
A Single-Trace Message Recovery Attack on a
Masked and Shuffled Implementation of

CRYSTALS-Kyber

Sönke Jendral, Kalle Ngo, Ruize Wang and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden
{jendral,kngo,ruize,dubrova}@kth.se

Abstract. Last year CRYSTALS-Kyber was chosen by NIST as a new,
post-quantum secure key encapsulation mechanism to be standardized.
This makes it important to assess the resistance of CRYSTALS-Kyber
implementations to physical attacks. Pure side-channel attacks on post-
quantum cryptographic algorithms have already been well-explored. In
this paper, we present an attack on a masked and shuffled software im-
plementation of CRYSTALS-Kyber that combines fault injection with
side-channel analysis. First, a voltage fault injection is performed to by-
pass the shuffling. We found settings that consistently glitch the desired
instructions without crashing the device. After the successful fault in-
jection, a deep learning-assisted profiled power analysis based on the
Hamming weight leakage model is used to recover the message (shared
key). We propose a partial key enumeration method that allows us to
significantly increase the success rate of message recovery (from 0.122
without enumeration to 0.887 with 32 enumerated bits).

Keywords: Fault injection · Side-channel attack · CRYSTALS-Kyber ·
ML-KEM · Post-quantum cryptography

1 Introduction

CRYSTALS-Kyber is a key encapsulation mechanism (KEM) that is IND-CCA2-
secure in the classical and quantum random oracle models [3]. IND-CCA2 is the
strongest of the definitions of security, meaning that the algorithm is indistin-
guishable under an adaptive chosen-ciphertext attack (CCA).

Last year CRYSTALS-Kyber was chosen by the National Institute of Stan-
dards and Technology (NIST) as a new public key encryption (PKE) and key
establishment algorithm to be standardized, ML-KEM [39]. The National Secu-
rity Agency (NSA) has added CRYSTALS-Kyber to the suite of cryptographic
algorithms that are recommended for national security systems [1]. Thus, it is
important to assess the resistance of CRYSTALS-Kyber’s implementations to
physical attacks such as side-channel analysis and fault injection.

Susceptibility of post-quantum cryptographic (PQC) algorithms’ implemen-
tations to physical attacks is one of the focuses of the ongoing fourth round of the
NIST PQC standardization process [27]. In today’s digitalized and networked

2 S. Jendral et al.

world, devices executing cryptographic algorithms can often be physically ac-
cessed by an attacker, who might be the user. Examples of such devices include
smart home appliances, building access control and alarm systems, medical de-
vices and wearables, car multimedia interfaces, and more. These devices often
lack security features of IT systems due to resource constraints. This opens the
door to physical attacks. These attacks can be carried out in the context of gov-
ernment/industry espionage, or motivated by personal interests, e.g. monetary
advantages.

Non-invasive physical attacks such as side-channel analysis and fault injec-
tion are effective and low-cost. They do not require expensive equipment and
expert-level skills like invasive attacks. Many different types of side-channel and
fault attacks on block ciphers, stream ciphers, and public key ciphers have been
demonstrated in the past [6,5,32]. Moreover, with advances in machine learning,
side-channel attacks got a powerful ally [29]. Since machine learning techniques
are good at finding correlations in raw data, they enable an attacker to by-
pass many traditional countermeasures, e.g., masking [24], shuffling [35], and
randomized clock [22], and break protected implementations. They can signif-
icantly improve the effectiveness of traditional differential power analysis (e.g.
four instead of 400 power traces are required to extract the secret key from a
USIM card [13]) and enable new types of attacks (e.g. on a true random number
generator in a commercial integrated circuit [23]). Given huge investments in
machine learning, the capability of machine learning-assisted attacks is likely to
keep growing in the future. Therefore, it is important to continue exploring their
limits.

Contributions: In this paper, we present a combined fault and side-channel
attack on a masked and shuffled implementation of CRYSTALS-Kyber KEM.
The presented attack requires only a single power trace to recover the encapsu-
lated message (shared key). This is a significant improvement over the previous
pure side-channel attack on a masked and shuffled software implementation of
CRYSTALS-Kyber KEM which requires about 3K power traces [4]1. To the
best of our knowledge, the presented attack is the first attack on a protected
implementation of a PQC KEM which makes use of both fault injection and
side-channel analysis. Only pure side-channel or fault attacks on PQC KEM
implementations have been demonstrated in the past. A combination of both
is clearly more powerful, as shown by previous work on other cryptographic
algorithms [2].

We demonstrate a practical message recovery attack on the first-order masked
bitsliced software implementation of Kyber-768 by Bronchain et al. [14] with
shuffling added. First, a voltage fault injection using the crowbar technique of
[28] is performed to bypass the shuffling. Finding settings that consistently glitch
the desired instructions without crashing the device is the most challenging part

1 The number of traces required for message recovery is not reported in [4] since the
attack targets secret key recovery. We made a rough estimation by dividing the
number of traces used for secret key recovery with the error-correcting code with
code distance six (38,016) by the number of chosen ciphertexts for this code (11).

2. PREVIOUS WORK 3

of this step. After the successful fault injection, a deep learning-assisted profiled
power analysis based on the Hamming weight leakage model is applied to recover
the message. Following [41], the presented attack exploits leakage of the masked
message encoding procedure which is called during the re-encryption step of the
decapsulation algorithm. The message recovery is performed using the single-step
approach of Ngo et al. [24] which extracts the masked secret directly, without
extracting each share explicitly. A new contribution is a partial key enumeration
method that allows us to increase the probability of full message recovery from
0.122 (no enumeration) to 0.887 for (32 enumerated bits).

In CRYSTALS-Kyber, a successful message recovery trivially implies the
shared key recovery, since the shared key is derived from the message using hash
functions. Furthermore, by recovering messages contained in a set of chosen
ciphertexts constructed using known methods, e.g. [4,38], one can extract the
long-term secret key.

The rest of the paper is organised as follows. Section 2 describes previous
work. Section 3 provides the background information on the CRYSTALS-Kyber
algorithm, masking and shuffling countermeasures, and voltage fault injection.
Section 4 describes the adversary model, key establishment protocol and attack
scenario. Section 5 presents the experimental setup. Section 6 and 7 describe the
fault injection and the power analysis parts of the attack, respectively. Section 8
summarises the experimental results. Section 9 discusses possible countermea-
sures. Section 10 concludes the paper and discusses open problems.

2 Previous Work

This section describes previous side-channel and fault attacks on cryptographic
algorithms related to the presented work.

Two pure side-channel attacks on first-order masked and shuffled software
implementations of PQC KEMs based on module lattices are presented in [25]
and [4]. Both attacks use deep learning-assisted power analysis. The attack in [25]
requires 61,680 traces to extract the secret key of Saber KEM. It is based on full
message Hamming weight extraction and iterative bit flipping. The attack in [4]
can extract the secret key of Saber from 4,608 traces. It employs shuffling index
recovery and cyclic rotations.

In [4] a secret key recovery attack on a first-order masked and shuffled soft-
ware implementation of CRYSTALS-Kyber is also demonstrated. The imple-
mentation is built on top of the first-order masked implementation by Heinz
et al. [21]. The attack exploits a leakage from the message decoding procedure
which is performed at the decryption step of decapsulation. The attack uses
38,016 traces to extract the secret key.

