
How to Prove Statements Obliviously?

Sanjam Garg∗ Aarushi Goel† Mingyuan Wang‡

Abstract

Cryptographic applications often require proving statements about hidden secrets satisfying certain
circuit relations. Moreover, these proofs must often be generated obliviously, i.e., without knowledge of
the secret. This work presents a new technique called — FRI on hidden values — for efficiently proving
such statements. This technique enables a polynomial commitment scheme for values hidden inside
linearly homomorphic primitives, such as linearly homomorphic encryption, linearly homomorphic
commitment, group exponentiation, fully homomorphic encryption, etc. Building on this technique,
we obtain the following results.

1. An efficient SNARK for proving the honest evaluation of FHE ciphertexts. This allows for an
efficiently verifiable private delegation of computation, where the client only needs to perform
logarithmic many FHE computations to verify the correctness of the computation.

2. An efficient approach for privately delegating the computation of zkSNARKs to a single untrusted
server, without making any non-black-box use of cryptography. All prior works require multiple
servers and the assumption that some subset of the servers are honest.

3. A weighted threshold signature scheme that does not require any setup. In particular, parties
may sample their own keys independently, and no distributed key generation (DKG) protocol is
needed. Furthermore, the efficiency of our scheme is completely independent of the weights.

Prior to this work, there were no known black-box feasibility results for any of these applications. We
also investigate the use of this approach in the context of public proof aggregation. These are only a
few representative applications that we explore in this paper. We expect our techniques to be widely
applicable in many other scenarios.

∗UC Berkeley sanjamg@berkeley.edu
†NTT Research aarushi.goel@ntt-research.com
‡UC Berkeley mingyuan@berkeley.edu

1

mailto:sanjamg@berkeley.edu
mailto:aarushi.goel@ntt-research.com
mailto:mingyuan@berkeley.edu

Contents

1 Introduction 3
1.1 Our Contribution . 3
1.2 Related Works . 8

2 Technical Overview 10
2.1 FRI on Hidden Values . 11
2.2 Polynomial Commitments on Hidden Values . 13
2.3 Application I: Efficiently Verifiable Private Delegation of Computation 14
2.4 Application II: Private Outsourcing of zkSNARKs to a Single Server 15
2.5 Application III: Weighted Threshold Signature without Setup 16

3 Preliminaries 17

4 FRI on Hidden Values 18
4.1 Linearly-Homomorphic Encapsulation . 19
4.2 SNARKs for Low-Degree Testing on LHEncap . 20
4.3 FRI on LHEncap . 22

5 Polynomial Commitments on Hidden Values 24
5.1 Defining Polynomial Commitments on LHEncap . 24
5.2 Constructing Polynomial Commitments on LHEncap . 26

6 Efficiently Verifiable Private Delegation of Computation 27
6.1 Overview of Polynomial IOP based SNARKs . 27
6.2 Our Construction . 28

7 Private Outsourcing of zkSNARKs to a Single Server 30

8 Weighted Threshold Signatures without Setup 32
8.1 A Construction based on Schnorr . 32
8.2 Extensions . 37

References 38

A Public Aggregation of KZG Opening Proofs 50
A.1 The construction for aggregating KZG Opening Proofs . 50

2

1 Introduction

Succinct Non-interactive Arguments of Knowledge (SNARKs) [Kil92, Mic94, BCC+17] allow a prover to
generate extremely short proofs, certifying the validity of NP statements. Zero-Knowledge SNARKs
(or zkSNARKs for short) additionally guarantee that the proof hides the prover’s secret witness. Fur-
thermore, these certificates can be verified quite efficiently. Over the last decade, significant research
has been dedicated towards improving the asymptotic and concrete efficiency [Gro16, BCG+17, BCG+18,
XZZ+19, GWC19, Set20, BCG20, CHM+20, Lee21, KMP20, ZLW+21, BCL22] of zkSNARKs. This ef-
fort has resulted in very practical zkSNARK systems with widespread real-world deployment (e.g.,
see [Gro16, BBHR18, GWC19]). Known zkSNARK constructions are based on a variety of computa-
tional and setup assumptions. Additionally, these constructions offer a whole gamut of performance
tradeoffs in terms of proof generation cost [BBHR18, GLS+21, Plo21, XZS22, KPV22, CBBZ23], proof
size [Gro10, GGPR13, PHGR13a, Gro16, GWC19], and verification time [Gro16, GWC19, CHM+20, KPV22].
These practical constructions have opened a floodgate of new applications (see, for example, [BCG+14,
KGC+18, ZFZS20, ZkR21, RPX+22, GHAH+23]).

Proving Statements with Hidden Secrets Efficiently. Some important applications of zkSNARKs are
those that involve checking some relationship between cryptographic group elements, cryptographic pub-
lic keys, etc. For example, given inputs {𝑥𝑖} and group elements {h𝑖 = g𝑦𝑖 }, consider a prover generating
a zkSNARK to prove that a =

∏
𝑖 h

𝑥𝑖
𝑖
has been generated correctly. In such cases, the prover may not have

direct access to the cryptographic secret; i.e., {𝑦𝑖} values in our example and is therefore left with directly
proving a relationship between a and the h𝑖 values. This typically involves unrolling these cryptographic
operations (in this case, group exponentiation) as a circuit in a non-black-box manner — leading to im-
practical constructions. We stress that we are interested in designing efficient zkSNARKs for such cases
where the cryptographic secrets are not known to the prover.1 Based on this, we ask:

Can we design efficient SNARKs for proving statements involving hidden values?

1.1 Our Contribution

We present a general approach, namely FRI on hidden values, that is specifically tailored to answer the
above question. Our work builds upon and extends the renowned Fast Reed-Solomon Interactive (FRI)
oracle proof of proximity protocol [BBHR18, BGKS20, BCI+20, BCKL22]. In particular, our technique yields
the following main result.

Succinct Polynomial Commitment for Hidden Values. Consider a polynomial 𝑓 (𝑥) = 𝑓0 + 𝑓1 · 𝑥 +
· · · + 𝑓𝑑 · 𝑥𝑑 for some 𝑓0, . . . , 𝑓𝑑 ∈ F. Let J𝑓0K , . . . , J𝑓𝑑K be some encapsulations2 of 𝑓0, . . . , 𝑓𝑑 , which satisfies
linear homomorphism (see Section 4.1 for a formal definition). For a committer, who only has access to these
encapsulations J𝑓0K , . . . , J𝑓𝑑K, we present a succinct polynomial commitment for the polynomial 𝑓 (𝑥). It
is a polynomial commitment scheme in that, given any (public) input 𝑥∗, the committer can compute
an encapsulation J𝑓 (𝑥∗)K and a succinct proof certifying that J𝑓 (𝑥∗)K is the encapsulation of an honest

1If these secrets are available to the prover, then various approaches can help provide efficient constructions, e.g., sigma
protocols [Sch90], bulletproofs [BBB+18], etc.

2For instance, J𝑚K could be a linearly homomorphic encryption of 𝑚, a linearly homomorphic commitment of 𝑚, group
exponentiation (i.e., J𝑚K = 𝑔𝑚), or fully homomorphic encryption of𝑚. We stress that this encapsulation could either be hiding
(e.g., encryption/commitment) or not hiding (e.g., group exponentiation).

3

evaluation3 of the committed polynomial at 𝑥 = 𝑥∗. Notably, this scheme only makes black-box use of the
underlying encapsulation scheme.

Our polynomial commitment is based on the standard FRI-based polynomial commitment
scheme [BGKS20]. In particular, we first show how the FRI protocol can be generalized to work on hidden
values and then use it to design a polynomial commitment scheme for hidden polynomials. The efficiency
of our scheme is similar to the standard FRI-based polynomial commitment scheme. In particular, the size
of the commitment is 𝑂 (1); the time to generate proofs of openings is 𝑂 (𝑑); the proof size is 𝑂 (log2 𝑑);
and the verification time is 𝑂 (log2 𝑑).4

This versatile tool, resulting from a seemingly simple observation, immediately gives rise to a wide
range of applications. We explore a few representative applications in this paper. We stress that, prior to
our work, there were no known black-box feasibility results for all of these applications.

Application I: Efficiently Verifiable Private Delegation of Computation. Consider the problem of
verifiable private delegation of computation, where a client holds some input 𝑥 and wants to delegate an
expensive (public) computation 𝐶 on 𝑥 to a cloud server. Furthermore, it wants the server to append a
proof certifying that it did the computation honestly. A standard approach for this task involves sending
fully homomorphic encryptions (FHE) [Gen09] Enc(𝑥) of the client’s input 𝑥 to the server, which performs
computations on these ciphertexts and returns the resulting ciphertext 𝐶 (Enc(𝑥)). In the end, the client
can locally decrypt this resulting ciphertext to learn the output𝐶 (𝑥). However, while this solution ensures
privacy, it offers no integrity regardingwhether or not the computationwas done honestly. One potentially
simple way to add integrity would be to ask the server to provide a short proof (a.k.a., a SNARK proof)
attesting to the validity of the computation. However, this inevitably requires making non-black-box uses
of the FHE scheme.

Utilizing our technique for FRI on hidden values, we present the first efficient solution for this problem.
Our scheme incurs minimal overhead for the server on top of the necessary work of computing 𝐶 on the
FHE ciphertexts Enc(𝑥).

At a high level, our idea is to adapt existing polynomial IOP-based SNARK proof systems in order to
allow the server to generate a proof certifying that computation𝐶 on encrypted valueswas performed hon-
estly, without making non-black-box use of the FHE scheme. For this, we crucially rely on our polynomial
commitment scheme that allows the server to commit to polynomials defined by values encrypted inside
the FHE ciphertexts. Our succinct proof is privately verifiable in that one needs the FHE secret key for ver-
ification. This is not an issue since the client does hold the secret key. When applied to the state-of-the-art
SNARK proof system (e.g., Fractal [COS20]),5 we achieve the following efficiency.

• Apart from the necessary computation 𝐶 on the FHE ciphertext Enc(𝑥) to obtain 𝐶 (Enc(𝑥)), the
server only needs to perform 𝑂 (|𝐶 | · log |𝐶 |) FHE evaluations (with constant multiplicative depth)
for proof generation.

• Similar to any polynomial IOP-based SNARKs instantiated with FRI-based polynomial commitment
scheme, the proof size is 𝑂 (log2 |𝐶 |) and verification time is 𝑂 (log2 |𝐶 |).

To facilitate fast verification (as is the case with all SNARKs with sublinear verification time), a one-time
3Note that the prover is able to compute this evaluation because of the linear homomorphism of the encapsulation scheme.
4To be precise, the proof size and verification time is 𝑂 (log2 𝑑 · _), where _ is the security parameter. Throughout the paper,

this _ factor is implicitly assumed in the proof size of all FRI-based SNARKs.
5Our approach can be combined with any polynomial IOP-based SNARKs. See Section 6 for more details.

4

deterministic preprocessing of time 𝑂 (|𝐶 | · log |𝐶 |) is required.6 We emphasize that this preprocessing is
only for the arithmetization of the circuit𝐶 . In particular, it is independent of the FHE scheme. Furthermore,
this one-time preprocessing can be reused for an arbitrary number of times (e.g., if the client wishes to
delegate many instances of the same computation 𝐶 to the server).

The only existing (black-box) solutions for this problem [GGP10, AIK10, CKV10, BGV11] require the
client to perform a preprocessing step, where it computes 𝐶 on FHE encryptions of _-many different ran-
dom sets of inputs (where _ is the security parameter). Unfortunately, this hugely expensive preprocessing
step is inherently not reusable. An alternate approach for making this preprocessing resuable, requires the
server to perform homomorphic evaluations on FHE encrypted FHE ciphertexts of the form Enc(Enc(𝑥)),
which results in a non-black-box use of the FHE scheme. We refer the reader to Section 1.2 for a more
detailed comparison with these works.

Application II: Private Outsourcing of zkSNARKs to a Single Server. zkSNARKs offer a sub-
stantial advantage to verifiers due to their succinctness and efficient verification process. However, the
generation of zkSNARKs can be resource-intensive for the prover. Recent works (zkSaaS [GGJ+23] and
EOS [CLMZ23]) have introduced privacy-preserving approaches that leverage cloud computing to allevi-
ate the prover’s burden. This is achieved by letting the prover secret share its witness with a number of
third-party servers, who then participate in an MPC protocol to compute the zkSNARK. The main draw-
back of delegating zkSNARK generation to multiple servers in this manner, is that it necessitates trust in
at least a subset of the servers — which is highly undesirable.

Alternatively, to avoid this trust assumption, one could use a standard FHE-based approach to delegate
the computation of zkSNARKs to a single untrusted server. However, this would inevitably result in a non-
black-box use of the zkSNARKs. To the best of our knowledge, no black-box solutions are known for the
problem of private outsourcing of zkSNARKs to a single untrusted server. We present the first black-box
solution for this problem.

At a high level, our idea involves the client sending fully homomorphic encryptions of its secret wit-
ness to the server. The server can then perform FHE operations on these ciphertexts to compute FHE
ciphertexts corresponding to the extended witness and, subsequently, generate a zkSNARK (borrowing
ideas used in our previous application) for this extended witness,7 without being non-black-box in the
FHE and zkSNARK.

We note that, while this approach shares similarities with the previous application we discussed, there
is a crucial distinction. In the context of verifiable private delegation of computation, it suffices for the
server to produce a zkSNARK at the end that is privately verifiable, meaning that only the client, holding
the FHE secret key, can verify the correctness of the computation. However, in the current application,
since we are delegating computation of a zkSNARK, we require the server’s output to be a publicly ver-
ifiable zkSNARK. To achieve this, we demonstrate that, by replacing FHE with fully homomorphic com-
mitments (FHCom), we can modify the approach from our previous application to make the resulting
zkSNARK publicly verifiable. In a nutshell, this involves the client decommitting appropriate parts of the
privately verifiable zkSNARK and turning it into a publicly verifiable one.8

As before, this approach can be combined with any polynomial IOP-based zkSNARK. When combined
6It is typically assumed that this pre-processing is done by a trusted party and the verifier only gets oracle access to it. However,

one could also imagine the client himself doing this one-time reusable pre-processing.
7The process of computing zkSNARKs typically starts with the computation of an extended witness. This extended witness

can be seen as a computation trace generated by evaluating the relation circuit with the statement and a (short) secret witness as
input.

8The client’s assistance is inevitable. As we explained in Remark 2, any kind of single-server privacy-preserving SNARKs
delegation protocol would necessarily require the client’s assistance to make it publicly verifiable.

5

with Fractal [COS20], we achieve the following efficiency: (1) The server performs 𝑂 (|R| · log |R |) FHE
evaluations for generating a zkSNARK for the NP relation R.9 (2) the size of the resulting zkSNARK is
𝑂 (log2 |R |) and verification time is also 𝑂 (log2 |R |).

Aside from avoiding the need to place trust in any third-party server, another significant advantage
of our approach over zkSaaS [GGJ+23] and EOS [CLMZ23] is that the workload and the communication
between the server and the client are independent of the size of the relation circuit. Instead, they depend
solely on the size of the client’s secret witness and the size of the final zkSNARK. In contrast:

• In both zkSaaS and EOS, the extended witness must (1) either be generated by the client (i.e., the person
whowants to outsource zkSNARK computation), meaning that the client must first dowork proportional
to the size of the relation circuit and communicate secret shares of this extended witness to the servers,
(2) or it can be generated by the servers using any generic MPC protocol — this, however, requires the
total communication amongst the servers to grow with the size of the relation circuit and the number
of servers. Furthermore, even aside from generating the extended witness, the total communication
required in zkSaaS and EOS still grows with the size of the relation circuit.

• Moreover, in EOS, the client is required to actively participate and communicate with the servers
throughout the zkSNARK computation. As a result, in addition to helping with the generation of the
extended witness, the total work done by the client in EOS also grows with the size of the relation circuit.

Lastly, it is important to highlight that our goal in this work is to propose the first black-box feasibility
result in the single server setting. Unlike zkSaaS and EOS, our current approach is primarily of theoretical
significance. It is an exciting future research direction to design concretely efficient protocols in the single
server setting.

Application III:Weighted Threshold Signature without Setup. An (𝑛, 𝑡)-threshold signature scheme
enables distributing the signature signing process among 𝑛 parties. It guarantees that any subset of ⩾ 𝑡

parties can generate a valid signature, while any subset of < 𝑡 parties cannot forge a valid signature.
The standard way of constructing threshold signature schemes relies on 𝑡-out-of-𝑛 linear secret sharing
schemes (e.g., Shamir’s secret sharing [Sha79]), where the secret signing key is shared among 𝑛 parties.
This standard framework suffers from several drawbacks, as discussed below.

1. Need for Interactive Setup. To set up, parties must collectively sample a secret signing key and the
corresponding secret shares, which is usually done by a multiparty distributed key generation (DKG)
protocol. Despite many years of research [GJKR07, TCZ+20, KMS20, Gro21, DYX+22, GHL22], multi-
party DKG protocol still remains a major efficiency bottleneck in practice due to its high communica-
tion/computation and/or synchronous communication requirement, especially in the malicious setting.
This severely hinders the real-world deployment of threshold signatures for large numbers of parties
(e.g., 𝑛 > 1000). Moreover, this expensive interactive setup needs to be repeated every time the universe
of participating parties or the threshold changes, which is indeed the case for many real-world scenarios
(see, e.g., [BGJ+23, GJM+24]).

2. Limitation on More Expressive Policies. Due to the use of linear secret sharing schemes, this framework is
not well-suited for more expressive policies10 beyond the (unweighted) threshold access structure. As a
9Specifically, the server performs 𝑂 (|R|) FHE evaluations (that have the same multiplicative depth as R) to generate the

extended witness and then 𝑂 (|R| · log |R |) additional FHE evaluations with a constant multiplicative depth.
10That is, the rule that defines which subsets are authorized. For instance, for (unweighted) threshold access structure, subsets

are authorized if and only if its cardinality is ⩾ 𝑡 .

6

prominent example, for weighted threshold access structures, linear secret sharing schemes are highly
inefficient [AN21, GJM+23, BHS23], and constructing more efficient weighted threshold signatures has
been the focus of many recent works [MRV+21, CK21, BHS23, GJM+23].

Given these limitations, it is desirable to have a threshold signature scheme where (1) parties could
independently sample their own keys, which completely eliminates any need for (interactive) setup, and
(2) it naturally supports the weighted access structure without any efficiency degradation. We note that
SNARKs do provide a generic solution to this. In particular, each party may sample its key pair and sign
the message. The aggregator may take the signatures signed by individual parties and generate a succinct
proof as the aggregated signature, which certifies that it possesses sufficiently many (measured by the
cumulative weights) signatures. This generic solution, however, inevitably makes non-black-box use of
the underlying signature schemes. We emphasize that the requirement of black-box use of the underlying
signature schemes is not only of theoretical interest but also crucial for concrete efficiency.

Building upon our FRI on hidden values techniques, we give a black-box solution to this prob-
lem. For a weighted threshold signature amongst 𝑛 parties, irrespective of how large the weight is, our
scheme achieves the following efficiency: the signature size is 𝑂 (log2 𝑛), verification time is 𝑂 (log2 𝑛),
and the partial signature aggregation time is 𝑂 (𝑛 log𝑛). Our solution follows the recently proposed ap-
proach [GJM+24, DCX+23] of thresholdizing multisignature schemes. It is highly versatile, as discussed
below.

1. One can go beyond the weighted access structure and consider any access structure defined by a
circuit 𝐶 .11 Our construction can be modified accordingly to realize it. In this case, the aggregation
time would be 𝑂 (|𝐶 | log|𝐶 |), and the signature size and verification time would be 𝑂 (log2 |𝐶 |).

2. In this work, we use Schnorr signature [Sch90] as an example to demonstrate the utility of our
framework (this choice is to highlight the fact that our techniques do not require pairing). In fact,
it could be applied to other group-based signature schemes with a linearly aggregatable verification
key (e.g., BLS signature [BLS01] resulting in a setup-free threshold signature with non-interactive
signing, as we sketched in Section 8.2).

These extensions are discussed in more detail in Section 8.2. Finally, we remark that before this work,
the only black-box construction of a weighted threshold signature without setup was proposed by Mi-
cali et al. [MRV+21]. However, [MRV+21] only considered a ramp setting, where the reconstruction thresh-
old ismuch larger than the privacy threshold. For a sharp threshold setting, their aggregated signature size
would not be succinct.12 We refer the readers to Section 1.2 for a more detailed discussion on the related
works.

Public Proof Aggregation. Finally, existing works on proving statements involving hidden secrets are
mostly motivated in the context of public proof aggregation. To this end, we demonstrate the utility of
our techniques in public proof aggregation as well. In particular, we consider the example of aggregating
multiple KZG polynomial commitment [KZG10] opening proofs of different polynomials evaluated at
different locations. We give an aggregation scheme for a batch of 𝑛 KZG opening proofs that achieves the
following efficiency. The aggregation cost is 𝑂 (𝑛 log𝑛), the aggregated proof size is 𝑂 (log𝑛2), and the
verification cost is 𝑂 (𝑛). This result is presented in Appendix A.

