiency
ofGen, Sol can depend on 𝑛. Our schemes will be more efficient where we only need to access a small subset
of the public parameters. Thus, in the RAM model of computation, the efficiency of our algorithms Gen, Sol
will not depend on 𝑛. Additionally, the efficiency of BatchPSol can depend on the size of the elements being
batched i.e. |S|, and thus, run in time 𝑝1(𝜆, log |S𝜆 |,𝑇 ) + 𝑝2(𝜆, log |S𝜆 |, log𝑇, |S|).

In our work, we define a notion of TLPs with coordination, which is a straightforward modification to
the original algorithms assuming that each user in the system posseses an index in [𝑛].
3Note that Sol is equivalent to running BatchPSol on one index.
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Definition 2.10 (TLPs with coordination). We say ΠcobatchTLP = (Setup,Gen,BatchPSol) supports batch
solving with solution space {S𝜆}𝜆∈N, defined as follows:

• pp ← Setup(1𝜆,𝑇 , 𝑛) a probabilistic algorithm that takes as input a security parameter 1𝜆 , a time
hardness parameter 𝑇 , total number of parties 𝑛, and outputs public parameter pp.

• 𝑍 ← Gen(pp, 𝑖, 𝑠) a probabilistic algorithm that takes as input public parameters pp, party index
𝑖 ∈ [𝑛] and a solution 𝑠 ∈ S𝜆 , and outputs a puzzle 𝑍 .

• {(𝑖, 𝑠𝑖)}𝑖∈S ← BatchPSol(pp,S, {(𝑖, 𝑍𝑖)}𝑖∈S) a deterministic algorithm that takes as input the public
parameters pp, a set S ⊆ [𝑛], puzzles 𝑍𝑖 from each party 𝑖 ∈ S, and outputs for each party 𝑖 ∈ S,
solutions 𝑠𝑖 ∈ S𝜆 .

Scheme ΠcobatchTLP satisfies correctness, batch solving correctness, efficiency and batch solving efficiency
similar to Definition 2.7 (with the appropriate syntax changes). We present the modified security definition.

• Security: We say ΠcobatchTLP is secure with gap 𝜀 ∈ (0, 1), if there exists a polynomial 𝑇 (·) such
that for for all polynomially bounded functions where 𝑇 (·) ≥ 𝑇 (·), any polynomially bounded (in 𝜆)
function 𝑛(·), any polynomially bounded adversaries, (A1,A2) = (

{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), where

the depth of A2,𝜆 is atmost 𝑇 𝜀 (𝜆), there exists a negligible function negl(·), such that for all 𝜆 ∈ N, it
holds that,������Pr

 𝑏 ← A2(pp, 𝑍, st)
∧(𝑠0, 𝑠1) ∈ S2𝜆 ∧ 𝑖 ∈ [𝑛]

:
pp← Setup(1𝜆,𝑇 (𝜆), 𝑛(𝜆))
(st, 𝑖, 𝑠0, 𝑠1) ← A1(1𝜆, pp)

𝑏 ← {0, 1}, 𝑍 ← Gen(pp, 𝑖, 𝑠𝑏)

 −
1
2

������ ≤ negl(𝜆) .

If we want to support unbounded parties our definition is modified similarly to Definition 2.8. Addi-
tionally, Remark 2.9 holds in this setting as well.

2.3 Cryptographic Groups

For a cryptographic group G of order 𝑞 we use multiplicative notation, meaning the group operation is ·.
Then we use exponentiation to indicate repeated multiplication i.e. we define 𝑔𝑥 =

∏
𝑖∈[𝑥 ] 𝑔 for 𝑔 ∈ G and

𝑥 ∈ Z𝑞 . To simplify notation when we do vector exponentiation with x ∈ Z𝑛𝑞 we write h = 𝑔x instead of
(ℎ𝑖 = 𝑔𝑥𝑖 )𝑖∈[𝑛] , similarly use the Hadamard product g ⊙ h to indicate the component-wise multiplication
between two vectors of group elements g, h ∈ G𝑛 .

Let G = (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆) be a generator of a (symmetric) bilinear group generated by
𝑔 of prime order 𝑝 , with an efficiently computable pairing 𝑒 : G × G→ G𝑇 . We recall a few well-known
assumptions in bilinear groups.

Assumption 2.11 (Bilinear Diffie-Hellman). Let GroupGen be a bilinear group generator. The bilinear
Diffie-Hellman problem is hard for GroupGen if the following distributions are computationally indistin-
guishable: (

𝑝,G,G𝑇 , 𝑔, 𝑒, 𝑔
𝑥 , 𝑔1/𝑥 , 𝑔𝑦, 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑥𝑦𝑧

)
≈

(
𝑝,G,G𝑇 , 𝑔, 𝑒, 𝑔

𝑥 , 𝑔1/𝑥 , 𝑔𝑦, 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑟
)

where (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆) and (𝑥,𝑦, 𝑧, 𝑟 ) ← Z∗𝑝 .
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Assumption 2.12 (𝑛-Power Diffie-Hellman [BGW05]). Let GroupGen be a bilinear group generator. The
𝑛-power Diffie-Hellman problem is hard for GroupGen if the following distributions are computationally
indistinguishable: (

𝑝,G,G𝑇 , 𝑔, 𝑒,
{
𝑔𝑥

𝑖
}
𝑖∈[2𝑛]\{𝑛+1}

, 𝑔𝑦, 𝑒 (𝑔,𝑔)𝑥𝑛+1𝑦
)

≈
(
𝑝,G,G𝑇 , 𝑔, 𝑒,

{
𝑔𝑥

𝑖
}
𝑖∈[2𝑛]\{𝑛+1}

, 𝑔𝑦, 𝑒 (𝑔,𝑔)𝑟
)

where (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆) and (𝑥,𝑦, 𝑟 ) ← Z∗𝑝 .

[BBG05] show that this assumption holds in the bilinear generic group model. In favor of a simpler
exposition, we only define and use symmetric pairings, however both the constructions and the assumptions
can me easily adapted to the asymmetric settings.

2.4 Lattice Preliminaries

Assumption 2.13 (LWE). Sample A←$ Z
𝑛×𝑚
𝑞 , s←$ Z

𝑛
𝑞 , and r←$ Z

𝑚
𝑞 uniformly random and e← 𝜒𝑚

𝜎,𝐵
be

component-wise sampled from the discrete gaussian distribution with standard deviation 𝜎 and truncated
at 𝐵 = 𝜎𝜔 (

√︁
log(𝜆)). The LWE assumption is hard if (A, s𝑇A + e𝑇 ) is computationally indistinguishable

from (A, r).

Gadget Matrix We call g = (20, 21, . . . , 2⌈log(𝑞) ⌉) the gadget vector and G = g𝑇 ⊗ I𝑛 ∈ Z𝑛×⌈log(𝑞) ⌉𝑛𝑞 the
gadget matrix. And 𝐺−1 : Z𝑛×𝑚𝑞 → Z⌈log(𝑞) ⌉𝑛×𝑚𝑞 is the binary decomposition function, which is not a linear
operation but for any matrix A = G𝐺−1(A).

Rounding and Norm When we use ∥a∥∞ on some vector a ∈ Z𝑛𝑞 we mean lift a to Z𝑛 and then
𝑚𝑎𝑥𝑖∈[𝑛] ( |𝑎𝑖 |). Similarly, when we use ⌊a⌉𝑝 for some vector a ∈ Z𝑛𝑞 we lift a to Q𝑛 then component-wise
round a𝑝/𝑞 to the closest element in Z𝑝 .

3 Time-Lock Puzzles with Batch Solving

In what follows we describe a generic construction of time-lock puzzle with batch solving. To make our
presentation modular, we will initially assume that each party in the protocol is indexed by a unique
identifier 𝑖 ∈ [𝑛], where 𝑛 denotes a bound on the total number of parties. Note that setting 𝑛 = 𝜆𝜔 (1)

allows our time-lock puzzle to support an unbounded number of parties (provided that we instantiate it
with suitable building blocks). Consequently, we will modify the syntax of time-lock puzzles to add 𝑖 to the
puzzle generation algorithm Gen(pp, 𝑖,𝑚) and we will assume that such an index is known to the puzzle
solver. This assumption will be removed in Section 4.

We proceed by presenting our construction. We assume the existence of the following building blocks:

• A time-lock puzzle ΠTLP that is linearly homomorphic over Z𝑁 .

• A puncturable almost key-homomorphic PRF ΠPRF with domain [𝑛] and additive key homomorphism
over Zℓ𝑝 , where ℓ = poly(𝜆).
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We will set the parameters of the above schemes in such a way that,

𝑛 · 𝑝2ℓ < 𝑁 (2)
𝑝 > 𝑛 (3)

For notational convenience, we define the integer encoding algorithm Encode : Zℓ𝑝 → Z as

Encode𝑝,ℓ (𝑥1, . . . , 𝑥ℓ ) =
ℓ∑︁

𝑖=1
𝑝2(𝑖−1)𝑥𝑖

and the decoding algorithm Decode𝑝,ℓ as the reverse operation, i.e., vectorizing an integer by modular
reduction and rounding.

Construction 3.1 (Batchable Time-Lock Puzzle). We describe our algorithms below. For convenience we
only consider messages𝑚 ∈ {0, 1}, but the construction can be easily extended to larger domains.

• Setup(1𝜆,𝑇 , 𝑛):

– ppLHP ← LHP.Setup(1𝜆,𝑇 )
– ppPRF ← PRF.Setup(1𝜆, 𝑛)
– Return pp = (ppLHP, ppPRF)

• Gen(pp, 𝑖,𝑚):

– Sample a PRF key k← Zℓ𝑝
– Time-lock the key by computing 𝑍 ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k))
– Compute the punctured key k∗ ← PunctureppPRF (k, 𝑖)
– Mask the message 𝑐 ← PRFppPRF (k, 𝑖) +𝑚 · ⌈𝑝/2⌉
– Return (𝑖, 𝑍, k∗, 𝑐)

• BatchSol
(
pp, 𝑆,

{
𝑖, 𝑍𝑖 , k∗𝑖 , 𝑐𝑖

}
𝑖∈𝑆

)
:

– Sum the puzzles 𝑍 ← LHP.Eval
(∑

, ppLHP, {𝑍𝑖}𝑖∈𝑆
)

– Solve the resulting puzzle k̃← LHP.Sol(ppLHP, 𝑍 )
– Compute 𝑘 ′ ← Decode𝑝,ℓ (�̃�) and reduce each coordinate modulo 𝑝
– For all 𝑖 ∈ 𝑆 , compute

𝜇𝑖 = 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PuncturedEvalppPRF (k

∗
𝑗 , 𝑗, 𝑖) − PRFppPRF (k

′, 𝑖) (mod 𝑁 )

and set𝑚𝑖 as ⌊𝜇𝑖⌉ ⌈𝑝/2⌉ .
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Analysis. Before we proceed with the formal analysis, it is worth highlighting that each puzzle consists of
a tuple (𝑖, 𝑍𝑖 , k∗𝑖 , 𝑐𝑖) where the size of each element is at most logarithmic in 𝑛. Furthermore, the sequential
computation in the batch solving algorithm consists of solving a single puzzle, whereas all of the other
operations do not depend on the time parameter 𝑇 . Thus the scheme satisfies the desired efficiency
requirements. Also notice that if Setup of both PRF and LHP are transparent then so is the setup of the
batchable TLP.

Theorem 3.2 (Correctness). If ΠTLP satisfies correctness according to Definition 2.3, and ΠPRF satisfies
correctness, then, Construction 3.1 satisfies batch solving correctness according to Definition 2.7.

Proof. Observe that for all 𝑘 ∈ Zℓ𝑝 , as

Encode𝑝,ℓ (𝑘) =
ℓ∑︁

𝑖=1
𝑝2(𝑖−1)𝑘𝑖 ≤

ℓ∑︁
𝑖=1

𝑝2𝑖−1 ≤ 𝑝2ℓ < 𝑁

where the last inequality holds by howwe set our parameters Eq. (2), and henceDecode𝑝,ℓ (Encode𝑝,ℓ (𝑘)) = 𝑘

as we’re simply representing each element as an integer on a bigger base. Correctness of Construction 3.1
is straightforward from the correctness of ΠTLP. □

Theorem 3.3 (Batch Solving Correctness). If ΠTLP satisfies correctness according to Definition 2.3, and ΠPRF

satisfies correctness, and almost key-homomorphism, then, Construction 3.1 satisfies batch solving correctness
according to Definition 2.7.

