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Abstract. Masking is an effective countermeasure against side-channel attacks. It
replaces every logic gate in a computation by a gadget that performs the operation over
secret sharings of the circuit’s variables. When masking is implemented in hardware,
care should be taken to protect against leakage from glitches, which could otherwise
undermine the security of masking. This is generally done by adding registers, which
stop the propagation of glitches, but introduce additional latency and area cost.
In masked pipeline circuits, a high latency further increases the area overheads of
masking, due to the need for additional registers that synchronize signals between
pipeline stages. In this work, we propose a technique to minimize the number of such
pipelining registers, which relies on optimizing the scheduling of the computations
across the pipeline stages. We release an implementation of this technique as an open-
source tool, Compress. Further, we introduce other optimizations to deduplicate
logic between gadgets, perform an optimal selection of masked gadgets, and introduce
new gadgets with smaller area. Overall, our optimizations lead to circuits that
improve the state-of-the art in area and achieve minimal latency. For example, a
masked AES based on an S-box generated by Compress reduces latency by 19 % and
area by 10 % over the state of the art.
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1 Introduction
Physical side-channel attacks that exploit information leakage such as the power consump-
tion or the electromagnetic radiation of cryptographic implementations are an important
security threat. Masking is a common countermeasure against these attacks [CJRR99].
Its core principle is to replace every variable x in a computation with a secret sharing
x = (x0, . . . , xd−1) such that x = x0 ⋆ · · ·⋆xd−1, where ⋆ is a group law and any set of d−1
shares xi. A common example is Boolean masking, where values belong to F2 and the
group operation is ⊕. The computations to mask are typically decomposed in elementary
operations (e.g., simple logic gates) which are then replaced by gadgets that compute
securely over shared data. In this work, all masked circuits are based on Boolean masking,
but most of the contributions also work with other kinds of masking.

Securely masking a circuit is a difficult task. A first challenge is that the security of small
gadgets may not directly extend to their combination, leading to so-called composition
issues [CPRR13, BBD+16]. Another challenge comes from physical defaults such as
glitches and transitions, that can break the independence assumptions needed for masking
to be secure [MPG05, NRS11]. These issues can also be combined [FGP+18, MMSS19,
MKSM22].
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The hardware private circuit (HPC) masking scheme [CGLS21] provides a solution to
these challenges. Based on the composable notion of glitch-robust probe-isolating non-
interference (PINI) [CS20], it ensures that gadgets are composable in the presence of glitches.
Further, HPCs have also been proven secure against transition leakage [CS21]. In [KM22],
Knichel and Moradi introduce the HPC3 AND gadget, which has a latency of only 1 clock
cycle, whereas the latency of the original HPC1 and HPC2 AND gadgets [CGLS21] was
2 clock cycles. There are other HPC gadgets, such as the GHPC gadgets that implement
an arbitrary function at first-order [KSM22] or optimized squaring gadgets [CMM+23b].

The simple composition properties of the HPC masking scheme make it feasible to
verifiy the security of implementations at scale (e.g., using the fullVerif tool [Cas20]).
It also makes it an interesting target for automated generation of masked implementa-
tions. AGEMA [KMMS22] is a tool to automatically generate a masked circuit from an
unprotected netlist, when provided with information about the sensitivity of the input
wires. In [MCS22], Momin et al. introduce handcrafted architectures for a masked AES
implementation with better performance than the ones generated by AGEMA. For the
generation of the AES S-box, they introduce a tool1 that optimizes the latency of the
S-box by exploiting the asymmetric latency of the HPC2 gadget: it has a latency of 2 clock
cycles w.r.t. one of the input sharings, and only 1 clock cycle w.r.t. the other one. This
optimization is also part of the recent AGMNC [WFP+23] tool, which further introduces
new AND-XOR HPC gadgets. These gadgets implement the Toffoli gate (computation of
w ⊕ (x ∧ y)) more efficiently than a composition of AND and XOR gadgets.

In this paper, we propose new optimizations for HPCs, working both on the composition
of gadgets, and on the gadgets themselves. We introduce Compress2, an open-source
tool3 which uses our optimizations to generate efficient masked pipeline circuits.

We focus on the generation of pipeline circuits, that is, circuits that are composed of a
sequence of combinational logic stages, where the wires that connect a stage to the next
are going through registers (typically implemented as D-flip-flops). We build these circuits
by composing the gadgets (which are themselves small pipeline circuits) together, with
the help of additional registers to ensure proper separation of the pipeline stages. The
big advantages of pipeline circuits are their simplicity (e.g., there is no control logic) and
high throughput, as they perform one evaluation per clock cycle. This makes them good
candidates for the implementation of sub-components in cryptographic algorithms, where
the high throughput enables serialized implementation strategies, and a single pipeline
circuit is used to perform many parallel computations sequentially (e.g. S-boxes). We
show that it is also easy to automatically generate masked pipeline circuits thanks to their
simplicity, avoiding tedious design work when such circuits contain dozens of gates with
little structure such as the AES S-box by Boyar and Peralta [BP12]. Pipeline circuits can
then be integrated in circuits with more complex architectures, either by hand [MCS22],
or automatically (e.g., with EasiMask [BSG23]).

Our work is based on the observation that most previous works were focused on finding
efficient Boolean circuit representations of functions [BP12, CGLS21], or designing new
gadgets with reduced randomness usage or lower latency. However, these works generally
leave out “low-hanging fruit” optimizations in the composition of gadgets and inside the
gadgets themselves. Most of our optimizations aim at reducing the number of registers
in masked pipelines, which actually may represent more than 70 % of the total design
area [MCS22]. Securing CMOS logic against glitches generally necessitates some glitch-
stopping registers, which is the root cause of the high latency of masked circuits. For
pipeline circuits, this high latency in turn forces to add pipelining registers, in order to

1Available at https://github.com/simple-crypto/SMAesH/blob/main/hdl/aes_enc128_32bits_
hpc2/sbox/hpc_veriloger.py.

2Composable Optimizer of Masked Pipelines with Register-Enhanced Staging Selection
3Available at https://github.com/cassiersg/compress.
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properly synchronize signals, beyond the ones needed to prevent glitch-leakage.
At a high level, our main goal is to reduce the number of pipelining registers in a circuit.

This is achieved by combining multiple techniques. First, at the gadget composition
level, we optimize the staging of computations. That is, we assign every gadget in the
composition to its pipeline stage(s). Further, we may duplicate gadgets. Indeed, when a
gadget is small and its output is used in multiple pipeline stages, it is sometimes more
efficient to instantiate the gadget multiple times, instead of having pipelining registers
to forward its output to all later pipeline stages where it is used. Second, we tackle the
issue of duplicate pipeline registers inside gadgets. This issue comes from the presence of
pipelining registers inside the gadgets themselves, and these registers may be redundant
(i.e., carry the same value or a closely related value) with pipelining registers inside other
gadgets or registers added at the composition level.

We also introduce other optimizations. At the level of individual gadgets, we reduce
the area cost of the HPC2 and HPC3 gadgets, mainly through an optimized handling of
the so-called inner-domain terms (i.e., term of the form xi ∧ yi, where the input sharings
are x = (x0, . . . , xd−1) and y = (y0, . . . , yd−1)), as well as HPC2 and HPC3 variants
that implement the Toffoli gate, in a more efficient way than the AND-XOR gadgets
of [WFP+23]. Finally, our circuits are the first ones (to the best of our knowledge) to
combine HPC2 and HPC3 gadgets. This allows to efficiently build low-latency circuits by
using the single-cycle latency HPC3 where needed, while HPC2, which is more area-efficient
than HPC3, can be used when the operands are not both on the critical latency path
(thanks to its 1-2 cycle asymmetric latency).