11That is, given an indicator vector 𝐵 ∈ {0, 1}𝑛 for a subset 𝐵 ⊆ [𝑛], 𝐶 (𝐵) = 1 if and only if 𝐵 is authorized.
12In fact, it would be linear in the threshold.

7

1.2 Related Works

Proving Statements on Group Elements. Proving statements regarding linear operations on group
elements in a pairing-friendly group (a.k.a., inner product argument (IPA)) has been extensively stud-
ied [BCC+16, BBB+18, BMM+21, Lee21]. In such an argument, we have two commitments 𝜎1 and 𝜎2 com-
mitting to two vectors 𝐴 and 𝐵 of dimension 𝑁 . The prover wants to convince the verifier that the inner
product 𝑐 = ⟨𝐴, 𝐵⟩ is some 𝑐 . Here, both 𝐴 and 𝐵 could either be a vector of group elements or a vector
of field elements. The state-of-the-art scheme of [Lee21] enjoys a transparent setup, proof size 𝑂 (log𝑁),
and verification time 𝑂 (log𝑁).

These schemes rely on an innovative folding technique that was initially proposed in [BCC+16]. This
folding technique makes crucial use of the homomorphic properties of the commitment schemes. For
this particular reason, these works use a pairing-lifted version [AFG+10] of the Pedersen commitment
scheme [Ped92] to commit to a vector of group elements. Consequently, these arguments inherently re-
quire pairing13 (even if the statement to prove does not involve pairing, e.g., an inner product between a
group vector and a field vector).

In comparison, one could also use our techniques to prove an IPA-type statement. For instance, one
could give polynomial commitments to the polynomials encoding these vectors of hidden values and use
existing SNARK techniques to generate a proof certifying their inner product. This will give a slightly
larger proof size and verification time𝑂 (log2 𝑁) (indeed, this is what we show in Appendix A). However,
our techniques are significantly more general, as it applies to any homomorphic encapsulation of values.
For example, one could apply it to group elements that do not live in a pairing-friendly group or linear
homomorphically encrypted ciphertexts.

Moreover, our scheme gives a polynomial commitment for a vector of hidden values. This greatly
extends the inner product argument, which can only be used to prove linear operations. As we have
shown in this paper, one could utilize our polynomial commitment with existing SNARK proof systems to
prove arbitrary computation on these hidden values as long as the encapsulation supports the necessary
homomorphism.

Verifying Privately Delegated Computation. The problem of verifying privately delegated computa-
tion has been studied in prior works. For instance, the works of [FGP14, FNP20, BCFK21] considered
designing efficient non-black-box solutions for verifying specific FHE schemes. Discussing these non-
black-box solutions is beyond the scope of this work. Instead, we focus on the prior black-box solu-
tions [GGP10, AIK10, CKV10, BGV11] for this problem.

To verify an arbitrary computation𝐶 , the state-of-the-art (black-box) scheme [CKV10] requires a pre-
processing step by the client, which does |𝐶 | · _ FHE operations, where _ is the security parameter. In
the online phase, the server also needs to perform |𝐶 | · _ FHE computation. At a high level, their scheme
relies on the idea that the client can hide his actual input Enc(𝑥) by a random input Enc(𝑟). The server,
which receives {Enc(𝑥), Enc(𝑟)}, cannot distinguish which one is the actual input and, hence, must do
the computation correctly (otherwise, the client will notice, with probability 1/2, by checking it against
the ciphertext 𝐶 (Enc(𝑟)) that it computed in the preprocessing phase). For the purpose of verification,
the client must preprocess/pre-compute 𝐶 (Enc(𝑟)), which takes |𝐶 | FHE operations. Moreover, to boost
soundness, the client must repeat this step _ times. Finally, this preprocessing is not reusable. Indeed, after
one honest execution, the server learns the information of 𝐶 (Enc(𝑟)), which makes it insecure to reuse.
To make the preprocessing reusable, existing schemes require adding another layer of FHE. That is, the

13The case where both vectors are field vectors does not require pairing. However, this is not the interesting case we consider
in this paper. That is, the prover knows all the witnesses in the clear.

8

client sends Enc(Enc(𝑟)) such that, after performing 𝐶 , the server only learns Enc(𝐶 (Enc(𝑟))) (but not
𝐶 (Enc(𝑟))), which makes the preprocessing securely reusable. Besides the inefficiency of doing FHE on
FHE ciphertext, this also comes at the cost of turning a black-box construction into a non-black-box one.

In comparison to the existing scheme, by composing our polynomial commitment scheme with the
state-of-the-art polynomial IOP-based SNARK, our scheme only requires preprocessing and online prover
time𝑂 (|𝐶 | ·log |𝐶 |). Moreover, the preprocessing step is only for the arithmetization of the circuit𝐶 , which
is (1) independent of FHE, (2) arbitrarily reusable, and (3) deterministic (in particular, this means that the
preprocessing is public and can be done by any party). Additionally, note that the client only needs to
perform logarithmically many FHE computations in the online phase to verify the proof.

Weighted Threshold Signatures without Setup. Weighted threshold signatures have been studied in
many recent works [MRV+21, CK21, BHS23, GJM+23] due to their increasing popularity in proof-of-stake-
based blockchain settings. Typically, the DKG-based solutions for this problem suffer from an efficiency
degradation linear in the weights, i.e., the efficiency of the signers depends linearly on the weight𝑤 asso-
ciated with them14. The overhead in efficiency is incurred due to the size of the secret key, the computation
required for producing the partial signature, the aggregation of the partial signatures, etc. Recently, two
lines of work construct weighted threshold signatures without incurring this degradation in efficiency,
which we discuss next.

The work of Micali et al. [MRV+21] considers the exact same problem that we consider, i.e., a weighted
threshold signature without any setup. At a very high level, their construction works as follows. Given
sufficiently many valid signatures signed by individual parties, the aggregator uses a Merkle tree to com-
mit to this vector of individual signatures. Now, given a number of random challenges (obtained by the
Fiat-Shamir heuristic [FS87]), the aggregator reveals the authenticated root-to-leaf path to prove that it
possesses sufficiently many valid signatures from certain parties. The final aggregated signature consists
of the root of the Merkle tree and the set of opened root-to-leaf paths. Evidently, the signature size depends
on the number of challenges sampled, which, in turn, depends on the ratio between the total weight 𝛼 of
the valid signatures that the aggregator receives and the total weight 𝛽 of valid signatures that it aims to
prove. In particular, [MRV+21] showed that the number of challenges required is proportional to 1

log(𝛼/𝛽) .
In the case where 𝛼 ≈ 𝛽 , their signature size would be linear in 𝛼 . Therefore, [MRV+21] only considers a
relaxed ramp setting, e.g., 𝛽 = 𝛼/2. In comparison, our scheme realizes the most stringent sharp threshold
setting, where 𝛼 = 𝛽 . In particular, the size of the signature for our scheme is always 𝑂 (log2 𝑛).

Two other concurrent works [GJM+24, DCX+23] propose a SNARK-based approach for designing
weighted threshold signatures based on BLS signatures [BLS01]. These works still require a structured
reference string (SRS) and require parties to publish (linear-size) additional information besides their pub-
lic keys. Our construction builds on top of their construction and removes the need for these setups. We
discuss their framework next.

Intuitively, these constructions work as follows. Each party will pick its own keys (sk𝑖 , pk𝑖) indepen-
dently. Now, suppose a subset 𝐵 ⊆ [𝑛] of the parties have signed the message msg. The aggregator will
produce (apk, 𝜎, 𝜋) as the final signature where (1) apk =

∏
𝑖∈𝐵 pk𝑖 is the aggregation of the public keys

from the set 𝐵, (2) 𝜎 =
∏

𝑖∈𝐵 𝜎𝑖 is the aggregation of the partial signatures from 𝐵, and (3) the proof 𝜋 is a
SNARK proof certifying that apk is an honest aggregation of some parties’ public keys with sufficiently high
weights. The verifier accepts the aggregated signature as long as 𝜎 verifies under the aggregated public
key apk and 𝜋 is a valid proof for apk. As a prominent feature of this framework, the efficiency of the
entire construction could be independent of the weights.

14Since there are no known linear secret sharings with weight-independent secret shares.

9

Now, in this framework, the aggregator does need to prove a statement that involves parties’ secret
keys hidden inside the public key, which it does not possess. Therefore, one cannot hope to generically
use a SNARK in a black-box manner. In order to overcome this barrier, [GJM+24, DCX+23] asks each party
to publish suitable hints15 regarding their secret keys, which enables the aggregator to generate a SNARK
proof for such statements. In particular, the size of the hints published by each party is linear in the number
of parties, resulting in a quadratic overall communication complexity for communicating the hints from all
parties. Similar to DKG-based solutions, this quadratic complexity severely limits the efficiency when the
number of parties is large.

Our construction follows the framework of [GJM+24, DCX+23]. In comparison, the techniques we
develop in this paper allow the aggregator to directly prove statements about the public keys’ aggregation,
without any help from individual parties. Therefore, parties do not need to publish any information besides
its public key. Furthermore, their construction relies on a trusted setup — a KZG-style SRS [KZG10]; while
our scheme does not require any setup. We note that their construction does enjoy a constant size signature
due to the use of KZG-style polynomial commitment. In comparison, due to the FRI-style polynomial
commitment, our signature size is 𝑂 (log2 𝑛).

Finally, we emphasize that our construction is significantly more general. In particular, their construc-
tion inherently requires pairing. Consequently, it is not clear if one could extend it to, for instance, the
Schnorr signature as the public keys in the Schnorr signature do not necessarily come from a pairing-
friendly group. Our construction, on the other hand, could be applied to either Schnorr or BLS regardless
of whether the underlying group is pairing-friendly or not.

Additional Related Works. Recently, Bhadauria et al. [BHV+23] proposed a new primitive called pri-
vate polynomial commitment schemes. In a private polynomial commitment scheme, the committer only
has access to an encrypted polynomial 𝑓 (𝑧) = 𝑓0 + 𝑓1 · 𝑧 + · · · + 𝑓𝑑 · 𝑧𝑑 . That is, it holds encryptions
J𝑓0K , . . . , J𝑓𝑑K. The committer wants to send the verifier a succinct (private) polynomial commitment to
J𝑓0K , . . . , J𝑓𝑑K such that, given any private input 𝑥 ,16 the committer can give a succinct proof to convince
the verifier of J𝑓 (𝑥)K without leaking any information of 𝑥 . In their paper, they construct this primitive by
relying on the inner product argument. In particular, the committer proves J𝑓 (𝑥)K by proving the inner
product between (J𝑓0K , . . . , J𝑓𝑑K) and (J1K , J𝑥K , . . . ,

q
𝑥𝑑

y
). Due to the use of the inner product argument,

they could only give a construction using a pairing-based homomorphic encryption scheme. Furthermore,
[BHV+23] shows that the private polynomial commitment schemes are useful in multiparty private set in-
tersection (PSI) schemes. Evidently, our polynomial commitment for any linear homomorphic encrypted
ciphertexts gives rise to constructions of the private polynomial commitment scheme based on any linear
homomorphic encryption scheme. It is an interesting question to investigate whether these different in-
stantiations of the private polynomial commitment schemes give any concrete efficiency improvement for
their multiparty PSI protocols.

2 Technical Overview

We now discuss the main ideas underlying our results. We start by introducing the notion of linearly
homomorphic encapsulation, to capture some common properties of linearly homomorphic cryptographic
primitives.

15In more details, party 𝑖 holding secret key sk𝑖 needs to send (𝑔sk𝑖 ·𝜏 , 𝑔sk𝑖 ·𝜏2 , . . . , 𝑔sk𝑖 ·𝜏𝑛) as its hint, where (𝑔𝜏 , 𝑔𝜏2 , . . . , 𝑔𝜏𝑛) is
the KZG-style SRS.

16The committer knows the input 𝑥 , but the receiver does not.

10

Linearly Homomorphic Encapsulation. In order to formally capture the idea of hidden values, we
introduce a notion of linearly-homomorphic encapsulations LHEncap. Informally speaking, such an en-
capsulation scheme maps elements from a field F to elements in some output space S, while preserving
linearly-homomorphic operations on the original field elements. LHEncap could be a keyed (e.g., encryp-
tion) or keyless (e.g., group exponentiation) mapping. Additionally, it could either be randomized (e.g.,
encryption/commitment) or deterministic (e.g., group exponentiation). As a consequence of these choices,
the mapped value in S may or may not “hide” the input field element — we do not assume any privacy
guarantees from LHEncap. We use J𝑚K ∈ S to denote encapsulation of𝑚 ∈ F.17 Some common examples
of LHEncap are homomorphic encryption, homomorphic commitments, group exponentiations, and fully
homomorphic encryptions.

2.1 FRI on Hidden Values

SNARKs for Low-Degree Testing on Hidden Values. Recall that the FRI protocol [BBHR18] is an
interactive oracle proof of proximity (IOPP) that can be transformed into a SNARK for the following prob-
lem: given a commitment to evaluations of a function (on some domain), the prover wants to convince the
verifier that this set of evaluations is “very-close” (where this proximity is usually measured by relative
Hamming distance) to a codeword of an error-correcting code.

We consider a variant of this problem on hidden values, where the prover proves proximity of encap-
sulated evaluations, to a codeword of an error-correcting code — without knowledge of the encapsulated
values. We refer to the SNARKs for this problem as SNARKs for low-degree testing on LHEncap. While
one can consider this problem with respect to any error-correcting code, in this work, we only focus on
Reed-Solomon codes. Our key observation is that the FRI protocol can be modified to first obtain an IOPP
for encapsulated values — we refer to this modified protocol as FRI on LHEncap. Next, this protocol can
be transformed into a SNARK for low-degree testing on LHEncap in the random oracle model, using the
[BCS16] compiler and the Fiat-Shamir heuristics [FS87].

Overviewof FRI. We start by giving an overview of the original FRI protocol [BBHR18]. A naïve approach
for checkingwhether a set of |𝐷 | values (where |𝐷 | > 𝑑) correspond to evaluations of a degree𝑑 polynomial
is to try and interpolate evaluations on any 𝑑 + 1 randomly chosen points and check if they lie on a degree
𝑑 polynomial. Clearly, this requires the verifier to run in time linear in 𝑑 . FRI gives a way to reduce the
verifier run time to be logarithmic in 𝑑 . FRI is a logarithmic-round, folding-argument-based IOPP, inspired
by observations from Fast Fourier Transform (FFT). At a high level, FRI performs a random reduction in
each round, at least halving the instance size via a linear folding procedure. In more detail, FRI is based on
the following two observations:

• Obs 1: Any degree-𝑑 polynomial 𝑓 (𝑥) = ∑𝑑
𝑖=0 𝑐𝑖 · 𝑥𝑖 can be written as the following combination of

two degree 𝑑/2 polynomials 𝑓𝐸 , 𝑓𝑂 :

𝑓 (𝑥) = 𝑓𝐸 (𝑥2) + 𝑥 · 𝑓𝑂 (𝑥2),

where 𝑓𝐸 (𝑥) = 𝑐0 + 𝑐2 · 𝑥 + 𝑐4 · 𝑥2 + · · · is defined by the even coefficients of 𝑓 and 𝑓𝑂 (𝑥) = 𝑐1 + 𝑐3 ·
𝑥 + 𝑐5 · 𝑥2 + · · · by the odd coefficients.

17We remark that we slightly abuse notation here and use J𝑚K to denote an encapsulation of𝑚, even when the encapsulation
scheme is randomized. In particular, for simplicity of notation, we do not make the randomness explicit in this representation.
Looking ahead, whenever relevant, the use of randomness will be made clear in the accompanying text.

11

• Obs 2: The second observation used in the FRI protocol is that 𝑓𝐸 (𝑥2) and 𝑓𝑂 (𝑥2) can be re-written
as

𝑓𝐸 (𝑥2) =
𝑓 (𝑥) + 𝑓 (−𝑥)

2
, 𝑓𝑂 (𝑥2) =

𝑓 (𝑥) − 𝑓 (−𝑥)
2𝑥

.

Moreover, when 𝑥 is a 𝑑 th root of unity (say 𝜔𝑖), then −𝑥 = −𝜔𝑖 = 𝜔𝑑/2+𝑖 .

Given these observations, the FRI protocol proceeds in two phases, namely the commit phase and the query
phase as follows:

Commit Phase:The commit phase consists of𝑂 (log𝑑) rounds, inwhich the prover sends domain evaluation
oracles to the verifier, who then responds with a random challenge. This phase of FRI performs the random
reduction, where the instance size gets halved with each step.

At the beginning, the verifier is given oracle access to evaluations of the polynomial 𝑓 on domain
𝐷 = {𝜔0, . . . , 𝜔 |𝐷 |−1}, which is the set of |𝐷 |th roots of unity. This is referred to as the domain evaluation
oracle. In the first round, given a random challenge (say 𝛼0) from the verifier, the prover sends another
domain evaluation oracle (on the new domain 𝐷1 = {𝜔0, 𝜔2, 𝜔4, . . . , 𝜔 |𝐷 |−1}) of the folded polynomial
𝑓1(𝑥) = 𝑓𝐸 (𝑥) +𝛼0 · 𝑓𝑂 (𝑥). Note that the degree of the folded polynomial 𝑓1 is at most 𝑑/2 and |𝐷1 | = |𝐷 |/2.
A similar randomized reduction is then performed on this new polynomial 𝑓1 in the next round and so on.
This continues until we are left with a constant polynomial at the end of (log2 𝑑)th step, whose degree can
be easily verified in constant time.

Note that, since the prover only sends domain evaluation oracles to the verifier in every round, it does
not necessarily need to compute evaluations of 𝑓𝐸 (𝑥), 𝑓𝑂 (𝑥) from scratch. This is where FRI leveragesObs 2
from above. Evaluations of 𝑓𝐸 (𝑥), 𝑓𝑂 (𝑥) on domain 𝐷1, can be computed using simple linear combinations
of evaluations of 𝑓 (𝑥) on domain 𝐷 , which it already knows (as described in Obs 2). The same observation
is used in each of the log2 𝑑 steps. Thus, the domain evaluation oracle in each round 𝑖 can be computed in
𝑂 (|𝐷𝑖−1 |) time.

Query Phase: At the end of the commit phase, the verifier queries each of the log2 𝑑 oracles at random
points within their respective domains of definition. These openings are subsequently utilized to verify
the consistency of the folding (done by the prover) in each reduction step from the commit phase.

Overview of FRI on LHEncap. Towards adapting the above protocol to work on “hidden” values, we
make the following simple observations:

1. Given the evaluations of the original instance 𝑓 on domain 𝐷 , throughout the protocol, the prover
only performs linear operations on these evaluations.18

2. The prover does not need the description of 𝑓 in any other representation besides these domain
evaluations.

3. Given oracle access to these domain evaluations, the verifier also only performs linear operations on
the queried evaluations to check consistency.

These observations lead us to conclude that rather than possessing them in the clear, it suffices for
the prover to have access to the domain evaluations encapsulated inside an LHEncap (and similarly, it
suffices for the verifier to have oracle access to these encapsulations and not the actual evaluations). Since

18If instead, the prover starts with domain evaluations of 𝑓 on domain H ⊂ F, which is a multiplicative subgroup of size 𝑑 + 1,
they can use FFT to compute evaluations on the larger domain 𝐷 . Since FFT is a linear operation, this translation also requires
the prover to only perform linear operations on the evaluations on H.

12

LHEncap (see Definition 3) preserves linear operations of encapsulated values, given encapsulated domain
evaluations, it is possible to emulate the FRI protocol almost as is, albeit on encapsulations. We refer to
this variant as FRI on LHEncap.

Public/private-Verifiability. We remark that, if we want the above protocol to be publically verifiable,
then we crucially require the underlying LHEncap scheme to be linearly-homomorphic w.r.t. randomness.
This is because, in the query phase, the verifier performs two kinds of checks: (1) if the random folding is
done correctly (e.g., 𝑎·J𝑚1K+𝑏 ·J𝑚2K = J𝑚3K) and (2) if the final reduced polynomial is a constant polynomial
(e.g., J𝑚1K = J𝑚2K). This essentially checks if certain linear constraints are satisfied on the encapsulated
values. For instance, checking if the final polynomial is a constant polynomial requires checking that the
encapsulations of all evaluations of this polynomial on the final reduced domain are the same. Note that,
while each of those encapsulations was computed using the same linear function over the original encap-
sulations of the domain evaluations of 𝑓 (on H), the operations within the linear function may not have
been computed in the same order. Consider the following simple example: given 2 encapsulations J𝑚1K
and J𝑚2K, the encapsulations of 𝑎 ·𝑚1 + 𝑎 ·𝑚2 resulting from (𝑎 · J𝑚1K + 𝑎 · J𝑚2K) and (𝑎 · (J𝑚1K + J𝑚2K))
are only guaranteed to be the same when the underlying LHEncap scheme satisfies linear homomorphism
w.r.t. to randomness.