Many pure side-channel attacks on masked implementations of CRYSTALS-
Kyber are reported, including [33,20,10,40,38,16,19,41]. The attack presented
in [41] uses the same masked implementation of CRYSTALS-Kyber [14] as the
one used in this work (except that we also add shuffling to it). By combining
three leakage points of the message encoding procedure carried out at the re-

4 S. Jendral et al.

encryption step of decapsulation with a novel chosen ciphertext construction
method, the secret key can be recovered from two traces of a first-order masked
implementation with the probability of 0.98.

A number of pure fault attacks on PQC KEMs are demonstrated, see [34]
for a thorough overview of the attacks related to CRYSTALS-Kyber and the
Dilithium signature scheme, which is also selected for standardization by NIST.
Several countermeasures against side-channel and fault attacks are proposed
in [34], for instance the addition of shuffling to the number theoretic transform
(NTT) and the KECCAK hash function (SHA-3) to prevent single-trace side-
channel attacks.

We are not aware of any combined fault and side-channel attack on a PQC
KEM, but other cryptographic algorithms have been targeted by such attacks,
including [42,31,30,36]. In [42] a fault-assisted side-channel attack on a masked
implementation of Advanced Encryption Standard (AES) is presented. Segments
of a trace in which the random masks are generated are identified from a single
power trace and then masking is bypassed by fault injection. After a successful
fault injection, differential power analysis is applied to recover all subkeys. The
attack requires 230 traces on average. In [31,30] combined fault injection and
side-channel attacks on implementations of block ciphers AES and PRESENT
with countermeasures against side-channel and fault injection attacks are pre-
sented. In [36] a combined fault injection and side-channel attack is used to re-
cover the secret recovery from a first-order masked implementation of the GIMLI
permutation (the core primitive of a submission to the NIST lightweight cryp-
tography project [9]) with fewer than 10,000 traces.

3 Background

This section describes the notation used in the remainder of this work, the
CRYSTALS-Kyber algorithm specification, masking and shuffling countermea-
sures against side-channel analysis, and the voltage fault injection attack method.

3.1 Notation

Let Zq be the ring of integers modulo a prime q. Let Rq be the quotient ring
Zq[X]/(Xn + 1). Regular font letters denote elements in Rq, bold lower-case
letters are used for vectors with coefficients in Rq, and bold upper-case letters
for matrices. The transpose of a vector v (or matrix A) is denoted by vT (or
AT). The ith entry of a vector v is denoted by v[i].

The term x ← D(S; r) stands for sampling x from a probability distribution
D over a set S using a seed r. The uniform distribution is denoted by U . The
centered binomial distribution with a parameter µ is denoted by Bµ.

The term ⌈x⌋ stands for rounding of x to the closest integer with ties being
rounded up.

3. BACKGROUND 5

KYBER.CPAPKE.KeyGen()

1: (ρ, σ)← U({0, 1}256)
2: A← U(Rk×k

q ; ρ)
3: s, e← Bη1(R

k×1
q ;σ)

4: t = Encode12(As+ e)
5: s = Encode12(s)
6: return (pk = (t, ρ), sk = s)

KYBER.CPAPKE.Dec(s, c)

1: u = Decompressq(Decodedu(c1), du)
2: v = Decompressq(Decodedv (c2), dv)
3: s = Decode12(s)
4: m = Encode1(Compressq(v−s ·u, 1))
5: return m

KYBER.CPAPKE.Enc(pk = (t, ρ),m, r)

1: t = Decode12(t)
2: A← U(Rk×k

q ; ρ)
3: r ← Bη1(R

k×1
q ; r)

4: e1 ← Bη2(R
k×1
q ; r)

5: e2 ← Bη2(R
1×1
q ; r)

6: u = ATr + e1

7: v = tTr + e2+
Decompressq(Decode1(m), 1)

8: c1 = Encodedu(Compressq(u, du))
9: c2 = Encodedv (Compressq(v, dv))
10: return c = (c1, c2)

Fig. 1: KYBER.CPAPKE algorithms from [3] (simplified).

KYBER.CCAKEM.KeyGen()

1: z ← U({0, 1}256)
2: (pk, s) =

KYBER.CPAPKE.KeyGen()
3: sk = (s, pk,H(pk), z)
4: return (pk, sk)

KYBER.CCAKEM.Encaps(pk)

1: m← U({0, 1}256)
2: m = H(m)
3: (K̂, r) = G(m,H(pk))
4: c = KYBER.CPAPKE.Enc(pk,m, r)
5: K = KDF(K̂,H(c))
6: return (c,K)

KYBER.CCAKEM.Decaps(sk,c)

1: m′ = KYBER.CPAPKE.Dec(s, c)
2: (K̂′, r′) = G(m′,H(pk))
3: c′ =KYBER.CPAPKE.Enc(pk,m′, r′)
4: if c = c′ then
5: return K = KDF(K̂′,H(c))
6: else
7: return K = KDF(z,H(c))
8: end if

Fig. 2: KYBER.CCAKEM algorithms from [3] (simplified).

3.2 CRYSTALS-Kyber algorithm

The security of CRYSTALS-Kyber relies on the difficulty of the module learning
with errors (M-LWE) problem, which results from adding unknown noise to
linear equations.

CRYSTALS-Kyber consists of a chosen plaintext attack (CPA)-secure pub-
lic key encryption (PKE) scheme, KYBER.CPAPKE, and a CCA-secure KEM,
KYBER.CCAKEM, constructed on the top of KYBER.CPAPKE using a tweaked
version of the Fujisaki-Okamoto (FO) transform [18]. These schemes are de-
scribed in Figs. 1 and 2 respectively.

Inputs and outputs to all application programming interface (API) functions
of CRYSTALS-Kyber are byte arrays. CRYSTALS-Kyber works with vectors of
ring elements in Rk

q , where k is the rank of the module defining the security

6 S. Jendral et al.

Table 1: Parameters of different versions of CRYSTALS-Kyber.

Version n k q η1 η2 (du, dv)

Kyber-512 256 2 3329 3 2 (10, 4)

Kyber-768 256 3 3329 2 2 (10, 4)

Kyber-1024 256 4 3329 2 2 (11, 5)

level. There are three versions of CRYSTALS-Kyber: Kyber-512, Kyber-768 and
Kyber-1024, for k = 2, 3 and 4, respectively, see Table 1 for details. In this paper,
we consider Kyber-768. Other versions can be approached similarly.

CRYSTALS-Kyber employs the NTT to perform multiplications in Rq ef-
ficiently. The NTT details are omitted from Fig. 1 and Fig. 2 to simplify the
pseudocode.

The Decodel function decodes an array of 32l bytes into a polynomial with
n coefficients in the range {0, 1, · · · , 2l − 1}. The Encodel function is the in-
verse of Decodel. It first encodes each polynomial coefficient separately and then
concatenates the resulting output byte arrays.