Combined, all these optimizations bring significant performance improvements. In
particular, we design a pipeline AES S-box with 33 % latency and 11 % area gain over the
state of the art. We further adapt the state-of-the-art masked AES HPC implementation
of [MCS22], leading to an overall latency (and throughput) improvement of 19 %, and an
area reduction of 10 %. Our tool Compress is not limited to the design of masked S-boxes.
As an example, we apply it to multiple architectures of 32-bit adders.

This work is structured as follows: Section 2 introduces the HPC masking scheme and
its use to build pipeline circuits from gadgets. Section 3 presents the core ideas behind
Compress and the optimization problem it solves. Section 4 discusses the optimizations to
deduplicate pipelining registers inside gadgets, and Section 5 details the other optimizations
to the HPC2 and HPC3 gadgets. Next, Section 6 discusses the results of the tool and
compares it to the state of the art for multiple masked circuits: AES S-box and its
integration in a complete masked AES, Skinny S-box and binary adders. Finally, we
discuss in more detail the related works (Section 7).

2 Background
The security of masked circuits is often evaluated in the t-probing model [ISW03], where
computations are represented as an abstract arithmetic circuit, and the adversary may
probe the values carried by any set of t wires in the circuit (t is known as the masking
order). A circuit is secure if the values observed by the adversary are independent of the
sensitive values, i.e., all non-masked values represented by sharings in the circuit. When
masking with d shares, the security order t is at most d− 1.

When considering glitches and transitions, the circuit model is closer to concrete
synchronous circuits, where the computation is executed over multiple clock cycles, and
registers carry values from one clock cycle to the next [CS21]. For these circuits, the
robust probing model [FGP+18] allows the adversary to use extended probes, which allow
the observation of multiple wires. For a glitch-extended probe, the observed wires are
all the wires that belong to the combinatorial circuit that computes the probed wire,
i.e., glitches propagate through combinatorial gates but are stopped by registers. For
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Algorithm 1 Sharewise-X with d shares.
Input: Sharings x, y, binary gate X (e.g., XOR, AND. . . ).
Output: Sharing z.

for i = 0 to d− 1 do
zi = X (xi, yi)

Algorithm 2 HPC2 AND gadget with d
shares.
Input: Sharings x, y
Output: Sharing z such that z = x ∧ y.

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$← F2; rji ← rij

for i = 0 to d− 1 do
pii ← PR (xiPR (yi))
for j = 0 to d− 1, j ̸= i do

pij ← R (xi ∧ PR (rij))⊕ R (xi ∧ R (yj ⊕ rij))
zi ←

⊕d−1
j=0

pij

Algorithm 3 HPC3 AND gadget with d
shares.
Input: Sharings x, y
Output: Sharing z such that z = x ∧ y.

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$← F2; rji ← rij

r′
ij

$← F2; r′
ji ← r′

ij

for i = 0 to d− 1 do
pii ← PR (xi) PR (yi)
for j = 0 to d− 1, j ̸= i do

pij ← R
(

(xi ∧ rij)⊕ r′
ij

)
⊕ PR (xi) ∧ R (yj ⊕ rij)

zi ←
⊕d−1

j=0
pij

a transition-extended probe, the value carried by the probed wire is observed at two
consecutive clock cycles. A glitch+transition-extended probe represents the combination
of these models, giving access to all wires in the combinatorial circuit for two consecutive
clock cycles.

Hardware private circuit (HPC) is an arbitrary-order masking scheme with t = d− 1
probing security against glitches and transitions [CGLS21, CS21]. To mask a circuit
with HPC, it must be decomposed in simple gates (typically XOR, AND, NOT). Then,
conceptually, each wire is replaced by a sharing and each gate is replaced by a gadget.
For linear gates (e.g., XOR), a sharewise gadget implementing the gate can be used
(e.g., Sharewise-XOR shown in Algorithm 1). For affine gates, the “offset” term is applied
to only one of the shares, for example, a NOT gadget simply applies NOT to the first
share. Non-linear gates are more complex, and the design of multiplication/AND gadgets
is an active research area. Two common HPC AND gadgets are HPC2 [CGLS21] and
HPC3 [KM22]4. The HPC3 gadget is described in Algorithm 3, where R (·) denotes a
glitch-stopping register and PR (·) denotes a pipelining register. This gadget has latency of
one clock cycle and uses d(d− 1) random bits, while the HPC2 gadget (Algorithm 2) has
an asymmetric latency of one clock cycle w.r.t. one input, and two clock cycles w.r.t. the
other input sharing. It uses less randomness than HPC3 (d(d− 1)/2 bits), but has a higher
logic area. These two gadgets satisfy the glitch-robust probe-isolating non-interference
(PINI) security property [CS20], which means that they can be arbitrarily composed (also
with sharewise gadgets), and the resulting circuit is d − 1-probing secure with glitches.
The circuit is also secure with glitches and transitions under some additional conditions
on its structure, which trivially satisfied in many cases, such as when implementing a
substitution-permutation network (SPN) with at least 2 clock cycles per round [CS21].

While masking a circuit with only sharewise gadgets is a simple transformation, using
the HPC2 or HPC3 gadget (or, generally, gadgets implementing a non-linear gate) is more
complex because these gadgets introduce additional latency in the circuit. This means that
masked non-linear sub-circuits such as S-boxes in SPNs often have a high latency, which
may greatly diminish the overall efficiency of masked implementations [KMMS22]. Indeed,
masking a circuit by simply replacing gates with gadgets will need to cleverly use clock

4We do not consider here the HPC1 [CGLS21] gadget, since it has no significant advantage over HPC2
and HPC3 when using Boolean masking and a relatively low number of shares.
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Figure 1: Compress flow. Rectangles denote flow steps,
rounded corners denote inputs, outputs and intermediate
flow artifacts.

HPC2
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Figure 2: Example of masked
pipelined circuit.

gating to properly synchronize all the signals in the circuit, and pay a high cost in latency,
on top of the area overhead of masking. Another strategy for masked implementations
is to exploit pipelining: the synchronization is achieved through the addition of registers
instead of clock gating. Pipelining does not improve latency and increases area cost, but it
increases the throughput of the sub-circuit. When multiple computations can be performed
in parallel (e.g., a block cipher in a parallelizable mode of operation), pipelining translates
into a large throughput gain over clock gating, at a small area overhead. Another way to
exploit pipelining is to switch to a more serialized architecture. For example, in a SPN
implementation, the masked S-box may be instantiated only once (or a few times) and be
evaluated more than once per round. Serializing the architecture (as shown in Figure 2)
reduces the area cost, and it combines well with pipelining: the high throughput of the
pipeline minimizes the latency overhead. As a result, masking with pipelining is a good
technique to achieve excellent latency/area trade-offs (except for the extreme “very high
latency/low area” case) [MCS22].

3 Generic Optimization of Masked Pipelined Circuits
Compress takes as input the Boolean circuit to mask and outputs a netlist. This netlist
implements the circuit as a pipeline that has the requested number of stages. As shown
in Figure 1, the masked gadget library is another important input for Compress, which
takes the areas of the gadgets as parameters of the optimization target function.