Proof. To show correctness, we first observe that, by the evaluation correctness of the time-lock puzzles,
we have

k̃ =
∑︁
𝑗∈𝑆

Encode𝑝,ℓ (k𝑗 ) =
∑︁
𝑗∈𝑆

ℓ∑︁
𝑖=1

𝑝2(𝑖−1)k𝑗,𝑖

=

ℓ∑︁
𝑖=1

𝑝2(𝑖−1)
∑︁
𝑗∈𝑆

k𝑗,𝑖 ≤
ℓ∑︁

𝑖=1
𝑝2𝑖−1 · 𝑛 ≤ 𝑛 · 𝑝2ℓ < 𝑁,

where the last inequality holds by how we set our parameters Eq. (2). In particular, this implies that the
summation happens without modular reduction. Additionally, observe that

k′ = Decode𝑝,ℓ (�̃�) = Decode𝑝,ℓ

(
ℓ∑︁

𝑖=1
𝑝2(𝑖−1)

∑︁
𝑗∈𝑆

k𝑗,𝑖

)
=

∑︁
𝑗∈𝑆

k𝑗

where the above sum is also over the integers, since each coordinate of the keys is at most 𝑝 and 𝑝𝑛 < 𝑝2,
by how we set our parameters Eq. (3).
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Plugging this into the solving equation, we have that

𝜇𝑖 = 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PuncturedEvalppPRF (k

∗
𝑗 , 𝑗, 𝑖) − PRFppPRF (k

′, 𝑖)

= 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PuncturedEvalppPRF (k

∗
𝑗 , 𝑗, 𝑖) − PRFppPRF

(∑︁
𝑗∈𝑆

k𝑗 , 𝑖

)
= 𝑐𝑖 +

∑︁
𝑗∈𝑆\{𝑖 }

PuncturedEvalppPRF (k
∗
𝑗 , 𝑗, 𝑖) −

∑︁
𝑗∈𝑆

PRFppPRF
(
k𝑗 , 𝑖

)
+ 𝑒

= 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PuncturedEvalppPRF (k𝑗 , 𝑖) −

∑︁
𝑗∈𝑆

PRFppPRF
(
k𝑗 , 𝑖

)
+ 𝑒

= 𝑐𝑖 − PRFppPRF (k𝑖 , 𝑖) + 𝑒
= PRFppPRF (k, 𝑖) +𝑚𝑖 · ⌈𝑝/2⌉ − PRFppPRF (k𝑖 , 𝑖) + 𝑒
=𝑚𝑖 · ⌈𝑝/2⌉ + 𝑒

where the third equality follows by the almost key-homomorphism of the PRF, and the fourth equality
follows by functionality preservation of the PRF.4 Once again, by the almost homomorphism we can bound
∥𝑒 ∥∞ ≤ (𝑛 − 1) and thus 𝜇𝑖 is correctly rounded to𝑚𝑖 , since 𝑛 ≤ 𝑝 . □

Remark 3.4. Notice, we crucially rely on the fact that 𝑛 ≤ 𝑝 . We later show a construction of a key-
homomorphic puncturable PRF that has a codomain with a (arbitrary but fixed) polynomial modulus 𝑝 . In
that case the number of puzzles we can batch is upperbounded by ⌊𝑝/2⌋.
Theorem 3.5. Let ΠLHP be linearly-homomorphic time-lock puzzle secure against depth T𝜀 (𝜆)-bounded
adversaries and ΠPRF be a almost key-homomorphic puncturable PRF, then construction 3.1 is a batchable
time-lock puzzle secure against T𝜀 (𝜆)-bounded adversaries.
Proof. We proceed by defining a series of hybrids.

𝐻0 : In the first hybrid, we compute the time-lock puzzle according to the original distribution, i.e.,
(𝑖, 𝑍𝑖 , k∗𝑖 , 𝑐𝑖) ← Gen(pp, 𝑖,𝑚).

𝐻1 : In this hybrid, we modify the Gen algorithm encode some fixed 0-string in the time-lock puzzle, as
opposed to the key of the pseudorandom function. That is, we define

𝑍 ← LHP.Gen(0)

Since the attacker is guaranteed to run in parallel time less than 𝑇 , indistinguishability of the views
follows immediately from the security of the time-lock puzzles. Therefore,

��Adv𝐻1 (A) − Adv𝐻0 (A)
�� ≤

negl(𝜆).

𝐻2 : In the second hybrid, we we modify the Gen algorithm by sampling 𝑐 uniformly from the range
of the PRF. By the pseudorandomness of PRF we can establish that PRF(k, 𝑖) is computationally
indistinguishable from uniform, even given the punctured key k∗, and therefore so is PRF(k, 𝑖) +𝑚.
Thus,

��Adv𝐻2 (A) − Adv𝐻1 (A)
�� ≤ negl(𝜆).

The proof is concluded by observing that in 𝐻2 the adversary has probability 1/2 of winning because the
output of Gen(pp,𝑚, 𝑖) does not depend on 𝑏.

□
4If the PRF satisfies the weaker notion of statistical functionality preservation, then the fourth equality holds with all but negligible
probability.
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4 Removing Coordination among Parties

In this section, we show how to convert any batching scheme where parties possess a unique index to a
batching scheme where parties do not have any coordination. Our main observation is for each party to
sample a set of indices at random and ensure that the Hall’s marriage condition holds with overwhelming
probability. The perfect matching thus allows each party to hold a unique index on which we run our batch
solving algorithm. We start with a few graph theory preliminaries. Let 𝐺 be a bipartite graph with vertex
sets𝑈 and 𝑉 and edge set 𝐸. A complete matching𝑀 ⊆ 𝐸 from𝑈 to 𝑉 is a set of |𝑈 | independent edges in
𝐺 . In a complete matching, each vertex in 𝑈 is incident to a single edge in𝑀 . For a set 𝑆 ⊆ 𝑈 , we denote
by Γ(𝑆) ⊆ 𝑉 , the neighbourhood set of 𝑆 , i.e. Γ(𝑆) = {𝑣 ∈ 𝑉 : ∃(𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢 ∈ 𝑈 }.

Theorem 4.1 (Hall’s marriage theorem [Hal35]). Given a bipartite graph𝐺 with vertex sets𝑈 and𝑉 and edge
set 𝐸. The graph admits a perfect matching from𝑈 to 𝑉 if and only if - for every subset 𝑆 ⊆ 𝑈 , |Γ(𝑆) | ≥ |𝑆 |.

Additionally, there are many algorithms to compute the perfect matching. One such algorithm is [HK73],
(denoted in this document by FindMatch) that takes in𝐺 = (𝑈 ,𝑉 , 𝐸) and outputs a perfect matching in time
𝑂 ( |𝐸 |

√︁
|𝑉 |) where 𝐸 denotes the number of edges. More formally, it outputs {(𝑢, 𝑣𝑢)}𝑢∈𝑈 where 𝑣𝑢 ∈ Γ(𝑢)

and | {𝑣𝑢}𝑢∈𝑈 | = |𝑈 |. If a perfect matching does not exist, the algorithm outputs ⊥.

Construction 4.2 (Transformation to remove coordination). We describe our algorithms to construct
ΠbatchTLP below. Our transformation relies on the existence of a ΠcobatchTLP scheme.

• pp ← Setup(1𝜆,𝑇 , 𝑛). Let 𝑛new and 𝑑 be set according to parameters in Lemma 4.4. Sample pp ←
cobatchTLP.Setup(1𝜆,𝑇 , 𝑛new). Output public parameters pp.

• 𝑍 ← Gen(pp,𝑚). For every 𝑗 ∈ [𝑑], sample 𝑑 choices randomly, i.e. 𝑣 𝑗 ← [𝑛new] (without
replacement5). Let 𝑉 =

{
𝑣 𝑗

}
𝑗∈[𝑑 ] , and we generate a puzzle, i.e. 𝑍𝑣𝑗 ← cobatchTLP.Gen(pp, 𝑣 𝑗 ,𝑚).

Output 𝑍 =

(
𝑉 ,

{
(𝑣 𝑗 , 𝑍𝑣𝑗 )

}
𝑣𝑗 ∈𝑉

)
.

• {𝑠𝑖 , 𝑍𝑖}𝑖∈S ← BatchPSol(pp, {𝑍𝑖}𝑖∈S).

– For each 𝑖 ∈ S, parse each 𝑍𝑖 =

(
𝑉𝑖 ,

{
(𝑣𝑖, 𝑗 , 𝑍𝑖,𝑣𝑗 )

}
𝑗∈𝑉𝑖

)
.

– Let 𝐺 = (S, [𝑛new], E) be a bipartite graph where

E =
{
(𝑖, 𝑣 𝑗 ) : 𝑖 ∈ S, 𝑣 𝑗 ∈ [𝑛new], and 𝑣 𝑗 ∈ 𝑉𝑖

}
.

– Compute a perfect matching map ← FindMatch(𝐺) where map =
{
(𝑖, 𝑣∗𝑖 )

}
𝑖∈S . Set Snew ={

𝑣∗𝑖
}
𝑖∈S . If a perfect matching doesn’t exist, output ⊥.

– Let
{
(𝑣∗𝑖 , 𝑠𝑖)

}
𝑣∗
𝑖
∈Snew ← cobatchTLP.BatchPSol(pp,Snew, {(𝑣∗𝑖 , 𝑍𝑖,𝑣∗

𝑖
)}𝑣∗

𝑖
∈Snew).

– Output {(𝑠𝑖 , 𝑍𝑖)}𝑖∈S .
5This means that we always sample a distinct set.
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Analysis. The correctness, efficiency of our scheme are straightforward from the correctness, efficiency
of the underlying ΠcobatchTLP.

Theorem 4.3. If ΠcobatchTLP satisfies batch solving correctness according to Definition 2.10, then, Construc-
tion 4.2 satisfies batch solving correctness according to Definition 2.7 where 𝑛new = 3𝑛 and 𝑑 =

𝜔 (log𝜆)
log(𝑛new ) .

Proof. In order to argue about the batch solving correctness, batch solving efficiency, we prove the following
claim about FindMatch algorithm. Informally, we prove that, when running BatchPSol, our graph 𝐺 =

(S, [𝑛new], E) computes a perfect matching with overwhelming probability.

Lemma 4.4. Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a random left regular bipartite graph where |𝑈 | = 𝑛, |𝑉 | = 𝑛′. Let the left
regular degree be denoted by 𝑑 . If 𝑛′ = 3𝑛, 𝑑 = 𝑂 (1) + 𝜔 (log𝜆)

log(𝑛′ ) , then, the probability that there exists a perfect
matching for𝐺 is ≥ 1 − negl(𝜆) where the probability is taken over the random coins of sampling the bipartite
graph.

Proof. Let 𝑆 ⊆ 𝑈 be some subset of size ℓ . Let 𝑇 be the neighbourhood set of 𝑆 , i.e. 𝑇 = Γ(𝑆). Hall’s
condition is violated if |𝑇 | ≤ ℓ − 1. For fixed sets 𝑆,𝑇 , the probability that the hall’s condition is violated

is given by,
( (

ℓ−1
𝑑

)
/
(
𝑛′

𝑑

) ) ℓ
, where the probability is taken over the random coins of sampling 𝐺 - because

the probability that the particular subset is chosen on a single vertex on the left is (
ℓ−1
𝑑 )
(𝑛′𝑑 )

, and the condition
holds for all vertices on the left.

Since the sets 𝑆 can be sampled in
(
𝑛
ℓ

)
ways, and the set 𝑇 can be sampled in

(
𝑛′

ℓ−1
)
ways, the probability

of failure through a union bound is given by,

𝑛∑︁
ℓ=𝑑

(
𝑛

ℓ

) (
𝑛′

ℓ − 1

) ( (
ℓ−1
𝑑

)(
𝑛′

𝑑

) ) ℓ
. (4)

By using the inequalities, (
𝑥
𝑑)
(𝑦𝑑)
≤ 𝑥 · (𝑥−1) ...(𝑥−𝑑+1)

𝑦 · (𝑦−1) ...(𝑦−𝑑+1) ≤
(
𝑥
𝑦

)𝑑
, and using the inequality that

(
𝑥
𝑦

)
≤

(
𝑒 ·𝑥
𝑦

)𝑦
,

the failure probability can be simplified to,
∑𝑛

ℓ=𝑑

(
𝑒 ·𝑛
ℓ

) ℓ (
𝑒 ·𝑛′
ℓ−1

) ℓ−1 (
ℓ−1
𝑛′

) ℓ ·𝑑 . Observe that the dominating

expression here is the ℓ−1
𝑛′

ℓ ·𝑑 expression. The expression can be succinctly written as 𝑓 (ℓ) =
(
𝑎
ℓ2
·
(
ℓ
𝑛′

)𝑑 ) ℓ ,
where 𝑎 is some constant. Taking a derivative, 𝑑

𝑑ℓ
(𝑓 (ℓ)) = 𝑓 (ℓ) · ((𝑑 − 2) (1 + ln ℓ) − 𝑑 ln𝑛′ + ln𝑎). On

setting 𝑛′ ≥ 3𝑛, and 𝑑 ≥ 4 and since ℓ ≤ 𝑛, the term
(
ℓ
𝑛′

)𝑑 ·ℓ will dominate and we can observe that
𝑑
𝑑 ·ℓ (𝑓 (ℓ)) < 0 and the function is decreasing. Thus we can upper bound our probability of failure by
(𝑛 − 𝑑 + 1) · 𝑓 (4). Plugging in the values for 𝑛′ = 3𝑛, and bounding loosely, we get the expression that
the probability is upper bounded by 𝑒𝑎−𝑏 ·𝑑 , where 𝑎 = ln( 𝑛3𝑒 ) + 4 ln(𝑒

2𝑛2), 𝑏 = 4 ln(𝑛′4 ) are some constants.
Loosely setting 𝑑 ≥ (𝑎 + 𝜔 (𝑙𝑜𝑔𝜆)) /𝑏, gives us that the probability of failure is ≤ negl(𝜆), hence completing
the lemma proof. □

Since FindMatch outputs a perfect matching, the batch correctness and batch efficiency of our transfor-
mation holds from the batch correctness and batch efficiency of ΠcobatchTLP. Note that from the analysis
in [HK73], it takes 𝑂 (𝑛 · 𝑑

√
𝑛) time to find the perfect matching. In Appendix A, we sketch an alternate

analysis which can find a matching solution in time 𝑂 (𝑛 · 𝑑) in the worst case, but requires a larger degree
for the matching to exist with non-negligible probability. The alternate analysis is simpler, but leads
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to a larger degree bound, hence more communication, and slower puzzle generation. Additionally, the
matching algorithm is blazingly efficient and will not be the bottleneck when compared to the cryptographic
operations in the system. □

Remark 4.5. Notice that in the RAM model, the efficiency of our algorithms mirrors the efficiency of the
underlying ΠcobatchTLP.