The Compressq(x, d) and Decompressq(x, d) functions, for x ∈ Zq and d <
⌈log2(q)⌉, are given by:

Compressq(x, d) = ⌈(2d/q) · x⌋mod+2d,

Decompressq(x, d) = ⌈(q/2d) · x⌋.

If Compressg or Decompressq is applied to x ∈ Rq or x ∈ Rk
q , the function

is applied to each coefficient individually. These functions enable the removal of
some low-order bits in the ciphertext without significantly affecting the correct-
ness probability of decryption.

The functions G andH represent the SHA3-512 and SHA3-256 hash functions,
respectively. The KDF is a key derivation function realized by SHAKE-256.

3.3 Masking countermeasure

Masking is a well-known countermeasure against side-channel attacks [15]. A k-
order masking partitions any sensitive variable x into k+1 shares, x0, x1, . . . , xk,
such that x = x0◦x1◦. . .◦xk, and executes all operations separately on the shares.
The operator “◦” depends on the type of masking. In arithmetic masking, it is
the arithmetic addition, “◦ = +”. In Boolean masking, it is the Boolean XOR,
“◦ = ⊕”. The shares are randomized at each execution. The randomization
is typically done by assigning random masks x0, x1, . . . , xk−1 to k shares and
computing the last share as x − (x0 + x1 + . . . + xk−1) for arithmetic masking
or x⊕ x0 ⊕ x1 ⊕ . . .⊕ xk−1 for Boolean masking.

In theory, executing all operations on the shares x0, x1, . . . , xk rather than
on x, should prevent side-channel attacks targeting x. However, the attack on
a first-order masked implementation of Saber KEM presented in [24] has shown

4. ASSUMPTIONS 7

that neural networks are capable of identifying trace segments representing the
processing of two Boolean shares x0 and x1 and then XOR x0 and x1 to obtain
the ground truth label x. In this way, the sensitive variable x is recovered directly,
without explicitly extracting random masks. The attacks on higher-order masked
implementation of Saber and CRYSTALS-Kyber KEMs presented in [26,16] have
further demonstrated that the complexity of learning the (k+1)-argument XOR
grows linearly in the number of shares k + 1.

3.4 Shuffling countermeasure

Shuffling is another well-known countermeasure against side-channel attacks [15].
It is applicable to operations on sensitive variables which are not dependent on
the processing order. First, a random permutation is generated, typically by
applying the Fisher-Yates algorithm [17, p.26–27]. Then, the sensitive variables
are processed based on the permutation.

Since the processing order is randomized, in theory, shuffling should prevent
side-channel attacks. Even if the attacker can recover the sensitive variables,
their processing order remains unknown. However, deep learning-assisted side-
channel attacks presented in [25,4] have shown that there are different ways of
overcoming shuffling in practice.

3.5 Voltage fault injection

Voltage fault injection is a low-cost, minimally invasive method for inducing
faults in the execution of an algorithm run on a physical device without requiring
extensive knowledge of the specific implementation under attack.

Previous voltage fault injection approaches such as [8,7] focus on inducing a
fault by uniformly underfeeding a processor, which increases the time for logic
gates to reach a stable state, causing faults. The advantage of such an approach
is that it does not require precise timing to induce glitch, however, the resulting
faults are spatially localised (thus only affecting specific instructions) and do
not offer sufficiently precise control over the affected instructions to conduct an
attack that relies on the mostly unchanged execution of an algorithm.

More recent voltage fault injection approaches [28,11] focus instead on using a
precise timing control and even control over the waveform of the injected voltage
fault. This offers a greater degree of control over the affected instructions and is
not limited by the type of targeted instructions.

In this paper, we use a crowbar circuit-based technique for voltage fault
injection introduced by [28]. By using a MOSFET to short across the power
rails of the processor, it is possible to induce oscillations in the target circuit,
which can be used to inject faults with high precision.

4 Assumptions

In this section we describe assumptions on the adversary model, key establish-
ment protocol, and attack scenario.

8 S. Jendral et al.

𝑝𝑘, 𝑠𝑘 = CCAKEM.KeyGen()
𝑝𝑘

𝑐 𝑐 = CPAPKE.Enc(𝑝𝑘,𝑚, 𝑟)

𝑚 ← 𝒰(0,1 256)

CCAKEM.Encaps(𝑝𝑘)

෠𝐾, 𝑟 = 𝒢(ℋ(𝑚),ℋ(𝑝𝑘))

𝐾 = KDF(෠𝐾,ℋ(𝑐))

Party 1 Party 2

CCAKEM. Decaps(𝑠𝑘, 𝑐)

𝑚′ = CPAPKE.Dec(𝒔, 𝑐)

𝐾 = KDF(෠𝐾′,ℋ(𝑐))

෠𝐾′, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝑐′ = CPAPKE. Enc(𝑝𝑘,𝑚′, 𝑟′)
if 𝑐 = 𝑐′:

else
𝐾 = KDF(𝑧,ℋ(𝑐))

faults

side-channel
information

Fig. 3: An LWE/LWR KEM-based shared key establishment protocol.

4.1 Adversary model

We make the following assumptions regarding the capabilities and the goals of
the attacker.

The attacker is a clever outsider who has expertise in fault injection and side-
channel analysis and all the necessary equipment and tools. The attacker also
has physical access to the device to inject faults and measure the total power
consumption.

The goal of the attacker is to recover the shared key K from side-channel
information acquired from the device which runs the CRYSTALS-Kyber algo-
rithm.

4.2 Shared key establishment protocol

We assume that the LWE/LWR KEM-based protocol shown in Fig. 3 is used to
establish a shared key between two parties communicating over a public channel.

To initiate a new shared key establishment session, the Party 1 applies the key
generation algorithm CCAKEM.KeyGen() to generate a fresh key pair (pk, sk) and
sends the public key pk to the Party 2. Then, the Party 2 uses the encapsulation
algorithm CCAKEM.Encaps() to generate a ciphertext c encapsulating a shared
key K and returns c to the Party 1. Finally, the Party 1 uses the decapsulation
algorithm CCAKEM.Decaps() to compute K from c.

4.3 Attack scenario

At the profiling stage, the attacker collects a set of power traces T = {T1, T2,
. . . , T|T |}, Ti ∈ Rd captured during the execution of the decapsulation algorithm

5. EXPERIMENTAL SETUP 9

for ciphertexts ci encrypting known messages mi, where d is the number of
datapoints in a trace and i ∈ {1, 2, . . . , |T |}. The traces are used to train a
neural network N : Rd 7→ {0, 1}2 which predicts message bits.

Note that, if the device under attack is used as a profiling device, then either
the shuffling countermeasure should be disabled by fault injection, or ciphertexts
encrypting all-0 and all-1 messages should be used for profiling. Otherwise, the
order of message bits is unknown (and hence labels for traces). Alternatively,
one can use multiple profiling devices, as in the attack on CRYSTALS-Kyber
by Wang et al. [41], to minimize the negative effect of inter-device variability on
neural network’s classification accuracy.

At the attack stage, the attacker inserts a fault to disable shuffling and si-
multaneously measures the total power consumption of the device under attack
during the decapsulation of the ciphertext c received from the Party 2. The
model N trained at the profiling stage is then used to extract the message m
encrypted in c from the resulting power trace T .