The goal of Compress is to generate a pipeline of masked gadgets with optimal gadget
selection and computation scheduling in order to achieve the requested latency while
minimizing area. The tool exploits the following degrees of freedom: gadget selection,
scheduling of computations across pipeline stages, and gadget replication. First, Compress
selects a suitable gadget for AND gates. There are multiple gadgets with different latency,
area and randomness usage characteristics (HPC2, HPC3, etc.) available, as illustrated
in Figure 3. The assignment of input sharings is also considered in case of asymmetric
gadgets, such as HPC2. Second, Compress optimizes the scheduling of computations by
deciding which pipeline stage a computation should best be performed in, and instantiating
the pipelining registers that forward the computed data across register stages. Optimized
scheduling reduces the number of pipelining registers to be instantiated, thereby reducing
area as shown in Figure 4. Third, Compress may perform gadget replication, which
means that if a value is used in multiple clock cycles and the gadget that computes it is
small (e.g., an XOR gadget), it might be more efficient to replicate the gadget in multiple
pipeline stages instead of instantiating pipelining registers (provided that the operands of
the gadget are available at the corresponding pipeline stages). For example, in Figure 5,
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HPC2

HPC2

(a) HPC2-only [MCS22]

HPC3

HPC3

(b) HPC3-only

HPC3

HPC2

(c) Compress

Figure 3: AND3 implementation with minimal latency: Compress reaches the minimum
possible latency, while combining HPC2 and HPC3 gadgets to minimize the total area.

(a) Naive (b) Compress

Figure 4: Scheduling of computations across
pipeline stages.

(a) Naive (b) Compress

Figure 5: Gadget replication.

an XOR gadget is duplicated in order to avoid the instantiation of two masked registers
(the dashed line indicates a value used elsewhere in the circuit).

Regarding the security, all the gadgets instantiated by Compress are glitch-robust
pipeline PINI gadgets, therefore the overall generated circuit is a glitch-robust PINI
pipeline [CGLS21]. Further, under the conditions given in [CS21], this guarantees security
against combined glitch and transition leakage.

The core part of Compress consists representing the masked circuit generation as a
constraint optimization problem. We then use OR-tools [PF, Gun19] to solve this problem.
Compress splits the computation in pipeline stages 0, . . . , L, where the inputs are fed in
the circuit at stage 0, while the outputs are connected to stage L.

For each intermediate value w in the Boolean circuit and for each pipeline stage s,
Compress instandiates a Boolean variable vw

s (“valid”), which is true iff there is a sharing
representing the value w in the pipeline stage s. For each of these variables, there is also a
Boolean variable cw

s that is true iff there is a gadget that outputs w at the stage s. Then,
rw

s indicates the presence of a pipelining register that forwards the value of w from stage s
to stage s + 1, for all w and for s ∈ {0, . . . , L− 1}. These variables are connected by the
constraint

vw
0 = cw

0

vw
s = cw

s ∨
(
vw

s−1 ∧ rw
s−1

)
for s > 0.

The instantiation of gadgets is then represented: each value is computed by a logic gate
(e.g. XOR, AND, . . . ) that can be implemented by one or multiple gadgets. Indeed, for
simple gates such as the XOR gate, we only consider the trivial sharewise implementation
of the gate (d parallel gates), while for more complex gates, there may be multiple ways to
implement them (e.g., HPC2 or HPC3 for the AND gate). For each value v, each stage
s, and each gadget type g that implements the required gate, the Boolean variable ggw

s

indicates if a gadget of type g is instantiated to output w in stage s. Since we consider
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only gadgets with a single output sharing, this is well-defined. We set ggw

s to false when it
corresponds to a gadget that takes an input before stage 0. Since an instantiated gadget
requires valid inputs to produce a valid output, we let

g′
gw

s = ggw

s ∧
∧

w′∈op(w)

vw′

s−lat(gw,w′),

where op(w) is the set of operands of the logic gate that computes w, while lat(gw, w′) is
the relative latency of the input of the gadget gw connected to w′ w.r.t. its output (i.e.,
the difference in pipeline stage numbers between the input and the output). We can then
constrain the “compute” variables:

cw
s =

∨
gw∈Gw

g′
gw

s

where Gw is the set of all possible gadgets gw to compute w. For asymmetric gadgets such
as HPC2, the choice of input sharing assignation is handled by including multiple variants
of the gadget in Gw, with different input ordering (e.g., we include a “swapped inputs
HPC2” whenever the “normal HPC2” gadget belongs to Gw).

For input variables i we instead set ci
0 to true and ci

s to false for s > 0. Finally we
constrain the outputs: for all output wires o, vo

L must be true.
The objective of the optimization problem is the minimization of the area used by

the masked circuit. Since Compress takes as an input the area cost of each gadget
type, including a “pipelining register” gadget, the total cost is the sum of the ggw

s and rw
s

variables, weighted by the area of the corresponding gadgets, in addition to the area of the
pipeling registers:

C =
L∑

s=0

∑
w

∑
gw∈Gw

agggw

s +
L∑

s=0

∑
w

aregrw
s

where ag is the area of the gadget g. Since the solver works only with integers, we use a
fixed point representation for the areas ag. Let us remark that while the constraints of the
problem guarantee that a part of the circuit correctly compute the output at the required
pipeline stage, it allows nonsensical logic to be instantiated (e.g., gadgets with no valid
inputs). The optmimization ensures that such useless logic never appears, as long as all
logic costs are strictly positive.

Further, we take into account the cost of randomness generation for the masked gadgets.
We assume that a PRNG is instantiated along with the masked circuit, and that it should
provide enough randomness to run the pipeline continously: each randomness input of
a gadget is connected to an output of the PRNG, and the PRNG should be able to
refresh its full output at every clock cycle. Concretely, we use an unrolled Trivium,
following [CMM+23a]. Then, we observe that the marginal area cost of one additional
bit of randomness per clock cycle from the PRNG is roughly constant. This allows to
include the PRNG cost into the area optimization function by simply increasing the areas
ag by the area needed to generate the randomness for each gadget. Overall, this approach
ensures that the full cost of the masked pipeline is optimized by Compress.

Let us finally remark that while the optimization problem is order-specific (the gadget
costs depend on the masking order), Compress’s output is still generic: it can be
synthesized at all masking order, provided that the gadgets support it.

4 Register Reuse through Gadget Decomposition
In this section, we further reduce the amount of registers in the masked circuits by looking
at registers instantiated inside gadgets. For example, an HPC3 gadget contains pipelining
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HPC3

(a) Without register separation
HPC3’

(b) With register separation

Figure 6: Illustration of register de-duplication thanks to the separation of a pipelining
register out of the HPC3 gadget.

registers for the xi shares (see Algorithm 3). If two HPC2 gadgets have the same input
sharing x, then these registers will be duplicated. There could also be duplication between
pipelining registers inside a gadget and pipelining registers outside gadgets. Our approach
to avoid such inefficiencies is to decompose gadgets into multiple parts, which eliminates
pipelining registers from such gadgets, and instead exposes them as latency constraints.
This avoids duplication and Compress’s gadget selection (e.g., by choosing the order of
the input sharings in a gadget) may bring further optimizations.

4.1 Separate Pipelining Registers

As a first step, we handle pipelining of input sharings. When a gadget uses registers directly
on input shares, we add a new input sharing to the gadget, that must have identical share
values, but at a different pipeline stage. Concretely, this technique is applied to the input
shares yi of HPC2 (separating d registers), and to the input shares xi and yi of HPC3
(separating 2d registers). Figure 6 illustrates how this separation works, and how it leads
to the de-duplication of registers.