• If cobatchTLP.Gen does not depend on𝑛, ourGen then runs𝑑 (which is ≤ 𝜆) copies of cobatchTLP.Gen
and hence will also not depend on 𝑛.

• Efficiency of Sol is exactly same to the efficiency of cobatchTLP.Sol.

• If the efficiency of cobatchTLP.BatchPSol does not depend on 𝑛 i.e. equal to 𝑝1(𝜆, log |S𝜆 |,𝑇 ) +
𝑝2(𝜆, log |S𝜆 |, log𝑇, |S|). Efficiency of BatchPSol will depend on finding a perfect matching where
the number of edges are |S| · 𝑑 and thus will have the same efficiency.

Theorem 4.6 (Security). If ΠcobatchTLP satisfies security according to Definition 2.10, then, Construction 4.2
satisfies security according to Definition 2.7.

Proof. The security of our construction follows from a standard hybrid argument where the reduction
B given a puzzle 𝑍 =

(
𝑉 ,

{
(𝑣 𝑗 , 𝑍𝑣𝑗 )

}
𝑣𝑗 ∈𝑉

)
guesses an index 𝑣 𝑗 ∈ 𝑉 , breaks the underlying security of

ΠcobatchTLP with a probability loss of 1/𝑑 . □

Remark 4.7 (Special Case: Superpolynomial Indices). The analysis becomes very simple as soon as 𝑛 is
superpolynomial. To remove coordination, we can sample one random index and produce the puzzle with
respect to that index. The probability that two parties sample the same index is negligible. This also works
if the amount of puzzles one can batch is bounded 3.4) but 𝑛 is superpolynomial.

5 Puncturable Key-Homomorphic PRFs

5.1 Bounded Domain Puncturable Key-Homomorphic PRFs from Pairings

In the following we present two constructions of puncturable key-fomomorphic PRFs from pairings, with
different tradeoffs in terms of assumptions and parameter size. Importantly, both of these constructions
only support of domain of size 𝑛 = poly(𝜆).

Construction 5.1 (Quadratic Setup). We specify the algorithmsΠPRF = (Setup, PRF, Puncture, PuncturedEval)
below.

• Setup(1𝜆, 1𝑛):

– G = (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆)
– Sample 𝑥𝑖 uniformly at random for Z∗𝑝 for 𝑖 ∈ [𝑛]
– Sample 𝑧𝑖 uniformly at random for Z∗𝑝 for 𝑖 ∈ [𝑛]
– Return pp = (G, {𝑔𝑥𝑖 }𝑖∈[𝑛], {𝑔𝑧𝑖/𝑥 𝑗 }𝑖≠𝑗 )

• PRFpp(k, 𝑖):

– Return 𝑒 (𝑔𝑧𝑖/𝑥 𝑗 , 𝑔𝑥 𝑗 )k = (𝑒 (𝑔,𝑔)𝑧𝑖 )k for some 𝑗 ≠ 𝑖
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• Puncturepp(k, 𝑖∗):

– Return 𝑔𝑥𝑖∗k = (𝑔𝑥𝑖∗ )k

• PuncturedEvalpp(k∗, 𝑖∗, 𝑖):

– Return ⊥ if 𝑖 = 𝑖∗

– Return 𝑒 (𝑔,𝑔)𝑧𝑖k = 𝑒 (𝑔𝑥𝑖∗k, 𝑔𝑧𝑖/𝑥𝑖∗ )

Analysis. To show that the scheme is indeed correct, it suffices to observe that for all 𝑖 ≠ 𝑖∗:

PuncturedEvalpp(k∗, 𝑖∗, 𝑖) = 𝑒 (𝑔𝑥𝑖∗k, 𝑔𝑧𝑖/𝑥𝑖∗ ) = 𝑒 (𝑔,𝑔)𝑧𝑖k = PRFpp(k, 𝑖) .

It is similarly easy to show that the scheme is (perfect) key homomorphic over Z∗𝑝 since for all ∈ [𝑛] we
have, ∏

𝑗

PRFpp(k𝑗 , 𝑖) =
∏
𝑗

𝑒 (𝑔,𝑔)𝑧𝑖k𝑗 = 𝑒 (𝑔,𝑔)𝑧𝑖
∑

𝑗 k𝑗 = PRFpp

(∑︁
𝑗

k𝑗 , 𝑖

)
.

We now show that the scheme is secure against the Bilinear Diffie-Hellman assumption.

Theorem 5.2. If the Bilinear Diffie-Hellman assumption holds Assumption 2.11, then Construction 5.1 satisfies
security from Definition 2.1.

Proof. The reduction is supplied by the challenger with the following group elements

(𝑔𝑥 , 𝑔1/𝑥 , 𝑔𝑦, 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑥𝑦𝑧) or (𝑔𝑥 , 𝑔1/𝑥 , 𝑔𝑦, 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑟 )

which, by a variable re-arrangement, we can rewrite as

(𝑔1/𝑥 , 𝑔𝑥 , 𝑔𝑘𝑥 , 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑘𝑧) or (𝑔1/𝑥 , 𝑔𝑥 , 𝑔𝑘𝑥 , 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑟 ).

The reduction sets (implicitly) 𝑥𝑖∗ = 𝑥 , 𝑧𝑖∗ = 𝑧, and k = 𝑘 . For all 𝑖 ≠ 𝑖∗ the reduction samples 𝑥𝑖 ←
Z∗𝑝 and 𝑧𝑖 ← Z∗𝑝 . The reduction can then compute the public parameters

pp = (G, 𝑝, {𝑔𝑥𝑖 }𝑖∈[𝑛], {𝑔𝑧𝑖/𝑥 𝑗 }𝑖≠𝑗 )

by using the elements given by the challenger, along with the integers sampled locally. Finally, the reduction
provides the adversary with the public parameters pp along with the punctured key 𝑔𝑘𝑥 and the element
𝑅 = {𝑒 (𝑔,𝑔)𝑘𝑧, 𝑒 (𝑔,𝑔)𝑟 } as given by the challenger. It is easy to see that whenever 𝑅 = 𝑒 (𝑔,𝑔)𝑘𝑧 , then the
reduction perfectly simulates the output of the PRF, whereas if 𝑅 is uniform, then the view simulated by
the reduction is identical to the random case. This shows that any distinguisher against the security of the
PRF is also a solver for the Bilinear Diffie-Hellman problem. □

Construction 5.3 (Linear Setup). We specify the algorithmsΠPRF = (Setup, PRF, Puncture, PuncturedEval)
below.

• Setup(1𝜆, 1𝑛):

– G = (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆)
– Sample 𝑥 uniformly at random for Z∗𝑝
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– Return pp = (G, {𝑔𝑥𝑖 }𝑖∈[2𝑛]\{𝑛+1})

• PRFpp(k, 𝑖):

– Return 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k = (𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖 )k

• Puncturepp(k, 𝑖∗):

– Return 𝑔𝑥𝑖
∗
k = (𝑔𝑥𝑖

∗
)k

• PuncturedEvalpp(k∗, 𝑖∗, 𝑖):

– Return ⊥ if 𝑖 = 𝑖∗

– Return 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k = 𝑒 (𝑔𝑥𝑖
∗
k, 𝑔𝑥

𝑛+1+𝑖−𝑖∗ )

Analysis. It is immediate to see that the scheme satisfies correctness since for all 𝑖∗ ≠ 𝑖:

PuncturedEvalpp(k∗, 𝑖∗, 𝑖) = 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k = (𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖 )k = PRFpp(k, 𝑖) .

It is equally easy to see that the scheme is (perfect) linearly key-homomorphic over Z∗𝑝 :∏
𝑗

PRFpp(k𝑗 , 𝑖) =
∏
𝑗

𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k𝑗 = 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖
∑

𝑗 k𝑗 = PRFpp

(∑︁
𝑗

k𝑗 , 𝑖

)
.

We now show that the scheme is secure against the 𝑛-Power Diffie-Hellman assumption.

Theorem 5.4. If the 𝑛-Power Diffie-Hellman assumption Assumption 2.12 holds, then construction Construc-
tion 5.3 satisfies security from Definition 2.1.

Proof. The reduction is provided by the challenger with the following group elements(
𝑔𝑥 , . . . , 𝑔𝑥

𝑛

, 𝑔𝑥
𝑛+2

, . . . , 𝑔𝑥
2𝑛
, ℎ, 𝑒 (𝑔, ℎ)𝑥𝑛+1

)
or

(
𝑔𝑥 , . . . , 𝑔𝑥

𝑛

, 𝑔𝑥
𝑛+2

, . . . , 𝑔𝑥
2𝑛
, ℎ, 𝑒 (𝑔,𝑔)𝑟

)
.

The reduction sets (implicitly) k = DLog(ℎ)/𝑥𝑖∗ and sets the public parameters to

pp = (G, 𝑝, {𝑔𝑥𝑖 }𝑖∈[2𝑛]\{𝑛+1})

which are easy to compute given the elements supplied by the challenger. The reduction provides
the distinguisher with the public parameters pp along with the punctured key ℎ and the element 𝑅 =

{𝑒 (𝑔, ℎ)𝑥𝑛+1, 𝑒 (𝑔,𝑔)𝑟 } as given by the challenger. Observe that

ℎ = 𝑔DLog(ℎ) = 𝑔k𝑥
𝑖∗
and 𝑒 (𝑔, ℎ)𝑥𝑛+1 = 𝑒 (𝑔,𝑔)𝑥𝑛+1k𝑥𝑖

∗
= 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖

∗
k

are identically distributed as the real view, whereas if 𝑅 = 𝑒 (𝑔,𝑔)𝑟 , then the view of the adversary is identical
to the random case. It follows that any distinguisher against the pseudorandomness of the PRF is also a
solver for the 𝑛-Power Diffie-Hellman problem. □

Remark 5.5. Observe that in both of our constructions, ppPRF depend polynomially in 𝑛, but our algorithms
PRF, Puncture, PuncturedEval only look at a constant number of group elements, hence run very efficiently
in the RAM model of computation. When these PRF’s are plugged into Construction 3.1, they give us
efficient batching algorithms according to Remark 2.9.
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5.2 (Almost) Key-Homomorphic Puncturable PRF from LWE

The constrained-key (almost) key-homomorphic PRF by [BV15] is already a (almost) key-homomorphic
puncturable PRF. It, however, provides more functionality and stronger security than what we need. In the
following we show how to simplify the construction drastically for our security and functionality notions.

We use the two algorithms from [BV15] (ComputeA,ComputeC) that allows us to embed circuits into
matrices and LWE samples.

ComputeA(𝐹,A0, . . . ,A𝑘 ) : Takes as input a circuit 𝐹 : {0, 1}𝑘 → {0, 1} and 𝑘 matrices A0, . . . ,A𝑘 and
outputs a matrix A𝐹 .

ComputeC(𝐹, 𝑥1, . . . , 𝑥𝑘 ,A0, . . . ,A𝑘 , a0, . . . , a𝑘 ) : Takes as input a circuit 𝐹 : {0, 1}𝑘 → {0, 1}, 𝑘 + 1matrices
A0, . . . ,A𝑘 , a𝑘 bits 𝑥1, . . . , 𝑥𝑘 , and𝑘+1 vectors a0, . . . , a𝑘 where a𝑖 = s𝑇 (A+𝑥𝑖G)+e𝑖 and s𝑇 (A0+G)+e0.
It outputs a vector a𝐹,𝑥 such that a𝐹,𝑥 = s𝑇 (A𝐹 + 𝐹 (𝑥)G) + e𝐹

The runtime of both these algorithms roughly corresponds to a matrix multiplication per AND gate and a
matrix addition per NOT gate.

Lemma 5.6 (Lemma 4.1 of [BV15]). Let F be a Boolean circuit (of AND and NOT gates) on k input bits, and
𝑥 ∈ {0, 1}𝑘 be an input to the circuit. Let A0,A1, . . . ,A𝑘 ∈ Z𝑛×𝑚𝑞 and a0, a1, . . . , a𝑘 such that ∥a𝑖 − s𝑇A𝑖 +
𝑥𝑖G∥∞ ≤ 𝐵 for 𝑖 ∈ [𝑘] and ∥a0 − s𝑇A0 + G∥∞ ≤ 𝐵. Let A𝐹 ← ComputeA(𝐹,A0, . . . ,A𝑘 ) and a𝐹,𝑥 ←
ComputeC(𝐹, 𝑥,A0,A1, . . . ,A𝑘 , a0, a1, . . . , a𝑘 ). Then with 𝐸 (𝐹 ) being a noise growth estimation of the circuit
𝐹

∥a𝐹,𝑥 − s𝑇A𝐹 + 𝐹 (𝑥)G∥∞ ≤ 𝐸 (𝐹 ) · 𝐵

where 𝐸 (𝐹 ) = 𝐸𝐹 (𝑤𝑜 ) with𝑤𝑜 being the output wire of 𝐹 and 𝐸𝐹 is defined as follows.