Once m is recovered, the pre-key K̄ is derived as (K̄, r) = G(m,H(pk)) (line
3 of KYBER.CCAKEM.Encaps() in Fig.2) and the shared key K is computed as
K = KDF(K̄,H(c)) (line 5 of KYBER.CCAKEM.Encaps() in Fig.2).

5 Experimental Setup

This section describes equipment we use for fault injection and power analysis
as well as the target software implementation of CRYSTALS-Kyber.

5.1 Equipment

In the experiments, we use a ChipWhisperer-Husky, a CW313 adapter board
and a CW308T-STM32F4 target device (see Fig. 4).

The target device contains an ARM Cortex-M4-based STM32F415RGT6. It
is run at a frequency of 16 MHz with traces being captured with a sampling
rate of 192 MS/s, which is the highest possible rate given the target frequency,
meaning that we capture 12 data points per clock cycle.

We use ARM CoreSight ETM/DWT watchpoints to trigger fault injection
and power trace capture. In this way, no modifications of the source code are
required. In a real attack, reference waveforms for the power consumption, or
external communication of the processor could be used to trigger fault injection.

5.2 Target implementation

In our experiments, we use a modified version of the masked CRYSTALS-
Kyber implementation by Bronchain et al. [14] in which shuffling is added to
the message encoding procedure masked poly frommsg() as shown in Listing 1.
The message encoding is carried out during the execution of the encryption al-
gorithm KYBER.CPAPKE.Enc(). The presented attack targets the re-encryption
step of the FO transform of decapsulation (line 3 of KYBER.CCAKEM.Decaps()

10 S. Jendral et al.

Fig. 4: ChipWhisperer-Husky, CW313 adapter board and CW308T-STM32F4
board used in the experiments.

in Fig. 2)). In principle, it can be similarly applied to the encryption step of
encapsulation (line 4 of KYBER.CCAKEM.Encaps() in Fig. 2)2.

The message encoding operation converts an array of 32 bytes representing
a message m into a polynomial f with coefficients f [j] = ⌈q/2⌋ ·m[j], for all j ∈
{0, 1, · · · , 255}, where m[j] is the jth bit of m, see Decompressq(Decode1(m), 1)
at line 7 of KYBER.CPAPKE.Enc() in Fig. 1). The implementation of Bronchain
et al. [14] employs the masking strategy of [37] in which a masked Boolean
to arithmetic conversion algorithm is applied to transform the Boolean shares
{m0,m1, · · · ,mk} into the arithmetic shares {f0, f1, · · · , fk} such that, for all

j ∈ {0, 1, · · · , 255},
∑k

i=0 fi[j] mod q = m[j]. This is done by first extracting
each Boolean share bit from the corresponding byte (line 10 in Listing 1) and
then calling secb2a 1bit() to convert the extracted bit into the arithmetic
domain (line 11).

In the C code of Listing 1, the additional code realizing shuffling is highlighted
in orange. It is explained in more detail in Section 6.1.

The implementation is compiled using arm-none-eabi-gcc with the highest
optimization level -O3 (recommended default).

2 Note that, in the CRYSTALS-Kyber implementation of [14] (as well as in many
other implementations of CRYSTALS-Kyber), the encapsulation is not protected.
Therefore, an unmasked message encoding is carried out during the execution of
KYBER.CPAPKE.Enc() in KYBER.CCAKEM.Encaps().

6. FAULT INJECTION METHOD 11

1 void masked_poly_frommsg(StrAPoly y, uint8_t m[32 * NSHARES]) {

2 uint8_t* shuffle = fy_gen_shuffle();

3 uint32_t t1[NSHARES];

4 int16_t t2[NSHARES];

5 for (int x = 0; x < 256; x++) {

6 int shuffled_index = shuffle[x];

7 int i = shuffled_index / 8;

8 int j = shuffled_index % 8;

9 for (int k = 0; k < NSHARES; ++k)

10 t1[k] = (m[i + k * 32] >> j) & 1;

11 secb2a_1bit(NSHARES, t2, 1, t1, 1);

12 for (int k = 0; k < NSHARES; ++k)

13 y[k][i * 8 + j] = (t2[k] * ((KYBER_Q + 1) / 2)) % KYBER_Q;

14 }

15 }

Listing 1: The modified C code of masked poly frommsg() procedure of
CRYSTALS-Kyber implementation from [14] with shuffling added.

6 Fault injection method

This section describes the fault injection part of the presented attack. We be-
gin by outlining the Fisher-Yates algorithm and the fault model’s underlying
assumptions. After that, we explain how voltage fault injection is carried out.

6.1 Fisher-Yates algorithm

As we mentioned earlier, shuffling is usually implemented using the Fisher-Yates
algorithm [17, p. 26–27]. The algorithm has two phases. First, an array of n
elements is created (lines 2-4 of Listing 2). Then, the elements of the array
are shuffled from the last to the first as follows. At each iteration, an element
from the remaining unshuffled elements is selected at random and swapped with
the current element (lines 6-11). This is repeated until all elements have been
shuffled.

6.2 Fault model

We assume a fault model that includes both single/multiple instruction skips
and instruction corruption from a single glitch. While we empirically observed
instruction corruptions during our experiments, these corruptions did not end up
being useful in our attack and are only mentioned for the sake of completeness.

Unlike attacks based on electromagnetic fault injection, we do not consider
modification of already stored data (i.e. bit flips) as a part of the fault model,
though in some specific cases the manipulation of data can be approximated
through instruction skipping and corruption.

12 S. Jendral et al.

1 void fy_gen_shuffle(uint8_t[256] shuffle) {

2 for (uint32_t i = 0; i < 256; i++) {

3 shuffle[i] = i;

4 }

5

6 for (uint32_t i = 256 - 1; i > 0; i--) {

7 uint32_t index = rng_get_random_blocking() % (i + 1);

8 uint8_t temp = shuffle[index];

9 shuffle[index] = shuffle[i];

10 shuffle[i] = temp;

11 }

12 }

Listing 2: The C code of the Fisher-Yates shuffle generation algorithm. Index
generation is highlighted in blue and the instructions targeted by the fault in-
jection are highlighted in red.

1 init_loop:

2 strb.w r3, [r2, #1]!

3 adds r3, #1

4 cmp.w r3, #256

5 bne.n init_loop

6 add r3, sp, #32

7 addw r6, sp, #287

8 rsb r4, r3, #1

9 shuffle_loop:

10 bl rng_get_random_blocking

11 adds r3, r4, r6

12 udiv r2, r0, r3

13 mls r0, r2, r3, r0

14 add r3, sp, #32

15 add r1, sp, #32

16 ldrb r3, [r3, r0]

17 ldrb r2, [r6, #0]

18 strb r2, [r1, r0]

19 strb.w r3, [r6], #-1

20 cmp r6, r1

21 mov r3, r1

22 bne shuffle_loop

Listing 3: Assembly code of the Fisher-Yates shuffle generation algorithm. Index
generation is highlighted in blue and instructions targeted by the fault injection
are highlighted in red.