As a special case, if the underlying LHEncap is deterministic, the above construction is always publicly
verifiable. As a notable example, group exponentiation (i.e.,𝑚 ↦→ 𝑔𝑚) is a deterministic encapsulation and
our FRI on LHEncap will henceforth be publicly verifiable in this case.

Finally, observe that if the LHEncap is decryptable and the verifier knows the key corresponding to
the underlying LHEncap scheme, one can always decrypt the encapsulations of all evaluations and check
if the linear constraints are satisfied. That is, instead of checking 𝑎 · J𝑚1K + 𝑏 · J𝑚2K = J𝑚3K, the verifier
first decrypts and then checks 𝑎 ·𝑚1 + 𝑏 ·𝑚2 =𝑚3. But, of course, this only gives us a privately verifiable
version of the above protocol.

Remark 1 (Necessity of FFT-friendly Field.). The original FRI protocol (which is what we present above)
requires an FFT-friendly field (a.k.a., smooth field [BCKL23, BCKL22]). That is, it is required that the multi-
plicative group F∗ contains a large enough subgroup of order 2ℓ such that 2ℓ ⩾ 𝑑 . However, not all prime fields
F𝑝 satisfy this property. In particular, a prime field F𝑝 has this property only if 2ℓ divides 𝑝 − 1. This seems to
limit the applicability of our scheme as it only applies to encapsulated values from an FFT-friendly field.

Fortunately, a recent line of works [BCKL23, BCKL22] have addressed this issue and extended FRI to all
finite fields. Crucially, the extended FRI protocol still only requires the prover and the verifier to perform linear
operations. Consequently, one can still apply the extended protocols to the (encapsulated) values analogously.
We refer the readers to [BCKL22, Appendix B] for a detailed description of the extended FRI protocol for arbi-
trary fields. For the sake of simplicity, throughout this paper, we present our results for FFT-friendly fields. But
they all extend to arbitrary fields using the techniques from [BCKL23, BCKL22].

2.2 Polynomial Commitments on Hidden Values

Next, we formalize a variant of polynomial commitments, referred to as polynomial commitments on LHEn-
cap. We start by recalling polynomial commitments.

Polynomial Commitments. A polynomial commitment scheme enables the committer C to generate
a succinct commitment to a polynomial. Subsequently, the committer can disclose the evaluation of this
polynomial at any (public) location and provide a convincing proof to the receiver R that the disclosed
value is consistent with the original commitment. [KZG10, BGKS20, Lee21] are some common examples
of polynomial commitment schemes.

13

Polynomial Commitments on LHEncap. We extend the above notion to polynomial commitments for
hidden values. Given access to a set of encapsulated evaluations of a polynomial, a polynomial commitment
for hidden values allows the committer C to create a short commitment, such that it can later reveal the
encapsulations of evaluations of the polynomial at any locations, while being able to convince the receiver R
that the opening is consistent with the committed encapsulated values.

Polynomial Commitments on LHEncap from FRI on LHEncap. We then present a construction of
a polynomial commitment scheme on LHEncap using our FRI on LHEncap scheme. [BGKS20] showed
how the FRI protocol can be used to construct a simple polynomial commitment scheme, where the size of
opening proofs and the time required to verify these opening proofs are both polylogarithmic in the size
of the instance. We observe that the same ideas can be generalized to obtain a polynomial commitment on
LHEncap.

Overview of FRI Based Polynomial Commitments [BGKS20]. The FRI-based polynomial commit-
ment scheme works as follows. Given polynomial evaluations𝑦1, . . . , 𝑦𝑑+1, the committer C starts by using
FFT on these evaluations to obtain evaluations on a larger domain 𝐷. It then computes and sends a Merkle
Hash of these evaluations to the receiver. When asked to give an opening proof for some pair (𝑥∗, 𝑦∗) ∈ F2,
where 𝑦∗ = 𝑓 (𝑥∗), the committer uses the fact that there exists a quotient polynomial ℎ(𝑥) of degree at
most 𝑑 − 1, such that

𝑓 (𝑥) − 𝑦∗ = ℎ(𝑥) · (𝑥 − 𝑥∗)

to convince the receiver R that ℎ(𝑥) =
𝑓 (𝑥)−𝑦∗
𝑥−𝑥∗ is of degree at most 𝑑 − 1. This proof is given using

the FRI protocol. Note that, in the FRI protocol (for ℎ), the verifier needs to have oracle access to the
evaluation of ℎ(𝑥). This is not a problem since the verifier does have access to 𝑓 (which was committed
using the Merkle Hash and the response to queries made to 𝑓 on the specified domain can be answered by
giving out the corresponding Merkle proof), and any query to ℎ can be equivalently treated as one query
to 𝑓 . For example, if the verifier wants to query ℎ(𝑥 ′), it may query 𝑓 at 𝑥 = 𝑥 ′ and compute ℎ(𝑥 ′) as
ℎ(𝑥 ′) = 𝑓 (𝑥 ′)−𝑦∗

𝑥 ′−𝑥∗ .

Our Observation. We observe that if instead the committer starts with encapsulations of evaluations of
a polynomial, then the above ideas can be used to obtain a polynomial commitment on LHEncap, if we
use our FRI on LHEncap protocol from the previous section. This protocol proceeds exactly as the one
described above, except that the prover now has encapsulated evaluations (on some domain 𝐷), which
it will commit to using a Merkle Hash. For the opening proof, it will make use of FRI on LHEncap to
prove that Jℎ(𝑥)K =

J𝑓 (𝑥)K−J𝑦∗K
𝑥−𝑥∗ is a set of encapsulated evaluations of a polynomial of degree at most

𝑑 − 1. (Observe that computing Jℎ(𝑥)K is again a linear operation. For any 𝑥 ′ ∈ 𝐷 , computing Jℎ(𝑥 ′)K as
J𝑓 (𝑥)K−J𝑦∗K

𝑥 ′−𝑥∗ is linear because both 𝑥 ′ and 𝑥∗ are in the clear.)
This finishes the overview of our polynomial commitment scheme for hidden values. In the subsequent

sections, we present an overview of how this tool enables a wide range of applications.

2.3 Application I: Efficiently Verifiable Private Delegation of Computation

We present a solution for efficiently verifiable FHE-based private delegation of computation, which does
not require any non-black-box use of the FHE scheme. At a high level, we show how our polynomial
commitment scheme on LHEncap can be combined with state-of-the-art polynomial IOP-based SNARKs
(e.g., [COS20, GWC19]) to obtain this solution.

By FHE-based delegation, we are referring to the setting where the client encrypts its input (on which
the computation needs to be performed) using FHE and sends the corresponding ciphertexts to the server.

14

The server then carries out computations on these encrypted data and returns the resulting encrypted
output. Ultimately, the client can decrypt the output locally to learn the desired information. In order to
add integrity to this delegation and to verify that the computation was done honestly, our high-level idea
is to have the service provider attach a succinct proof for this computation. For this, we want to leverage
the techniques developed in the previous sections.

Before describing our approach, let us briefly recall the structure of existing state-of-the-art SNARKs
such as Fractal [COS20] and Plonk [GWC19]. Most existing efficient constructions of SNARKS start by
designing a polynomial-IOP and then transforming that into a non-interactive proof with the help of poly-
nomial commitment schemes (and Fiat-Shamir heuristics). A polynomial IOP is a variant of IOP, where
the oracles sent by the prover to the verifier are essentially polynomials. In other words, in each round of
a polynomial-IOP, the prover provides the verifier with an oracle access to a polynomial function which
the verifier can query at any location of its choice.

Going back to our application, the relation we are interested in proving is that the FHE evaluation was
done correctly. In other words, the output ciphertext is an encryption of the result of computing some
function (say𝐶) on the input. This is essentially similar to proving the following relation on values encap-
sulated inside FHE ciphertexts: R : output = 𝐶 (input) (as opposed to R′ : Enc(output) = 𝐶 (Enc(input))).
However, we want to do this without making non-black-box use of the underlying FHE scheme.

We leverage the structure of polynomial-IOP and the homomorphism of the FHE scheme as follows.
Given the relation circuit in the clear and FHE ciphertexts for the extended-witness (or the computation-
trace of 𝐶 (input)), the prover can compute the same operations that it needs to perform in a regular
polynomial-IOP, except that the computations involving the extended witness will have to be performed
as FHE evaluations. As a result of this, the resulting polynomial oracles that the prover needs to send to
the verifier in IOP are also hidden inside the FHE ciphertexts. This is exactly the type of application for
which our polynomial commitment on LHEncap is most useful. In order to transform this IOP, where the
polynomial oracles are encapsulated into an interactive/non-interactive proof system, the server can use
this polynomial commitment scheme to emulate sending an oracle and then answering oracle queries.

Using the above transformation, the server is able to generate a SNARK proof encapsulated inside
an FHE ciphertext. The client can now decrypt this proof and check if it passes verification to verify
the correctness of the delegated computation. In Section 6, we show how this idea can be used with
any polynomial IOP-based SNARK. In particular, when instantiating this approach with the underlying
polynomial IOP that Fractal [COS20] is based on, we show that in addition to performing 𝑂 (|𝐶 |) FHE
evaluations to compute the output, the server only needs to perform 𝑂 (|𝐶 | log |𝐶 |) FHE evaluations with
a constant multiplicative depth.

2.4 Application II: Private Outsourcing of zkSNARKs to a Single Server

We now present our second application — private delegation of zkSNARK computation to a single un-
trusted server. As mentioned, while succinct and quick to verify, proof generation in existing zkSNARKs
is a computation and memory-intensive task. Thus, it would be beneficial to leverage the power of cloud
computing and enable the prover to delegate this task to an external server. However, to ensure the pri-
vacy of the secret witness employed in the generation of zkSNARK, it is highly desirable or, in many cases,
necessary that this delegation remains privacy-preserving. We demonstrate how this can be accomplished
in a black-box manner by modifying our protocol from the previous section.

As discussed in the introduction, there is one crucial barrier in directly using the ideas from the previ-
ous section to obtain a solution for this application. Checking the validity of the SNARK generated by the
server in the previous application required knowledge of the secret key associated with the FHE scheme for

15

decryption, and hence, that proof was only privately verifiable. However, in our current application, since
the computation being delegated to the server is the generation of a zkSNARK, the resulting zkSNARK
must, therefore, be publicly verifiable. To this end, our idea is to use fully homomorphic commitments
(FHCom) instead of FHE. FHCom is an FHE scheme where the ciphertexts are statistically binding, and
given knowledge of the secret key, it is possible to generate a decommitment to any ciphertext without
leaking the secret key. For instance, Gorbunov, Vaikuntanathan, and Wichs [GVW15] showed that the
LWE-based Gentry-Sahai-Waters FHE scheme [GSW13] is an FHCom.

Given an FHCom, our main idea is the following. The client starts by encrypting the witness using
FHCom. It sends these ciphertexts to the server. The server uses FHCom evaluation on these ciphertexts
to obtain encryptions of the extended witness. Given encryptions of the extended witness, it then uses ad-
ditional FHCom evaluations and our polynomial commitment on LHEncap to generate a zkSNARK exactly
as described in the previous section. It then sends the resulting encrypted zkSNARK back to the client.
Now, the client will decrypt/decommit all the FHCom contained in this encrypted SNARK. By doing so,
any party can perform the required verification step on these decommitted values in the clear, rendering it
publicly verifiable. The encrypted zkSNARK sent by the server, along with these decommitments, jointly
constitute a publicly verifiable zkSNARK.

2.5 Application III: Weighted Threshold Signature without Setup

Finally, we present an overview of our construction for weighted threshold signatures without setup. Our
starting point is a multisignature scheme19 [Bol03, BDN18]. Unlike threshold signature schemes, mul-
tisignature scheme enjoys the great advantage that parties’ secret keys are not correlated. Therefore,
parties may sample their key pairs independently, and no interactive/trusted setup is required. Similar
to [GJM+24, DCX+23], our high-level idea is to first turn a multisignature scheme into a trivial threshold
signature scheme where the verification key and aggregated signature are not succinct. Afterward, we
will use the techniques developed in this paper to compile this scheme into another one that does have a
succinct verification key and signature.

Let us use Schnorr multisignatures [MPSW19, NRS21] as an example. Suppose we have 𝑛 parties and
the weights and threshold are (𝑤1,𝑤2, . . . ,𝑤𝑛) and𝑇 , respectively. Each party independently samples their
key pair {sk𝑖 , pk𝑖 = 𝑔sk𝑖 } (here, 𝑔 is the generator of some cryptographic group). In the trivial scheme, the
(linear-size) verification key is vk = (pk1, pk2, . . . , pk𝑛). Now, on some message msg, suppose a subset of
parties 𝐵 ⊆ [𝑛] engage in a signing session and generate a multisignature 𝜎 . Then, the aggregator will
simply output (𝐵, 𝜎) as the threshold signature. Here, we abuse notation and treat 𝐵 as the indicator vector
for the set 𝐵 ⊆ [𝑛]. That is, 𝐵 = (𝑏1, . . . , 𝑏𝑛) ∈ {0, 1}𝑛 such that 𝑏𝑖 = 1 if and only if 𝑖 ∈ 𝐵. Now, given the
signature (𝐵, 𝜎), the verifier will do the following: (1) it checks that the cumulative weight is sufficiently
high, i.e.,

∑
𝑖 𝑏𝑖 ·𝑤𝑖 ⩾ 𝑇 ; (2) it computes the aggregated public key apk =

∏
𝑖∈𝐵 pk𝑖 ;20 (3) it verifies 𝜎 under

apk. It is not hard to see that this trivial threshold scheme is secure as long as the underlyingmultisignature
scheme is secure.21 However, the signature size, the verification key size, and the verification time all grow

19A multisignature scheme between 𝑛 parties allows each party to sample its own key pair and sign messages independently,
after which, a succinct aggregated signature can be generated to convince the verifier that all 𝑛 parties have signed the message.
Intuitively, a multisignature scheme is an 𝑛-out-of-𝑛 threshold signature scheme.

20In order to prevent the rogue key attack [BDN18], the aggregation of the public keys typically uses a random linear combi-
nation apk =

∏
𝑖 (pk𝑖)𝛼𝑖 given by the random oracle 𝛼𝑖 = RO(pk1, . . . , pk𝑛, pk𝑖). This can be equivalently treated as each public

key pk𝑖 is reset to be (pk𝑖)𝛼𝑖 . For simplicity of presentation, we omit this detail.
21Typically, in a multisignature scheme, we require all 𝑛 parties to sign the message. In these cases, the aggregated public key

apk can be precomputed and, hence, the verification is indeed succinct. In our setting, we do not require all parties to sign and will
compute apk on the fly. Most known multisignature schemes [BDN18, MPSW19, NRS21] support such a modification, although

16

linearly in 𝑛.
We now describe how our techniques can enable succinct verification. Note that, the only part in the

verification process that is not succinct is to compute the aggregation of the public key apk =
∏

𝑖∈𝐵 pk𝑖
and verify that it has sufficient weight. Our idea is to let the verifier ask the aggregator to compute this
for her. However, to ensure security, the verifier must verify that the aggregated public key is indeed an
honest aggregation of parties’ public keys with that satisfy the total weight requirement. This leaves us
with the following question:

How can the aggregator generate a succinct proof for the honest aggregation of the public key?

If the secret keys are known to the aggregator, then this problem has a trivial solution — applying any
generic SNARK would suffice. However, the aggregator does not possess sk𝑖 ’s in the clear, but only its
encapsulation pk𝑖 = 𝑔sk𝑖 . This is where our FRI on hidden values can be of help. In particular, it can be
used to enable the aggregator to commit to polynomials described by sk𝑖 , even though the aggregator only
possesses pk𝑖 . Now, this observation, together with other known techniques from the SNARK literature,
gives rise to our construction, which we summarize next.

The common tool that is used in the SNARKs literature is generalized sumcheck (Lemma 1), which is
a polynomial identity test for proving that the inner product ⟨𝑋,𝑌 ⟩ between two vectors 𝑋 = (𝑥1, . . . , 𝑥𝑛)
and 𝑌 = (𝑦1, . . . , 𝑦𝑛), encoded as polynomials, is equal to some specified value. We refer the readers to the
technical sections for this lemma and proceed to describe our scheme. We change the verification key vk
to be the polynomial commitments of two polynomials: (1) an encoding of the secret keys (sk1, . . . , sk𝑛)
and (2) an encoding of the weights (𝑤1, . . . ,𝑤𝑛).22

To generate a succinct proof 𝜋 for apk, the aggregator needs to prove that there is some subset 𝐵 ⊆ [𝑛]
such that (1) the inner product between 𝐵 and (sk1, . . . , sk𝑛) is dLog(apk), i.e., apk = 𝑔⟨𝐵,(sk1,...,sk𝑛)⟩ , and
(2) the inner product between 𝐵 and (𝑤1, . . . ,𝑤𝑛) is sufficiently high ⩾ 𝑇 . Therefore, the aggregator will
first commit to some polynomial that encodes a set 𝐵. Next, it will generate inner product proofs using
the generalized sumcheck. Finally, the aggregator must also prove that 𝐵 is a binary vector.23 Otherwise,
the aggregator may use 𝐵 = (𝑇, 0, . . . , 0) to prove that apk contains sufficient weight even though the
adversary can sign under apk as long as the first party signs. With these suitable changes, the aggregated
signature will consist of (apk, 𝜎, 𝜋), and the verifier can succinctly verify. Again, we remind the reader
that the efficiency of the entire scheme is independent of the weights.

This summarizes the high-level structure of the construction. In addition to being setup-free and nat-
urally supporting weights, our scheme also enjoys many other advantages. One notable feature is that,
unlike regular threshold signature schemes, where there is a predefined threshold, each aggregated signa-
ture in our scheme comes with a signature-specific threshold (refer to Remark 3). Intuitively, this allows
the aggregator to generate more fine-grained proofs (i.e., the aggregated signature), certifying exactly how
many parties sign a given message. We leave these details to the technical sections.

3 Preliminaries

In this section, we recall the definitions of some well-known primitives.

the resulting verification is no longer succinct.
22Note that this is a deterministic process that any party can compute given (pk1, . . . , pk𝑛) and (𝑤1, . . . ,𝑤𝑛).
23Which can be checked as 𝐵(𝑥) · (1 − 𝐵(𝑥)) should be 0 on the information locations.

17

Definition 1 (Reed-Solomon Codes). For a subset of some field 𝐷 ⊆ F, and a rate parameter 𝜌 ∈ (0, 1], we
denote by RS[F, 𝐷, 𝜌] the set of all functions 𝑓 : 𝐷 → F for which there exists 𝑓 ∈ F<𝜌 |𝐷 | [𝑥] agreeing with 𝑓

on 𝐷 .

Definition 2 (SNARKs). LetR be an NP relation. A succinct non-interactive argument of knowledge (SNARK)
for R is defined by a triple of algorithms (SNARK.Setup, SNARK.Prover, SNARK.Verify) with the following
syntax:

1. crs ← SNARK.Setup(1_): On input the security parameter _, the setup algorithm outputs a common
reference string crs.

2. 𝜋 ← SNARK.Prover(crs, st,wit): On input the common reference string crs, statement st and witness
wit, the prover algorithm outputs a proof 𝜋 .

3. 𝑏 ← SNARK.Verify(crs, st, 𝜋): On input the common reference string crs, the statement st, and proof
𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

These algorithms satisfy the following properties:

• Completeness: For any statement st, and witness wit, such that R(st,wit) = 1 it holds that

Pr
[
1← SNARK.Verify(crs, st, 𝜋)

���� crs← SNARK.Setup(1_)
𝜋 ← SNARK.Prover(crs, st,wit)

]
⩾ 1 − negl(_) .

• Knowledge Soundness: There exists an extractor E and knowledge error Y : [0, 1] → [0, 1], such that, for
any PPT algorithm P∗, the following holds.

Pr

R(st,wit) = 0

��������
crs← SNARK.Setup(1_)
(st, 𝜋) ← P∗(crs)

1← SNARK.Verify(crs, st, 𝜋)
wit← E𝑃∗ (crs)

 ⩽ Y (\) .

• Succinctness: The proof size should be sublinear in the witness size, i.e., |𝜋 | ∈ 𝑜 (|R|).

Additionally, we say that the SNARK has zero-knowledge if it does not leak any information besides
the truth of the statement. In more detail, let SNARK.Setup(1_) be such that it outputs crs along with a
simulation trapdoor 𝜏 . Then there exists a simulator Sim, such that for all statement-witness pairs st, wit,
where R(st,wit) = 1 and for all PPT adversaries A, the following holds:���Pr [

A(crs, st, 𝜋) = 1 | (crs, 𝜏) ← SNARK.Setup(1_);𝜋 ← SNARK.Prover(crs, st,wit)
]

− Pr
[
A(crs, st, 𝜋) = 1 | (crs, 𝜏) ← SNARK.Setup(1_);𝜋 ← Sim(crs, st, 𝜏)

] ��� = negl(_)

4 FRI on Hidden Values

In this section, we present our main result, i.e., a modification to the FRI [BBHR18] protocol that enables
operations on “hidden values”. To formally capture the idea of hidden values, we start by introducing the
notion of linearly-homomorphic encapsulations in Section 4.1. In Section 4.2, we define SNARKs for low-
degree testing on hidden values, and finally, in Section 4.3, we present the construction of FRI on hidden
values.