𝐸𝐹 (𝑤) =


1 if𝑤 is input wire
1 + 𝐸𝐹 (𝑤 ′) if𝑤 is the output wire of NOT gate with input𝑤 ′

𝑚 · 𝐸𝐹 (𝑤𝑙 ) + 𝐸𝐹 (𝑤𝑟 ) if𝑤 is the output wire of AND gate with left input𝑤𝑙

and right input𝑤𝑟

Furthermore, a𝐹,𝑥 is a "low-norm" linear function of a0, . . . , a𝑘 . That is, there are matrices Z0, . . . ,Z𝑘 (which
depend on the circuit 𝐹 , the input 𝑥 , and the input matrices A0, . . . ,A𝑘 ) such that a𝐹,𝑥 =

∑𝑘
𝑖=0 a𝑖Z𝑖 and

∥Z𝑖 ∥∞ ≤ 𝐸 (𝐹 ).

In the following we describe a PRF that largely follows the blueprint of the constrained-key key-
homomorphic PRF of [BV15]. For our use-case the PRF does not have to be adaptively secure, i.e. the
adversary is not allowed any queries to the PRF. This allows us to remove both the reliance on 1𝐷 − 𝑆𝐼𝑆
and the admissible hash function.

We also do not need to be able to constrain the keys in arbitrary ways we just need the ability to
puncture at a single point. This allows us to replace the universal circuit by the simpler equality circuit

𝐸𝑄 (𝑥, 𝑥∗) =
∧
𝑖∈[𝜆]
(𝑥𝑖

?
= 𝑥∗𝑖 ) =

∧
𝑖∈[𝜆]
(¬(𝑥𝑖 ∧ 𝑥∗𝑖 ) ∧ ¬(¬𝑥𝑖 ∧ ¬𝑥∗𝑖 ))

Notice that on the highest level this circuit is just a big and of 2𝜆 many clauses (𝑐 𝑗 ) 𝑗∈[2𝜆] with each clause
𝐸 (𝑐𝑖) ≤ (2𝑚 + 3). If we now arrange the big and such that the "heavy" part is in the right spline (i.e.
𝐸𝑄 = (𝑐1 ∧ (𝑐2 ∧ (𝑐3 ∧ . . . (𝑐2𝜆−1 ∧ 𝑐2𝜆) . . . )))) we get 𝐸 (𝐸𝑄) ≤ (2𝜆 − 1)𝑚(2𝑚 + 3) ≤ 𝑂 (𝜆𝑚2).
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Construction 5.7. A PRF with domain {0, 1}𝜆 Let 𝜒𝑚
𝜎,𝐵

be the discrete gaussian distribution with parameter
𝜎 trucated at 𝐵, if we write 𝜒𝜎 then it is not truncated.
Setup(1𝜆) :

• Sample A0 ←$ Z
𝑛×𝑚
𝑞 uniformly at random

• Sample A1 ←$ Z
𝑛×𝑚
𝑞 uniformly at random

• Sample B𝑖 ←$ Z
𝑛×𝑚
𝑞 uniformly at random for each 𝑖 ∈ [𝜆]

• Sample D←$ Z
𝑛×𝑚
𝑞 uniformly at random

• Sample C←$ Z
𝑛×𝑚
𝑞 uniformly at random

• Return pp = ({A𝛽 }𝛽∈{0,1}, {B𝑖}𝑖∈[𝜆],C,D)

KeyGenpp(𝑥∗) :

• Repeat:
– Sample s← Z𝑛𝑞 uniformly at random

• Until s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D) has no entry in [−𝐵′, 𝐵′] + (𝑞/𝑝)Z
• Return s

PRFpp(k, 𝑥) :

• Parse k into s ∈ Z𝑛𝑞
• Let B𝐸𝑄,𝑥 ← ComputeA(𝐸𝑄,A1,B1, . . . ,B𝜆,A𝑥1, . . . ,A𝑥𝜆 )
• Return

⌊
s𝑇 (B𝐸𝑄,𝑥 + C)𝐺−1(D)

⌉
𝑝

Puncturepp(k, 𝑥∗) :

• Parse k into s ∈ Z𝑛𝑞 and e0 ∈ Z𝑚𝑞
• For each 𝛽 ∈ {0, 1}:

– Sample e1,𝛽 ← 𝜒𝑚
𝜎,𝐵

according error distribution
– Let a𝛽 = s𝑇 (A𝛽 + 𝛽G) + e1,𝛽

• For each 𝑖 ∈ [𝜆]:
– Sample e2,𝑖 ← 𝜒𝑚

𝜎,𝐵
according error distribution

– Let b𝑖 = s𝑇 (B𝑖 + 𝑥∗𝑖 G) + e2,𝑖
• Sample e3 ← 𝜒𝑚

𝜎,𝐵
according error distribution

• Let c = s𝑇C + e3
• Return k∗ = ({a𝛽 }𝛽∈{0,1}, {b𝑖}𝑖∈[𝜆], c)

PuncturedEvalpp(k∗, 𝑥∗, 𝑥) :

• Compute

b𝐸𝑄,𝑥,𝑥∗ ← ComputeC(𝐸𝑄, 𝑥∗, 𝑥,A1,B1, . . . ,B𝜆,A𝑥1, . . . ,A𝑥𝜆 ,

a1, b1, . . . , b𝜆, a𝑥1, . . . , a𝑥𝜆 )

• Return
⌊
(b𝐸𝑄,𝑥,𝑥∗ + c)𝑇𝐺−1(D)

⌉
𝑝

Remark 5.8. The because the 𝐸𝑄 circuit has 3𝜆 − 1 AND gates the runtime of PRF and PuncturedEval is
dominated by the 3𝜆 − 1 matrix multiplications necessary to evaluate ComputeA or ComputeC.
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Efficiency of Key Generation. Because s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D) is statistically close to uniform the
resampling happens with probability 1− (1− (2𝐵′ + 1)𝑝/𝑞)𝑚 ≤ 𝑚(2𝐵′ + 1)𝑝/𝑞.𝑚, 𝐵′, and 𝑝 are polynomial
and fixed. Therefore, we can choose 𝑞 ≥ 2𝑚(2𝐵′ + 1)𝑝 , which is polynomial and will cause a resampling
probability ≤ 1/2.

If we choose 𝑞 to be superpolyniomial the resampling probability is negligible. Therefore, s can be
chosen uniformly at random without depending on 𝑖 .

Theorem 5.9 (Pseudorandom at Punctured Point). For all 𝑥∗ uniformly random pp. Let k← KeyGen(𝑥∗),
let k∗ ← Puncture(k, 𝑥∗) and 𝑦 = PRF(k, 𝑥∗) and uniformly random 𝑢 an adversary can not distinguish
A(pp, k∗, 𝑦) from A(pp, k∗, 𝑢).

Proof. We proof in hybrids

𝐻0 : In this hybrid we compute pp, k, k∗, and 𝑦 according the original distribution.

𝐻1 : In the first hybrid we change how we sample matrices A𝛽 for 𝛽 ∈ {0, 1} and B𝑖 for 𝑖 ∈ [𝜆]. We now
sample Â𝛽 and B̂𝑖 uniformly at random and then set A𝛽 = Â𝛽 − 𝛽G and B𝑖 = B̂𝑖 − 𝑥∗G. These two
have the same distribution. Therefore, Adv𝐻1 (A) = Adv𝐻0 (A).

𝐻2 : Now we notice that if we sample e← 𝜒𝑚
𝜎,𝐵

according to error distribution and let d = s𝑇D + e and

b𝐸𝑄,𝑥∗,𝑥∗ ← ComputeC(𝐸𝑄, 𝑥∗, 𝑥∗,A1,B1, . . . ,B𝜆,A𝑥∗1
, . . . ,A𝑥∗

𝜆
,

a1, b1, . . . , b𝜆, a𝑥∗1 , . . . , a𝑥∗𝜆 )

Then we replace
⌊
s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D)

⌉
𝑝
by

⌊
(b𝐸𝑄,𝑥∗,𝑥∗ + c)𝑇𝐺−1(D) − d𝑇

⌉
𝑝
. To see why this is

valid we rewrite y in the following way:

y =
⌊
s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D)

⌉
𝑝

=
⌊
s𝑇 (B𝐸𝑄,𝑥∗ + C + G)𝐺−1(D) − s𝑇D

⌉
𝑝

=
⌊
(b𝐸𝑄,𝑥∗,𝑥∗ + c)𝑇𝐺−1(D) − d𝑇 + e′′𝑇

⌉
𝑝

(5)

with e′′ = (e3 + e′)𝐺−1(D) − e. By lemma 5.6 we know that ∥e′′∥∞ ≤ ((𝐸 (𝐸𝑄) + 1) ·𝑚 + 1)𝐵 = 𝐵′

This change only produces a different output if the vector s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D) has an entry in
[−𝐵′, 𝐵′] + (𝑞/𝑝)Z. Because s has been sampled using KeyGen(𝑥∗) this does not happen.

𝐻3 : In the next hybrid we replace a0, a1, b1, . . . , b𝜆, d by uniformly random vectors. We can do this by
decisional LWE because in 𝐻3

a𝛽 = s𝑇 Â𝛽 + e1,𝛽 for all 𝛽 ∈ {0, 1}
b𝑖 = s𝑇 B̂𝑖 + e2,𝑖 for all 𝑖 ∈ [𝜆]
c = s𝑇C + e3
d = s𝑇D + e

where all the matrices are independent and uniform. This means the |Adv𝐻3 (A) − Adv𝐻4 (A)| ≤
negl(𝜆).

Because of d’s uniformity we know that
⌊
(b𝐸𝑄,𝑥∗,𝑥∗ + c)𝑇𝐺−1(D) − d𝑇

⌉
𝑝
is uniform if 𝑝 divides 𝑞. □
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Theorem 5.10 (Almost Functionality Preserving). For all 𝑥 , 𝑥∗ ≠ 𝑥 , sample pp uniformly at random
k← KeyGen(𝑥∗) correctly, let k∗ ← Puncturepp(k, 𝑥∗)

∥PuncturedEvalpp(k, 𝑥∗, 𝑥) − PRFpp(k, 𝑥)∥∞ ≤ 1

Proof. Let B𝐸𝑄,𝑥 ← ComputeA

PRFpp(k, 𝑥) =
⌊
s𝑇 (B𝐸𝑄,𝑥 + C)𝐺−1(D)

⌉
𝑝

=
⌊
(b𝐸𝑄,𝑥,𝑥∗ + c)𝑇𝐺−1(D) + e𝑇

⌉
𝑝

for some e with |e| ≤ 𝐸 (𝐸𝑄) ·𝑚𝐵

=
⌊
(b𝐸𝑄,𝑥,𝑥∗ + c)𝑇𝐺−1(D)

⌉
𝑝
+ {−1, 0, 1}𝑚 (6)

= PuncturedEvalpp(k∗, 𝑥∗, 𝑥) + {−1, 0, 1}𝑚

Equation 6 holds because |e| ≤ 𝐸 (𝐸𝑄) ·𝑚𝐵 and we choose 𝑞/𝑝 > 𝐸 (𝐸𝑄) ·𝑚𝐵. □

Claim 5.11 (Almost Key Homomorphism).PRFpp ©«
∑︁
𝑖∈[𝑘 ]

s𝑖 , 𝑥
ª®¬ −

∑︁
𝑖∈[𝑘 ]

PRFpp(s𝑖 , 𝑥)


∞

≤ 𝑘 − 1

This just follow from the fact that rounding is almost homomorphic. I.e., For any a, b ∈ Z𝑚𝑞 we have
⌊a⌉𝑝 + ⌊b⌉𝑝 ≤ ⌊a + b⌉𝑝 + e where e ∈ {−1, 0, 1}𝑚 .

Remark 5.12. Notice that almost functionality preservation and almost key homomorphism hold for any
s ∈ Z𝑛𝑞 not only the ones sampled by KeyGen. This follows directly from the fact that the proofs of both
these properties do not use the fact that s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D) has no entry in [−𝐵′, 𝐵′] + (𝑞/𝑝)Z.

Choice of Parameters.

• Polynomial Modulus-to-Noise: For security and efficiency purposes it is advantagous if𝑞 is polynomial
in 𝜆. If one knows a polynomial upperbound on how often almost functionality preserving and almost
key homomorphism is used then one can simply choose 𝑝 to be more than double this upperbound in
order to absorb all the errors that accumulate through these operations. Then the conditions towards
all the are other parameters are𝑚 ≥ log(𝑞)𝑛, 𝑞 ≥ 2𝑚(2𝐵′ + 1)𝑝 , 𝐵 = 𝛼𝑞 · 𝜔 (

√︁
log(𝜆)), where 𝛼 is

the modulus-to-noise ratio and 𝑝 divides 𝑞. This leads to a key-homomorphic puncturable PRF with
exponential domain but a polynomial codomain modulus we mentioned in Remark 3.4.

• Superpolynomial Modulus-to-Noise: If one is willing to accept a superpolynomial modulus-to-noise
ratio one can make 𝑞 and 𝑝 superpolynomial in 𝜆. This has the advantage that now the key does not
need to be rejection sampled as the rejection probability is negligible and 𝑝 is big enough that it can
absorb polynomially many key-homomorphic operations

6 Rogue Puzzle Attacks

In the following we formally consider the security of time-lock puzzles against rogue-puzzle attacks. First,
we augment the syntax of our primitive with an additional algorithm that allows one to check that a puzzle
is well-formed. Next, we formalize the security property as a cryptographic game. Finally, we provide a
construction that satisfies this property in various settings.
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Definition 6.1 (Rogue Puzzle Attacks). We say ΠbatchTLP = (Setup,Gen,BatchPSol, IsValid) is secure
against rogue puzzle attacks, if the syntax is augmented with the following algorithm:

• {0, 1} ← IsValid(𝑍 ) a probabilistic algorithm that takes as input a puzzle 𝑍 and returns a bit {0, 1}.