7. POWER ANALYSIS METHOD 13

0 50 100 150 200 250 300

0

50

100

150

200

250
first share

second share

Trace point

t
-
t
e
s
t
 s

c
o
r
e

Fig. 5: T-test results for a single bit of each Boolean share during their processing
by secb2a 1bit().

6.3 Main idea

The presented fault attack exploits the fact that elements generated at the first
phase of the Fisher-Yates algorithm are in a known order before being shuf-
fled at the second phase. Thus, by skipping the second phase, we can force
fy gen shuffle() to return a known sequence of elements, bypassing the shuf-
fling countermeasure.

To skip the second phase, we perform a voltage fault injection targeting the
conditional backwards branch (bne) which forms the loop at the second phase
(line 22 of the assembly code in Listing 3). By skipping this instruction, we exit
the loop after the first iteration. Therefore, all but two elements (the last one
and the element it gets swapped with) retain their original order.

We further improve upon this result by widening the injected glitch to skip
the strb and strb.w operations as well (lines 18 and 19 in Listing 3). By can-
celing the execution of these operations, we omit swapping of these two ele-
ments, thus retaining the original, sorted order of array elements. Running the
masked poly frommsg() procedure with this order has the same effect as run-
ning an implementation without shuffling.

7 Power analysis method

In this section, we describe the power analysis part of the presented attack.
We use a deep learning-assisted profiled attack method based on the Hamming
weight leakage model similar to the one employed in the side-channel attacks
on CRYSTALS-Kyber presented in [4] and [41]. A new contribution is a partial
key enumeration method which allows us to reach a high full message recovery
probability with a subpar average message bit recovery probability.

14 S. Jendral et al.

−0.3 −0.25 −0.2 −0.15 −0.1

0

0.005

0.01

first share: bit = 0

first share: bit = 1

second share: bit = 0

second share: bit = 1

ADC measurement (ADU)

P
r
o
b
a
b
il
it

y
 m

a
s
s

Fig. 6: Distributions of power consumption for a single bit of each Boolean share
during their processing by secb2a 1bit().

7.1 Leakage analysis

For the extraction of message bits, we exploit the leakage of the masked Boolean
to arithmetic conversion procedure secb2a 1bit() which is called during the
message encoding. As mentioned in Section 5.2, in the message encoding pro-
cedure masked poly frommsg(), each Boolean share bit is extracted from the
corresponding byte one-by-one (see line 10 in Listing 1) and then secb2a 1bit()

is called to convert the extracted bit into the arithmetic domain (line 11). For
an extensive analysis of the leakage of masked poly frommsg() procedure, we
refer the reader to [41] in which a pure side-channel attack on the masked im-
plementation of CRYSTALS-Kyber by Bronchain el at. [14] is described. The
leakage we exploit in this work is called direct-copy leakage in [41].

Figure 5 shows t-test results for a single bit of each Boolean share during
their processing by secb2a 1bit() procedure (for 1K traces). The traces for the
test are acquired from a device running an implementation with known masks.
They are used for leakage analysis only. One can see that the first share leaks
stronger than the the second share. This is because they are treated differently
by secb2a 1bit(), see Listing 4.

Figure 6 shows the distributions of power consumption for a single bit of each
Boolean share during their processing by secb2a 1bit(). The overlap between
the distributions for the first share (on the right) is smaller than the overlap for
the second share (on the left), indicating a stronger leakage for the first share.
This is in line with the t-test results in Figure 5.

7.2 Trace preprocessing and neural network training

For profiling, we use a 2.56M dataset obtained by capturing t = 10K traces
{T1, T2, . . . , Tt} for known messages {m1,m2, . . . ,mt}. Then, we apply the cut-
and-join technique of [25] to divide each Ti into n = 256 segments, Ti[j], covering
the processing of the jth bits of both Boolean shares, mi,0[j] and mi,1[j], of the

7. POWER ANALYSIS METHOD 15

1 void secb2a_1bit(size_t nshares, int16_t *a, uint32_t *x) {

2 b2a_qbit(nshares, a, x);

3 refresh_add(nshares, a);

4 }

5

6 void b2a_qbit(size_t nshares, int16_t *a, uint32_t *x) {

7 a[0] = x[0]; /* First share */

8 for (size_t i = 1; i < nshares; i++) {

9 secb2a_qbit_n(i + 1, a, a, x[i]); /* Second share */

10 }

11 }

Listing 4: The C code of secb2a 1bit() procedure

message mi = mi,0 ⊕mi,1. The segments Ti[j] are labeled by the corresponding
message bit value l(Ti[j]) = mi[j], for all i ∈ {1, . . . , t} and j ∈ {1, . . . , n} (which
is equivalent to the Hamming weight of mi[j]).

We perform a segmented capture, therefore traces do not require any addi-
tional synchronization. If the segmented capture is not possible, synchronization
via cross-correlation with templates can be used instead, as in [41].

We use multilayer perceptron (MLP) neural networks with the architecture
shown in Table 2. The networks are of type N : Rd 7→ {0, 1}2, where d is the
number of datapoints in a trace segment Ti[j]. A network N maps each Ti[j]
into a score vector Si,j = N (Ti[j]) such that its kth element si,j,k represents the
probability that mi[j] is equal to k ∈ {0, 1} in Ti[j]:

si,j,k = Pr[mi[j] = k].

During training, we use the Nadam optimiser with a learning rate of 0.001
and a numerical stability constant ϵ = 10−8. We train for a maximum of 250
epochs using early stopping with a patience of 15 and a batch size of 4096. We
use 70% of the data for training and 30% for validation.

7.3 Partial key enumeration method

Messages of CRYSTALS-Kyber are relatively long, n = 256 bits. This puts
a tough requirement on the lower bound of the average message bit recovery
probability, e.g. pbit = 0.9973 is needed to get a full message recovery probability
of pm = (pbit)

256 = 0.50. In this section we propose a simple approach for
partial key enumeration which significantly lowers the requirement on pbit. For
instance, it allows us to reach pm = 0.887 with the average pbit = 0.9894 and 32
enumerated bits. Without the enumeration, we would only get pm = 0.122.

In the traditional key enumeration method, a key K = K1||K2|| . . . ||Kr is
recovered by enumerating the l most likely candidates for each subkey Ki, where
|Ki| = |K|/r is the size of Ki, for i ∈ {1, 2, . . . , r}. The likelihood of candidates is

16 S. Jendral et al.

Table 2: Neural network architecture used for message recovery.

Layer type Output shape

Batch Normalization 1 320
Dense 1 320
ReLU 320

Batch Normalization 2 320
Dense 2 256
ReLU 256

Batch Normalization 3 256
Dense 3 128
ReLU 128

Batch Normalization 4 128
Dense 4 2
Softmax 2

determined using various methods, e.g., in correlation power analysis, the Person
correlation coefficient is used [12]. If the subkey size is a byte, then, e.g., in an
attack on AES-128, one can enumerate the two most likely candidates for each
of the 16 subkeys, resulting in the total enumeration complexity of 216. In our
attack on CRYSTALS-Kyber, the “key” is a 256-bit message and the subkey size
is one (bit). Hence, the traditional enumeration is not feasible.