The new gadgets bring the additional constraint of having identical shares on two input
sharings, which is required for correctness and also for security. Compared to the standard
definition of gadgets, this is a stronger requirement, but it has no significant impact on the
correctness and security analysis since it is enough to consider that the classical definitions
apply, under the indentical sharings condition. This condition is non-trivial in presence of
gadget duplication because a sharing can be computed twice, possibly with different (but
equivalent) results. Therefore, we add two constraints to Compress. First, gadgets of
different types must not be used to generate the same value w. Therefore, for all w:

AtMostOne({{Any(ggw

s : 0 ≤ s ≤ L}}) : gw ∈ Gw}}). (1)

Second, a sharing can only be computed by multiple identical gadgets if these gadgets do
not use randomness:

AtMostOne({{ggw

s : gw ∈ Gw, 0 ≤ s ≤ L}}) (2)

for all w where any gw ∈ Gw uses randomness. Constraints (1) and (2) guarantee that
all sharings of the same wire are equal. While stronger than strictly necessary, these
constraint do not increase the overall circuit cost, since gadget duplication is in practice
only applied to sharewise gates (which always satisfy the constraints), while the large area
of AND gates makes it inefficient to duplicate them.
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Algorithm 4 HPC2-cross gadget with d
shares.
Input: Sharings x, y
Output: Sharing z.

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$← F2; rji ← rij

for i = 0 to d− 1 do
for j = 0 to d− 1, j ̸= i do

pij ← R (xi ∧ PR (rij))⊕ R (xi ∧ R (yj ⊕ rij))
zi ←

⊕d−1
j=0,j ̸=i

pij

Algorithm 5 HPC2 AND decomposed in
pseudo-gadgets.
Input: Sharings x, y
Output: Sharing z such that z = x · y.

a← HPC2-cross (x, y)
b← Sharewise-AND (x, y)
z ← Sharewise-XOR (a, b)

&

HPC3

(a) Without separation

&

HPC3-cross

Sharewise-AND

(b) With full separation

Figure 7: Illustration of register de-duplication thanks to register separation and inner-
domain terms separation.

4.2 Separate Inner-domain Terms

While some pipelining registers can be optimized by separating them out of the gadgets, the
above optimization does not apply to all pipelining registers. In this section, we look at the
pipelining registers on the so-called inner-domain terms in the HPC2 and HPC3 gadgets,
namely the terms xi ∧ yi. Indeed, since these terms perform only sharewise computation,
registers are not needed for security, only for proper pipeline staging. We therefore split the
AND gadgets into a part that computes these terms (sharewise AND), a part that computes
the other terms (HPC2/3-cross), and the XOR their output (sharewise), as illustrated in
Figure 7. The decomposition of HPC2 is given in Algorithm 4 and Algorithm 5, and the
decomposition of HPC3 follows the same pattern. The three resulting gadgets perform
exactly the same computation as the original gadget, but the pipelining registers are now
handled by Compress, giving further optimization opportunities.

Regarding the security analysis, there is no change to the leakage, except for the
addition or removal of registers that are not needed for security purposes. Formally, there
is one technical difficulty in the definitions: the new gadgets (sharewise AND, HPC2/3-
cross) do not satisfy the classical definition of a gadget which requires correctness. That is,
a gadget must correspond to a function on the unmasked values, which is not the case here
(e.g., the unmasked values of Sharewise-AND((1, 0), (1, 0)) and Sharewise-AND((1, 0), (0, 1))
are different). This issue has however no impact on the security definition PINI [CS20],
hence we may simply define the notion pseudo-gadget, which is the same as gadget, without
the correctness requirement.
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Algorithm 6 HPC2o Toffoli gadget with d
shares.
Input: Sharings w, x, y.
Output: Sharing z such that z = w ⊕ (x ∧ y).

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$← F2; rji ← rij

for i = 0 to d− 1 do

ji ←
{1 if i = 0

0 otherwise
for j = 0 to d− 1, j ̸= i do

if j = ji then
pij ←

R (wi ⊕ (xi ∧ PR (yi))⊕ (xi ∧ PR (rij))) ⊕
R (xi ∧ R (yj ⊕ rij))

else
pij ← R (xi ∧ PR (rij)) ∨ R (xi ∧ R (yj ⊕ rij))

zi ←
⊕d−1

j=0,j ̸=i
pij

Algorithm 7 HPC3o Toffoli gadget with d
shares.
Input: Sharings w, x, y.
Output: Sharing z such that z = w ⊕ (x ∧ y).

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$← F2; rji ← rij

r′
ij

$← F2; r′
ji ← r′

ij

for i = 0 to d− 1 do

ji ←
{1 if i = 0

0 otherwise
for j = 0 to d− 1, j ̸= i do

if j = ji then
pij ← R

(
wi ⊕ (xi ∧ (yi ⊕ rij))⊕ r′

ij

)
⊕(PR (xi)∧

R (yj ⊕ rij))
else

pij ← R
(

(xi ∧ rij)⊕ r′
ij

)
⊕(PR (xi)∧R (yj ⊕ rij))

zi ←
⊕d−1

j=0,j ̸=i
pij

5 Optimized Gadgets: HPC2o and HPC3o
5.1 New Gadget Designs
In this section, we go beyond the register re-use of Section 4 by completely eliminating
some pipelining registers through optimizations inside the AND gadgets.

Inner-domain term optimization Instead of separating the inner-domain terms for
the gadgets, we propose to merge these terms with cross-domain terms. For every
i = 0, . . . , d−1, we select a ji ̸= i (e.g., ji = 0 for all i ≠ 0, and j0 = 1). Then, we integrate
the term xi ∧ yi into the term piji

, by replacing in its computation R (xi ∧ PR (riji
))

with R ((xi ∧ PR (yi))⊕ (xi ∧ PR (riji
))). This transformation removes d registers from

the HPC2 gadget and does not damage the security: for the PINI security analysis, we
added a term of the domain i to a term that already involves the domain i (see proof
in Appendix A).

For HPC3, let us first remark that the NOT gate in the computation R
(
(xi ∧ rij)⊕ r′ij

)
⊕

PR (xi) ∧ R (yi ⊕ rij) is not necessary. Namely, replacing this computation with pij ←
R

(
(xi ∧ rij)⊕ r′ij

)
⊕ PR (xi) ∧ R (yi ⊕ rij) still leads to a correct gadget. This simplified

gadget gives pij = (xi∧yj)⊕r′ij , instead of pij = (xi∧yj)⊕r′ij⊕rij , which sill satisfies the
property needed for correctness: pij ⊕ pji = (xi ∧ yj)⊕ (xj ∧ yi). Regarding the security,
the core observation is that R

(
(xi ∧ rij)⊕ r′ij

)
has still the distribution of a fresh random

value if r′ij is not observed elsewhere. In other words, the cancellation of the random rij

has no security impact. While the removal of a NOT gate in the gadget has no significant
performance impact by itself5, it becomes useful when optimizing the inner-domain terms.
Indeed, while we can apply a similar optimization to HPC2 by turning R

(
(xi ∧ riji

)⊕ r′iji

)
into R

(
(xi ∧ (yi ⊕ riji

))⊕ r′iji

)
, which additionally saves one AND gate.