In addition, ΠbatchTLP should satisfy the properties:

• Validity Check: We say ΠbatchTLP satisfies validity check if for all 𝜆, 𝑛,𝑇 ∈ N, for all inputs 𝑠 ∈ S𝜆 it
holds that

IsValid(Gen(pp, 𝑠)) = 1

where pp← Setup(1𝜆,𝑇 ).

• Rogue Puzzle Security: We say ΠbatchTLP satisfies rogue puzzle security if for all 𝜆,𝑇 ∈ N, any
polynomially bounded adversaries, (A1,A2) = (

{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), there exists a negligible

function negl(·) such that

Pr


{1 = IsValid(𝑍 ∗𝑗 )} 𝑗∈S∗

∧
(
∃ 𝑗 ∈ S∗, 𝑖 ∈ S :

(
𝑍 ∗𝑗 = 𝑍𝑖 ∧ 𝑠∗𝑗 ≠ 𝑠𝑖

)) :

pp← Setup(1𝜆,𝑇 (𝜆))
(st, {𝑠𝑖}𝑖∈S) ← A1(1𝜆, pp)
{𝑍𝑖 ← Gen(pp, 𝑠𝑖)}𝑖∈S

{𝑍 ∗𝑗 } 𝑗∈S∗ ← A2(st, {𝑍𝑖}𝑖∈S){
(𝑠∗𝑗 , 𝑍 ∗𝑗 )

}
𝑗∈S∗
← BatchPSol(pp,

{
(𝑍 ∗𝑗 )

}
𝑗∈S∗
)


≤ negl(𝜆) .

6.1 Constructions

We present separate constructions in the settings where the public parameters are bounded and unbounded.
We assume that the construction Construction 4.2 consists of the following structure.

• We assume that the coordinated scheme in Construction 4.2 consists of two parts, one that’s dependent
on the coordinated index, and the other that is independent of the index. In our concrete construction
in Construction 3.1, this corresponds to 𝑍 computed as 𝑍 ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k)). The
index dependent part consists of 𝑖, 𝑘∗, 𝑐 , the index, the punctured key and the punctured point
computation.

We use 𝑍indep below to clearly indicate the puzzle independent part.

Construction (Unbounded Setting). We can achieve the above definition by modifying Construction 4.2
in the following manner. Let Hash be a collision-resistant hash function with output space {0, 1}𝜆 . We
assume that the underlying coordinated space can handle unbounded indices in space {0, 1}𝜆 .

For the puzzle generation algorithm we:

• We sample the puzzle independent instance𝑍indep
6 and compute the index 𝑖 ∈ {0, 1}𝜆 ← Hash(𝑍indep),

where Hash and 𝑍indep are defined above.

• Add a non-interactive zero-knowledge (NIZK) proof that certifies that the punctured key is consistent
with the index attached to the puzzle, as well as the key encoded in 𝑍indep.

6In the unbounded setting, the degree is 1 and the right side of the bipartite graph is the same as the left side.
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The IsValid algorithm simply checks that the two conditions above are met. The batch-solving algorithm is
unchanged, except that it ignores puzzles with duplicate indices, i.e., it treats them as if they were the same
puzzle 𝑍 and solve one of them (chosen arbitrarily). It is easy to see that the construction is still correct and
secure, with a straightforward reduction to the zero-knowledge property of the NIZK.

Next, we argue that the construction satisfies security against rogue puzzle attacks, for the case of
unbounded batching. We consider two cases: (i) If all indices are pairwise distinct, then the property follows
from the soundness of the NIZK and, consequently, from the correctness of the puzzle. (ii) If there is a
collision, then we argue that the puzzle of the colliding indices must be the same and therefore it suffices to
solve one of them (otherwise, we have a contradiction to the collision-resistance property of Hash).

Construction (Bounded Setting, Lattices). When we want to use a polynomial modulus for the lattice
based PRF we can no longer sample the PRF key 𝑘 and therefore 𝑍 independent of 𝑖 . This leads us to a
circularity. 𝑍 needs to depend on 𝑖 and 𝑖 is computed from 𝑍 . We resolve this issue by sampling them
together. To see how this works we will briefly go over how the key 𝑘 depends on 𝑖 . It is rejection sampled
according to some condition 𝐶𝑖 that depends on 𝑖 and holds with probability 1/2 over a uniformly random
key:

• Repeat until 𝐶𝑖 (𝑘) = 1: Sample 𝑘 uniformly at random.

So we modify the generation in the following way:

• Repeat until𝐶𝑖 (𝑘) = 1: Sample 𝑘 uniformly at random. Generate the linearly-homomorphic time-lock
puzzle containing 𝑘 as such 𝑍 ← TLP.Gen(𝑘). Compute the index 𝑖 ∈ {0, 1}𝜆 ← Hash(𝑍 ).

• Add a non-interactive zero-knowledge (NIZK) proof 𝜋 that certifies that the punctured key 𝑘∗ is
consistent with the index 𝑖 , as well as the key encoded in 𝑍 .

The proof of this argument is the same as in the unbounded setting. That is because the condition𝐶𝑖 is only
necessary to guarantee security while almost correctness holds even if 𝐶𝑖 does not hold (see Remark 5.12).
Therefore, the worst an adversary can do by choosing a 𝑘 that does not meet condition 𝐶𝑖 is to diminish
security of its own puzzle.

Construction (Bounded Setting, Pairings). We can achieve the above definition by modifying Con-
struction 4.2 in the following manner. We model Hash as a random oracle that has output space [𝑛new]𝑑 .

For the puzzle generation algorithm we:

• We sample the puzzle indepedent indices 𝑍indep,1, . . . , 𝑍indep,𝑑 and then compute the set

𝑉 ← Hash(𝑍indep,1, . . . , 𝑍indep,𝑑 ),

where Hash and 𝑍indep are defined above.

• Sample the remaining puzzle dependent instances, and for all 𝑖 ∈ [𝑑], add a non-interactive zero-
knowledge (NIZK) proof 𝜋𝑖 that certifies that the punctured key 𝑘∗𝑖 (corresponding to 𝑍𝑖 ) is consistent
with the index attached to the puzzle, as well as the key encoded in 𝑍indep,𝑖 .

The IsValid algorithm simply checks that the two conditions above are met and is same as before. The
batch-solving algorithm is unchanged, except that if a perfect matching doesn’t exist, we move forward
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with the maximal matching found. It is easy to see that the construction is still correct and secure, with a
straightforward reduction to the zero-knowledge property of the NIZK.

The only difference is that in the security game, the adversary can query the random oracle mulitple
times and possibly either find a duplicate set or might influence the algorithm in a malicious way to cause
the correctly setup puzzles to be incorrect. To argue this is not possible, we tweak the parameters of 𝑛new
and 𝑑 and augment aur analysis to depend on 𝑞 = 𝑞(𝜆), the number of random oracle queries an adversary
A2 makes in Definition 6.1. As before, we consider two cases: (i) If a perfect matching is computed, then
the property follows from the soundness of the NIZK and, consequently, from the correctness of the puzzle.
(ii) If a perfect matching doesn’t exist, it can happen due to two reasons. (ii)(a) If the exact same puzzle and
set are chosen. In this case, it suffices to solve one of them. (ii)(b) The adversary has found a list of queries
that violate a perfect matching by arbitarily querying the random oracle and still having IsValid hold. We
show below that this is not possible.

Observe that in Eq. (4), the probability of choosing a set 𝑆 ⊆ 𝑈 is now
(
𝑞
ℓ

)
because the adversary A2

might sample multiple different index independent puzzles and can choose to group any subset S∗ of them.
Thus the expression to be analyzed changes to the following analysis,

𝑛∑︁
ℓ=𝑑

(
𝑞

ℓ

) (
𝑛′

ℓ − 1

) ( (
ℓ−1
𝑑

)(
𝑛′

𝑑

) ) ℓ
. (7)

A similar malicious expression was analyzed in [GLWW23] and built on our honest analysis. We
mention the modified theorem statement below. The proof is very similar to the proof above.

Lemma 6.2. Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a random left regular bipartite graph where |𝑈 | = 𝑛, |𝑉 | = 𝑛′. Let the left
regular degree be denoted by 𝑑 . If 𝑛′ = 3𝑛, 𝑑 =

𝑂 (log𝑞)
log(𝑛) +

𝜔 (log𝜆)
log(𝑛′ ) , then, the probability that there exists a perfect

matching for 𝐺 is ≥ 1 − negl(𝜆).

The proof repeats along the lines of the proof of Lemma 4.4. Observe that our analysis depends on
𝑂 (log𝑞)
log(𝑛) , i.e. we only depend on logarithmic factors in 𝑞.

6.2 An Efficient NIZK Protocol

While a general purpose NIZK suffices for our construction. We demonstrate how to efficiently instantiate
a NIZK for our pairing based key homomomorphic PRF and LWE based key homomorphic PRF.

Pairing-based key homomorphic PRF The main idea is to use a variant of Schnorr protocol/Chaum
Pedersen protocol where the prover proves knowledge of an exponent 𝑘 in two different groups of the same
order 𝑁 . Since 𝜙 (𝑁 ) is not known, we need to be careful in arguing zero knowledge for the randomness
and apply a smudging argument, and the randomness is hidden. If the groups are coprime to each other,
we need to additionally constrain the TLP to argue soundness (please see Appendix B).

Construction 6.3 (Sigma protocol for pairing based KH-PRF and RSA based TLP). Our construction relies
on the following primitives:

• A linearly homomorphic TLP scheme, where the TLP is homomorphic in the message and the random
coins. We describe this property in the TLP scheme from [MT19] below, for completeness7.

7For brevity, we only show the puzzle generation algorithm.
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Algorithm TLP.Gen(pp, 𝑠; 𝑟 ), samples 𝑟 ← Z𝑁 2 . Computes 𝑢 = 𝑔𝑟 ∈ Z𝑁 and 𝑣 = ℎ𝑟 ·𝑁 · (1 + 𝑁 )𝑠
mod 𝑁 2. Output, (𝑢, 𝑣). Note that if (𝑢1, 𝑣1) ← TLP.Gen(pp, 𝑠1; 𝑟1), (𝑢2, 𝑣2) ← TLP.Gen(pp, 𝑠2; 𝑟2),
and (𝑢3, 𝑣3) ← TLP.Gen(pp, 𝑠1 + 𝑠2 ; 𝑟1 + 𝑟2), then, we have that 𝑢3 = 𝑢1 · 𝑢2 mod 𝑁 and 𝑣3 = 𝑣1 · 𝑣2
mod 𝑁 2.

• A group G with composite order 𝑁 and generator 𝑔1. Boneh, Go and Nissim [BGN05] formalized
how to generate a bilinear group of composite order 𝑁 (their construction requires 𝑁 is square free
and not divisible by 3. As 𝑁 is a product of two large primes, we satisfy these constraints).

We rely on Assumption 2.12, holding in a group where the order is 𝑁 and integers 𝑥,𝑦, 𝑟 are sampled
randomly from Z𝑁 .

We define a interactive 3-round sigma protocol argument and then collapse rounds using a Fiat-Shamir
transform for sigma protocols. LetΠ = (Prove,Verify) be a protocol for an instance 𝜒 =

(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)

and witness 𝜔 = (𝑘 ∈ Z𝑁 , 𝑟 ∈ Z𝑁 2) such that, 𝑍 = TLP.Gen(pp, 𝑘 ; 𝑟 ) and 𝑦 =

(
𝑔𝑥

𝑖∗

1

)𝑘
∈ G.

• Prove(𝜒,𝜔):

– Sample randomly, 𝑘 ′ ← Z𝑁 and 𝑟 ′ ← [𝑁 4].

– Compute 𝑍 ′ ← TLP.Gen(pp, 𝑘 ′; 𝑟 ′), 𝑦′ ←
(
𝑔𝑥

𝑖∗

1

)𝑘 ′
∈ G. The prover sends (𝑍 ′, 𝑦′) to the verifier.

– Receive 𝑐 ∈ Z𝑁 from the verifier.
– Compute 𝑘 = 𝑘 ′ + 𝑐 · 𝑘 ∈ Z𝑁 , and 𝑟 = 𝑟 ′ + 𝑐 · 𝑟 ∈ Z.8

– Send
(
𝑘 ∈ Z𝑁 , 𝑟 ∈ Z

)
to the verifier.

– Output 𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝑘 ∈ Z𝑁 , 𝑟 ∈ Z

)
as the proof.

• Verify(𝜒):

– The verifier recieves information from the prover and sends a random value 𝑐 ∈ Z𝑁 .
– Recieve (𝑘 ∈ Z𝑁 , 𝑟 ∈ Z) from the prover, and perform the checks below.

– Check if TLP.Gen(pp, 𝑘 ; 𝑟 ) ?
= 𝑍 ′ · 𝑍𝑐 .

– Check if
(
𝑔𝑥

𝑖∗

1

)𝑘 ?
= 𝑦′ · 𝑦𝑐 .

– If all checks pass, accept, else reject.