Instead, we sort the elements of score vectors Sj = N (T [j]) inferred by
the neural network N for each trace segment T [j], j ∈ {1, 2, . . . , n}, where T
is the trace captured from the device under attack during the decapsulation
of the ciptertext c, and identify k message bits predicted by N with the least
confidence. These bits are then enumerated over all 2k possible assignments. The
Algorithm 1 gives the details.

This simple method is effective because the distribution curve of maximum
predicted class probabilities approaches the value of 1 sharply, see Figure 7.
Therefore, enumerating a small subset of bits, e.g. 32, significantly improves
average message bit recovery probability of the remaining bits.

8 Experimental Results

This section describes the results of our message recovery attack combining volt-
age fault injection and deep learning-assisted power analysis.

8.1 Glitch settings and evaluation

By using a grid search over the set of parameters provided by the ChipWhisperer-
Husky, we found settings that consistently glitch the desired instructions without
crashing the device. Namely, we employed the ‘enable only’ mode to insert a

8. EXPERIMENTAL RESULTS 17

Algorithm 1 Partial key enumeration

Input: trace T , ciphertext c, neural network N , number of enumerated bits k
Output: shared key K
1: for each message bit j from 1 to n do
2: (sj,0, sj,1) = N (T [j])
3: Pr[j] = max(sj,0, sj,1) /* array of maximum predicted class probabilities */
4: if sj,0 > sj,1 then
5: m[j] = 0
6: else
7: m[j] = 1
8: end if
9: end for
10: Select k smallest elements of Pr and store their indices as I = {i1, . . . , ik}
11: for each x ∈ {0, 1}k do
12: (m[i1], . . . ,m[ik]) = x
13: (K̂′, r) = G(m,H(pk))
14: c′ = KYBER.CPAPKE.Enc(pk,m, r)
15: if c = c′ then
16: return K = KDF(K̂,H(c))
17: end if
18: end for
19: return Failed to recover K

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

0.5

0.6

0.7

0.8

0.9

1

Candidate bits for enumeration

M
a
x
im

u
m

 p
r
e
d
ic

t
e
d
 c

la
s
s
 p

r
o
b
a
b
il
it

y

Enum. bits

Fig. 7: Selection of a subset of bits for enumeration based on the empirical max-
imum predicted class probability. The mean probability value over 1K tests is
shown by the green line.

glitch lasting for four clock cycles using both the high-power and low-power
crowbar MOSFETs at an offset of 700 units3.
3 These units are dimensionless and depend on the internal frequencies of the
ChipWhisperer-Husky, though the offset always describes the distance between the
rising edge of the clock cycle and the beginning of the glitch.

18 S. Jendral et al.

Note that the insertion of a glitch over four clock cycles does not imply
that only four instructions are affected by this glitch. Furthermore note that
not all instructions targeted by the glitch are single-cycle instructions. Indeed,
we found that various combinations of offsets and glitch lengths yielded similar
results with respect to affecting the generated Fisher-Yates shuffle. However,
larger glitch lengths increased the probability of the device crashing.

Table 3 shows the probability of inserting a successful glitch with the settings
described above. While all our glitch attempts succeeded in affecting the gen-
erated shuffle, we found that in 15.8% of cases the processing of bits is shifted
by one iteration as a consequence of the glitch. In these cases, the first iteration
would read memory out of bounds and thus produce no exploitable leakage. The
second iteration would correspond to the processing of the first message bit, and
so on. Consequently, in these cases it is only possible to recover 255 of the 256
message bits because the total number of iterations stays the same. We account
for these cases during the message recovery by considering both the message as
it is predicted, and its shifted variant in which we enumerate the last bit.

Table 3: Glitch success probability for 1000 attempts.

Successful
Unsuccessful

full shifted

0.842 0.158 0.0

8.2 Message recovery

We trained neural networks as described in Section 7.2 to perform message recov-
ery after the successful fault injection. In order to reduce the trace capture time,
we run only the part of the decapsulation algorithm that contains the masked
message encoding procedure masked poly frommsg(). This has no practical ef-
fect on the attack, as the other parts of the decapsulation algorithm are not
used in the attack. The neural networks were trained and tested on a PC with
an AMD Ryzen 7 Pro 5850U running at 1.9 GHz and 32GB RAM.

Table 4 and Figure 8 show the resulting empirical probability (mean over
1K different messages selected at random) to recover a full message from a
single trace using the partial key enumeration method described in Section 7.3.
Obviously, the probability increases as the number of enumerated bits grows. One
can see that, without the partial enumeration, the probability for full message
recovery would be 0.122 only. The partial enumeration allows us to increase
the success probability to 0.887 for 32 enumerated bits, and to 0.969 for 64
enumerated bits.

As mentioned in Section 8.1, due to the shifting that can occur as a side
effect of the glitch, we need to consider both the message as it is predicted

8. EXPERIMENTAL RESULTS 19

Table 4: Empirical single-trace full message recovery probability (mean over 1K
tests) for a given number of enumerated bits.

Enumerated bits
0 1 2 3 4 5 6 7 8 9 10 11 12

0.122 0.217 0.297 0.354 0.410 0.460 0.502 0.530 0.560 0.586 0.609 0.631 0.649

13 14 15 16 17 18 19 20 21 22 23 24 25

0.667 0.679 0.691 0.706 0.727 0.747 0.762 0.769 0.791 0.802 0.810 0.823 0.831

26 27 28 29 30 31 32 33 34 35 36 37 38

0.838 0.847 0.855 0.864 0.878 0.881 0.887 0.891 0.895 0.900 0.904 0.909 0.910

39 40 41 42 43 44 45 46 47 48 49 50 51

0.914 0.919 0.922 0.925 0.928 0.928 0.928 0.930 0.933 0.935 0.939 0.943 0.946

52 53 54 55 56 57 58 59 60 61 62 63 64

0.948 0.951 0.954 0.955 0.956 0.957 0.958 0.958 0.960 0.961 0.964 0.965 0.969

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Enumerated bits

F
u
ll
 m

e
s
s
a
g
e
 r

e
c
o
v
e
r
y
 p

r
o
b
a
b
il
it

y

Fig. 8: Empirical single-trace full message recovery probability (mean over 1K
tests) as a function of the number of enumerated bits.

and its shifted counterpart, in which we guess the last bit. This increases the
complexity of enumeration from 2k to 2k+1, where k is the number of enumerated
bits.

20 S. Jendral et al.

9 Countermeasures

The presented fault injection method would not be applicable if the algorithm
generating the shuffled indices did not contain any control flow operations that
can be targeted by a glitch, i.e. if the loops were unrolled. Note however that,
given the high stability of the glitch demonstrated in this work, it is likely possible
to generate a partially predictable sequence through injection of multiple faults
into an unrolled implementation. Clearly, the complexity of such an attack would
be higher than that of the presented one.

It is also possible to apply a technique similar to the dynamic loop counter
introduced in [34] to ensure that no iterations of the loops used in the shuffle
generation are skipped. In this technique, a counter is initialised to a random
value and incremented at every iteration of the loops. When the shuffled indices
are later used in a different loop, the value of the counter is verified to contain a
specific multiple of the random value, indicating that all iterations of the loops
were executed. However, similarly to the unrolled implementation case, it may
be possible to generate a partially predictable sequence through injection of
multiple faults. Additionally, the dynamic loop counter can only ensure that the
shuffling loop was executed. Thus a sophisticated fault injection attack may shift
the area of memory affected by the shuffling into unused memory and execute
the shuffling as normal, thereby bypassing the countermeasure.