Finally, we remark that we can apply the AND-XOR trick of [WFP+23] to these AND
gadgets: they can be turned into Toffoli gate by adding a share wi of a third input sharing
at the place where xiyi is computed. Once again, this technique allows to save pipelining
registers for wi. The tweaks does not break the security, they do not add any new domain:

5Let us remark that removing the NOT gate makes the gadget trivially generalizable to any field
(our security proof is field-agnostic, provided that the gadget is made correct by turning XOR gates into
additions and subtractions where needed, and turning AND gates into products). The change also makes
the randomness rij local [CGZ20] to the gadget, which might help with masking randomness re-use, but
is beyond the scope of this work. Further, HPC3o work with any field.
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Algorithm 8 Identification of Toffoli gates in Boolean circuit
Input: A Boolean circuit
Output: For each AND gate g, a set Lg of XOR-operands for a Toffoli gate instantiation.

for all AND gates g in the circuit do
Let z be the output of g.
o← z
while o is the operand of only one operation do

Let o be the the output of that operation.
S ← {o} ▷ o is now the “result” variable.
Lg ← ∅
if o ̸= z then

while S ̸= ∅ do
Pop an element x from S
if x is the output of an XOR gate g′ and x is the operand of only one operation then

Add the operands of g′ to S.
else

Add x to Lg.

they add yi and wi to a term where xi already appears. The final gadgets are given in
Algorithm 6 and Algorithm 7, and their formal security proofs are given in Appendix A.

Gate area optimization We introduce another optimization in the HPC2 gadget. In
the computation of pij for j ̸= ji, i (i.e., for the cross-domain terms where the above
optimization is not applied), R (xi ∧ PR (rij)) and R (xi ∧ R (yj ⊕ rij)) are never both 1.
Therefore, combining these terms with an XOR gate gives the same results as combining
them with a OR gate, which has a lower area in CMOS designs. This optimization is
implemented in Algorithm 6.

5.2 Using Toffoli Gates in Compress
Compress takes as input circuits composed of AND, XOR and NOT gates. Therefore, in
order to efficiently make use of the HPC2o and HPC3o gadgets, it should extract Toffoli
gates from a circuit of AND and XOR gates.

We use the following approach. For each output sharing a of a AND gate, if a is
XORed with b (c = a ⊕ b) and not used in any other gate, then we may instantiate a
Toffoli with b as the third (w) input. Further, if c is itself used only once in an XOR with
d, then d (or c⊕ d) is also a good candidate as an input to a Toffoli gate. This continues,
until the value is not used in an XOR, or if it is an operand of more than one operation
(we don’t want to force logic duplication). All these variables can be XORed into the input
of the Toffoli gate that contains the AND computation of a, which may save pipelining
registers. However, some of these variables could be more efficiently computed at a later
cycle, and we should not adopt a restrictive all-or-none approach. We therefore consider
that a subset of these variables may be XORed in the input of the Toffoli gate, while
othersmay be XORed to its output. Further, if d = e⊕ f and d is only used once in the
circuit, then we should take e and f in our list of XOR operands instead of d, in order to
maximize flexibility and avoid dependency on the parentheses between the additions in
orignial circuit representation.

The flow of Compress is therefore modified as follows. First, for every AND gate in the
circuit, Algorithm 8 is executed in order to identify a list of variables that are candidates
to be XORed in a Toffoli gate, and the name of a “result” variable, that is, the XOR of
all these variables and of the output of the AND gate. Next, we add an alternative way
of computing the result (we keep the approach without Toffoli gate as a solution). This
alternative way is based on an extended Toffoli gate, which takes as input the operands of
the AND gate and the variables in the candidates list, and it outputs the result.

By introducing multiple computations inside a single extended Toffoli gadget, we go
against our previous decomposition approach and, as a result, could lose some of the
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scheduling optimizations of Compress. We circumvent this issue by making the extended
Toffoli gadget very flexible w.r.t. input and output latency, and by providing Compress
the knobs to exploit this flexibility (as well as information on the cost of the gadget
depending on how it is used). In more details, the Toffoli gadgets take inputs sharings
x, y and (wi)i. It is made of either one HPC2o or HPC3o gadget, whose input w is the
XOR of a subset of the sharings wi (computed using XOR gadgets). The output z of
the HPC2o/HPC3o gadget is then forwarded to an arbitrary (subject to optimization)
stage deeper in the pipeline by means of registers. In the pipeline stages covered by these
registers, the other wi operands are XORed to the forwarded state (again, the staging of
these XOR operations is selected by the optimization solver).

6 Case Studies
In this section, we look at the performance characteristics of the masked pipelines generated
by Compress and we compare them to the state of the art designs. The area numbers
are obtained by synthesizing the designs with Yosys 0.33 and the Nangate 45 PDK. The
area with PRNG is based on the assumption that the proposal of [CMM+23a] is followed:
using an unrolled Trivium as PRNG. The PRNG area is then computed as the number
of bits multiplied with on the area cost per bit per clock cycle of the PRNG for a large
unrolling factor (512).

6.1 Optimized S-boxes
As a first case study for Compress, we generated optimized implementations of the
AES S-box (based on the 34 AND gate Boyar-Peralta representation [BP12]) and of
the 8-bit Skinny S-box. Our results are given in Table 1 and Table 2. For both cases,
we provide the masking order (number of shares) and desired latency as parameters
to Compress. Furthermore, in order to analyze the individual contributions of our
different optimizations, three results are provided for each parameter set. The “Base” case
corresponds to Compress (as described in Section 3) with the HPC2 and HPC3 gadgets.
For “Sep”, we add all gadget decomposition techniques of Section 4. Lastly, for “Opt”, all
optimizations of this paper are enabled. We also report similar results from related works.
We focus on the most comparable works, that is, the ones with provable security in the
glitch-probing model and arbitrary security order.

We observe that some low latency designs require less area than the higher latency
ones, even when accounting for randomness usage. This may seem surprising at first, since
lower latency designs require more randomness due to the use of more low-latency HPC3
gadgets in place of HPC2 gadgets. However, lower latency generally means a lower amount
of pipelining registers, which explains the area gain. These two effects mostly cancel each
other, resulting in similar area costs (with PRNG) for the AES and Skinny S-boxes with 4,
5 or 6 cycles of latency, at all considered masking orders.

Compared to all similar state of the art designs (excluding the non-pipeline S-box
of [KM22]), our AES S-box achieves both lower latency and lower area. Regarding the
Skinny S-box, we observe the same trend when compared to the pipeline S-box of [VCS22]:
lower latency and lower area. Compared to the other S-box design of [VCS22], the
comparison is more difficult, since this S-box is based on an iterative design and performs
two S-box evaluations in 9 clock cycles. This amounts to a throughput of 0.22 evaluations
per clock cycles (compared to 1 for a pipeline). However, the area (with PRNG) is about
half the one of our designs, therefore, we can somewhat fairly compare two instances of
their design to one instance of ours. In such a comparison, the pipeline S-box of Compress
still has a higher throughput, and it achieves a lower latency when performing 4 S-box
evaluations (8 clock cycles vs. 9).
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Table 1: Performance characteristics of HPC AES S-box implementations.
d Latency Design Random bits Area (kGE) Area with PRNG (kGE)