Completeness The scheme is complete, because TLP.Gen(pp, 𝑘 ; 𝑟 ) = TLP.Gen(pp, 𝑘 ′; 𝑟 ′)·TLP.Gen(pp, 𝑘 ; 𝑟 )𝑐 =
𝑍 ′ · 𝑍𝑐 as our time lock puzzle is linearly homomorphic in the puzzle and the random coins. Similarly, it’s

easy to check that the second condition holds true i.e.
(
𝑔𝑥

𝑖∗

1

)𝑘
=

(
𝑔𝑥

𝑖∗

1

)𝑘 ′
·
(
𝑔𝑥

𝑖∗ ·𝑘
1

)𝑐
= 𝑦′ · 𝑦𝑐 .

8For value 𝑐 in Z𝑁 for some q, the prover considers it as a positive integer by setting the output in 1, . . . , 𝑁 .
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Soundness We argue statistical soundness of our scheme, i.e. if a verifier accepts a proof, then the
statement is in the language, i.e. there exists some witnesses 𝑘 ∈ Z𝑁 , 𝑟 ∈ [𝑁 2] that agree with the
statement. Let’s assume that Verify accepts statement 𝜒 =

(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)
and outputs a proof

𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝑘 ∈ Z𝑁 , 𝑟 ∈ Z

)
such that the verifier accepts on a random input 𝑐 ∈ Z𝑁 . Without

loss of generality, we can assume that 𝑦′ = 𝑔𝑘
′
1 ∈ G, 𝑦 = 𝑔𝑘1 ∈ G for some 𝑘 ′1, 𝑘1 ∈ Z𝑁 . Simi-

larly, we can expand the time lock puzzle, and assume 𝑍 ′ =
(
𝑔𝑟
′
0 mod 𝑁,ℎ𝑟

′
1 ·𝑁 · (1 + 𝑁 )𝑘 ′0 mod 𝑁 2

)
,

𝑍 =
(
𝑔𝑟0 mod 𝑁,ℎ𝑟1 ·𝑁 · (1 + 𝑁 )𝑘0 mod 𝑁 2) where 𝑘 ′0, 𝑘0 ∈ Z𝑁 , and 𝑟 ′1, 𝑟1, 𝑟 ′0, 𝑟0 ∈ Z𝜙 (𝑁 ) . Since the proof

is adverserial, it is possible that these values are all different and maliciously generated.
Since Verify accepts, we have,

•
(
𝑔𝑥

𝑖∗

1

)𝑘
= 𝑦′ · 𝑦𝑐 . Thus, 𝑘 = 𝑘 ′1 + 𝑐 · 𝑘1 mod 𝑁 .

• TLP.Gen(pp, 𝑘 ; 𝑟 ) = 𝑍 ′ · 𝑍𝑐 .

We have, 𝑔𝑟 = 𝑔𝑟
′
0+𝑐 ·𝑟0 mod 𝑁 , thus, 𝑟 = 𝑟 ′0 + 𝑐 · 𝑟0 mod 𝜙 (𝑁 ).

Finally, ℎ𝑟 ·𝑁 · (1 + 𝑁 )𝑘 = ℎ𝑟
′
1+𝑐 ·𝑟1 · (1 + 𝑁 )𝑘 ′0+𝑐 ·𝑘0 mod 𝑁 2. Plugging in our expression for 𝑟 from the

previous evaluation, and analyzing the expression modulo 𝑁 , ℎ( (𝑟 ′0−𝑟 ′1 )+𝑐 (𝑟0−𝑟1 )) ·𝑁 = 1 mod 𝑁 . Since
𝑟0, 𝑟1, 𝑟

′
0, 𝑟
′
1 are all output by the prover in the first message, and 𝑁,𝜙 (𝑁 ) are coprime to each other.

The expression holds true if 𝑐 = (𝑟 ′1 − 𝑟 ′0) · (𝑟0 − 𝑟1)−1 mod 𝜙 (𝑁 ). This happens with probability
≤ ⌈𝑁 /𝜙 (𝑁 ) ⌉

𝑁
< 2/𝜙 (𝑁 ), which is negligible. Thus 𝑟 ′1 = 𝑟 ′0 mod 𝜙 (𝑁 ) and 𝑟0 = 𝑟1 mod 𝜙 (𝑁 ).

Simplifying, we have 𝑁 · 𝑘 = 𝑁 · (𝑘 ′0 + 𝑐 · 𝑘0) mod 𝑁 2. Plugging in our expression for 𝑘 , (𝑘 ′1 − 𝑘 ′0) +
𝑐 · (𝑘1 − 𝑘0) = 0 mod 𝑁 . The expression holds if 𝑐 = (𝑘 ′1 − 𝑘 ′0) · (𝑘0 − 𝑘1)−1 mod 𝑁 . This happens
with probability ≤ 1/𝑁 . Thus, 𝑘0 = 𝑘1 mod 𝑁 and we have 𝑘0 = 𝑘1 mod 𝑁 .

Combining the equalities, we have proved that there exists 𝑟 ∈ Z𝜙 (𝑁 ) ∈ [𝑁 2] such that 𝑟 = 𝑟0 = 𝑟1

mod 𝜙 (𝑁 ), and there exists 𝑘 ∈ Z𝑁 where 𝑍 = TLP.Gen(pp, 𝑘 ; 𝑟 ) and 𝑦 =

(
𝑔𝑥

𝑖∗

1

)𝑘
.

Zero Knowledge We prove the honest verifier zero knowledge of the interactive protocol. The simulator
given instance 𝜒 computes the transcript in the following order.

• Sample �̃� ← Z𝑁 and 𝑟 ← [𝑁 4]. Sample 𝑐 ← Z𝑁 .

• Compute 𝑦 =

(
𝑔𝑥

𝑖∗
1

)�̃�
𝑦𝑐
∈ G and compute 𝑍 ← TLP.Gen(pp, �̃�, 𝑟 ) and 𝑍 ′ ← �̃�

𝑍𝑐 .

• The simulator outputs the transcript
(
𝑍 ′, 𝑦′, 𝑐, �̃�, 𝑟

)
.

Observe that (1) �̃� is distributed identical to 𝑘 ′ + 𝑐 · 𝑘 because 𝑘 ′ is sampled randomly from Z𝑁 . (2) 𝑟 is
distributed statistically close to 𝑟 ′ + 𝑐 · 𝑟 because 𝑟 and 𝑟 ′ are both sampled uniformly from [𝑁 4]. Since 𝑐 · 𝑟
is small, i.e. ≤ 𝑁 3, the distributions are apart with a distance ≤ 𝑁 3

𝑁 4 = negl.

Remark 6.4 (Collapsing rounds). We can collapse rounds to generate a NIZK scheme by computing
the challenge 𝑐 ∈ Z𝑁 ← 𝐻 (𝑍 ′, 𝑦′) where 𝐻 is a random oracle and using the standard Fiat-Shamir
transformation for sigma protocols.[FS86].
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LWE-based key homomorphic PRF The main idea is to exploit the (almost) key homomorphic property
of our PRF and the linearly homomorphic property of our TLP. Since our PRF is almost key homomorphic,
we use the NIZK range proofs from [TBM+20] to prove that the error in our homomorphic operation is
small. Informally sketching, assume that the TLP encodes key 𝑘 , and the punctured key outputs 𝑘𝐴 + 𝑒 ,
where 𝐴 is a public matrix. Using the homomorphic property, we can compute the TLP encoding on error 𝑒
attach a NIZK range proof proving that the value encoded is small.

Construction 6.5 (NIZK protocol for LWE based KH-PRF and RSA based TLP). Our construction relies on
the following primitives:

• A linearly homomorphic TLP scheme for messages s ∈ Z𝑛
𝑁
where we can perform linear operations

over the message space. We describe this property in parallel version of the TLP from [MT19] below,
for completeness9.
Algorithm TLP.Gen(pp, s ∈ Z𝑛

𝑁
), samples r← Z𝑛

𝑁 2 . Computes u = 𝑔r ∈ Z𝑛
𝑁
and v = ℎr·𝑁 ⊙ (1 + 𝑁 )s

mod 𝑁 2. Output, (u, v).
Let 𝑓 (s) be a linear map Z𝑛

𝑁
→ Z𝑚

𝑁
, let this be denoted by the operation s𝑇A + b ∈ Z𝑚

𝑁
, then we can

compute TLP.Gen(pp, 𝑓 (s); r), by computing 𝑢′𝑖 =
∏

𝑗∈[𝑛] 𝑢
𝐴 𝑗,𝑖

𝑗
and 𝑣 ′𝑖 =

∏
𝑗∈[𝑛] 𝑣

𝐴𝑗,𝑖

𝑗
· (1 + 𝑁 )𝑏𝑖 for

𝑖 ∈ [𝑚] and outputting (u′, v′).

• Our lattice-based key-homomorphic puncturable PRF.
As we want computation over the same ring for our puncturable PRF and our time lock puzzle, we
rely on LWE holding in a ring where the modulus is a composite number 𝑁 (same as the modulus of
the time-lock puzzle).
The important detail about the PPRF is that a key punctured at 𝑥 has the form k𝑇A𝑥 + e, for some
𝑛,𝑚, 𝐵 ∈ Z10, 𝐵 < 𝑁 , k ∈ Z𝑛

𝑁
, A𝑥 ∈ Z𝑛×𝑚𝑁

, and e ∈ [−𝐵, 𝐵]𝑚 . A𝑥 is public and depends on 𝑥 .

• A special-case NIZK (called range proof) Πrange = (Setup, Prove,Verify) that proves the plaintext of a
time-lock puzzle 𝑍 is in range [−𝐵, 𝐵]. A construction of such a range proof was given by [TBM+20].

We define a NIZK scheme Π = (Setup, Prove,Verify) is an argument for the statement, 𝜒 = (pp, 𝑍,A𝑥 , b)
and witness 𝜔 = (r ∈ Z𝑛

𝑁 2, k ∈ Z𝑛𝑁 , e ∈ [−𝐵, 𝐵]
𝑚), where the NP verifier checks if, TLP.Gen(pp, k; 𝑟 ) ?

= 𝑍 ,

and, k𝑇A𝑥 + e
?
= b.

• Setup(1𝜆): Let crs← range.Setup(1𝜆).

• Prove(crs, 𝜒, 𝜔):

– Homomorphically evaluate 𝑓 : s ↦→ s𝑡A𝑥 − b on 𝑍 to get a new puzzle 𝑍 ′.
– We output a NIZK range proof 𝜋 ← range.Prove

(
crs, (pp, 𝑍 ′),

(
e ∈ Z𝑚

𝑁
, r𝑇A𝑥 ∈ Z𝑚

) )
where 𝑍 ′

is the puzzle and the witness is
(
e ∈ [−𝐵, 𝐵]𝑚, r𝑇A𝑥 ∈ Z𝑚

)
.

• Verify(crs, 𝜒, 𝜋):

– Homomorphically evaluate 𝑓 : s ↦→ s𝑡A𝑥 − b on 𝑍 to get a new puzzle 𝑍 ′.
– Output the result of range.Verify(crs, (pp, 𝑍 ′) , 𝜋).

9For brevity, we only show the puzzle generation algorithm.
10We’re overloading the notation𝑚 from previous sections. It does not match the𝑚 in the PPRF construction.
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Completeness By definition we have 𝑁 and b ≡ k𝑇A𝑥 +e𝑚𝑜𝑑 𝑁 with e ∈ [−𝐵, 𝐵]𝑚 . Therefore, ∃r′ ∈ Z𝑚
s. t. TLP.Gen(pp,−e; r′) = 𝑍 ′. Also, the order of 𝑔 ∈ Z𝑁 and ℎ𝑁 ∈ Z𝑁 2 is 𝜙 (𝑁 ). Thus, if the equation
r′ = r𝑇A𝑥 holds over the integers, it also holds modulo 𝜙 (𝑁 ). Therefore, TLP.Gen(pp, e′; r′) = 𝑍 ′.

Soundness If the statement characterized by (pp, 𝑍,A𝑥 , b) is not in the language, then evaluating 𝑓 :
s ↦→ s𝑡A𝑥 − b on 𝑍 will not yield a puzzle 𝑍 ′ that is in the range [−𝐵, 𝐵]𝑚 . Therefore, the range proof will
fail.

Zero Knowledge Zero knowledge straightforwardly follows from the zero knowledge of the range
proof.

7 Implementation and Evaluation

In this section, we describe the implementation and evaluation of our efficiently batchable time lock scheme.
The goal of our experimental evaluation is to compare the different tradeoffs offered by our solution in
computation time and communication size for different values of the number of puzzles batched. In our
experiments, we provide a comparison of the following alternative approaches.

• Trivial Solution: Batch solving a time lock puzzle involves solving each of these puzzles individually.
We initialize our time lock puzzle using the linearly homomorphic time lock puzzle [MT19]11.

• Strawman Solution: Given 𝑛 puzzles 𝑍1, . . . , 𝑍𝑛 (of some linearly homomorphic time-lock puzzle)
where each puzzle contains some 𝜆-bit message, evaluate homomorphically the following linear
function:

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

2(𝑖−1) ·𝜆 · 𝑥𝑖 ,

to compute puzzle 𝑍 ∗. Solve the resulting puzzle 𝑍 ∗ to obtain 𝑥∗, and recover all the 𝑛 messages
encoded in different blocks of the string (where each block is of length security parameter). We
initialize our time lock puzzle using the linearly homomorphic time lock puzzle [MT19]. We assume
that our messages can be 𝜆 bits long as for longer messages, we can use hybrid encryption and
encrypt the keys for the symmetric encryption scheme. As an example, for 128 bit security, the RSA
modulus is 3072 bits, and the security parameter for symmetric key encryption scheme is 128 bits,
we can batch 3072/128 = 24 puzzles for free using the strawman solution.