18

4.1 Linearly-Homomorphic Encapsulation

We first formally define LHEncap, and then proceed to give examples of known cryptographic/non-
cryptographic primitives that satisfy the properties of LHEncap. For the applications that we consider
in this work, it suffices for us to view LHEncap as a secret-key primitive. A public-key variant can be
defined analogously.

Definition 3 (Linearly-Homomorphic Encapsulation). A linearly-homomorphic encapsulation (LHEncap)
with key-space K , message-space F, randomness-space R,24 and output-space S consists of a tuple of PPT
algorithms (Setup,KeyGen, Encap, Eval) defined as follows:

1. pp← Setup
(
1_

)
: The setup algorithm takes as input the security parameter _ and outputs some public

parameters pp.

2. k← KeyGen (pp): The key generation algorithm takes as input the public parameters pp and outputs
a key k ∈ K .

3. J𝑚K ← Encap (pp, k,𝑚; 𝑟): The encapsulation algorithm takes as input the public parameters pp, the
key k ∈ K , a message𝑚 ∈ F and a random value 𝑟 ∈ R, and outputs an encapsulation J𝑚K ∈ S.

4. J𝑚K ← Eval (pp, J𝑚1K , . . . , J𝑚𝑛K , 𝑓): The evaluation algorithm takes as input the public parameters
pp, a set of encapsulations J𝑚1K , . . . , J𝑚𝑛K ∈ S𝑛 (where 𝑛 ∈ N), a linear function 𝑓 and outputs a new
encapsulation J𝑚K ∈ S.

These algorithms (KeyGen, Encap, Eval) must crucially satisfy linear-homomorphism. Additionally, an
LHEncap must either be linearly-homomorphic w.r.t. randomness or be decryptable. These properties
are defined as follows.

• Linear-Homomorphism: For every 𝑛 ∈ N, any 𝑚1, . . . ,𝑚𝑛 ∈ F𝑛 , any 𝑟1, . . . , 𝑟𝑛 ∈ R𝑛 and any linear
functions 𝑓 , it holds that:

Pr

∃𝑟 ∈ R s.t. Eval

(
pp, {J𝑚𝑖K}𝑖∈[𝑛], 𝑓

)
= Encap

(
pp, k, 𝑓 ({𝑚𝑖}𝑖∈[𝑛]); 𝑟

) ������ pp← Setup
(
1_

)
k← KeyGen (pp)

∀𝑖 ∈ [𝑛],𝑚𝑖 ← Encap (pp, k,𝑚𝑖 ; 𝑟𝑖)

 = 1.

• We say that LHEncap is linearly-homomorphic w.r.t. randomness if, in the above equation, we have
𝑟 = 𝑓

(
{𝑟𝑖}𝑖∈[𝑛]

)
. We note that this is only possible when the randomness-space R = F. Moreover, any

deterministic LHEncap trivially satisfies linearly-homomorphic w.r.t. randomness.

• Decryptable: We say that LHEncap is decryptable, if there exists a polynomial-time deterministic algo-
rithm Decrypt(pp, k, J𝑚K), that takes the public parameters pp, the key k ∈ K , and an encapsulation
J𝑚K ∈ S as input, and outputs a message𝑚∗ ∈ F, such that the following holds for every𝑚 ∈ F, 𝑟 ∈ R:

Pr
𝑚∗ =𝑚

������ pp← Setup
(
1_

)
, k← KeyGen(pp)

J𝑚K← Encap(pp, k,𝑚; 𝑟)
𝑚∗ = Decrypt(pp, k, J𝑚K)

 = 1.

24If the LHEncap scheme is keyless and/or deterministic, then K = ∅ and/or R = ∅, respectively.

19

Notation. As mentioned earlier, throughout the rest of this paper, we will use J𝑚K as a shorthand no-
tation to denote an encapsulation of 𝑚 w.r.t. some LHEncap scheme. Unless necessary, we neither ex-
plicitly specify the randomness (if any) used in this encapsulation, nor do we mention the algorithm
(KeyGen, Encap, Eval) associated with the LHEncap scheme. Moreover, for simplicity of notation, in-
stead of using the Eval function, we will use J𝑚1K + J𝑚2K to denote addition (i.e., where the function 𝑓

in Eval(J𝑚1K , J𝑚2K , 𝑓) is the addition function). Similarly, we use 𝑐 · J𝑚1K to denote the multiplication by
a constant 𝑐 .

Examples. Following are some common examples of LHEncap:

• Homomorphic Encryption: Linearly (for instance, [ElG84, Pai99, Reg05]) or fully-homomorphic en-
cryption [Gen09] are the most common examples of a keyed, randomized, and decryptable LHEncap.
It is easy to see that the encapsulation algorithm in such schemes is the encryption algorithm, and
the output space S is the ciphertext space. Linearly homomorphic encryption such ElGamal [ElG84]
is also linearly-homomorphic w.r.t. randomness.

• Homomorphic Commitments: Linearly-homomorphic commitments such as Pedersen commit-
ments [Ped92] and fully-homomorphic commitments such as the Gentry-Sahai-Waters FHE scheme
[GSW13, GVW15] are another example of LHEncap. These are keyless/keyed and randomized encap-
sulations. The output space S is the commitment space. Pedersen commitments are also linearly-
homomorphic w.r.t. randomness.

• Group Exponentiation: Mappings such as𝑚 ↦→ 𝑔𝑚 (where 𝑔 is the generator of a group G that has
the same order as F) is another simple example of LHEncap. Unlike commitments and encryptions,
this is an example of a keyless and deterministic encapsulation, that preserves linearly-homomorphic
operations in the exponent.

4.2 SNARKs for Low-Degree Testing on LHEncap

In this section, we define SNARKs for the problem of low-degree testing on LHEncap. This problem is
defined as follows: Let F be a field, 𝑑 ∈ N a degree-bound, \ > 0 a proximity parameter, 𝐷 ⊆ F a domain,
(Setup,KeyGen, Encap, Eval) an LHEncap scheme, and com a non-interactive vector commitment. The
prover wants to convince the verifier that it knows J𝑦1K , . . . ,

q
𝑦 |𝐷 |

y
, such that:

1. com is a commitment to these encapsulations

2. These encapsulations form a low-degree polynomial. This is formalized in two ways depending on
the underlying LHEncap.

• If LHEncap is decryptable, then there exists some degree 𝑑 polynomial 𝑓 , i.e., 𝑓 ∈
RS [F, 𝐷, 𝜌 = 𝑑/|𝐷 |] (see Definition 1) s.t., for each 𝑖 ∈ [|𝐷 |], the decryption 𝑦𝑖 of J𝑦𝑖K agrees
with 𝑓 on 𝐷 [𝑖].

• Else, if LHEncap is linearly-homomorphic w.r.t. randomness, then there exists some function
𝑓 : 𝐷 → S, i.e., 𝑓 ∈ RS [S, 𝐷, 𝜌 = 𝑑/|𝐷 |] s.t., for each 𝑖 ∈ [|𝐷 |], J𝑦𝑖K agrees with 𝑓 (𝑥) on 𝐷 [𝑖].
Here, RS[S, 𝐷, 𝜌] denotes the Reed-Solomon codes over the output-space S of LHEncap, i.e., it
denotes the set of all functions 𝑓 : 𝐷 → S for which there exists 𝑓 ∈ S<𝜌 |𝐷 | [𝑥] agreeing with
𝑓 on 𝐷 . As a concrete example, consider group exponentiation. The evaluation of 𝑔𝑓 (𝑥) on 𝐷

is a Reed-Solomon codes ∈ RS [G, 𝐷, 𝜌 = 𝑑/|𝐷 |] over G.

20

We give a formal definition of SNARKs for low-degree testing on LHEncap below. We use 𝛿 (𝑓 , 𝑔) to denote
the fractional Hamming distance, i.e.,

𝛿 (𝑓 , 𝑔) = 1
|𝐷 | · |{𝑥 ∈ 𝐷 : 𝑓 (𝑥) ≠ 𝑔(𝑥)}| .

Definition 4 (SNARKs for Low-Degree Testing on LHEncap). Let F be a field, 𝑑 ∈ N a degree-
bound, \ > 0 a proximity parameter and 𝐷 ⊆ F a domain. Let (LHEncap.Setup, LHEncap.KeyGen,
LHEncap.Encap, LHEncap.Eval) be an LHEncap scheme and let (Com.Gen,Com.Commit,Com.Open) be
a deterministic vector commitment scheme.25 A SNARK for low-degree testing on hidden values is a triple of
algorithms (SNARK.Setup, SNARK.Prover, SNARK.Verify) with the following syntax:

1. crs ← SNARK.Setup(1_): On input the security parameter _, the setup algorithm outputs a common
reference string crs.

2. (com, 𝜋) ← SNARK.Prover(crs, J𝑦1K , . . . ,
q
𝑦 |𝐷 |

y
): On input the common reference string crs and a list

of encapsulations J𝑦1K , . . . ,
q
𝑦 |𝐷 |

y
, the prover algorithm outputs a proof 𝜋 and a vector commitment

com.

3. 𝑏 ← SNARK.Verify(crs, com, 𝜋): On input the common reference string crs, a vector commitment com,
and proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

These algorithms satisfy the following properties:

• Completeness: For any vector of honestly generated encapsulations
(
J𝑦1K , . . . ,

q
𝑦 |𝐷 |

y)
, and any commit-

ment com of this vector. If there exists an 𝑓 0, such that for each 𝑖 ∈ [|𝐷 |], 𝑦𝑖 agrees with 𝑓 0 on 𝐷 [𝑖] and
𝛿 (𝑓 0,RS [F, 𝐷, 𝜌]) = 0, then it holds that

Pr
[
1← SNARK.Verify(crs, com, 𝜋)

���� crs← SNARK.Setup(1_)
𝜋 ← SNARK.Prover(crs, com, J𝑦1K , . . . ,

q
𝑦 |𝐷 |

y
)

]
⩾ 1 − negl(_) .

• Knowledge Soundness: There exists an extractor E and knowledge error Y : [0, 1] → [0, 1], such that, for
any PPT algorithm P∗, the following holds.

– If LHEncap is linearly-homomorphic w.r.t., randomness, then the following holds:

Pr

com ≠ Com.commit(J𝑦1K , . . . ,

q
𝑦 |𝐷 |

y
) ∨

(J𝑦1K , . . . ,
q
𝑦 |𝐷 |

y
) is \ far from RS code

��������
crs← SNARK.Setup(1_)
(com, 𝜋) ← P∗(crs)

1← SNARK.Verify(crs, com, 𝜋)
J𝑦1K , . . . ,

q
𝑦 |𝐷 |

y
← E𝑃∗ (crs)

 ⩽ Y (\),

where “\ far from RS codeword” means there exists some 𝑓 0 : 𝐷 → S such that ∀𝑖 ∈ [|𝐷 |], J𝑦𝑖K agrees
with 𝑓 0 on 𝐷 [𝑖] and 𝛿 (𝑓 0,RS [S, 𝐷, 𝜌]) ⩾ \ .

– Else, if LHEncap is decryptable, then the following holds:

Pr

com ≠ Com.commit(J𝑦1K , . . . ,

q
𝑦 |𝐷 |

y
) ∨

Decryption of (J𝑦1K , . . . ,
q
𝑦 |𝐷 |

y
) is \ far from RS code

��������
crs← SNARK.Setup(1_)
(com, 𝜋) ← P∗(crs)

1← SNARK.Verify(crs, com, 𝜋)
J𝑦1K , . . . ,

q
𝑦 |𝐷 |

y
← E𝑃∗ (crs)

 ⩽ Y (\),

where “decryption is \ far from RS codeword” means there exists an 𝑓 0 : 𝐷 → F such that ∀𝑖 ∈ [|𝐷 |], the
decryption 𝑦𝑖 of J𝑦𝑖K agrees with 𝑓 0 on 𝐷 [𝑖] and 𝛿 (𝑓 0,RS [F, 𝐷, 𝜌]) ⩾ \ .

25For instance, the Merkle hash tree-based commitment.

21

Note that here, the encapsulations J𝑦1K , . . . ,
q
𝑦 |𝐷 |

y
output by the extractor E may or may not correspond to

well-formed/honestly generated encapsulations.

• Succinctness: The proof size should be sublinear in the instance size, i.e., |𝜋 | ∈ 𝑜 (𝑑, |𝐷 |).

4.3 FRI on LHEncap

In this section, we present our key observation about the FRI [BBHR18] protocol. In particular, we show
how the FRI protocol can be modified to work over hidden values. We refer to the modified protocol as
FRI on LHEncap. At a high-level, FRI on LHEncap is an interactive oracle proof [BCS16] for the following
problem: Let F be a field, 𝑑 ∈ N a degree-bound, \ > 0 a proximity parameter, 𝐷 ⊆ F a domain and
(KeyGen, Encap, Eval) an LHEncap scheme. The prover is provided with encapsulations of the evaluations
of some function 𝑓 on domain 𝐷 , i.e., {J𝑓 (𝑖)K}𝑖∈𝐷 (we use the shorthand notation J𝑓 (𝑥) |𝐷K to denote
this set of encapsulations). The prover gives the verifier oracle access to these encapsulations. The prover
wants to convince the verifier that J𝑓 (𝑥) |𝐷K are encapsulations of evaluations of some degree𝑑 polynomial
on this domain 𝐷 . Namely, that 𝑓 ∈ RS [F, 𝐷, 𝜌 = 𝑑/|𝐷 |].

We provide a formal description of this protocol below (as discussed in Remark 1, for simplicity, here
we assume that F is an FFT-friendly field. However, similar ideas can be extended to arbitrary fields using
techniques from [BCKL23, BCKL22]).

FRI on LHEncap

Setup: Let 𝐷 = {𝜔0, . . . , 𝜔 |𝐷 |−1} be the set of |𝐷 |th roots of unity and H = {a0, . . . , a𝑑−1} be the set of
𝑑 th roots of unity. Let J𝑓 |HK =

q
𝑓 (a0)

y
, . . . ,

q
𝑓 (a𝑑−1)

y
∈ S𝑑 denote the instance, where 𝑓 ∈ F⩽𝑑 [𝑥]

and S denotes the output-space of some LHEncap.a Let RS [F, 𝐷, 𝜌] be a familiy of Reed-Solomon
codes. We assume that the prover P has J𝑓 |HK.

Commit Phase: The commit phase proceeds as follows:

• P uses FFT techniques on the set J𝑓 |HK to compute encapsulations J𝑓 |𝐷K =q
𝑓 (𝜔0)

y
, . . . ,

q
𝑓 (𝜔 |𝐷 |−1)

y
. It sends oracle access to these encapsulations J𝑓 |𝐷K to V.

• Set 𝑓0 = 𝑓 . For rounds 𝑖 = 0, . . . , log2 𝑑 − 1, the protocol proceeds as follows:

1. V samples a random challenge 𝛼𝑖 ∈ F and sends it to P.
2. For each 𝑗 ∈ [0, |𝐷 |/2𝑖 − 1], P computes

r
𝑓𝑖+1(𝜔2𝑖+1 · 𝑗)

z
=

©«
r
𝑓𝑖 (𝜔2𝑖 · 𝑗)

z
+

r
𝑓𝑖 (−𝜔2𝑖 · 𝑗)

z

2
+ 𝛼𝑖 ·

r
𝑓𝑖 (𝜔2𝑖 · 𝑗)

z
−

r
𝑓𝑖 (−𝜔2𝑖 · 𝑗)

z

2 · 𝜔2𝑖 · 𝑗

ª®®¬ .
3. Let 𝐷𝑖+1 =

{
𝜔2𝑖+1 · 𝑗

}
𝑗∈[0, |𝐷 |/2𝑖−1]

and give the verifier oracle access to J𝑓𝑖+1 |𝐷𝑖+1K.

• At the end, P simply sends encapsulations of all evaluations of the last constant polynomial on
domain 𝐷log2 𝑑 , i.e.,

{q
𝑓log2 𝑑 (𝛽)

y}
𝛽∈𝐷log2 𝑑

to V.

Query Phase: The query phase proceeds as follows:

22

• V repeats the following ℓ times:

1. Sample a random 𝑠0 ∈ 𝐷 .
2. For each 𝑖 ∈ [0, log2 𝑑 − 1], set 𝑠𝑖+1 = 𝑠2𝑖 . Let 𝑠

′
𝑖 = −𝑠𝑖 ≠ 𝑠𝑖 be the other element in 𝐷𝑖 ,

such that 𝑠𝑖+1 = (𝑠′𝑖)2. Query oracle J𝑓 |𝐷𝑖
K on evaluation points 𝑠𝑖 and 𝑠′𝑖 to get J𝑓𝑖 (𝑠𝑖)K andq

𝑓𝑖 (𝑠′𝑖)
y
. Check if the following holds:

– If LHEncap is linearly-homomorphic w.r.t. randomness, check if

J𝑓𝑖+1(𝑠𝑖+1)K =
(
J𝑓𝑖 (𝑠𝑖)K +

q
𝑓𝑖 (𝑠′𝑖)

y

2
+ 𝛼𝑖 ·

J𝑓𝑖 (𝑠𝑖)K −
q
𝑓𝑖 (𝑠′𝑖)

y

2 · 𝑠𝑖

)
.

– Else, if LHEncap is decryptable, then check if J𝑓𝑖+1(𝑠𝑖+1)K and(
J𝑓𝑖 (𝑠𝑖)K+J𝑓𝑖 (𝑠′𝑖)K

2 + 𝛼𝑖 ·
J𝑓𝑖 (𝑠𝑖)K−J𝑓𝑖 (𝑠′𝑖)K

2·𝑠𝑖

)
decrypt to the same value.

• If LHEncap is linearly-homomorphic w.r.t. randomness, check if, for all 𝛽 ∈ 𝐷log2 𝑑 ,
q
𝑓log2 𝑑 (𝛽)

y

is the same encapsulation. Else, if LHEncap is decryptable, then check if for all 𝛽 ∈ 𝐷log2 𝑑 ,q
𝑓log2 𝑑 (𝛽)

y
decrypt to the same value.

• If all the above checks verify, output accept, else output reject.

aNote that this implies that the encapsulations
q
𝑓 (a0)

y
, . . . ,

r
𝑓 (a𝑑−1)

z
may or may not correspond to well-

formed/honestly generated encapsulations.

Completeness and Soundness. It is easy to see that the completeness of the above protocol follows
from the completeness of the FRI protocol and linearly-homomorphic property of LHEncap. Recently,
Block et al. [BGK+23] presented a formal proof establishing that the FRI IOP satisfies round-by-round
knowledge soundness [CCH+19]. Similar ideas also naturally extend to our FRI on LHEncap protocol.
Formally speaking, the following theorem follows from [BGK+23].

Theorem 1 (Round-by-Round Knowledge Soundness of FRI on LHEncap). Let F be a finite field, a degree-
bound 𝑑 ∈ N, 𝜌 = 𝑑/|𝐷 |, a domain 𝐷 ⊆ F. For any integer𝑚 ⩾ 3, [∈ (0,√𝜌/2𝑚), \ ∈ (0, 1 − √𝜌 − [),
encapsulations of evaluations of a function 𝑓 that has relative distance⩾ \ from RS [F, 𝐷, 𝜌 = 𝑑/|𝐷 |], FRI on
LHEncap has the following round-by-round knowledge soundness error (See [CCH+19] for the definition)

Y = max
{
(𝑚 + 1/2)7 · |𝐷 |2

3𝜌3/2 |F|
, (1 − \)ℓ

}
.

Proof Sketch. If the underlying LHEncap is decryptable, then round-by-round knowledge soundness of FRI
on LHEncap can be reduced to the round-by-round knowledge soundness of FRI [BGK+23]. In particular,
assuming existence of a PPT adversary A who can break the round-by-round knowledge soundness of
FRI on LHEncap, we can design another PPT adversary B who can break the round-by-round knowledge
soundness of FRI as follows: Given an instance, B computes encapsulations of this instance and forwards
them to A. B forwards all the verifier challenges to A. Whenever A sends an oracle of encapsulated
values (which may or may not correspond to honestly generated encapsulations), B queries this oracle at
all locations, decrypts the encapsulated responses, and gives oracle access to these decrypted values to its
verifier (in case any of these responses are not well-formed or they decrypt to ⊥, B samples some garbage

23

value and uses that instead of ⊥). It is easy to see that ifA manages to violate round-by-round knowledge
soundness of FRI on LHEncap, then B will be able to break round-by-round knowledge soundness of FRI.