Finally, avoiding the creation of a sorted array of indices in the first place
seems to be the most robust countermeasure against the presented fault injec-
tion method. Instead of first generating a sorted array and then shuffling it, one
can generate a random permutation directly by iteratively querying a random
number generator and discarding repeated indices until all indices have been
generated. Provided the uninitialised sequence of indices is sufficiently unpre-
dictable, such an approach would not be exploitable by the presented attack at
the cost of significantly increased runtime.

10 Conclusions

We presented a practical message recovery attack on a masked and shuffled soft-
ware implementation of Kyber-768 that combines voltage fault injection with
deep learning-assisted power analysis. We found settings for voltage fault injec-
tion that consistently glitch the desired instructions without crashing the device.
These setting are not specific to CRYSTALS-Kyber, they are tailored to the
Fisher-Yates algorithm. Thus, they may be applicable to other cryptographic
algorithms which use Fisher-Yates-based shuffling for their protection.

We also proposed a method for partial key enumeration which allows us to
significantly increase the success rate of message recovery. Again, the method
is not specific to CRYSTALS-Kyber. It may help increase the success rate of
side-channel attacks on other cryptographic algorithms.

Our work demonstrates that it is possible to recover a shared key from a
single trace of a masked and shuffled implementation of CRYSTALS-Kyber.

11. ACKNOWLEDGMENTS 21

This is clearly alarming since the presented attack is equally applicable to the
message encoding procedure carried out during the encryption step of the en-
capsulation algorithm of CRYSTALS-Kyber. A common opinion at present is
that single-trace shared key recovery attacks on the encapsulation algorithm of
CRYSTALS-Kyber are not possible. For this reason, the existing implementa-
tions of CRYSTALS-Kyber protect the decapsulation algorithm only. Our re-
sults show that the encapsulation algorithm also needs protection. They also
show that the conventional countermeasures such as masking and shuffling may
not be able to stop advanced attacks.

Future work includes developing stronger countermeasures against side-channel
and fault attacks on implementations of PQC algorithms.

11 Acknowledgments

The authors are grateful to Linus Backlund for his help with implementing the
shuffling countermeasure, setting up equipment for experiments, and diagnosing
and resolving issues.

This work was supported in part by the Swedish Civil Contingencies Agency
(Grant No. 2020-11632).

References

1. Announcing the commercial national security algorithm suite 2.0. National Security
Agency, U.S Department of Defense (Sep 2022), https://media.defense.gov/2022/
Sep/07/2003071834/-1/-1/0/CSA CNSA 2.0 ALGORITHMS .PDF

2. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks:
Combining fault attacks and side channel analysis. In: Workshop on Fault Di-
agnosis and Tolerance in Cryptography (FDTC 2007). pp. 92–102 (Sept 2007).
https://doi.org/10.1109/FDTC.2007.12

3. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber algorithm specifica-
tions and supporting documentation (2021)

4. Backlund, L., Ngo, K., Gärtner, J., Dubrova, E.: Secret key recovery attack on
masked and shuffled implementations of CRYSTALS-Kyber and Saber. In: Zhou,
Jianying et al. (ed.) Applied Cryptography and Network Security Workshops. pp.
159–177. Springer Nature Switzerland, Cham (2023)

5. Baksi, A., Bhasin, S., Jakub, B., Jap, D., Saha, D.: A survey on fault at-
tacks on symmetric key cryptosystems. ACM Computing Surveys 55 (04 2022).
https://doi.org/10.1145/3530054

6. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Proceedings of the
IEEE 100(11), 3056–3076 (Nov 2012)

7. Barenghi, A., Bertoni, G., Breveglieri, L., Pellicioli, M., Pelosi, G.: Low voltage
fault attacks to AES and RSA on general purpose processors. IACR Cryptol. ePrint
Arch. p. 130 (2010), http://eprint.iacr.org/2010/130

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://doi.org/10.1109/FDTC.2007.12
https://doi.org/10.1145/3530054
http://eprint.iacr.org/2010/130

22 S. Jendral et al.

8. Barenghi, A., Bertoni, G., Parrinello, E., Pelosi, G.: Low voltage fault attacks on
the RSA cryptosystem. In: Breveglieri, L., Koren, I., Naccache, D., Oswald, E.,
Seifert, J. (eds.) Sixth International Workshop on Fault Diagnosis and Tolerance
in Cryptography, FDTC 2009, Lausanne, Switzerland, 6 September 2009. pp. 23–
31. IEEE Computer Society (2009). https://doi.org/10.1109/FDTC.2009.30, https:
//doi.org/10.1109/FDTC.2009.30

9. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F.,
Nawaz, K., Schneider, T., Schwabe, P., Standaert, F.X., Todo, Y., et al.:
Gimli. Submission to the NIST Lightweight Cryptography project (2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/gimli-spec.pdf

10. Bhasin, S., D’Anvers, J.P., Heinz, D., Pöppelmann, T., Beirendonck, M.V.: Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
Cryptology ePrint Archive, Paper 2021/104 (2021)

11. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: Optimizing voltage
fault injection attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2),
199–224 (2019). https://doi.org/10.13154/tches.v2019.i2.199-224, https://doi.org/
10.13154/tches.v2019.i2.199-224

12. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2004. pp. 16–29 (2004)

13. Brisfors, M., Forsmark, S., Dubrova, E.: How deep learning helps compromising
USIM. In: Proc. of the 19th Smart Card Research and Advanced Application
Conference (CARDIS’2020) (Nov 2020)

14. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/boolean masking conversions for
fun and profit with application to lattice-based KEMs. IACR Cryptol. ePrint Arch.
p. 158 (2022), https://eprint.iacr.org/2022/158

15. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Advances in Cryptology - CRYPTO ’99. vol. 1666,
pp. 398–412. Springer (1999)

16. Dubrova, E., Ngo, K., Gartner, J.: Breaking a fifth-order masked implementation
of CRYSTALS-Kyber by copy-paste. In: Proc. of the 10th ACM Asia Public-Key
Cryptography Workshop (APKC 2023) (2023)

17. Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural and medical
research (3rd ed.). London: Oliver and Boyd (1948)

18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual international cryptology conference. pp. 537–554.
Springer (1999)

19. Guo, Q., Nabokov, D., Nilsson, A., Johansson, T.: SCA-LDPC: A code-based
framework for key-recovery side-channel attacks on post-quantum encryption
schemes. Cryptology ePrint Archive (2023)

20. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger, T., Streit,
S., Strieder, E., van Vredendaal, C.: Chosen ciphertext k-trace attacks on masked
CCA2 secure Kyber. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems pp. 88–113 (2021)

21. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. Cryptology ePrint Archive,
Paper 2022/058 (2022)