• Our Solution: We analyze our uncoordinated scheme that uses the pairing based key homomorphic
PRF in Construction 5.3 as the building primitive in Construction 3.1 and applies our generic transfor-
mation from Construction 4.2. We initialize our time lock puzzle using the linearly homomorphic time
lock puzzle [MT19]. We make small adjustments to Construction 5.3 for better concrete efficiency
i.e. we use asymmetric groups for better efficiency. Security of this construction is based on the
asymmetric 𝑛-Power Diffie-Hellman assumption.

We do not consider alternative constructions based on general purpose indistinguishability obfuscation
iO [SLM+23] as iO is a heavyweight cryptographic primitives, not ready for efficient deployment (there
are certain restricted functionalities [LMA+16, CMR17] implementations of iO, but there are no general
11It is possible to use a time lock puzzle that is not linearly homomorpic for this evaluation. We chose the TLP from [MT19] for a
more direct comparison with the other two solutions.
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purpose implementations). We leave open the implementation based on our LWE based key homomorphic
PRF Construction 5.7 for future work.

7.1 Implementation and Experimental Setup

We instantiate the cryptographic building blocks that offer 128 bits of security, as follows:

• Pairing group: We instantiate the pairing-based broadcast encryption schemes over the BLS-381
pairing group [BLS02] and use the implementation from the herumi mcl library [Mit]. We used
the C++ api to perform our pairing operations. The BLS-381 pairing group is asymmetric, and the
(serialized) representations of an element of the base groups G1, G2, and the target group G𝑇 are
48 bytes, 96 bytes, and 576 bytes, respectively.

• RSA group: We use the RSA assumption where the modulus is 3072 bits. We used the imple-
mentation present in the paper [TBM+20] (we use the implementation at https://github.com/
verifiable-timed-signatures/liblhtlp), which uses GNU Multi-Precision library [GMP] (ver-
sion 6.2.1) and is implemented in C.

Parameter selection for Construction 4.2. Recall from Theorem 4.3, for 𝑛 denoting a maximum bound
on the number of puzzles to be batched, we require setting our pairing scheme𝑛′ ≥ 3𝑛 and𝑑 = 𝑂 (1)+𝜔 (log𝜆)log𝑛′ .
In our experimentation, we choose the parameters so that Eq. (4) satisfies 40 bits of statistical security i.e.
the probability of a matching not existing is 2−40. Combining this with our pairing and RSA implementation,
we satisfy 40 bits of statistical security and 128 bits of computational security. Our main goal is to choose
the parameters 𝑛′, 𝑑 that minimize the degree 𝑑 . Achieving the right set of parameters is tricky, as for each
configuration 𝑛′, there exists a minimum degree 𝑑 that satisfies Eq. (4) with 40 bits of security, and for
each degree there exists a configuration 𝑛′ that minimizes the setup and public parameter size and satisfies
Eq. (4) with 40 bits of security.

We chose our parameters in the following way. In our experiments, the maximum number of puzzles
ranged from 1 − 10𝑘 .

• Set an initial 𝑛′ = 100𝑘 . Our pairing based key homomorphic PRF only took 50 seconds to execute.

• Minimize the degree by testing the values of 𝑑 between 1 and 128 that satisfy Eq. (4) with 40 bits of
security. Lets call this degree 𝑑opt.

• Perform a binary search where the range of 𝑛′ is between 𝑛 and 100𝑘 , that result in the minimum
value of 𝑛′ such that we satisfy Eq. (4) with 40 bits of security. We denote this by 𝑛′opt.

In our prototype implementation, we do not focus on the malicious setting. For the malicious setting,
we would instead optimize on the expression in Eq. (7) for an appropriate choice of a bound on the number
of queries 𝑞. Finally, we implemented the textbook Hopcroft Karp bipartite matching algorithm in C++.

Time Complexity. We analyze the time complexity of our batch solving algorithm for different ap-
proaches.

• Trivial Solution: The total compute time grows with 𝑂 (𝑛 ·𝑇 ) where 𝑇 is the number of repeated
squaring exponentiations performed.
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• Strawman Solution: The strawman solution performs best and takes 𝑂 (𝑇 ) time to compute the
result of all the opeinngs (though it leads to extremely high communication complexity).

• Our Solution: We take 𝑂 (𝑇 ) +𝑂 (𝑛2) where the latter is because each puzzle takes 𝑂 (𝑛) operations
in Construction 3.1. Since 𝑛 and 𝑇 differ by several orders of magnitude as discussed in Section 1.
Our solution is concretely efficient.

Parallel Computation. We use a single-threaded execution environment for all measurements. For our
running timemeasurements, the trivial solution and our solution are easily parallelizable operations. Instead,
we focus on the total CPU computation performed by the two schemes and do not exploit parallelization.
Throughout this text we refer to the running time in seconds, but this can be interpreted as linearly related
to total CPU cycles needed to perform the complete experiment. When reporting parameter sizes (e.g.,
setup size and puzzle size), we compute them analytically based on the number of group elements and the
measured size of each group element.

Remark 7.1 (Parallelizing the key homomorphic PRF and the time lock puzzle). For large values of 𝑛,
parallelizing 𝑛 time lock puzzles in the trivial solution involves very heavy parallelization and compute
resources. In contrast, in our solution, if we use two threads in our implementation of Construction 3.1, on
one thread we can homomorphically add the TLP and solve it, and on the other thread, we can compute a
perfect matching and perform quadratic operations on the punctured key. Our implementation takes wall
clock time similar to solving exactly one TLP! Observe that in our solution, after we solve the homomorphic
puzzle, we only need to perform linear operations to recover the messages.

Experimental setup. Our implementation of our scheme consists of 2400 lines of code.12 We collect our
benchmarks on an client side MacBook Pro (13-inch, M1, 2020) running macOS Big Sur Version 11.5.2. The
machine has a 8-core CPU @ 2.90GHz and 16 GB of RAM 13.

7.2 Benchmarks

In this section, we describe the main benchmarks (in terms of running time and communication size) for
our batchable time lock puzzle. For our trivial solution, since solving 𝑛 puzzles would take a bunch of
time, instead, we simulate our numbers by solving 10 puzzles and measuring the total compute time by
multiplying 𝑛 to the average.

Computational cost. To show advantages of our scheme, we test our prototype implementation on the
puzzle values 𝑛 between 1 and 500 and the exponent𝑇 between 107, 5 ·107 and 108, roughly corresponding to
10 seconds, 50 seconds, and 100 seconds respectively on the test machine Fig. 1. In practice, the time for the
puzzle lock will change between machine implementations. Hence the amount of sequential computation
usually accounts for these variations.

We mainly compare between the trivial and our solution (the statistics for the strawman solution are
the same as running solve denoted by the green line, and we do not add it into the graphs to prevent over
crowding). Our experiments show that for even such small values of 𝑇 , the trivial solution takes a longer
compute time, while puzzle generation and setup become slightly worse Fig. 1. The dotted line indicates the
plot for our trivial solution while the solid line plots our solution. Quoting concrete numbers, for 𝑇 = 50
12The complete implementation is available here: https://github.com/RachitG54/batchtlpmcl .
13Our experiments did not rely on any heavy RAM usage.
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million, and 𝑛 = 500, the degree of our graph is 3. Batching trivially takes is 160× worse and would take
about 15 hours of compute time. Our puzzle generation becomes slightly worse, for 𝑇 = 50 million, per
puzzle generation takes 3× time (as the degree of the graph is 3), but still generate the puzzle extremely
efficiently and within 0.2 seconds. Setup for the trivial solution now grows linearly with the number of
puzzles. But even for 𝑛 = 100𝑘 puzzles would only cause an overhead of 50 seconds while sampling a RSA
integer that is a product of two strong primes takes about 2 minutes. Since 𝑛 is at most 500, the setup time
for all three schemes coincide.

Communication size. In Fig. 2, we compare the setup size and the total communication size as a function
of the number of puzzles batched. We computed the numbers analytically, where we varied 𝑛 between
100 and 7000. For setup size, our solution is strictly worse in terms of setup size where the setup grows
with the number of puzzles. For 𝑛 = 7𝑘 , our 𝑛′ = 11𝑘 , and the setup size is 2200× worse, but still takes
only 2.6MB size. For total communication size, the trivial solution is the most efficient and takes 8MB of
communication, and is atmost 5× better than our solution that takes 37MB. The strawman solution becomes
quadratically inefficient with increasing values of 𝑛 where the communication takes 790MB.

Microbenchmarks. In Fig. 3, we compare the distribution of our computation time between the pairing
operations and the graph operations for our solution for 𝑇 = 5 × 108. For our setup, the pairing operations
grow linearly, but are extremely efficient and only take 0.4 seconds for 𝑛 = 500. Puzzle generation involves
an extra pairing operation that computes the punctured key in 4 milliseconds. For our batch solving
algorithm, most of the time is dominated by the puzzle solving. Our pairing operations grow quadratically
in the number of puzzles, while the graph algorithm is blazingly efficient and runs in a few micro seconds.
For 𝑛 = 500, the time to batch solve takes 1.2𝑥 slower than solving a single puzzle (it’s also equal to the
time taken to batch solve using the strawman solution). It takes 22 minutes to batch solve, 18.5 minutes to
solve a single puzzle and 3.5 minutes to compute the quadratic pairing operations.

Rebalancing parameters. Using a standard rebalancing technique we can obtain different tradeoff for
our batch solving algorithm. Our strawman solution gives parameters efficient in computation, but grow
quadratically in total communication cost. On the other hand, our solution gives parameters very efficient
in communication, but we need to compute quadratically many pairing operations. If our TLP is locked for
a longer time such as few hours or days, even for large parameters, time to compute the pairing will be
much smaller. Nevertheless, we can imagine combining these approaches to batch 𝐵 puzzles together where
each of these puzzles encodes 𝐴 messages such that 𝑛 = 𝐴×𝐵. Asymptotically, this leads to communication
cost 𝑂 (𝑛 · 𝐴) and computation cost 𝑂 (𝐵2).

Remark 7.2. Note that in our experiments, the RSA modulus is 3072 bits, and the security parameter for
symmetric key crypto is 128 bits. Hence we can set 𝐵 = 3072/128 = 24, to save on our computation, while
keeping the communication size of the puzzle exactly same! In our prototype implementation, we do not
explore the tradeoffs associated with combining our solutions. Since the hardness of our time lock puzzle
and the quantity to optimize depends from user to user, we defer this task to the system designer when
designing the scheme.
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Figure 1: Setup, puzzle generation, puzzle solving and batch solving times for the trivial
solution (indicated by dotted line) and our proposed solution (indicated by solid line). We vary
the number of puzzle betwen 100 and 500 for different hardness of sequential computation,
ranging from 𝑇 = 107 to 108. The y-axis is over a log scale.
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A Analyzing alternative algorithms for matching

Let 𝑛 be the size of the left bipartite set, 𝑛′(𝑛, 𝜆) be the size of the right bipartite set (as functions of 𝑛
and the security parameter14) and 𝑑 (𝑛, 𝜆) be the degree of the bipartite graph. We analyze the different
algorithms that ensure that a perfect matching is found below.

• Trivial Algorithm: In order to compute a perfect matching always, we can set the graph to be a
complete bipartite graph. The parameters are 𝑛′ = 𝑛, 𝑑 = 𝑛. Note that this also means that even if a
malicious party tries to sample puzzles, we will guarantee existence of a perfect matching.

• Greedy Algorithm: Algorithm FindMatch performs a greedy analysis as follows, for each vertex
on the left (on a lexicographic ordering of the vertices), it goes through each edge on the right, if it
finds an unmatched vertex, it adds it to the matching. If for some vertex, all vertices on the right
are matched, it outputs ⊥. We present the analysis of the algorithm below where we can set 𝑛′ = 2𝑛,
𝑑 = 𝑂 (log𝑛) + 𝜔 (log 𝜆). Note that our matching analysis through hall’s theorem in Lemma 4.4 gives
a better theoretical bound by a factor of log𝑛 and in general a more optimal expression to analyze.
Interestingly, we also show that when analyzing malicious parties, our greedy algorithm does not
help us.

The main takeaway is that running a bipartite matching algorithm leads to more concretely efficient
parameters for our transformation both in the honest and the rogue setting.