If the underlying LHEncap is linearly-homomorphic w.r.t. randomness, then round-by-round knowledge
soundness of FRI on LHEncap can be argued in a similar manner as is done for FRI in [BGK+23]. This is
because, in this case, all the checks by the verifier are performed on the encapsulations (and not on the
encapsulated values). This is essentially equivalent to running the FRI protocol, albeit on the encapsula-
tions.

SNARK for Low-Degree Testing on LHEncap. Applying the [BCS16] transformation on the above
protocol yields a SNARK (in the random-oracle model) for low-degree testing on LHEncap. It is easy
to see that completeness of the resulting SNARK follows from the completeness of the FRI protocol, the
[BCS16] transformation and linearly-homomorphic property of LHEncap. For knowledge soundness, we
obtain the following corollary.26

Corollary 1 (Knowledge Soundness of FRI based SNARK for Low-Degree Testing on LHEncap). Let F be
a finite field, 𝑑 ∈ N a degree-bound, 𝜌 = 𝑑/|𝐷 |, a domain 𝐷 ⊆ F. For any integer𝑚 ⩾ 3, [∈ (0,√𝜌/2𝑚),
\ ∈ (0, 1 − √𝜌 − [), random oracle H , query bound Q ∈ N, compiling FRI on LHEncap on encapsulations
of evaluations of a function 𝑓 that has relative distance ⩾ \ from RS [F, 𝐷, 𝜌 = 𝑑/|𝐷 |], using the [BCS16]
compiler yields a SNARK for low-degree testing on LHEncap with the following knowledge soundness error:

Y = Q ·max
{
(𝑚 + 1/2)7 · |𝐷 |2

3𝜌3/2 |F|
, (1 − \)ℓ

}
+ 3(Q2 + 1)

𝑑
.

Complexity. The dominant part of the prover’s work in the above protocol is the FFT operations for
extending the evaluation domain of the polynomial. Assuming |𝐷 | = 𝑂 (𝑑), this complexity is 𝑂 (𝑑 log𝑑).
The proof involves sending oracles (i.e., commitments to these oracles in the non-interactive variant) to the
verifier in each round. Additionally, to ensure negligible knowledge soundness error, the verifier makes
𝑂 (_ · log𝑑) oracle queries; in particular, _ queries per layer. In the non-interactive variant, these oracle
queries correspond to vector commitment openings – for Merkle Hash-based commitment, the size of the
opening proof for each query is 𝑂 (log𝑑). As a result, in the non-interactive protocol, the proof size is
𝑂 (_ · log2 𝑑), and the verifier also runs in 𝑂 (_ · log2 𝑑) time. In the rest of the paper, we do not explicitly
write the _ factor when describing the efficiency of the scheme. We emphasize that the above protocol
does not make any non-black-box use of the underlying LHEncap scheme.

5 Polynomial Commitments on Hidden Values

In this section, we present our polynomial commitment scheme on hidden values. In Section 5.1, we
formalize the notion of polynomial commitment schemes on hidden values. In Section 5.2, we present
a construction of this primitive using the FRI-based SNARK for low-degree testing on LHEncap from
Section 4.3.

5.1 Defining Polynomial Commitments on LHEncap

In this section, we formalize a variant of polynomial commitments, that we refer to as polynomial commit-
ments on LHEncap.

26For appropriately chosen parameters, the knowledge soundness error Y in Corollary 1 can be made negligible in _.

24

Definition 5 (Polynomial Commitments on LHEncap). A polynomial commitment on LHEncap for degree
𝑑 polynomials consists of a tuple of PPT algorithms (Gen,Com) and a SNARK (see Definition 2) for a specific
problem, defined as follows.

1. pp ← Gen(1_): The generator takes the security parameter _ as input and outputs public parameters
pp.

2. 𝜎 ← Com(pp, {𝑥𝑖 , J𝑦𝑖K}𝑖∈[𝑑+1]): The commit algorithm takes as input the public parameters pp, the
evaluation points {𝑥𝑖}𝑖∈[𝑑+1] ∈ F𝑑+1 (in the clear) and the evaluations {J𝑦𝑖K}𝑖∈[𝑑+1] (hidden inside
LHEncap). It outputs a succinct commitment 𝜎 .

3. A SNARK ΠSNARK = (SNARK.Setup, SNARK.Prove, SNARK.Verify) where the committer C acts as the
prover and the receiver R acts as the verifier, for the following problem:

• Statement: st =
(
pp, 𝜎, {𝑥𝑖}𝑖∈[𝑑+1], 𝑥∗, J𝑦∗K

)
• Witness: wit =

(
{J𝑦𝑖K}𝑖∈[𝑑+1]

)
• Relation Rpoly: (1) 𝜎 is a commitment to wit. (2) Let 𝑓 ∈ F⩽𝑑 [𝑥] be the polynomial defined by
interpolating 𝑦1, . . . , 𝑦𝑑+1, then J𝑦∗K is an encapsulation of 𝑓 (𝑥∗).

We use the shorthand 𝑏 ← ΠSNARK⟨C(st,wit,Rpoly),R(st,Rpoly)⟩, where 𝑏 ∈ {0, 1}, to denote the
output of the above SNARK.

A polynomial commitment on LHEncap must satisfy the following.

Correctness: For correctness, the verifier should always accept honestly generated proofs. Formally speaking,
for all polynomials 𝑓 ∈ F⩽𝑑 [𝑥], any set of evaluation points {𝑥𝑖}𝑖∈[𝑑+1] and any 𝑥∗, it holds that

Pr

𝑏 = 1

������������

pp← Gen(1_), 𝜎 ← Com(pp, {𝑥𝑖 , J𝑓 (𝑥𝑖)K}𝑖∈[𝑑+1])
J𝑦∗K = L(J𝑦1K , . . . , J𝑦𝑛K)

st =
(
pp, 𝜎, {𝑥𝑖}𝑖∈[𝑑+1], 𝑥∗, J𝑦∗K

)
wit =

(
{J𝑓 (𝑥𝑖)K}𝑖∈[𝑑+1]

)
𝑏 ← ΠSNARK⟨C(st,wit,Rpoly),R(st,Rpoly)⟩

= 1,

where L is the linear function defined by the Lagrange interpolation w.r.t. {𝑥𝑖}𝑖∈[𝑑+1] and 𝑥∗.

Binding/Extraction: The binding property requires that there exists an extractor E, such that for any PPT
adversary A, any {𝑥𝑖}𝑖∈[𝑑+1] , and any 𝑥∗, the following holds.

• If LHEncap is linearly-homomorphic w.r.t. randomness, then we have:

Pr

J𝑦∗K ≠ L(J𝑦1K , . . . , J𝑦𝑛K)

����������
pp← Gen(1_)

𝜎 ← A(pp, {𝑥𝑖}𝑖∈[𝑑+1])
st =

(
pp, 𝜎, {𝑥𝑖}𝑖∈[𝑑+1], 𝑥∗, J𝑦∗K

)
1← ΠSNARK⟨A(st,Rpoly),R(st,Rpoly)⟩(

{J𝑦𝑖K}𝑖∈[𝑑+1]
)
← EA (pp)

⩽ negl(_),

where L is the linear function defined by the Lagrange interpolation w.r.t. {𝑥𝑖}𝑖∈[𝑑+1] and 𝑥∗.

25

• Else, if LHEncap is decryptable, then we have:

Pr

𝑦∗ ≠ 𝑓 (𝑥∗)

����������
pp← Gen(1_)

𝜎 ← A(pp, {𝑥𝑖}𝑖∈[𝑑+1])
st =

(
pp, 𝜎, {𝑥𝑖}𝑖∈[𝑑+1], 𝑥∗, J𝑦∗K

)
1← ΠSNARK⟨A(st,Rpoly),R(st,Rpoly)⟩(

{J𝑦𝑖K}𝑖∈[𝑑+1]
)
← EA (pp)

⩽ negl(_),

where 𝑓 ∈ F⩽𝑑 [𝑥] is uniquely defined by, ∀𝑖 ∈ [𝑑 + 1], the decryption 𝑦𝑖 of J𝑦𝑖K agrees with 𝑓 (𝑥𝑖).

5.2 Constructing Polynomial Commitments on LHEncap

Weare now ready to present a construction of polynomial commitment on LHEncap using our construction
of FRI based SNARK for low-degree testing on LHEncap (see Section 4.3). We present a formal description
of this protocol below.

Polynomial Commitment on LHEncap

Gen: Let 𝐷 = {𝜔0, . . . , 𝜔 |𝐷 |−1} be the set of |𝐷 |th roots of unity and H = {a0, . . . , a𝑑−1} be the set of
𝑑 th roots of unity. Let RS [F, 𝐷, 𝜌]) be a familiy of Reed-Solomon Codes.

Commit: Commit to encapsulations J𝑓 |HK =
q
𝑓 (a0)

y
, . . . ,

q
𝑓 (a𝑑−1)

y
, where 𝑓 ∈ F⩽𝑑 [𝑥] as follows:

• Using FFT techniques, the committer first expands the evaluation from J𝑓 |HK to J𝑓 |𝐷K =q
𝑓 (𝜔0)

y
, . . . ,

q
𝑓 (𝜔 |𝐷 |−1)

y
.

• The commitment is computed as a Merkle hash on the vector
q
𝑓 (𝑤0)

y
, . . . ,

q
𝑓 (𝑤 |𝐷 |−1)

y
.

Opening Proof:When asked to give an opening proof at 𝑥 = 𝑥∗, the committer first computes J𝑓 (𝑥∗)K
as follows: (1) it uses FFT techniques on

q
𝑓 (𝑤0)

y
, . . . ,

q
𝑓 (𝑤 |𝐷 |−1)

y
to obtain encapsulations of the

coefficients of 𝑓 (𝑥) and then (2) it takes an inner product of these with (1, 𝑥∗, (𝑥∗)2, . . . , (𝑥∗)𝑑).
Next, the committer outputs J𝑓 (𝑥∗)K and runs the FRI-based SNARK for low-degree testing on LHEn-

cap on
{

J𝑓 (𝑥)−𝑦∗K
𝑥−𝑥∗

}
𝑥∈𝐷

with domain 𝐷 , degree bound 𝑑 − 1, and proximity parameter \ <
1−𝜌
2 . Recall

that, as discussed in Section 2.2, oracle access to this encapsulated quotient polynomial can be emu-
lated using oracle access to encapsulated evaluations J𝑓 (𝑥)K of 𝑓 .

Correctness and Binding. Correctness of this polynomial commitment scheme follows from the com-
pleteness of the FRI based SNARK for low-degree testing on LHEncap protocol and from linear homo-
morphism of the underlying LHEncap scheme. The binding property follows from the binding property
of the vector commitment and from the knowledge soundness of the FRI based SNARK for low-degree
testing on LHEncap. A formal proof for this follows exactly as that for arguing the binding property of the
polynomial commitment scheme from FRI [BGKS20, Hab22].

Complexity. This scheme inherits the efficiency properties from FRI on LHEncap. In particular, the
opening proof size and verification time for the opening proof are 𝑂 (log2 𝑑). The time to generate the
commitment is 𝑂 (𝑑 log𝑑).

26

6 Efficiently Verifiable Private Delegation of Computation

In this section, we present an approach for efficiently verifiable FHE-based private delegation of computa-
tion, which only makes black-box use of cryptography. As discussed in Section 2.3, our high-level idea is to
have the client send FHE ciphertexts encrypting its input to the server. The server then FHE evaluates the
given function on these ciphertexts (sends the resulting ciphertext to the client), and finally, it generates
a SNARK proof to prove that the FHE evaluation was done correctly. We demonstrate how to implement
this high-level approach using polynomial IOP based SNARKs and our polynomial commitment scheme
on LHEncap (see Section 5). This section is organized as follows — in Section 6.1, we give an overview of
polynomial IOP based SNARKs and then proceed to present our main construction in Section 6.2.

6.1 Overview of Polynomial IOP based SNARKs

We start by giving an overview of the basic blueprint of the polynomial IOP-based SNARK proof system.

Representing the NP Relation as a System of Constraints. Different SNARKs work with differ-
ent representations of the relation associated with the statement being proven, e.g., quadratic arithmetic
programs [PHGR13b, SVdV16], low-depth circuits [BTVW14, CMT12, GKR08, Tha13, VSBW13, WHG+16,
WTS+18, XZZ+19], binary arithmetic circuits [GWC19], etc. Each of these representations can be viewed
as a system of low-degree constraints. The most popular representation amongst state-of-the-art proof
systems [BCR+19, CHM+20, Gro16, GM17, COS20] is known as the rank-1 constraint systems (R1CS) that
generalizes arithmetic circuits.

The first step in all existing state-of-the-art SNARKs is to extend the given (short) statement-witness
(x,w) pair into a satisfying assignment (also called the extended-witness) for the representative constraint
system. This is typically done by evaluating the original relation circuit on the statement-witness pair
to obtain a computation trace (from which the satisfying assignment can be derived using only linear
operations). The next step is to design an argument of knowledge for this satisfying assignment w.r.t. the
relevant constraint system.

Almost all state-of-the-art efficient SNARKs are designed using a polynomial IOP-based approach as
follows: (1) Design an information-theoretic polynomial IOP for the corresponding system of constraints.
(2) Compile the polynomial IOP into an interactive proof system for the same set of constraints using a
polynomial commitment scheme. (3) Finally, transforming this interactive proof into a non-interactive
proof system in the random oracle model using the Fiat-Shamir heuristics [FS87]. In more detail:

1. Polynomial IOP. A polynomial IOP [BCR+19] is a variant of IOP [BCS16], where the oracles sent
by the prover to the verifier are essentially polynomials. In other words, in each round of the
polynomial-IOP, the prover provides the verifier with an oracle access to a polynomial function,
which the verifier can query at any location of its choice.

2. Polynomial IOP + Polynomial Commitments = Interactive Proof. A polynomial IOP can be
transformed into an interactive protocol by enabling the prover to emulate the process of giving
polynomial oracles to the verifier using a polynomial commitment scheme as follows: The prover
sends a commitment of the polynomial to the verifier. Every time the verifier wishes to query this
polynomial, the prover responds with the corresponding evaluation along with a succint proof cer-
tifying that this evaluation was consistent with the commitment.

3. SNARK in the Random Oracle Model. If the polynomial IOP is a public-coin protocol, then
the above transformation yields a public-coin interactive protocol. Such a protocol can be easily

27

transformed into a non-interactive proof system in the random oracle model using the Fiat-Shamir
heuristics [FS87].

Overview of the polynomial IOP used in Fractal [COS20] . As discussed in Section 2.3, while our
approach can be made to work with any polynomial IOP based SNARK, in order to minimize the multi-
plicative depth of FHE evaluations, we instantiate it with Fractal [COS20]. Hence, it is instructive to recall
the main operations used in the polynomial IOP that Fractal is based on. At a high level, this polynomial
IOP performs the following operations on the extended witness (let R be the relation for which the proof
is being generated):

• Encoding the extended witness as polynomials, which only requires linear operations of size |R | on
the extended witness.

• Some additional linear operations of size |R | on these witness dependent polynomials.

• Fast Fourier transformations on these witness dependent polynomials, which also only require linear
operations of size |R | log |R |.

• Multiplying a constant number of witness-dependent polynomials of size |R |.

• Sum-check on witness-dependent polynomials, which requires dividing the witness-dependent
polynomial by a public polynomial, and hence only requires linear operations of size |R |.

Overall, our main observation is that given the computation trace/extended witness, the prover only
needs to perform constant-depth computations of size |R | log |R | in this polynomial IOP. Moreover, this
is a hologographic polynomial IOP, meaning that the verifier only does not need to read the entire rela-
tion circuit. Instead, it suffices for the verifier to simply get oracle access to the relation. Holographic
polynomial IOP can be transformed into a pre-processing SNARK, where the description of the relation is
pre-processed by a trusted party and given to the verifier at the start of the protocol. This ensures that the
overall runtime of the verifier remains sublinear in the size of the relation circuit. As discussed in Section 1,
for our application, we assume that this pre-processing of the relation circuit is either done by a trusted
party or can be done by the client himself.

Finally, we note that, while we explicitly list out the main computation steps in the Fractal polynomial
IOP, most of these steps are, in fact, common to all known polynomial IOP constructions. For instance, the
underlying polynomial IOP used in Plonk [GWC19] also uses the above steps, with the only difference that
instead of using sum-check, it relies on a product check. This product check, however, requires the prover
to perform computations on the extended witness that have a total multiplicative depth proportional to
the size of the entire relation, which may not be desirable for efficiency reasons.

6.2 Our Construction

We now present our construction for verifiable private delegation of computation.

Notation. We start by establishing some notation. Given some input 𝑥 , let𝐶 be the computation that the
client wishes to delegate on this input. To verify that the computation was done correctly, we want the
server to generate a SNARK attesting that the output ciphertext is an encryption of the result of computing
function 𝐶 on the input. This is essentially equivalent to proving the following relation on values hidden
(or encapsulated) inside FHE ciphertexts: R : output = 𝐶 (input).

28

Let 𝑥 be the client’s input, let 𝑦 be the output of 𝐶 on 𝑥 , i.e., 𝑦 = 𝐶 (𝑥), Let ®𝑧 = (𝑧1, . . . , 𝑧 |𝐶 |) be the
list of values induced on all the intermediate wires in circuit 𝐶 when it is evaluated using input 𝑥 . Let
ExtWitR (𝑥, ®𝑧,𝑦) be a linear function that allows the prover to generate an extended-witness for R, given
the computation-trace (𝑥, ®𝑧,𝑦).

Protocol. Our construction works as follows:

• Client → Server: The client samples an FHE secret key, and encrypts 𝑥 under this key. It then
sends the resulting ciphertext (say J𝑥K) to the server.

• Server: The server proceeds as follows:

1. Output Computation: It performs FHE evaluation (for 𝐶) on J𝑥K to compute the output cipher-
text (say J𝑦K). Without loss of generality, we assume that in the process of evaluating J𝑦K, the
server also obtains FHE encryptions of the computation trace, i.e., (J𝑧1K , . . . ,

q
𝑧 |𝐶 |

y
).

2. ExtendedWitness Generation: It uses FHE evaluation (for ExtWitR) on J𝑥K , J𝑧1K , . . . ,
q
𝑧 |𝐶 |

y
, J𝑦K

to obtain ciphertexts corresponding to the extended witness (say
„

J𝑤K).
3. SNARKGeneration: It uses FHE evaluations (for the operations needed to generate a polynomial

IOP for relation R) on
„

J𝑤K. As a result of this, it obtains FHE encryptions corresponding to the
polynomials that the prover sends as oracles to the verifier, in the underlying polynomial IOP.
It uses our polynomial commitment on LHEncap from Section 5.2 to compute commitments to
these encrypted polynomials. As is the case with any Fiat-Shamir transformed protocol, the
verifier messages and its oracle queries are derived by querying the random oracle.

• Server→ Client: Finally, the server sends the encapsulated SNARK along with the output of the
computation J𝑦K to the client.

• Client: The client decrypts J𝑦K and the encryptions sent as part of the SNARK. In order to verify
if the decrypted 𝑦 was honestly computed, it then checks if the decrypted values correspond to a
valid SNARK. Note that, while the client performs all of the checks on decrypted values, the veri-
fier’s challenge sampled by Fiat-Shamir heuristics is computed using random oracle queries on the
encrypted proof transcript sent by the server.

Private Verification. We note that the above approach only gives us a privately verifiable SNARK. This is
because, in Plonk, the verifier’s check involves checking if some function of the proof is equal to 0. While
a verifier could always rely on the homomorphism of FHE and compute the necessary checking function
on encryptions of the SNARK proof (without using the FHE secret key), it has no way of checking if the
resulting ciphertext is an encryption of 0 or not. However, the verifier does hold the FHE secret key for
the verification of this step. Hence, this is indeed a privately verifiable SNARK. We refer the reader to
Section 1.2 for a detailed comparison of our construction with prior work.

Security. It is easy to see that the soundness of the above SNARK follows from the soundness of the
underlying polynomial IOP and the binding property of our polynomial commitment on LHEncap. This
is similar to Theorem 1 in Section 4.3 on why the soundness of FRI on LHEncap reduces to the soundness
of standard FRI when the underlying LHEncap is decryptable.

Efficiency. In the output computation step, the server needs to perform 𝑂 (|𝐶 |) FHE evaluations with
the same multiplicative depth as |𝐶 |. Our approach can be instantiated using any polynomial IOP. When

29

instantiating the above approach using the Fractal polynomial IOP [COS20], extended witness and SNARK
generation only require the server to perform 𝑂 (|𝐶 | log |𝐶 |) additional FHE evaluations with a constant
multiplicative depth. Similarly, when instantiating the above approach using the Plonk IOP [GWC19], the
SNARK generation will require the server to perform 𝑂 (|𝐶 | log |𝐶 |) additional linear operations on the
FHE ciphertexts and 𝑂 (|𝐶 |) FHE evaluations with a 𝑂 (|𝐶 |) multiplicative depth. In either case, the work
done by the client to verify the SNARK remains polylogarithmic in |𝐶 |.