Base 3.58 5.10
4 Sep 46 3.28 4.81

Opt 2.97 4.50
Base 3.85 5.08

2 5 Sep 37 3.56 4.79
Opt 3.29 4.51
Base 4.11 5.24

6 Sep 34 3.81 4.94
Opt 3.54 4.67

Base 8.04 12.62
4 Sep 138 7.60 12.18

Opt 7.09 11.67
Base 8.63 12.31

3 5 Sep 111 8.18 11.87
Opt 7.71 11.40
Base 9.07 12.45

6 Sep 102 8.62 12.01
Opt 8.15 11.54

Base 14.28 23.45
4 Sep 276 13.69 22.86

Opt 12.96 22.12
Base 15.30 22.67

4 5 Sep 222 14.71 22.08
Opt 14.00 21.37
Base 15.96 22.74

6 Sep 204 15.37 22.15
Opt 14.65 21.42

Base 22.30 37.58
4 Sep 460 21.57 36.84

Opt 20.58 35.85
Base 23.87 36.16

5 5 Sep 370 23.13 35.42
Opt 22.14 34.43
Base 24.80 36.09

6 Sep 340 24.06 35.35
Opt 23.04 34.33

2

6 [MCS22]

34 4.29 5.42
3 102 9.34 12.73
4 204 16.33 23.10
5 340 25.25 36.54
2

8 [KMMS22]*

34 5.34 6.47
3 102 11.21 15.59
4 204 19.22 25.99
5 340 29.27 40.56
2

6 [WFP+23]*

33 3.97 5.06
3 99 9.08 12.37
4 198 16.24 22.81
5 330 25.47 36.43
2

4 [KM22]*†
68 1.85 4.11

3 204 4.86 11.63
4 408 9.26 22.81

*Compiled with Synopsis Design Compiler.
†These designs are not pipelined and are not directly comparable.
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Table 2: Performance characteristics of HPC 8-bit Skinny S-box implementations.
d Latency Design Random bits Area (kGE) Area with PRNG (kGE)

Base 1.02 1.42
4 Sep 12 0.99 1.38

Opt 0.89 1.29
Base 1.15 1.45

2 5 Sep 9 1.13 1.43
Opt 1.03 1.33
Base 1.26 1.53

6 Sep 8 1.24 1.51
Opt 1.15 1.42

Base 2.13 3.33
4 Sep 36 2.08 3.28

Opt 1.93 3.12
Base 2.38 3.28

3 5 Sep 27 2.35 3.25
Opt 2.19 3.09
Base 2.58 3.37

6 Sep 24 2.54 3.34
Opt 2.39 3.19

Base 3.65 6.04
4 Sep 72 3.58 5.97

Opt 3.37 5.76
Base 4.06 5.86

4 5 Sep 54 4.02 5.81
Opt 3.79 5.58
Base 4.34 5.94

6 Sep 48 4.30 5.89
Opt 4.08 5.67

Base 5.57 9.55
4 Sep 120 5.48 9.47

Opt 5.20 9.19
Base 6.18 9.17

5 5 Sep 90 6.13 9.12
Opt 5.82 8.81
Base 6.57 9.23

6 Sep 80 6.51 9.17
Opt 6.21 8.86

2

6 [MCS22]*

8 1.26 1.52
3 24 2.56 3.36
4 48 4.33 5.92
5 80 6.54 9.2
2

9 [VCS22]†
2 0.73 0.79

3 6 1.26 1.46
4 12 1.90 2.30
5 20 2.66 3.33

*This design is generated by the tool of [MCS22], and is used in [VCS22].
†This design is not pipelined, it is a serial implementation that performs 2 S-box
evaluations in 9 clock cycles.
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Table 3: Performance characteristics of HPC AES-128 implementations (encrypt only),
including PRG.

Design Datapath width Latency d Area (kGE)

Opt

32-bit 85

2 32.2
3 72.6
4 128.4
5 202.3

128-bit 51

2 120.6
3 303.4
4 571.0
5 918.0

[MCS22]

32-bit 105

2 35.8
3 74.3
4 127.6
5 195.4

128-bit 71

2 134.2
3 310.0
4 561.6
5 888.4

6.2 Optimized AES
Let us now investigate the impact of the optimized S-boxes generated by Compress on
masked cipher implementations. For this purpose we integrate the new latency 4 “Opt”
AES S-box to two architectures implementing a masked AES-128 encryption (including
the key schedule). The architecutres are based on the ones of [MCS22].

The first case study is a 128-bit (round-based) pipelined architecture. It instantiates
20 S-boxes among which 16 are dedicated to the round computation and 4 to the key-
scheduling operating in parallel. The architecture considered is the same as the round-
based architecture presented in [MCS22] where the S-boxes instances have been replaced
(together with some minor control logic modifications). This architecture performs 5 parallel
encryptions to fill its pipeline, achieving a high troughput (0.1 encryption per clock cycle).

The second architecture is a 32-bit serial implementation instantiating 4 S-boxes that
are shared between the computation of the rounds and the key scheduling algorithm.
In particular, the data routed to the S-boxes is interleaved appropriately such that the
round operations and the key evolution mechanism are performed in parallel during a
round execution. Overall, the architecture is similar to the 32-bit one from [MCS22].6 For
this architecture, the modifications we a bit more substantial. Indeed, only integrating
the (4 cycles) new S-boxes in the key holder described in [MCS22, Figure 8] leads to
a situation where the computation are not performed properly anymore. In particular,
the implementation computes a round by first feeding into the S-boxes a column of the
round key, preparing the update of the key for the next round. Then, in the next four
clock cycles, each column of the state is added to a part of the round key and sent to the
S-box. During this process, the shift register that holds the key is rotated to ensure that
the correct part of the round key is added to the state. Then, once the whole state has
been fed to the S-boxes, the round key is updated, in parallel with the MixColumns and
ShiftRows operations. While this procedure works with a latency of 6 clock cycles for the
S-box, it does not work with 4 clock cycles: the lower latency means that the state update
for the round is finished before the key update process is completed. We therefore modify
the handling of the round key to make its update start earlier in the round, which allows
it to be completed at the same time as the state computation.

Table 3 includes the post-synthesis implementation results for the two architecures (the
6Our implementation is derived from the open-source one by the authors of [MCS22]: https://github.

com/simple-crypto/SMAesH.

https://github.com/simple-crypto/SMAesH
https://github.com/simple-crypto/SMAesH
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Table 4: Performance characteristics of HPC 32-bit adder implementations (Opt strategy).

Design Security Number of Latency Random Area Area with
Order Shares bits (kGE) PRNG (kGE)

RC (Opt)
1 2 31 32 19.23 20.29

32 31 19.95 20.98

2 3 31 96 31.42 34.60
32 93 32.51 35.60

KS (Opt)
1 2 5 374 18.30 30.55

12 249 26.11 34.38

2 3 5 1122 45.8 83.06
12 747 59.84 84.65

Sklansky (Opt)
1 2 6 172 13.77 19.48

12 151 18.42 23.44

2 3 6 516 32.9 50.03
12 453 40.63 55.67

BK (Opt)
1 2 9 115 12.07 15.89

18 105 18.73 22.22

2 3 9 345 26.69 38.15
18 315 36.81 47.27

RC [SMG15]* 1 3 32 4

N/A† N/A†

2 5/10 8

KS [BG22] 1 2 12 249
2 3 747

Sklansky [BG22] 1 2 12 119
2 3 357

BK [BG22] 1 2 18 74
2 3 222

*Threshold Implementation, not an HPC design.
†Designs are not open-source and area numbers for ASIC designs are not given.

Trivium PRNG is included in the masked AES designs). The comparison with [MCS22]
shows that a latency reduction of roughly 19 % for the 32-bit architecture (resp. 28 % for
the 128-bit architecture) is achieved by the new implementations. With regard to area,
a reduction of about 10 % is achieved at the first order, while the difference for higher
orders is below 5 %. Regarding security, the implementations have been formally verified
by fullVerif [Cas20].