Lemma A.1. Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a random left regular bipartite graph where |𝑈 | = 𝑛, |𝑉 | = 𝑛′. Let the
left regular degree be denoted by 𝑑 . If 𝑛′ = 2𝑛, 𝑑 = 𝑂 (log𝑛) + 𝜔 (log 𝜆), then, the probability that the greedy
algorithm outputs a perfect matching for 𝐺 is ≥ 1 − negl(𝜆) where the probability is taken over the random
coins of sampling the bipartite graph.
14Observe that this is the statistical security parameter and can hence be set as 40 or 60 in practice.
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Proof. Algorithm FindMatch goes through each vertex on the left and tries to match them greedily. Let
FindMatch output⊥ on the 𝑘th iteration, i.e. we’re trying to match the 𝑘th vertex on the left. The probability
that FindMatch outputs ⊥ in this iteration, if all the vertices already matched are on the 𝑘th vertices edge
set. This is given by, (

𝑘 − 1
𝑛′

)𝑑
, (8)

where the probability is taken over the random coins of sampling the edges of the 𝑘th vertex. The probability

that we output ⊥ on any iteration, through a union bound is given by,
∑𝑛

𝑘=1

(
𝑘−1
𝑛′

)𝑑
. Since 𝑘−1

𝑛′ ≤ 1/2, we
have the expression is bounded by 𝑛 · 2−𝑑 , thus setting 𝑑 = log𝑛 +𝜔 (log 𝜆) gives us the required bound. □

In the rogue setting in Section 6, the expression to analyze in this scenario depends on the number of
queries made by the adversary. Let this be denoted by 𝑞 = 𝑞(𝜆). Observe that in Eq. (8), the probability of
choosing an element on the left can be decided by the adversary, and hence, the probability that FindMatch
outputs ⊥ by a union bound is now ≤

(
𝑞
𝑛

)
· 𝑛 · 2−𝑑 . Since 𝑞 can grow with any arbitrarily polyonimal in 𝜆,

the degree will have to grow linearly with 𝑛, thus worse than the trivial bound.

B Alternative NIZK protocol for pairings

In this section, we show an alternate protocol how to construct a NIZK for showing consistency between
our pairing based key homomorphic prf and the key embedded inside a time lock puzzle. The main idea
is to use a variant of Schnorr protocol/Chaum Pedersen protocol where the prover proves knowledge of
an exponent 𝑘 in two different groups. One is the pairing group G of order 𝑝 on which punctured key
computations are performed, and the other is the group Z𝑁 where 𝜙 (𝑁 ) is the order of the group. Since
𝑝, 𝑁 are coprime, the construction in Construction 6.3 does not work. Specifically, because of the chinese
remainder theorem, if 𝑥 = 𝑔

𝑘1
1 ∈ G and 𝑦 = 𝑘2 ∈ Z𝑁 where 𝑘1 ∈ Z𝑝 , then there exists an integer 𝑘 ∈ Z𝑝 ·𝑁

such that 𝑥 = 𝑔𝑘1 and 𝑦 = (𝑘 mod 𝑁 ) ∈ Z𝑁 . In order to ensure that the statement is sound, we restrict the
value inside the time locked puzzle to a 𝑘 ∈ Z𝑝 by using the range proof in [TBM+20].

Construction B.1 (Sigma protocol for pairing based KH-PRF and RSA based TLP). Our construction relies
on the following primitives:

• A linearly homomorphic TLP scheme, where the TLP is homomorphic in the message and the random
coins. Similar to Construction 6.3.

• A group G with prime order 𝑝 and generator 𝑔1.

Additionally for ease of analysis, we assume that 𝑝 < 𝜙 (𝑁 ) and 3𝑝2 < 𝑁 where 𝑁 is the RSA prime
in the TLP scheme from [MT19].

• A special-case NIZK Πrange = (Setup, Prove,Verify) that proves the plaintext of a time-lock puzzle 𝑍
is in range [−𝐵, 𝐵]. A construction of such a range proof was given by [TBM+20].

We define our interactive 3-round sigma protocol argument Π = (Prove,Verify) for an instance 𝜒 =(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)
and witness 𝜔 =

(
𝑘 ∈ Z𝑝 , 𝑟 ∈ Z𝑁 2

)
such that, 𝑍 = TLP.Gen(pp, 𝑘 (0) ; 𝑟 ) and 𝑦 =(

𝑔𝑥
𝑖∗

1

)𝑘 (1)
∈ G and 𝑘 = 𝑘 (0) = 𝑘 (1) mod 𝑝 .
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• Prove(𝜒,𝜔):

– Sample randomly, 𝑘 ′ ← [𝑝2 · 𝑁 ] and 𝑟 ′ ← [𝑁 2𝑝2].

– Compute 𝑍 ′ ← TLP.Gen(pp, 𝑘 ′; 𝑟 ′), 𝑦′ ←
(
𝑔𝑥

𝑖∗

1

)𝑘 ′
∈ G.

– Compute
(
𝜋range, 𝜋

′
range

)
by running range.Prove on 𝑍 and 𝑍 ′ respectively with the bound 𝑝 .

The prover sends (𝑍 ′, 𝑦′, 𝜋range, 𝜋 ′range) to the verifier.
– Receive 𝑐 ∈ Z𝑝 from the verifier.

– Compute 𝑘 = 𝑘 ′ + 𝑐 · 𝑘 ∈ Z, and 𝑟 = 𝑟 ′ + 𝑐 · 𝑟 ∈ Z.15

– Send
(
𝑘 ∈ Z, 𝑟 ∈ Z

)
to the verifier.

– Output 𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝜋range, 𝜋 ′range, 𝑘 ∈ Z, 𝑟 ∈ Z

)
as the proof.

• Verify(𝜒):

– The verifier recieves information from the prover, verifies the range proof
(
𝜋range, 𝜋range

)
and

sends a random value 𝑐 ∈ Z𝑝 . If range.Verify rejects, then reject.

– Recieve (𝑘 ∈ Z, 𝑟 ∈ Z) from the prover, and perform the checks below.

– Check if TLP.Gen(pp, 𝑘 ; 𝑟 ) ?
= 𝑍 ′ · 𝑍𝑐 .

– Check if
(
𝑔𝑥

𝑖∗

1

)𝑘 ?
= 𝑦′ · 𝑦𝑐 .

– If all checks pass, accept, else reject.

Completeness The scheme is complete, because TLP.Gen(pp, 𝑘 ; 𝑟 ) = TLP.Gen(pp, 𝑘 ′; 𝑟 ′)·TLP.Gen(pp, 𝑘 ; 𝑟 )𝑐 =
𝑍 ′ · 𝑍𝑐 as our time lock puzzle is linearly homomorphic in the puzzle and the random coins. Similarly, it’s

easy to check that the second condition holds true i.e.
(
𝑔𝑥

𝑖∗

1

)𝑘
=

(
𝑔𝑥

𝑖∗

1

)𝑘 ′
·
(
𝑔𝑥

𝑖∗ ·𝑘
1

)𝑐
= 𝑦′ · 𝑦𝑐 . Additionally,

we rely on the completeness of our range proof.

Soundness We argue statistical soundness of our scheme, i.e. if a verifier accepts a proof, then the
statement is in the language, i.e. there exists some witnesses 𝑘 ∈ Z𝑝 , 𝑟 ∈ Z𝑁 2 that agree with the
statement. Let’s assume that Verify accepts statement 𝜒 =

(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)
and outputs a proof

𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝜋range, 𝜋 ′range, 𝑘 ∈ Z, 𝑟 ∈ Z

)
such that the verifier accepts on a random input 𝑐 ∈ Z𝑝 . With-

out loss of generality, we can assume that 𝑦′ = 𝑔𝑘
′
1 ∈ G, 𝑦 = 𝑔𝑘1 ∈ G for some 𝑘 ′1, 𝑘1 ∈ Z𝑝 . Simi-

larly, we can expand the time lock puzzle, and assume 𝑍 ′ =
(
𝑔𝑟
′
0 mod 𝑁,ℎ𝑟

′
1 ·𝑁 · (1 + 𝑁 )𝑘 ′0 mod 𝑁 2

)
,

𝑍 =
(
𝑔𝑟0 mod 𝑁,ℎ𝑟1 ·𝑁 · (1 + 𝑁 )𝑘0 mod 𝑁 2) where 𝑘 ′0, 𝑘0 ∈ Z𝑁 , and 𝑟 ′1, 𝑟1, 𝑟 ′0, 𝑟0 ∈ Z𝜙 (𝑁 ) . Since the proof

is maliciously generated, it is possible that these values are all different and maliciously generated.
Since the range proof is sound, we can conclude that 𝑘 ′0, 𝑘0 ∈ [−𝑝, 𝑝]. Since Verify accepts, we have,

15For each value (𝑐, 𝑟, 𝑟 ′) in Z𝑞 for some q, the prover considers them as positive integers by setting the output in 1, . . . , 𝑞 and
treating them as integers.
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•
(
𝑔𝑥

𝑖∗

1

)𝑘
= 𝑦′ · 𝑦𝑐 . Thus, 𝑘 = 𝑘 ′1 + 𝑐 · 𝑘1 mod 𝑝 . Let 𝛼 be some integer, we have, 𝑘 = 𝑘 ′1 + 𝑐 · 𝑘1 + 𝛼 · 𝑝 .

Since 𝑘, 𝑘 ′1 are between [−𝑝, 𝑝], we have that 𝛼 ∈ [−𝑝 − 1, 𝑝 + 1].

• TLP.Gen(pp, 𝑘 ; 𝑟 ) = 𝑍 ′ · 𝑍𝑐 .

We have, 𝑔𝑟 = 𝑔𝑟
′
0+𝑐 ·𝑟0 mod 𝑁 , thus, 𝑟 = 𝑟 ′0 + 𝑐 · 𝑟0 mod 𝜙 (𝑁 ).

Finally, ℎ𝑟 ·𝑁 · (1 + 𝑁 )𝑘 = ℎ𝑟
′
1+𝑐 ·𝑟1 · (1 + 𝑁 )𝑘 ′0+𝑐 ·𝑘0 mod 𝑁 2. Plugging in our expression for 𝑟 from the

previous evaluation, and analyzing the expression modulo 𝑁 , ℎ( (𝑟 ′0−𝑟 ′1 )+𝑐 (𝑟0−𝑟1 )) ·𝑁 = 1 mod 𝑁 . Since
𝑟0, 𝑟1, 𝑟

′
0, 𝑟
′
1 are all output by the prover in the first message, and 𝑁,𝜙 (𝑁 ) are coprime to each other.

The expression holds true if 𝑐 = (𝑟 ′1 − 𝑟 ′0) · (𝑟0 − 𝑟1)−1 mod 𝜙 (𝑁 ). Since 𝑝 < 𝜙 (𝑁 ), this happens only
with probability ≤ 1/𝑝 , which is negligible. Thus 𝑟 ′1 = 𝑟 ′0 mod 𝜙 (𝑁 ) and 𝑟0 = 𝑟1 mod 𝜙 (𝑁 ).

Simplifying, we have 𝑁 · 𝑘 = 𝑁 · (𝑘 ′0 + 𝑐 · 𝑘0) mod 𝑁 2. Plugging in our expression for 𝑘 , (𝑘 ′1 − 𝑘 ′0) +
𝑐 · (𝑘1 − 𝑘0) + 𝛼 · 𝑝 = 0 mod 𝑁 . Note that 𝑘0, 𝑘1, 𝑘 ′0, 𝑘1 are all small and between [−𝑝, 𝑝]. Thus if
𝑁 > 3𝑝2, then, (𝑘 ′1 − 𝑘 ′0) + 𝑐 · (𝑘1 − 𝑘0) + 𝛼 · 𝑝 = 0 ∈ Z. Thus (𝑘 ′1 − 𝑘 ′0) + 𝑐 · (𝑘1 − 𝑘0) = 0 mod Z𝑝 ,
and we have that 𝑘 ′1 = 𝑘 ′0 mod 𝑝 and 𝑘0 = 𝑘1 mod 𝑝 with probability 1 − 1/𝑝 .

Combining the equalities, we have proved that there exists 𝑟 ∈ Z𝜙 (𝑁 ) ∈ Z𝑁 2 such that 𝑟 = 𝑟0 = 𝑟1
mod 𝜙 (𝑁 ), and there exists 𝑘 ∈ Z𝑝 such that 𝑘 = 𝑘1 = 𝑘0 mod 𝑝 where 𝑍 = TLP.Gen(pp, 𝑘0; 𝑟 ) and

𝑦 =

(
𝑔𝑥

𝑖∗

1

)𝑘1
.

Zero Knowledge We prove the honest verifier zero knowledge of the interactive protocol. The simulator
given instance 𝜒 computes the transcript in the following order.

• Sample �̃� ← [𝑝2 · 𝑁 ] and 𝑟 ← [𝑁 2𝑝2]. Sample 𝑐 ← Z𝑝 .

• Compute 𝑦 =

(
𝑔𝑥

𝑖∗
1

)�̃�
𝑦𝑐
∈ G and compute 𝑍 ← TLP.Gen(pp, �̃�, 𝑟 ) and 𝑍 ′ ← �̃�

𝑍𝑐 .

• The simulator outputs the transcript
(
𝑍 ′, 𝑦′, 𝑐, �̃�, 𝑟

)
.

Observe that (1) �̃� is statistically close to 𝑘 ′ + 𝑐 · 𝑘 because �̃�, 𝑘 ′ are sampled randomly from [𝑝2 · 𝑁 ].
Since 𝑐 ·𝑘 is small, i.e less than equal to 𝑝 ·𝑁 , the distributions are apart with a distance 1

𝑝
. (2) 𝑟 is distributed

statistically close to 𝑟 ′ + 𝑐 · 𝑟 because 𝑟 and 𝑟 ′ are both sampled uniformly from [𝑁 2𝑝2]. Since 𝑐 · 𝑟 is small,
i.e. ≤ 𝑁 2𝑝 , the distributions are apart with a distance ≤ 𝑁 2𝑝

𝑁 2𝑝2
= negl.

Remark B.2 (Collapsing rounds). We can collapse rounds to generate a NIZK schene by computing the
challenge 𝑐 using a random oracle and using the standard Fiat-Shamir transformation for sigma protocols,
[FS86]. Since the first round message is already non-interactive, we need not collapse with our sigma
protocol, and can just attach it separately.
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