Why SNARKs? We note that our high-level idea of avoiding non-black-box use of cryptography by
computing the information-theoretic primitive (i.e., the polynomial IOP) inside the FHE and then using
polynomial commitment on hidden values to compile it into the desired cryptographic proof, is not ex-
clusive to SNARKs. It can also be used alongside other types of proof systems, such as those based on
MPC-in-the-head [IKOS07]. We choose to work with SNARKs since these are succinct proofs and quick to
verify. The size of MPC-in-the-head-based proof systems is typically much larger — in this case, the client
would have to spend a significant amount of time simply to verify the computation. This would defeat the
whole purpose of delegating computation to an external server in the first place.

7 Private Outsourcing of zkSNARKs to a Single Server

In this section, we demonstrate how a prover can delegate the generation zkSNARKs to a single untrusted
server in a privacy-preserving manner, without making any non-black-box use of cryptography. For this,
we show how our protocol from the previous section can be modified to enable the server to generate a
publicly verifiable zkSNARK on hidden values. Towards this, our first idea is to use fully homomorphic
commitments (FHCom) instead of FHE.

Fully-Homomorphic Commitments. A fully homomorphic commitment is an FHE scheme with the
following additional properties:

• The ciphertexts should be statistically binding.

• Given knowledge of the secret key 𝑠𝑘 , and, it is possible to generate a decommitment string 𝑟 for any
ciphertext 𝑐 encrypting a message𝑚, such that it is possible for anyone to verify that 𝑐 is indeed an
encryption of𝑚 only given 𝑐, 𝑟,𝑚. Importantly, revealing 𝑟 does not leak the secret key or anything
else beyond the decommitted value𝑚.

Gorbunov, Vaikuntanathan, andWichs [GVW15] noted that the LWE-based Gentry-Sahai-Waters FHE
scheme [GSW13] satisfy both of the above properties and is an exampled of FHCom. However, one caveat
is that the public key in this scheme must be sampled “honestly”; otherwise, the ciphertexts can be equivo-
cated. An honest sampling of the public key can be ensured by either allowing a trusted party to generate
it and give the corresponding secret key to the client, or having the client sample it and generate a proof
attesting to the well-formedness of this public key.

Notation. Before describing the protocol, it would be helpful to establish some notation. Let R be the
relation for which the client wants to generate a zkSNARK. Let 𝑥 be the statement and 𝑤 be the corre-
sponding witness. Let ®𝑧 = (𝑧1, . . . , 𝑧 | R |) be the list of values induced on all the intermediate wires in the
circuit representing R when it is evaluated using input 𝑥,𝑤 . Let ExtWitR (𝑥, ®𝑧,𝑤) be a linear function that
allows the prover to generate an extended-witness for R, given the computation-trace (𝑥, ®𝑧,𝑤).

Protocol. Our construction works as follows:

30

• Prover→ Server: We assume that the prover either samples an FHCom public-secret key pair (and
appends to the public-key, a proof certifying that the public key is well-formed) or it receives a
public-secret key pair from a trusted party. It encrypts 𝑤 under the secret key and then sends the
resulting ciphertext (say J𝑤K) to the server.

• Server: The server proceeds as follows:

1. Computation trace: It performs FHCom evaluation (for the circuit representing R) on the public
statement 𝑥 and encrypted witness J𝑤K to compute the FHE encryptions of the computation
trace, i.e., (J𝑧1K , . . . ,

q
𝑧 | R |

y
).

2. Extended Witness Generation: It uses FHCom evaluation (for ExtWitR) on
J𝑥K , J𝑧1K , . . . ,

q
𝑧 | R |

y
, J𝑤K to obtain ciphertexts corresponding to the extended witness

(say
„

J𝑤K).
3. SNARK Generation: It uses FHCom evaluations (for the operations needed to generate a poly-

nomial IOP for relation R) on
„

J𝑤K. As a result, it obtains FHE encryptions corresponding to the
polynomials that the prover sends as oracles to the verifier, in the underlying polynomial IOP.
It uses our polynomial commitment on LHEncap from Section 5.2 to compute commitments to
these encrypted polynomials. As is the case with any Fiat-Shamir transformed protocol, the
verifier messages and its oracle queries are derived by querying the random oracle.

• Server→ Prover: Finally, the server sends the encapsulated SNARK along with the output of the
computation J𝑦K to the prover.

• Prover→ Verifier: The prover decrypts all the encryptions sent as part of the zkSNARK and also
generates the decommitment string for each of these ciphertexts. It forwards all the ciphertexts
associated with the zkSNARK received from the server, along with the public key, the decrypted
values of these ciphertexts and their corresponding decommitment strings to the verifier.

• Verifier: In order to verify the zkSNARK, the verifier first checks if all the decommitments are
valid. It then proceeds to check if the decommitted values correspond to a valid SNARK. As before,
we note that while the verifier performs all of the checks to verify the validity of zkSNARK on the
decommitted values, it recomputes the random oracle queries on the encrypted proof transcript sent
by the prover.

It is easy to see that the resulting zkSNARK is publicly verifiable. The efficiency of this scheme follows
from the efficiency of the previous construction. Let 𝑠 (|R|) be the size of the underlying zkSNARK used
to instantiate the above protocol. The size of the resulting publicly verifiable zkSNARK is roughly 𝑠 (|R|)
plus the size of 𝑠 (|R|) decommitments, which is 𝑂 (𝑠 (|R|)).

The verifier checks if the decommitments corresponding to the encrypted zkSNARK are valid and then
checks the validity of the decrypted zkSNARK. Hence, the soundness of the resulting publicly verifiable zk-
SNARK can be reduced to the statistical binding of FHCom and to the soundness of the privately verifiable
SNARK from our previous application. The zero-knowledge property of the resulting publicly verifiable
zkSNARK follows from the zero-knowledge property of the underlying zkSNARK and the fact the reveal-
ing decommitment strings for certain ciphertexts, do not leak anything beyond the values encrypted in
these ciphertexts.

Remark 2 (On the Necessity of Client’s Assistance). The above construction crucially relies on the client
to decrypt the message sent by the server in order to eventually obtain a publicly verifiable SNARK. We note

31

that in the setting, where the server only computes on encrypted values, it is impossible to design a delegation
scheme (for zkSNARKs for any non-trivial class of languages), where the client does not need to intervene and
the verifier can directly check the encrypted proof. This is because, such a scheme would be in clear violation
of the semantic security of the encryption scheme.

8 Weighted Threshold Signatures without Setup

We now demonstrate how our technique of FRI on hidden values can be used for constructing weighted
threshold signatures without setup. This section is organized as follows. In Section 8.1, we describe one
example construction based on the Schnorr signature. We choose Schnorr as an example to highlight the
fact that our techniques do not require pairing. In Section 8.2, we discuss on the versatility and further
extensions to our basic construction.

8.1 A Construction based on Schnorr

We start with a formal definition for weighted threshold signature without setup, which is adapted
from [CKM23] for static security with concurrent three-round signing protocol.

Definition 6. LetW = (𝑤1, . . . ,𝑤𝑛) be the (public) weights associated with 𝑛 parties. A weighted threshold
signature without setup consists of a tuple of algorithms with the following syntax.

• (sk, pk) ← KeyGen(1_): on input the security parameter 1_ , parties use KeyGen to independently
sample their respective key pairs (sk, pk).

• vk ← Preprocess(pk1, . . . , pk𝑛,W): on input the public keys and weights of all parties, a succinct
verification key vk can be deterministically derived using the preprocessing algorithm.

•
{
𝜌𝑖1, 𝜌

𝑖
2, 𝜌

𝑖
3
}
𝑖∈𝐵 ← (Sign1, Sign2, Sign3): This is a three-round signing protocol that can be run by any

subset 𝐵 of parties. In particular, given a subset 𝐵 ⊆ [𝑛] and a message msg to sign, each party 𝑖 ∈ 𝐵
does:

– Round 1: (𝜌𝑖1, st𝑖) ← Sign1(𝐵,msg, sk𝑖): this outputs the secret state st𝑖 and first-round message
𝜌𝑖1.

– Round 2: 𝜌𝑖2 ← Sign2
(
𝐵,msg, sk𝑖 , st𝑖 ,

{
𝜌𝑖1

}
𝑖∈𝐵

)
: given the first-round messages from all parties,

this outputs the second-round message.

– Round 3: 𝜌𝑖3 ← Sign3
(
𝐵,msg, sk𝑖 , st𝑖 ,

{
𝜌𝑖1, 𝜌

𝑖
2
}
𝑖∈𝐵

)
: given the transcript from the first two rounds,

this outputs the third-round message.

• (𝑇, 𝜎) ← Agg
(
msg,W,

{
𝜌𝑖1, 𝜌

𝑖
2, 𝜌

𝑖
3
}
𝑖∈𝐵

)
: on input the messagemsg, the transcript of a signing protocol,

and the weights associated with all parties W, this algorithm outputs an aggregated signature 𝜎 and a
claimed threshold 𝑇 =

∑
𝑖∈𝐵𝑤𝑖 .

• 𝑏 ← Ver(vk,msg, (𝑇, 𝜎)): on input the verification key vk, the message msg, and the signature (𝑇, 𝜎),
this verification algorithm outputs a bit 𝑏 indicating accept or reject.

These algorithms must satisfy the following properties.

32

• Correctness. The honestly generated signature should always verify. That is, for any security parameter
_, any set of weights W, any message msg, and any subset of signers 𝐵, it holds that

Pr

Ver(vk,msg, (𝑇, 𝜎)) = 1

�����������
∀𝑖 ∈ [𝑛], (sk𝑖 , pk𝑖) ← KeyGen(1_)
vk← Preprocess(pk1, . . . , pk𝑛,W){
𝜌𝑖1, 𝜌

𝑖
2, 𝜌

𝑖
3
}
𝑖∈𝐵 ← (Sign1, Sign2, Sign3)

(𝑇, 𝜎) ← Agg
(
msg,W,

{
𝜌𝑖1, 𝜌

𝑖
2, 𝜌

𝑖
3
}
𝑖∈𝐵

)

= 1.

• Security. Any PPT adversary, who may request an arbitrary polynomial many concurrent signing
sessions, should not be able to forge a valid signature with non-negligible probability. In particular, the
probability that the adversary wins the following game is negl(_).

1. The adversary picks 𝑛, the weightsW, and a subset of parties to corrupt 𝐴 ⊆ [𝑛].
2. For every honest party 𝑖 ∈ [𝑛] \ 𝐴, the public key is sampled honestly by the challenger
(pk𝑖 , sk𝑖) ← KeyGen(1_). For every corrupted party 𝑖 ∈ 𝐴, the adversary picks a public key
pk𝑖 and sends it to the challenger.

3. The challenger invokes vk← Preprocess(pk1, . . . , pk𝑛,W).
4. The adversary can repeatedly request new signing sessions. For each session, it specifies a

message msg and a subset 𝐵 ⊆ [𝑛]. The adversary is rushing in that, for each round, the
honest parties in 𝐵 send the messages first. These sessions can be concurrent. Moreover, the
adversary does not need to complete the protocol. Let 𝑄 = ∅. For each session requested, let
𝑄 = 𝑄 ∪ {msg}.

5. In the end, the adversary outputs a message msg∗ and a signature (𝑇 ∗, 𝜎∗). The adversary
wins the forgery game if (1)msg∗ ∉ 𝑄 , (2)𝑇 ∗ >

∑
𝑖∈𝐴𝑤𝑖 , and (3) Ver(vk,msg∗, (𝑇 ∗, 𝜎∗)) = 1.

That is, the adversary produces a valid signature for a message he never requests any signing
session and a threshold higher than the cumulative weights of the corrupted parties.

Remark 3. We make a few remarks to add some perspectives about this definition.

• As mandated by the “no setup” requirement, each party picks its own key pairs by KeyGen. To enable
fast verification, a one-time Preprocesswill produce a succinct verification key vk. This is a deterministic
algorithm that can be run/checked by any party. Note that parties do not need to know their weights to
sample their own keys; only the verification key vk will depend on the weightsW.

• In our definition, each signature comes with a signature-specific threshold 𝑇 . This is in stark contrast
to a standard threshold signature scheme where there is a predefined threshold 𝑇 for all signatures.
Intuitively, the adversary wins the forgery game as long as it can sign for any threshold 𝑇 higher than
the total corrupted weights

∑
𝑖∈𝐴𝑤𝑖 . This is another significant advantage of our scheme in cases where

one wants to construct a threshold signature scheme with multiple thresholds.27 For example, imagine a
voting scheme based on threshold signatures, our scheme allows one to give a succinct proof for exactly
how many weights support one candidate; standard threshold signature can only prove that, say, the
majority of the weights support a candidate.

27In order to enable this for secret sharing-based threshold signature schemes, parties need to run an instance of DKG for each
threshold it aims to support, i.e., to sample a 𝑇 -out-of-𝑛 secret sharing for each supported threshold 𝑇 .

33

Before we describe our construction, we establish some notations and recall a useful lemma known as
the generalized sumcheck [BCR+19, RZ21].

Notations for Polynomials. Let {𝜔,𝜔2, . . . , 𝜔𝑛 = 1} ⊆ F be a multiplicative subgroup of the finite field
F. Let 𝐿1(𝑥), 𝐿2(𝑥), . . . , 𝐿𝑛 (𝑥) be the Lagrange basis polynomial. That is, 𝐿𝑖 is the unique degree-(𝑛 − 1)
polynomial defined by: 𝐿𝑖 (𝜔 𝑗) is 1when 𝑖 = 𝑗 and 0when 𝑖 ≠ 𝑗 . Let 𝑍 (𝑥) = ∏𝑛

𝑖=1(𝑥 −𝜔𝑖) be the vanishing
polynomial. It is known that 𝑍 (𝑥) = 𝑥𝑛 − 1 and 𝐿𝑖 (𝑥) = 𝜔𝑖

𝑛
· 𝑥𝑛−1
𝑥−𝜔𝑖 . Note that 𝐿𝑖 (0) = 1/𝑛. Our construction

relies on the following lemma known as generalized sumcheck (refer to, for instance, Theorem 1 of [RZ21]
for a proof).

Lemma 1 (Generalized Sumcheck [BCR+19, RZ21]). Let 𝐴(𝑥) = ∑𝑛
𝑖=1 𝑎𝑖 · 𝐿𝑖 (𝑥), 𝐵(𝑥) =

∑𝑛
𝑖=1 𝑏𝑖 · 𝐿𝑖 (𝑥). It

holds that
𝐴(𝑥) · 𝐵(𝑥) =

∑
𝑖 𝑎𝑖 · 𝑏𝑖
𝑛

+𝑄𝑥 (𝑥) · 𝑥 +𝑄𝑍 (𝑥) · 𝑍 (𝑥),

where 𝑄𝑥 is a polynomial with degree ⩽ 𝑛 − 2. Note that, given 𝐴(𝑥) and 𝐵(𝑥), the quotient polynomials
𝑄𝑥 (𝑥) and 𝑄𝑍 (𝑥) can be computed efficiently (using the evaluation form of a polynomial) as

𝑄𝑥 (𝑥) =
(
𝐶 (𝑥) −

∑
𝑖 𝑎𝑖 · 𝑏𝑖
𝑛

)
· 𝑥−1 and 𝑄𝑍 (𝑥) =

(
𝐴(𝑥) · 𝐵(𝑥) −𝐶 (𝑥)

)
· 𝑍 (𝑥)−1,

where 𝐶 (𝑥) is the polynomial that interpolates (𝑎1𝑏1, . . . , 𝑎𝑛𝑏𝑛), i.e., 𝐶 (𝑥) =
∑

𝑖 𝑎𝑖𝑏𝑖 · 𝐿𝑖 (𝑥).

We are now ready to present our construction. Our construction is based on the standard commit-
and-sign three-round signing Schnorr-based scheme. We prove our security in the algebraic group model
(AGM) [FKL18].28

Theorem 2. Assuming that Discrete Log (DL) is hard, the construction in Figure 1 is a weighted threshold
signature without setup (Definition 6) in the algebraic groupmodel (AGM) and random oracle model, achieving
the following efficiency: the signature size and verification time is𝑂 (log2 𝑛), the partial signature aggregation
time is 𝑂 (𝑛 log𝑛).

Notations: We use Com and HCom for polynomial commitment for polynomials defined in the clear
and by LHEncap, respectively. Let RO,RO′,RO′′ be random oracles.

KeyGen(1_): Let G be the cryptographic group with order 𝑝 and generator 𝑔 defined by the security
parameter 1_ . Sample sk← F𝑝 and set pk = 𝑔sk.

Preprocess(pk1, . . . , pk𝑛,W): Let the polynomials defined by the secret keys and weights be

SK(𝑥) =
∑︁
𝑖

sk𝑖 · 𝐿𝑖 (𝑥) 𝑊 (𝑥) =
∑︁
𝑖

𝑤𝑖 · 𝐿𝑖 (𝑥).

Note that𝑊 (𝑥) is in the clear, and SK(𝑥) is encapsulated (as group exponentiation) by the public keys.
Let vk = (HCom(SK),Com(𝑊)). That is, the verification key is the polynomial commitment of the
hidden polynomial SK and the polynomial𝑊 in the clear. Note that this is a deterministic process.

Signing. Given a message msg and a subset 𝐵 ⊆ [𝑛] of signing parties, party P𝑖 does the following.

• Sign1: Sample 𝑟𝑖 ← F𝑝 and commits to 𝑔𝑟𝑖 by sending 𝜌𝑖1 = RO(𝑔𝑟𝑖).

28In AGM, the adversary is assumed to be algebraic, which means that any group elements output by the adversary need to be
explained by a linear combination of the group elements that it takes as input.

34

• Sign2: Given all the commitments {𝜌𝑖1}𝑖∈𝐵 , it decommits by sending 𝑔𝑟𝑖 .

• Sign3: Given {𝜌𝑖1, 𝜌𝑖2}𝑖∈𝐵 , it checks the consistency of the decommitments. If so, it computes
𝑔𝑟 =

∏
𝑖∈𝐵 𝑔

𝑟𝑖 . The random challenge is computed as 𝑐 = RO′(msg, 𝑔𝑟). It sends 𝜌𝑖3 = 𝑐 · sk𝑖 + 𝑟𝑖 .

Agg
(
msg,W,

{
𝜌𝑖1, 𝜌

𝑖
2, 𝜌

𝑖
3
}
𝑖∈𝐵

)
. The aggregator verifies the partial signature by 𝑔𝜌

𝑖
3

?
= pk𝑐𝑖 · 𝑔𝑟𝑖 . If any

of the partial signatures do not verify, it aborts. Otherwise, it proceeds as follows. It first sets the
claimed threshold𝑇 =

∑
𝑖∈𝐵𝑤𝑖 , the aggregation of the public keys apk =

∏
𝑖∈𝐵 pk𝑖 , and the aggregated

signature 𝜎 ′ = (𝑔𝑟 ,∑𝑖∈𝐵 𝜌
𝑖
3). Next, it generates a proof 𝜋 for the honest aggregation of apk.

1. Generates the polynomial commitment Com(𝐵) to the polynomial 𝐵(𝑥) = ∑
𝑖 𝑏𝑖 · 𝐿𝑖 (𝑥), where

𝑏𝑖 = 1𝑖∈𝐵 . Computes the quotient polynomials as in Lemma 1.

SK(𝑥) · 𝐵(𝑥) =
∑

𝑖 sk𝑖 · 𝑏𝑖
𝑛

+𝑄𝑥 (𝑥) · 𝑥 +𝑄𝑍 (𝑥) · 𝑍 (𝑥) (1)

𝑊 (𝑥) · 𝐵(𝑥) =
∑

𝑖 𝑤𝑖 · 𝑏𝑖
𝑛

+𝑄 ′𝑥 (𝑥) · 𝑥 +𝑄 ′𝑍 (𝑥) · 𝑍 (𝑥) (2)

Note that, even though the aggregator does not know SK(𝑥), it does have access to the encap-
sulation of SK(𝑥). Consequently, it can also compute the encapsulation of 𝑄𝑥 (𝑥) and 𝑄𝑍 (𝑥).

2. Computes the following quotient polynomial, which checks that 𝐵(𝑥) ∈ {0, 1} for all 𝑥 ∈ H.

𝐵(𝑥) · (1 − 𝐵(𝑥)) = 𝑄 (𝑥) · 𝑍 (𝑥). (3)

3. Generate the polynomial commitment to the quotient polynomials

commitments =
(
HCom(𝑄𝑥), HCom(𝑄𝑍), Com(𝑄 ′𝑥), Com(𝑄 ′𝑍), Com(𝑄)

)
.

Note that, 𝑄𝑥 (𝑥) and 𝑄𝑍 (𝑥) are polynomials encapsulated using group exponentiation, while
the rest are in the clear.