22. Moraitis, M., Ji, Y., Brisfors, M., Dubrova, E., Lindskog, N., Englund, H.: Securing
CRYSTALS-Kyber in FPGA using duplication and clock randomization. IEEE
Design & Test (2023). https://doi.org/10.1109/MDAT.2023.3298805

https://doi.org/10.1109/FDTC.2009.30
https://doi.org/10.1109/FDTC.2009.30
https://doi.org/10.1109/FDTC.2009.30
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/gimli-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/gimli-spec.pdf
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://eprint.iacr.org/2022/158
https://doi.org/10.1109/MDAT.2023.3298805

11. ACKNOWLEDGMENTS 23

23. Ngo, K., Dubrova, E.: Side-channel analysis of the random number generator in
STM32 MCUs. In: Proc. of the Great Lakes Symposium on VLSI (GLSVLSI ’22)
(2022)

24. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure Saber KEM implementation. IACR Trans. on Cryptographic
Hardware and Embedded Systems pp. 676–707 (2021)

25. Ngo, K., Dubrova, E., Johansson, T.: Breaking masked and shuffled CCA secure
Saber KEM by power analysis. In: Proc. of the 5th Workshop on Attacks and
Solutions in Hardware Security. pp. 51–61 (2021)

26. Ngo, K., Wang, R., Dubrova, E., Paulsrud, N.: Higher-order boolean masking does
not prevent side-channel attacks on LWE/LWR-based PKE/KEMs. In: IEEE In-
ternational Symposium on Multiple-Valued Logic (2023)

27. NIST: PQC standardization process: Announcing four candidates to
be standardized, plus fourth round candidates. NIST Computer Se-
curity Resource Center (July 2022), https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4

28. O’Flynn, C.: Fault injection using crowbars on embedded systems. IACR Cryptol.
ePrint Arch. p. 810 (2016), http://eprint.iacr.org/2016/810

29. Panoff, M., Yu, H.S.A., Shan, H., Jin, Y.: A review and comparison of AI-enhanced
side channel analysis. ACM Journal on Emerging Technologies in Computing
Systems (JETC) 18, 1 – 20 (2022), https://api.semanticscholar.org/CorpusID:
247617543

30. Papadimitriou, A., Nomikos, K., Psarakis, M., Aerabi, E., Hély, D.: You can
detect but you cannot hide: Fault assisted side channel analysis on protected
software-based block ciphers. In: Dilillo, L., Psarakis, M., Siddiqua, T. (eds.)
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems, DFT 2020, Frascati, Italy, October 19-21, 2020. pp. 1–6.
IEEE (2020). https://doi.org/10.1109/DFT50435.2020.9250870, https://doi.org/
10.1109/DFT50435.2020.9250870

31. Patranabis, S., Breier, J., Mukhopadhyay, D., Bhasin, S.: One plus one is more than
two: A practical combination of power and fault analysis attacks on PRESENT
and present-like block ciphers. IACR Cryptol. ePrint Arch. p. 1073 (2017), http:
//eprint.iacr.org/2017/1073

32. Randolph, M., Diehl, W.: Power side-channel attack analysis: A re-
view of 20 years of study for the layman. Cryptography 4(2) (2020).
https://doi.org/10.3390/cryptography4020015, https://www.mdpi.com/
2410-387X/4/2/15

33. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting message leak-
age in (few) NIST PQC candidates for practical message recovery attacks. IEEE
Transactions on Information Forensics and Security (2021)

34. Ravi, P., Chattopadhyay, A., Baksi, A.: Side-channel and fault-injection attacks
over lattice-based post-quantum schemes (Kyber, Dilithium): Survey and new re-
sults. IACR Cryptol. ePrint Arch. p. 737 (2022), https://eprint.iacr.org/2022/737

35. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR Trans. on Cryptographic
Hardware and Embedded Systems. pp. 307–335 (2020)

36. Saha, S., Ravi, P., Jap, D., Bhasin, S.: Non-profiled side-channel assisted fault
attack: A case study on DOMREP. In: Design, Automation & Test in Eu-
rope Conference & Exhibition, DATE 2023, Antwerp, Belgium, April 17-19,
2023. pp. 1–6. IEEE (2023). https://doi.org/10.23919/DATE56975.2023.10137176,
https://doi.org/10.23919/DATE56975.2023.10137176

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
http://eprint.iacr.org/2016/810
https://api.semanticscholar.org/CorpusID:247617543
https://api.semanticscholar.org/CorpusID:247617543
https://doi.org/10.1109/DFT50435.2020.9250870
https://doi.org/10.1109/DFT50435.2020.9250870
https://doi.org/10.1109/DFT50435.2020.9250870
http://eprint.iacr.org/2017/1073
http://eprint.iacr.org/2017/1073
https://doi.org/10.3390/cryptography4020015
https://www.mdpi.com/2410-387X/4/2/15
https://www.mdpi.com/2410-387X/4/2/15
https://eprint.iacr.org/2022/737
https://doi.org/10.23919/DATE56975.2023.10137176
https://doi.org/10.23919/DATE56975.2023.10137176

24 S. Jendral et al.

37. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking bi-
nomial sampling at arbitrary orders for lattice-based crypto. In: Public-Key
Cryptography–PKC 2019: 22nd IACR International Conference on Practice and
Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceed-
ings, Part II 22. pp. 534–564. Springer (2019)

38. Shen, M., Cheng, C., Zhang, X., Guo, Q., Jiang, T.: Find the bad apples: An
efficient method for perfect key recovery under imperfect SCA oracles – a case
study of Kyber. Cryptology ePrint Archive, Paper 2022/563 (2022), https://eprint.
iacr.org/2022/563

39. of Standards, N.I., Technology: Module-lattice-based key-encapsulation mechanism
standard FIPS 203 (Draft) (2023). https://doi.org/10.6028/NIST.FIPS.203.ipd

40. Wang, J., Cao, W., Chen, H., Li, H.: Practical side-channel attack on message
encoding in masked Kyber. In: 2022 IEEE International Conference on Trust, Se-
curity and Privacy in Computing and Communications (TrustCom). pp. 882–889.
IEEE (2022)

41. Wang, R., Brisfors, M., Dubrova, E.: A side-channel attack on a bitsliced higher-
order masked CRYSTALS-Kyber implementation. IACR Cryptol. ePrint Arch.
p. 1042 (2023), https://eprint.iacr.org/2023/1042

42. Yao, Y., Yang, M., Patrick, C., Yuce, B., Schaumont, P.: Fault-assisted side-
channel analysis of masked implementations. In: 2018 IEEE International Sym-
posium on Hardware Oriented Security and Trust, HOST 2018, Washing-
ton, DC, USA, April 30 - May 4, 2018. pp. 57–64. IEEE Computer Soci-
ety (2018). https://doi.org/10.1109/HST.2018.8383891, https://doi.org/10.1109/
HST.2018.8383891

https://eprint.iacr.org/2022/563
https://eprint.iacr.org/2022/563
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://eprint.iacr.org/2023/1042
https://doi.org/10.1109/HST.2018.8383891
https://doi.org/10.1109/HST.2018.8383891
https://doi.org/10.1109/HST.2018.8383891

	A Single-Trace Message Recovery Attack on a Masked and Shuffled Implementation of CRYSTALS-Kyber