6.3 Optimized Adder Implementations
Modular additions are often used by cryptographic algorithms such as post-quantum
schemes and ARX-based designs. When applying a Boolean masking scheme in such cases
to protect against side-channel attacks, the modular addition is usually implemented as a
masked binary adder computing the sum of Boolean masked operands. In a third case
study, we investigate four different 32-bit modular adder architectures to realize masked
binary adders, as such a building block is commonly needed in cryptographic algorithms.
Such circuits are interesting study cases since they are larger than the S-boxes, challenging
the complexity limits of Compress. These cases are also practically relevant and, despite
being more regular than S-box circuits, the complexity of some adders makes it non-obvious
how to best implement them.

We study both ripple-carry (RC) and parallel-prefix designs (the Kogge-Stone adder
(KS) [KS73], the Sklansky adder [Skl60], and the Brent-Kung adder (BK) [BK78]). In
general, an RC architecture performs addition by chaining 1-bit full adders, where each
carry bit ripples to the next full adder. Every 1-bit full adder takes two summands and
a carry-in and computes the respective sum bit and carry-out. Since every carry-out ci

depends on the previous carry-in ci−1, the carry-part of the sum needs to be computed
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iteratively, leading to a logic depth of n− 1 AND gates for a n-bit masked adder. Parallel-
prefix adders [BL01, BK82, HC87] aim at reducing the depth by computing the carry-part
in parallel using a tree-like structure. To do so, they split the carry generation into generate
and propagate functions. A generate function determines if two input bits generate a
carry-out, while the propagate function determines if a carry-in will be propagated to the
computation of the next carry-out. Both functions can be combined to span larger blocks
(groups) of bits, which can be combined again on the next levels, leading to a tree-like
structure. KS, Sklansky and BK adders differ in the way of creating these groups, and
therefore target different optimization goals.

The results of our case study are given in Table 4. For every adder, we give the security
order, the number of shares, the desired latency, the amount of random bits required and
the resulting area. We focus on first- and second-order designs (higher-order designs are
not more difficult to generate and do not bring significantly different results than low-order
ones), and give the design with the lowest possible latency, i.e., the minimal latency
required to obtain a secure design. We compare our results with the designs of Schneider et
al. [SMG15] and Bache et al. [BG22], and add the respective data for the latencies analyzed
in their work. We put a timeout of 1 h on Compress, i.e., if the optimal solution cannot
be found within that time frame, the solver will return the best solution found so far.
From our experiments, the 12-cycle KS and Sklansky and the 18-cycle BK adders reached
the timeout. Since these clearly correspond to sub-optimal cases, since the adders can
be implemented using half the latency and less area, we consider that Compress scales
successfully to 32-bit adders. In order to mask even larger adders (e.g., 64-bit adders),
further optimizations regarding the handling of the solver might be necessary, such as
optimizing the representation of the problem or exploring alternative solvers.

Compared to the RC design proposed in [SMG15], our generated design uses only 2
shares instead of 3 for first-order security, and 3 shares instead of 5/10 for second-order
security, although requiring more online randomness. Our KS design requires the same
amount of randomness at a latency of 12 compared to [BG22]. However, Compress is
able to generate a KS design with less latency (5 cycles), which has a lower overall area
consumption than the 12-cycle variant. For both the Sklansky and BK design, Compress
also finds variants requiring only half the latency compared to [BG22], resulting in a lower
area consumption than the high-latency designs.

7 Related Works
AGEMA The AGEMA tool [KMMS22] was the first tool introduced to perform automated
masked hardware circuit generation. AGEMA is a very flexible tool that takes any netlist
as an input and masks it, using a Mealy machine representation. That is, contrary to
this work and to the other tools discussed in this section, it is not limited to pipeline
computations. AGEMA can work in a “naive” mode, where the generated circuit follows
the structure of the input circuit, or in “BDD” modes where the logic representation is
re-synthesized from a lookup table representation. The naive mode generally performs
better when the input circuit is already optimized, e.g., with the Boyar-Peralta AES
S-box or the Skinny S-box. The circuits generated by AGEMA can be either in a pipeline
structure, or exploit clock gating. The latter enables some area reduction (fewer registers
are needed), at the cost of a lower throughput, which is typically not interesting when the
logic circuit processes many parallel computations (e.g., an S-box in a block cipher).

AGEMA can further generate circuit using HPC1, HPC2 or GHPC gates (this was
later extended to HPC3 in [KM22]). It appears that AGEMA does not perform any
latency optimization: every HPC1 or HPC2 instance leads to a latency cost of 2 clock
cyles. Further, it does not optimize the scheduling of the computations. Overall, it appears
that AGEMA and Compress offer complementary feature sets: AGEMA handles general
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circuit masking and interaction between masked an non-masked parts of the circuits, while
Compress optimizes masked pipelines.

Handcrafting In [MCS22], Momin et al. demonstrate that handcrafted architectures for
masked AES implementations may lead to more efficient circuits than automated masking.
This result comes from designing serialized AES architectures that efficiently exploit
the high-latency pipeline S-box (the AES of Section 6.2 is based on that architecture).
Regarding the S-box design itself, the authors develop an automated masking tool that
generates a pipeline, i.e., a tool with a similar purpose to ours. This tool works exclusively
with the HPC2 gadget, and exploits its asymmetric latency chararcteristic to minimize the
overall latency. This minimization can be performed by a simple greedy algorithm, and
the tool performs no further optimization of the pipeline scheduling (every operation is
started as soon as its operands are computed).

AGMNC Recently, Wu et al. [WFP+23] introduced the AGMNC tool, which also gen-
erates masked pipelines. Their tool is based on two steps. The first step consist in a
logic synthesis from a lookup table representation. In the second step, the circuit is
implemented into a masked pipeline. This pipeline is then optimized for latency, using
the same technique as [MCS22]. A pipeline staging optimization step is also performed.
Finally, AGMNC also comes with new masked gadgets. These gadgets, named AND-XOR1
and AND-XOR2 are variants of HPC1 and HPC2 that perform the same operation as our
Toffoli gadgets.

The pipeline implementation and optimization steps of AGMNC fullfill the same
function as Compress. A detailed comparison of the two tools is difficult given the
lack of details in how the optimizations are performed in AGMNC. However, Compress
appears to have more features than AGMNC (e.g., selection between multiple kinds of
AND gadgets, duplication of gadgets) and it further guarantees an optimial solution, while
the algorithm of AGMNC is not described. Regarding the AND-XOR gadgets, these save
d registers over an HPC1/HPC2 composition with an XOR gadget. This optimization is a
subset of the optimizations enabled by the inner-domain term separation in Compress
(Section 4.2).

EasiMask EasiMask [BSG23] is another recent tool for autmating masked circuit gener-
ation. Similarly to AGEMA, this is a high-level tool that transfroms a description of a
relatively complex operation into a masked circuit. This tool is mainly concerned with
high-level architecture decisions, e.g., its user can choose betwen unrolled, round-based
or serial architectures. EasiMask comes with a library of masked S-boxes to choose
from, and does not generates S-boxes itself. Therefore, the feature sets of EasiMask
and Compress do not overlap. In fact, the output of Compress could be integrated to
EasiMask’s library.