4. Sample a random challenge 𝑟 via the random oracle as 𝑟 = RO′′(commitments) . The aggregator
now generates the opening proof proving that the polynomials at 𝑥 = 𝑟 evaluate to

𝑔SK(𝑟) , 𝑔𝑄𝑥 (𝑟) , 𝑔𝑄𝑍 (𝑟) , 𝑊 (𝑟), 𝐵(𝑟), 𝑄 ′𝑥 (𝑟), 𝑄 ′𝑍 (𝑟), 𝑄 (𝑟) .

5. This completes the generation of proof 𝜋 : it consists of (1) all the polynomial commitments, (2)
the evaluations of all the polynomials at 𝑥 = 𝑟 , and (3) all the opening proofs.

The final signature is (𝑇, 𝜎), where 𝜎 = (apk, 𝜎 ′, 𝜋).

Ver(vk,msg, (𝑇, 𝜎)). Parse 𝜎 = (apk, 𝜎 ′, 𝜋). The verifier does the following.

35

• It first verifies the validity of apk under the claimed threshold 𝑇 (i.e., apk is the aggregation
of public keys with cumulative weights ⩾ 𝑇). This is done in two steps: (1) it checks that
the opening proofs for all polynomial commitments at 𝑥 = 𝑟 are correct; (2) it checks that
Equation 1, 2, and 3 hold at 𝑥 = 𝑟 .29

• If apk verifies, it checks that 𝜎 ′ is a valid signature for msg under apk. This is done by parsing
𝜎 ′ = (𝑅, 𝑧) ∈ G × F𝑝 and checking 𝑔𝑧 = apk𝑐 · 𝑅, where 𝑐 = RO′(msg, 𝑅).

Figure 1: Our weighted threshold signature without setup based on Schnorr

Proof. The correctness is straightforward due to the correctness of the polynomial identities. On the effi-
ciency side, the aggregated signature consists of a constant number of opening proofs for the FRI-based
polynomial schemes plus a constant number of additional field and group elements. By the efficiency of
FRI, the aggregated signature size and verification time is 𝑂 (log2 𝑛). When aggregating the partial signa-
tures, the aggregator needs to compute the quotient polynomials in Equation 1, 2, and 3. This computation
requires FFT (as noted in Lemma 1) and, hence, the aggregation time is 𝑂 (𝑛 log𝑛).

Next, we prove the unforgeability in two steps. We consider an intermediate hybrid, where the only
difference is in what is the aggregated signature and how the verification works. This hybrid is exactly the
trivial threshold signature schemewith a large aggregated signature and linear-time verification algorithm,
as we discussed in the technical overview (Section 2.5). In particular, the (large) aggregated signature is
exactly (𝐵, 𝜎) and the verification key is (pk1, . . . , pk𝑛). The verification works as (1) first compute apk
herself as

∏
𝑖∈𝐵 pk𝑖 and (2) verify 𝜎 under apk. We prove that if there is an adversary A that breaks the

unforgeability game, there is an adversary A′ that breaks the unforgeability game in this intermediate
hybrid. Finally, if there is anA′ that breaks the intermediate hybrid, there is an adversaryA′′ that breaks
the DL assumption in the random oracle model.

Suppose there is an adversaryA that breaks the original unforgeability game. We construct aA′ that
breaks the unforgeability of the intermediate hybrid as follows. A∗ will simply simulate A, i.e., set the
same weights, corrupt the same party, and request the same signing sessions. In each signing session, it
will send the same messages and relays the honest parties’ message to A. Finally, at some point, with a
non-negligible probability, A will output a forgery. Now, by the knowledge soundness of the FRI-based
polynomial commitment (Theorem 1), A′ will extract the polynomial 𝐵(𝑥) from the forged aggregation
signature. Since Equation 1, 2, and 3 hold at random point 𝑥 = 𝑟 , the polynomial identities must hold
except with probablity ⩽ poly(_)/|F| by Schwartz-Zippel. This means that the set 𝐵 encoded inside the
polynomial 𝐵(𝑥) is a subset with cumulative weight > 𝑇 . Moreover, the aggregated public key apk in the
forged signature must be an honest aggregation of public keys in 𝐵. Therefore, if A′ now simply sends
(𝐵, 𝜎) as her forgery in this intermediate hybrid, it will also win the forgery game. Therefore, A′ breaks
the unforgeability in this hybrid with a non-negligible probability.

Finally, we show that if there is an adversary A′ that breaks the unforgeability of the hybrid, we
construct an adversary that breaks the DL assumption in AGM. This part is similar to typical proofs of
Schnorr-based multisignature/threshold signature schemes. Let A′′ be an adversary for the DL problem.
That is, it receives a challenge 𝑔𝑥 from the external challenger. It proceeds to simulate a forgery game with
A′. For every honest party 𝑖 ∈ [𝑛] \𝐴, it picks a random 𝑎𝑖 and sets its public key to be a rerandomization
pk𝑖 = 𝑔𝑥+𝑎𝑖 of 𝑔𝑥 . A′ will send the public keys of the corrupted party {pk𝑖}𝑖∈𝐴. In AGM, A′′ can extract

29Note that, even though Equation 1 is not in the clear, anyone can verify it at 𝑥 = 𝑟 using group operations. In particular, no
term involves the multiplication of an encapsulated polynomial with another encapsulated polynomial, i.e., no pairing is required.

36

the discrete log of these public keys as the algebraic adversary A′ has to explain each group element as
a linear combination of the group elements it takes as input, which is only 𝑔 in this case. Now, for each
signing session with signers from 𝐵,A′′ simulates as follows. It sends an arbitrary random string 𝜌𝑖1 as the
commitment of honest parties’ commitment. After A′ sends its commitment, A′′ extracts the committed
𝑔𝑟𝑖 from the malicious parties. It picks a random challenge 𝑐 and sets 𝑔𝑟 to be some 𝑔𝑦−𝑐 ·𝑥 = 𝑔𝑦/(𝑔𝑥)𝑐
for a randomly sampled 𝑦. Next, it picks random 𝜌𝑖2 as the honest parties’ decommitment conditioned
on that

∏
𝑖∈𝐵 𝜌

𝑖
2 = 𝑔𝑦−𝑐 ·𝑥 . It further programs the random oracle to be consistent with the commitment

𝜌𝑖2 = RO(𝜌𝑖1) and the Fiat-Shamir challenge 𝑐 = RO′(msg, 𝑔𝑦−𝑐 ·𝑥). Finally, to send honest parties’ partial
signatures in the final round, it sends 𝜌𝑖3 = 𝑐 · (𝑥 +𝑎𝑖) + (𝑦 −𝑐 ·𝑥) = 𝑐 ·𝑎𝑖 +𝑦, which it can compute without
the knowledge of 𝑥 . This allows A′′ to simulate A′ entirely according to the right distribution. Now,
with a non-negligible probability, A′ will generate a valid forgery (𝐵∗, 𝜎∗) = (𝐵∗, (𝑅∗, 𝑧∗)) under msg∗.
Note that, to qualify as a forgery, 𝐵∗ must have cumulative weights higher than the corrupted parties.
Consequently, there must be an honest party in 𝐵∗. By our setting, we have apk =

∏
𝑖∈𝐵∗ pk𝑖 = 𝑔𝑏 ·𝑥+𝑎 for

some 𝑎 and 𝑏. Here, 𝑏 is the number of honest parties in 𝐵∗, which is non-zero and 𝑎 is the sum of honest
parties’ 𝑎𝑖 and the sum of the corrupted parties’ sk𝑖 . Since A′′ knows all of them, it knows both 𝑎 and 𝑏
in the clear. By AGM, A′′ could also extract 𝑅∗ as some 𝑔𝑢 ·𝑥+𝑣 . Now, this gives a linear equation on 𝑥 as
𝑐 · (𝑏 · 𝑥 + 𝑎) + (𝑢 · 𝑥 + 𝑣), whichA′′ can solve for 𝑥 . This is because 𝑐𝑏 +𝑢 is non-zero with overwhelming
probability; this is even true when the adversary may pick the subset 𝐵 ⊆ [𝑛], which determines 𝑏, even
after knowing 𝑐 and 𝑢. This finishes the reduction, which completes the entire proof.

Remark 4. In our definition of security, we consider the setting where the adversary picks its public key
independent of the honest parties’ public keys. If the adversary may pick its public key adaptively, there is
a potential rogue key attack [BDN18]. There are two standard approaches to prevent this attack. First, we
may rerandomize every public key from pk𝑖 to (pk𝑖)𝛼𝑖 , where 𝛼𝑖 = RO(pk1, . . . , pk𝑛, pk𝑖) is sampled by some
random oracle. In AGM, this means that one can extract the adversary’s public key pk as 𝑔𝑎 ·𝑥+𝑏 for some 𝑎 and
𝑏, and the rest of the security proof is essentially the same.30 Second, we may ask each party to provide a proof
of knowledge of sk𝑖 . Again, one could use the knowledge extractor to extract sk𝑖 and the proof is essentially
the same. We omit these details for ease of presentation.

We also note that the use of AGM is somewhat inherent. If one wishes to use forking lemma [PS00, BN06,
BDL19] and rewind-based proof strategies, the following issue (particular to our construction) would arise.
Since the adversary may pick a different 𝐵 for each forgery, the security proof has to treat each corrupted
party’s secret key as a formal variable. In order to solve the linear system involving 𝑥 and {sk𝑖}𝑖∈𝐴, one
would need to rewind approximately |𝐴| + 1 times to solve 𝑥 . However, the success probability would decay
exponentially in the number of rewinds, making this proof strategy fail. We leave removing the need of AGM
as an exciting future work.

8.2 Extensions

In this section, we briefly discuss the possible extensions to our basic scheme.

Policies beyond theweighted setting. In our basic construction, the proof 𝜋 in the aggregated signature
can be divided into two parts 𝜋1 and 𝜋2. 𝜋1 proves that apk is an honest aggregation of the public keys
from some set 𝐵, and 𝜋2 proves that 𝐵 has sufficient high weights. In fact, this 𝜋2 is nothing but a particular
SNARK for the weighted threshold gate. One can replace this SNARK with any other SNARKs to prove
any properties about 𝐵. In particular, for any access structure that can be described as an arithmetic circuit

30In particular, in AGM, we do not need the multiple rewind techniques employed in [MPSW19, NRS21].

37

𝐶 , one can use a SNARK to prove that 𝐵 is an authorized set. To facilitate this, the following changes are
necessary: (1) as part of the verification key, instead of generating a polynomial commitment to W, the
preprocessing will generate a succinct verification key for the circuit 𝐶; (2) for the aggregated signature,
proof 𝜋2 is generated to prove that 𝐵 is an authorized set under 𝐶; and (3) the verification will first use
the verification key to verify that 𝐵 is an authorized set (instead of verifying that 𝐵 has sufficient weights).
This is highly modular, and one can plug in any SNARK of its choice.

Instantiating with other multisignature. In the basic construction, we use a Schnorr-based multisig-
nature scheme with a three-round signing as one particular example. One may imagine plugging any
multisignature scheme for this construction. As we discussed in Section 2.5, as long as the multisigna-
ture scheme supports public key aggregation and the trivial threshold signature scheme induced by the
multisignature scheme is secure, our compiler simply serves to make the verification step succinct. For
example, one may use Schnorr multisignature with two-round signing [NRS21, PW23] or BLS multisigna-
ture [BDN18] as the underlying multisignature schemes. There is no fundamental barrier to instantiating
our construction with these other multisignature schemes. It is, however, beyond the scope of this paper
to present the details of all these constructions. We will next present a brief sketch of the construction
based on BLS and compare it with related works.

Sketch of the Construction based on BLS. In the BLS signature, parties’ key pairs are {sk, pk = 𝑔sk}.
To sign a message msg, the signature is 𝜎 = RO(msg)sk, which can be verified using pairing as 𝑒 (𝜎,𝑔) ?

=

𝑒 (RO(msg), pk). Due to its homomorphism, BLS naturally supports aggregation for the signatures and the
public keys, which enables a multisignature scheme [BDN18] with non-interactive signing. In particular,
each party signs the message as 𝜎𝑖 = RO(msg)sk𝑖 and the aggregated signature 𝜎 =

∏
𝑖∈𝐵 𝜎𝑖 will verify

under the aggregation of the public key apk =
∏

𝑖∈𝐵 pk𝑖 . Again, in a trivial threshold signature scheme, the
aggregator may simply output (𝐵, 𝜎) as the threshold signature and ask the verifier to compute apk and
the cumulative weight herself. This can be similarly compiled into a weighted threshold signature with
succinct verification, just like our construction in the previous section. As we discussed in Section 2.5,
prior works [GJM+24, DCX+23] also construct a weighted threshold BLS signature using this framework.
The comparison between our construction and their works is presented in Table 1.

SRS Hint Aggregation Signature Verification
(per party) time size time

[GJM+24, DCX+23] KZG SRS 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (1) 𝑂 (1)
This work N/A N/A 𝑂 (𝑛 log𝑛) 𝑂 (log2 𝑛) 𝑂 (log2 𝑛)

Table 1: Comparison between our scheme and [GJM+24, DCX+23] for weighted threshold BLS

Acknowledgement

The authors would like to thank Dario Fiore, Ignacio Cascudo, Daniele Cozzo, and Paola de Perthuis
for useful discussions on the security of verifying FHE delegation and also for bringing several related
works to our attention. The first and third authors are supported in part by DARPA under Agreement No.
HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by Visa
Inc, BAIR Commons Meta Fund, Stellar Development Foundation, and a Bakar Fellows Spark Award.

38

References

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 209–236, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-14623-7_12. 8

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In Samson Abramsky, Cyril Gavoille, Claude Kirchner,
Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP 2010: 37th International
Colloquium on Automata, Languages and Programming, Part I, volume 6198 of Lecture Notes
in Computer Science, pages 152–163, Bordeaux, France, July 6–10, 2010. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-14165-2_14. 5, 8

[AN21] Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity of
1.5𝑛 . In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part III,
volume 12827 of Lecture Notes in Computer Science, pages 627–655, Virtual Event, August 16–
20, 2021. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-84252-9_21.
7

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334, San Francisco, CA, USA, May 21–23,
2018. IEEE Computer Society Press. doi:10.1109/SP.2018.00020. 3, 8

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon inter-
active oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, ICALP 2018: 45th International Colloquium on Automata,
Languages and Programming, volume 107 of LIPIcs, pages 14:1–14:17, Prague, Czech Repub-
lic, July 9–13, 2018. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ICALP.2018.14. 3, 11, 18, 22

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin
and Jean-Sébastien Coron, editors,Advances in Cryptology – EUROCRYPT 2016, Part II, volume
9666 of Lecture Notes in Computer Science, pages 327–357, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-49896-5_12. 8

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, ShafiGoldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017. URL: https:
//doi.org/10.1007/s00145-016-9241-9. 3

[BCFK21] Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible and efficient ver-
ifiable computation on encrypted data. In Juan Garay, editor, PKC 2021: 24th International
Conference on Theory and Practice of Public Key Cryptography, Part II, volume 12711 of Lecture
Notes in Computer Science, pages 528–558, Virtual Event, May 10–13, 2021. Springer, Heidel-
berg, Germany. doi:10.1007/978-3-030-75248-4_19. 8

39

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-030-84252-9_21
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/978-3-030-75248-4_19

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474, Berkeley, CA, USA, May 18–21,
2014. IEEE Computer Society Press. doi:10.1109/SP.2014.36. 3

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiabil-
ity. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASI-
ACRYPT 2017, Part III, volume 10626 of Lecture Notes in Computer Science, pages 336–365,
Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany. doi:10.1007/
978-3-319-70700-6_12. 3

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Arya:
Nearly linear-time zero-knowledge proofs for correct program execution. In Thomas
Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part I,
volume 11272 of Lecture Notes in Computer Science, pages 595–626, Brisbane, Queens-
land, Australia, December 2–6, 2018. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-03326-2_20. 3

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear
verification from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th
Theory of Cryptography Conference, Part II, volume 12551 of Lecture Notes in Computer Sci-
ence, pages 19–46, Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-64378-2_2. 3

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
gaps for reed-solomon codes. In 61st Annual Symposium on Foundations of Computer Science,
pages 900–909, Durham, NC, USA, November 16–19, 2020. IEEE Computer Society Press.
doi:10.1109/FOCS46700.2020.00088. 3

[BCKL22] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Scalable and transparent
proofs over all large fields, via elliptic curves - (ECFFT part II). In Eike Kiltz and Vinod
Vaikuntanathan, editors, TCC 2022: 20th Theory of Cryptography Conference, Part I, volume
13747 of Lecture Notes in Computer Science, pages 467–496, Chicago, IL, USA, November 7–10,
2022. Springer, Heidelberg, Germany. doi:10.1007/978-3-031-22318-1_17. 3,
13, 22

[BCKL23] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve fast fourier
transform (ECFFT) part I: low-degree extension in time O(n log n) over all finite fields. In
Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 700–737.
SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch30. 13, 22

[BCL22] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge IOPs with linear-time
prover and polylogarithmic-time verifier. In Orr Dunkelman and Stefan Dziembowski, ed-
itors, Advances in Cryptology – EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in
Computer Science, pages 275–304, Trondheim, Norway, May 30 – June 3, 2022. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-031-07085-3_10. 3

40

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1109/FOCS46700.2020.00088
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1137/1.9781611977554.ch30
https://doi.org/10.1007/978-3-031-07085-3_10

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476
of Lecture Notes in Computer Science, pages 103–128, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-17653-2_4. 27, 34

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography Con-
ference, Part II, volume 9986 of Lecture Notes in Computer Science, pages 31–60, Beijing,
China, October 31 – November 3, 2016. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-53644-5_2. 11, 22, 24, 27

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-carrying data
from additive polynomial commitments. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in Computer Science,
pages 649–680, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-84242-0_23. 50

[BDL19] Mihir Bellare, Wei Dai, and Lucy Li. The local forking lemma and its application to de-
terministic encryption. In Steven D. Galbraith and Shiho Moriai, editors, Advances in
Cryptology – ASIACRYPT 2019, Part III, volume 11923 of Lecture Notes in Computer Sci-
ence, pages 607–636, Kobe, Japan, December 8–12, 2019. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-34618-8_21. 37

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, Part II, volume 11273 of Lecture Notes in Computer Science, pages 435–
464, Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-03329-3_15. 16, 37, 38

[BGJ+23] Leemon Baird, Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan
Wang, and Yinuo Zhang. Threshold signatures in the multiverse. In 44th IEEE Symposium
on Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023, pages 1454–1470.
IEEE, 2023. 6

[BGK+23] Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari,
and Michał Zając. Fiat-shamir security of fri and related snarks. ASIACRYPT 2023, 2023.
https://eprint.iacr.org/2023/1071. URL: https://eprint.iacr.org/2023/1071. 23, 24

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling
outside the box improves soundness. In Thomas Vidick, editor, ITCS 2020: 11th Innovations
in Theoretical Computer Science Conference, volume 151, pages 5:1–5:32, Seattle, WA, USA,
January 12–14, 2020. LIPIcs. doi:10.4230/LIPIcs.ITCS.2020.5. 3, 4, 13, 14, 26

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of com-
putation over large datasets. In Phillip Rogaway, editor, Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 111–131, Santa Bar-
bara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-22792-9_7. 5, 8

41

https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-34618-8_21
https://doi.org/10.1007/978-3-030-03329-3_15
https://eprint.iacr.org/2023/1071
https://eprint.iacr.org/2023/1071
https://doi.org/10.4230/LIPIcs.ITCS.2020.5
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-642-22792-9_7

[BHS23] Fabrice Benhamouda, Shai Halevi, and Lev Stambler. Weighted secret sharing from wiretap
channels. In ITC 2023, 2023. URL: https://eprint.iacr.org/2022/1578. 7, 9

[BHV+23] Rishabh Bhadauria, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,WenxuanWu,
and Yupeng Zhang. Private polynomial commitments and applications to mpc. In PKC 2023,
2023. URL: https://eprint.iacr.org/2023/680. 10

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 514–532, Gold Coast, Australia, December 9–13, 2001. Springer,
Heidelberg, Germany. doi:10.1007/3-540-45682-1_30. 7, 9

[BMM+21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for inner
pairing products and applications. In Mehdi Tibouchi and HuaxiongWang, editors, Advances
in Cryptology – ASIACRYPT 2021, Part III, volume 13092 of Lecture Notes in Computer Science,
pages 65–97, Singapore, December 6–10, 2021. Springer, Heidelberg, Germany. doi:10.
1007/978-3-030-92078-4_3. 8, 50

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In Ari Juels, Rebecca N.Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006: 13th Conference on Computer and Communications Security, pages
390–399, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM Press. doi:
10.1145/1180405.1180453. 37

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003: 6th Inter-
national Workshop on Theory and Practice in Public Key Cryptography, volume 2567 of Lecture
Notes in Computer Science, pages 31–46, Miami, FL, USA, January 6–8, 2003. Springer, Hei-
delberg, Germany. doi:10.1007/3-540-36288-6_3. 16