8 Conclusion
Compress optimizes the area of masked pipelines by minimizing the amount of pipelining
registers and by the choice of efficient masked gadgets adapted to the latency constraint.
Further, the separation of gadgets in smaller components allows the deduplication of some
logic, and the new HPC2o and HPC3o gadgets have identical characteristics as HPC2
and HPC3, except for a smaller area footprint and the added Toffoli gate feature. These
optimizations, along with the combination of HPC2 and HPC3 gadgets in a single circuit,
lead to implementations with minimal latency while improving the state-of-the art area
requirements. Our methodology takes into account the amount of randomness required
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by the different gadgets: it includes the area cost of generating the required randomness
using a PRNG.

Since Compress generates only pipeline circuits, it does not in itself provide a full
solution to mask complete cryptographic operations, whose implementations are typically
not fully unrolled. However, Compress’s output can easily be integrated into a handcrafted
design (as done in this work), or into automated workflows. For example, tools that exploit
libraries of masked components (e.g., masked S-boxes in EasiMask [BSG23]) could be
easily integrated with Compress in a design flow.

A Security Proof of HPC2o and HPC3o
Let us now prove the security of the HPC2o and HPC3o gadgets. We work in the glitch-
robust probing model for hardware circuits, which are modeled as directed acyclic graphs
whose edges are wires and whose nodes are gates. Gates include logic gates, registers, and
input/output gates. In a gadget with d shares, input and output gates are grouped into
d-tuples named sharings (while the individual input and output are shares). The index
of a share is its (zero-indexed) position in the sharing tuple. We refer to [ISW03, CS21]
for a more detailed discussion of this model, and the definition of correctness. In this
model, the adversary places glitch-extended probes on the wires of a circuit. When the
circuit is evaluated, a probe one a wire leaks to the adversary the values of all the wires in
the combinatorial circuit that computes that wire. In other terms, the glitch-extended
leakage of a probe on a wire, is made of the value carried by that wire and, if the gate
that produces the value on the wire is not a register or an input of the gadget, of the
glitch-extended leakage of probes on the input wires of that gate.

Let us now define the security notions.

Definition 1 (Glitch-robust simulatability [BBD+16, FGP+18]). Let P be a set of l
glitch-extended probes in a gadget G. Let I be a set of k input shares of G. Let GP (x) be
the random variable denoting the values observed by the adversary when x is the value of
the input shares of the gadget, and let x|I . The set of probes P can be simulated with the
set of input wires I if, for any x and x′ such that x|I = x|I , the distributions of GP (x)
and GP (x′) are identical.

In particular, if there exists a (randomized) function S (named the simulator) such that
the distribution of S(x|I) (where x|I denotes the values of the input shares x that belong
to I) and GP (x) are equal for any x, then the glitch-robust probes P can be simulated by
the input shares I [BBP+16].

Definition 2 (Probe Isolating Non-Interference (PINI) [CS20]). A d-shares gadget G is
glitch-robust t-probe-isolating non-interferent (t-PINI) if, for any set A ⊆ {0, . . . , d− 1}
and any set of glitch-extended probes P such that |A| + |P | ≤ t, there exists a set
B ⊆ {0, . . . , d− 1} with |B| ≤ |P | such that the glitch-extended probes P and glitch-
extended probes on all output shares of G with index in A can be simulated by the inputs
of G with index in A ∪B.

The security proof for HPC2o is very similar to the proof for HPC2 [CGLS21].

Proposition 1. The HPC2o gadget (Algorithm 6) is glitch-robust PINI.

Proof. Let us build a glitch-robust PINI simulator. We assume wlog that only the input
wires of registers and the outputs of the gadgets are probed, (since the other extended
probes are less powerful). Namely, these probes can be zi, uij := xi ∧ rij , vij := yj ⊕ rij

and xi ∧ vij . For j = ji, we instead have uij := wi ⊕ (xi ∧ yi)⊕ xi ∧ rij . Given a set of
probes adversarial extended probes P and probed output shares A, the set of required
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input shares X is computed as follows: for each probed zi, add i to X. Then, for each
i ≠ j pair, if two out of uij , vij and xivij are probed, or if i of j belongs to X: add i and
j to X. Otherwise, if uij or xi ∧ vij is probed, add i to X, and if vij is probed, add j to
X. The set B is computed as X \A.

We observe that the set B satisfies the PINI definition: |B| ≤ |P | by construction.
All the values to be simulated that depend only on input shares with index in X and
on randomness are computed as specified by Algorithm 6 (the required randomness is
generated by the simulator). The allows to simulate all the extended probes on uij and
vij , by construction of X. Then, for all remaining extended probes (zi (for which i ∈ A)
and xivij), we observe that i ∈ X. They can therefore be computed as it is done by the
gadget, except when the simulation of vij = yj ⊕ rij is needed and j ̸∈ X. In this case, the
simulator simulates vij by sampling a fresh random r′ij (we say that the simulator cheats
for ij).

Let us show that this algorithm is indistinguishable from the true gadget. The behavior
of the simulator is identical to the behavior of the gadget, except when it cheats for ij. We
therefore only need to prove that if the simulator cheats for ij, then rij is not observed
in the set of probes, except through vij , therefore vij is indistinguishable from a fresh r′ij
and simulation is correct.

The simulator cheats for ij only if j ̸∈ X and a value depending on vij is probed. The
first condition implies that none of zj , uji, xjvij and vij are probed, and at most one
of zi, xivij , uij and vji can be probed. The second condition implies that zi, or xivij

is probed (vij cannot be probed due to the previous observation). Therefore, the only
values depending on rij that can be probed are zi or xivij , and exactly one of those is
probed. If xivij is probed, then the simulation is correct: the extended probe expands
to {xi, vij , xivij}, which are the only observations depending on rij . If zi is probed, then
observations depending on rij are uij and xivij , and functions of these values. If xi = 0,
then xi ∧ vij = 0 does not depend on rij , which is thus only observed through uij , hence
the simulation is correct. Otherwise, we have xi = 0, which implies that uij = 0 for j ̸= ji

or uij = wi ⊕ (xi ∧ yi) for j = ji, thus rij is only observed through vij , which is correctly
simulated as a fresh random.7

Proposition 2. The HPC3o gadget (Algorithm 7) is glitch-robust PINI.

Proof. We the proof is similar to the proof of Proposition 1. We again consider only
the probes zi, uij := (xi ∧ rij) ⊕ r′ij and vij := yj ⊕ rij . For j = ji, we instead have
uij := wi ⊕ (xi ∧ rij) ⊕ r′ij . Given a set of probes adversarial extended probes P and
probed output shares A, the set of required input shares X is computed in the same way
as in the proof of Proposition 1 (except that xi ∧ vij does not exist as a possible probe).
The set B is again computed as X \A, and satisfies the PINI definition.

Similarly to HPC2o, the simulation follows Algorithm 7, except when the simulation of
vij = yj ⊕ rij is required and j ̸∈ X. In this case, the simulator cheats for ij, by simulating
both vij and uij as fresh randoms. Since cheating on ij occurs only when simulation of
vij is needed, this means that zi is probed, hence i ∈ X. Further, since j ̸∈ X, there is no
other probe than zi through which the adversary may observe rij or r′ij . Therefore, the
value uij appears as a uniform random to the adversary since r′ij is not observed otherwise.
As a consequece, rij is not observed except trough the value vij , which appears as a fresh
random.8

7This argument does not work in larger fields, in which the HPC2o multiplication gadget is therefore
not glitch-robust PINI.

8Let us remark that, unlike the proof for HPC2o, this proof is not specific to F2.
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