[BTVW14] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable computation
using multiple provers. Cryptology ePrint Archive, Report 2014/846, 2014. https://eprint.iacr.
org/2014/846. 27

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-
time prover and high-degree custom gates. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology – EUROCRYPT 2023, Part II, volume 14005 of Lecture Notes in Com-
puter Science, pages 499–530, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-30617-4_17. 3

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Roth-
blum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and
Edith Cohen, editors, 51st Annual ACM Symposium on Theory of Computing, pages 1082–1090,
Phoenix, AZ, USA, June 23–26, 2019. ACM Press. doi:10.1145/3313276.3316380.
23

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKswith universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of

42

https://eprint.iacr.org/2022/1578
https://eprint.iacr.org/2023/680
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/3-540-36288-6_3
https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2014/846
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1145/3313276.3316380

Lecture Notes in Computer Science, pages 738–768, Zagreb, Croatia, May 10–14, 2020. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-45721-1_26. 3, 27

[CK21] Pyrros Chaidos and Aggelos Kiayias. Mithril: Stake-based threshold multisignatures. Cryp-
tology ePrint Archive, Report 2021/916, 2021. https://eprint.iacr.org/2021/916. 7, 9

[CKM23] Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr threshold signa-
tures. CRYPTO 2023, 2023. https://eprint.iacr.org/2023/445. 32

[CKV10] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 483–501, Santa Bar-
bara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-14623-7_26. 5, 8

[CLMZ23] Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang. Eos: Efficient pri-
vate delegation of zkSNARK provers. In 32nd USENIX Security Symposium (USENIX Secu-
rity 23), pages 6453–6469, Anaheim, CA, August 2023. USENIX Association. URL: https:
//www.usenix.org/conference/usenixsecurity23/presentation/chiesa. 5, 6

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations
in Theoretical Computer Science, pages 90–112, Cambridge, MA, USA, January 8–10, 2012.
Association for Computing Machinery. doi:10.1145/2090236.2090245. 27

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Science,
pages 769–793, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-45721-1_27. 4, 6, 14, 15, 27, 28, 30

[DCX+23] Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bunz, and Ling Ren.
Threshold signatures from inner product argument: Succinct, weighted, and multi-threshold.
CCS 2023, 2023. https://eprint.iacr.org/2023/598. URL: https://eprint.iacr.org/2023/598. 7, 9,
10, 16, 38

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-Kogias, and
Ling Ren. Practical asynchronous distributed key generation. In 2022 IEEE Symposium on
Security and Privacy, pages 2518–2534, San Francisco, CA, USA, May 22–26, 2022. IEEE Com-
puter Society Press. doi:10.1109/SP46214.2022.9833584. 6

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete log-
arithms. In G. R. Blakley and David Chaum, editors, Advances in Cryptology – CRYPTO’84,
volume 196 of Lecture Notes in Computer Science, pages 10–18, Santa Barbara, CA, USA, Au-
gust 19–23, 1984. Springer, Heidelberg, Germany. 20

[FGP14] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on en-
crypted data. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st
Conference on Computer and Communications Security, pages 844–855, Scottsdale, AZ, USA,
November 3–7, 2014. ACM Press. doi:10.1145/2660267.2660366. 8

43

https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2021/916
https://eprint.iacr.org/2023/445
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_26
https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa
https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://eprint.iacr.org/2023/598
https://eprint.iacr.org/2023/598
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1145/2660267.2660366

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its appli-
cations. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages 33–62, Santa
Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. doi:10.1007/
978-3-319-96881-0_2. 34

[FNP20] Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable computation
on encrypted data. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020: 23rd International Conference on Theory and Practice of Public
Key Cryptography, Part II, volume 12111 of Lecture Notes in Computer Science, pages 124–
154, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-45388-6_5. 8

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa Barbara, CA, USA,
August 1987. Springer, Heidelberg, Germany. doi:10.1007/3-540-47721-7_12.
9, 11, 27, 28

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda, MD,
USA, May 31 – June 2, 2009. ACM Press. doi:10.1145/1536414.1536440. 4, 20

[GGJ+23] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi Sekar. zkSaaS:
Zero-Knowledge SNARKs as a service. In 32nd USENIX Security Symposium (USENIX Security
23), pages 4427–4444, Anaheim, CA, August 2023. USENIX Association. URL: https://www.
usenix.org/conference/usenixsecurity23/presentation/garg. 5, 6

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Tal Rabin, editor, Advances in Cryptology
– CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 465–482, Santa
Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-14623-7_25. 5, 8

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-
grams and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, edi-
tors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 626–645, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-38348-9_37. 3

[GHAH+23] Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk, Benjamin
Perez, and Gijs Van Laer. Efficient proofs of software exploitability for real-world pro-
cessors. Proceedings on Privacy Enhancing Technologies, 2023(1):627–640, January 2023.
doi:10.56553/popets-2023-0036. 3

[GHL22] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive publicly veri-
fiable secret sharing with thousands of parties. In Orr Dunkelman and Stefan Dziembowski,
editors, Advances in Cryptology – EUROCRYPT 2022, Part I, volume 13275 of Lecture Notes

44

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45388-6_5
https://doi.org/10.1007/978-3-030-45388-6_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/1536414.1536440
https://www.usenix.org/conference/usenixsecurity23/presentation/garg
https://www.usenix.org/conference/usenixsecurity23/presentation/garg
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.56553/popets-2023-0036

in Computer Science, pages 458–487, Trondheim, Norway, May 30 – June 3, 2022. Springer,
Heidelberg, Germany. doi:10.1007/978-3-031-06944-4_16. 6

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January
2007. doi:10.1007/s00145-006-0347-3. 6

[GJM+23] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang, and Yinuo
Zhang. Cryptography with weights: Mpc, encryption and signatures. In CRYPTO 2023, 2023.
URL: https://eprint.iacr.org/2022/1632. 7, 9

[GJM+24] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang, and Yinuo
Zhang. hints: Threshold signatures with silent setup. IEEE S&P 2024, 2024. https://eprint.
iacr.org/2023/567. URL: https://eprint.iacr.org/2023/567. 6, 7, 9, 10, 16, 38

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: in-
teractive proofs for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual
ACM Symposium on Theory of Computing, pages 113–122, Victoria, BC, Canada, May 17–20,
2008. ACM Press. doi:10.1145/1374376.1374396. 27

[GLS+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby. Brake-
down: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report
2021/1043, 2021. https://eprint.iacr.org/2021/1043. 3

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 581–612, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-63715-0_20. 27

[GMN22] Nicolas Gailly, Mary Maller, and Anca Nitulescu. SnarkPack: Practical SNARK aggre-
gation. In Ittay Eyal and Juan A. Garay, editors, FC 2022: 26th International Conference
on Financial Cryptography and Data Security, volume 13411 of Lecture Notes in Computer
Science, pages 203–229, Grenada, May 2–6, 2022. Springer, Heidelberg, Germany. doi:
10.1007/978-3-031-18283-9_10. 50

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki
Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Com-
puter Science, pages 321–340, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-17373-8_19. 3

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume
9666 of Lecture Notes in Computer Science, pages 305–326, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-49896-5_11. 3, 27, 50

[Gro21] Jens Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint
Archive, Report 2021/339, 2021. https://eprint.iacr.org/2021/339. 6

45

https://doi.org/10.1007/978-3-031-06944-4_16
https://doi.org/10.1007/s00145-006-0347-3
https://eprint.iacr.org/2022/1632
https://eprint.iacr.org/2023/567
https://eprint.iacr.org/2023/567
https://eprint.iacr.org/2023/567
https://doi.org/10.1145/1374376.1374396
https://eprint.iacr.org/2021/1043
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-031-18283-9_10
https://doi.org/10.1007/978-3-031-18283-9_10
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2021/339

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lec-
ture Notes in Computer Science, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-40041-4_5. 16, 20, 30

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic
signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACMSymposium on Theory of Computing, pages 469–477, Portland, OR, USA, June 14–
17, 2015. ACM Press. doi:10.1145/2746539.2746576. 16, 20, 30

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953. 3, 14, 15, 27, 28, 30

[Hab22] Ulrich Haböck. A summary on the FRI low degree test. Cryptology ePrint Archive, Report
2022/1216, 2022. https://eprint.iacr.org/2022/1216. 26

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th Annual ACM
Symposium on Theory of Computing, pages 21–30, San Diego, CA, USA, June 11–13, 2007.
ACM Press. doi:10.1145/1250790.1250794. 30

[KGC+18] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W.
Felten. Arbitrum: Scalable, private smart contracts. InWilliam Enck andAdrienne Porter Felt,
editors, USENIX Security 2018: 27th USENIX Security Symposium, pages 1353–1370, Baltimore,
MD, USA, August 15–17, 2018. USENIX Association. 3

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th Annual ACM Symposium on Theory of Computing, pages 723–732, Victoria, BC, Canada,
May 4–6, 1992. ACM Press. doi:10.1145/129712.129782. 3

[KMP20] Abhiram Kothapalli, Elisaweta Masserova, and Bryan Parno. A direct construction for
asymptotically optimal zkSNARKs. Cryptology ePrint Archive, Report 2020/1318, 2020.
https://eprint.iacr.org/2020/1318. 3

[KMS20] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous dis-
tributed key generation for computationally-secure randomness, consensus, and threshold
signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACMCCS
2020: 27th Conference on Computer and Communications Security, pages 1751–1767, Virtual
Event, USA, November 9–13, 2020. ACM Press. doi:10.1145/3372297.3423364. 6

[KPV22] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent
SNARKs from list polynomial commitments. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and Communica-
tions Security, pages 1725–1737, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.
doi:10.1145/3548606.3560657. 3

46

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/2746539.2746576
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1216
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2020/1318
https://doi.org/10.1145/3372297.3423364
https://doi.org/10.1145/3548606.3560657

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments
to polynomials and their applications. In Masayuki Abe, editor, Advances in Cryptol-
ogy – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 177–
194, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-17373-8_11. 7, 10, 13, 50

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory
of Cryptography Conference, Part II, volume 13043 of Lecture Notes in Computer Science, pages
1–34, Raleigh, NC, USA, November 8–11, 2021. Springer, Heidelberg, Germany. doi:10.
1007/978-3-030-90453-1_1. 3, 8, 13

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foundations of
Computer Science, pages 436–453, Santa Fe, NM, USA, November 20–22, 1994. IEEE Computer
Society Press. doi:10.1109/SFCS.1994.365746. 3

[MPSW19] GregoryMaxwell, Andrew Poelstra, Yannick Seurin, and PieterWuille. Simple schnorr multi-
signatures with applications to bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019. 16, 37

[MRV+21] Silvio Micali, Leonid Reyzin, Georgios Vlachos, Riad S. Wahby, and Nickolai Zeldovich. Com-
pact certificates of collective knowledge. In 2021 IEEE Symposium on Security and Privacy,
pages 626–641, San Francisco, CA, USA, May 24–27, 2021. IEEE Computer Society Press.
doi:10.1109/SP40001.2021.00096. 7, 9

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr
multi-signatures. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –
CRYPTO 2021, Part I, volume 12825 of Lecture Notes in Computer Science, pages 189–221,
Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-84242-0_8. 16, 37, 38

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes
in Computer Science, pages 223–238, Prague, Czech Republic, May 2–6, 1999. Springer, Hei-
delberg, Germany. doi:10.1007/3-540-48910-X_16. 20

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lec-
ture Notes in Computer Science, pages 129–140, Santa Barbara, CA, USA, August 11–15, 1992.
Springer, Heidelberg, Germany. doi:10.1007/3-540-46766-1_9. 8, 20

[PHGR13a] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252,
Berkeley, CA, USA, May 19–22, 2013. IEEE Computer Society Press. doi:10.1109/SP.
2013.47. 3

[PHGR13b] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley,
CA, USA, May 19-22, 2013, pages 238–252. IEEE Computer Society, 2013. doi:10.1109/
SP.2013.47. 27

47

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SP40001.2021.00096
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47

[Plo21] Plonky2. Plonky2, 2021. URL: https://github.com/mir-protocol/plonky2. 3

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, June 2000. doi:10.1007/
s001450010003. 37

[PW23] Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from
non-interactive assumptions. In Carmit Hazay and Martijn Stam, editors, Advances in
Cryptology – EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes in Computer Science,
pages 597–627, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany. doi:
10.1007/978-3-031-30589-4_21. 38

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory
of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press. doi:
10.1145/1060590.1060603. 20

[RPX+22] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and Dawn Song.
Zebra: Anonymous credentials with practical on-chain verification and applications to kyc
in defi. Cryptology ePrint Archive, Paper 2022/1286, 2022. https://eprint.iacr.org/2022/1286.
URL: https://eprint.iacr.org/2022/1286. 3

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and updat-
able SNARKs. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –
CRYPTO 2021, Part I, volume 12825 of Lecture Notes in Computer Science, pages 774–804,
Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-84242-0_27. 34

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science,
pages 239–252, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.
doi:10.1007/0-387-34805-0_22. 3, 7

[SCP+22] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin Tomescu, and
Yupeng Zhang. Hyperproofs: Aggregating and maintaining proofs in vector commitments.
In Kevin R. B. Butler and Kurt Thomas, editors, USENIX Security 2022: 31st USENIX Security
Symposium, pages 3001–3018, Boston, MA, USA, August 10–12, 2022. USENIX Association.
50

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part III, volume 12172 of Lecture Notes in Computer Science, pages 704–737, Santa Bar-
bara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-56877-1_25. 3

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing Ma-
chinery, 22(11):612–613, November 1979. 6

48

https://github.com/mir-protocol/plonky2
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-031-30589-4_21
https://doi.org/10.1007/978-3-031-30589-4_21
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://eprint.iacr.org/2022/1286
https://eprint.iacr.org/2022/1286
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25

[SVdV16] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-preserving
outsourcing by distributed verifiable computation. In Mark Manulis, Ahmad-Reza Sadeghi,
and Steve Schneider, editors, ACNS 16: 14th International Conference on Applied Cryptog-
raphy and Network Security, volume 9696 of Lecture Notes in Computer Science, pages 346–
366, Guildford, UK, June 19–22, 2016. Springer, Heidelberg, Germany. doi:10.1007/
978-3-319-39555-5_19. 27

[TCZ+20] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan-Gueta,
and Srinivas Devadas. Towards scalable threshold cryptosystems. In 2020 IEEE Symposium on
Security and Privacy, pages 877–893, San Francisco, CA, USA, May 18–21, 2020. IEEE Com-
puter Society Press. doi:10.1109/SP40000.2020.00059. 6

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lec-
ture Notes in Computer Science, pages 71–89, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-40084-1_5. 27

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid architec-
ture for interactive verifiable computation. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–237. IEEE Computer Society, 2013.
doi:10.1109/SP.2013.48. 27

[WHG+16] Riad S. Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael Walfish. Verifiable
asics. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 759–778. IEEE Computer Society, 2016. doi:10.1109/SP.2016.51. 27

[WTS+18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-
efficient zksnarks without trusted setup. In 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA, pages 926–943. IEEE
Computer Society, 2018. doi:10.1109/SP.2018.00060. 27

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with linear
prover time. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –
CRYPTO 2022, Part IV, volume 13510 of Lecture Notes in Computer Science, pages 299–328,
Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany. doi:10.
1007/978-3-031-15985-5_11. 3

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part III, volume 11694 of Lecture Notes in Computer Science, pages 733–764, Santa Bar-
bara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-26954-8_24. 3, 27

[ZFZS20] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs
for decision tree predictions and accuracy. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer and Communi-
cations Security, pages 2039–2053, Virtual Event, USA, November 9–13, 2020. ACM Press.
doi:10.1145/3372297.3417278. 3

49

https://doi.org/10.1007/978-3-319-39555-5_19
https://doi.org/10.1007/978-3-319-39555-5_19
https://doi.org/10.1109/SP40000.2020.00059
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1109/SP.2013.48
https://doi.org/10.1109/SP.2016.51
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1145/3372297.3417278

[ZkR21] ZkRollups. An incomplete guide to rollups, 2021. URL: https://vitalik.ca/general/2021/01/05/
rollup.html. 3

[ZLW+21] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover
time. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Com-
puter and Communications Security, pages 159–177, Virtual Event, Republic of Korea, Novem-
ber 15–19, 2021. ACM Press. doi:10.1145/3460120.3484767. 3

A Public Aggregation of KZG Opening Proofs

For completeness, we discuss the utility of our techniques in aggregating SNARK proofs. There are many
works recently on publicly aggregating SNARK proofs: [BDFG21] for KZG opening proofs, [BMM+21,
GMN22] for Groth16 proofs [Gro16], and [SCP+22] for vector commitment opening proofs. While our
techniques can be applied to all these works to obtain similar results, it is beyond the scope of this work
to present all of them in detail. Therefore, we will use aggregating KZG polynomial commitment opening
proofs as one example to show the applicability of our technique.

Recap of KZG [KZG10]. Let G be a pairing-friendly group with generator 𝑔 and pairing 𝑒 (·, ·). In KZG
polynomial commitment scheme, the SRS is (𝑔,𝑔𝜏 , . . . , 𝑔𝜏𝐷) for some random 𝜏 and a maximum degree 𝐷 .
The commitment to a polynomial 𝑓 (𝑥) = 𝑎0 + 𝑎1 · 𝑥 + · · · + 𝑎𝑑 · 𝑥𝑑 is 𝜎 = 𝑔𝑓 (𝜏) , which can be computed
by

∏𝑑
𝑖=0

(
𝑔𝜏

𝑖
)𝑎𝑖

. To open the polynomial at 𝑥∗, one computes the quotient polynomial 𝑄 (𝑥) = 𝑓 (𝑥)−𝑓 (𝑥∗)
𝑥−𝑥∗ .

The opening proof is 𝜋 = 𝑔𝑄 (𝜏) . To verify the proof, one checks 𝑒 (𝜎,𝑔) ?
= 𝑒 (𝜋,𝑔𝜏/𝑔𝑥∗).

It is well-known that one can batch KZG opening proof for different polynomials at the same location or
the same polynomial at different locations. In this section, we focus on the case where the aggregator holds
𝑛 opening proofs of different polynomials 𝑓1, . . . , 𝑓𝑛 at different locations 𝑥 = 𝑥1, . . . , 𝑥 = 𝑥𝑛 . It wishes to
aggregate these proofs into a succinct one proving all the statements simultaneously. Prior work [BDFG21]
has shown how to publicly aggregate these proofs, where the verification time is𝑂 (𝑛2).31 Our scheme only
requires a verification time of 𝑂 (𝑛), but comes at a larger proof size.

A.1 The construction for aggregating KZG Opening Proofs

We use similar notations as described in Section 8. Our construction makes use of the following lemma,
similar to Lemma 1.

Lemma 2 (More Generalized Sumcheck). Let 𝐴(𝑥) = ∑𝑛
𝑖=1 𝑎𝑖 · 𝐿𝑖 (𝑥), 𝐵(𝑥) =

∑𝑛
𝑖=1 𝑏𝑖 · 𝐿𝑖 (𝑥), and 𝐶 (𝑥) =∑𝑛

𝑖=1 𝑐𝑖 · 𝐿𝑖 (𝑥). It holds that

𝐴(𝑥) · 𝐵(𝑥) ·𝐶 (𝑥) =
∑

𝑖 𝑎𝑖 · 𝑏𝑖 · 𝑐𝑖
𝑛

+𝑄𝑥 (𝑥) · 𝑥 +𝑄𝑍 (𝑥) · 𝑍 (𝑥),

where𝑄𝑥 is a polynomial with degree⩽ 𝑛 − 2. As similar to Lemma 1, note that, given𝐴(𝑥), 𝐵(𝑥), and𝐶 (𝑥),
𝑄𝑥 (𝑥) and 𝑄𝑍 (𝑥) can be computed efficiently using FFT as

𝑄𝑥 (𝑥) =
(
𝐷 (𝑥) −

∑
𝑖 𝑎𝑖𝑏𝑖𝑐𝑖

𝑛

)
· 𝑥−1 and 𝑄𝑍 (𝑥) =

(
𝐴(𝑥) · 𝐵(𝑥) ·𝐶 (𝑥) − 𝐷 (𝑥)

)
· 𝑍 (𝑥)−1,

31One may use the inner product argument-based approach (similar to Snarkpack [GMN22]) to reduce this to𝑂 (𝑛). However,
as far as we know, this is not explicitly written anywhere.

50

https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://doi.org/10.1145/3460120.3484767

where 𝐷 (𝑥) is the polynomial that interpolates (𝑎1𝑏1𝑐1, . . . , 𝑎𝑛𝑏𝑛𝑐𝑛), i.e., 𝐷 (𝑥) =
∑

𝑖 𝑎𝑖𝑏𝑖𝑐𝑖 · 𝐿𝑖 (𝑥).

Construction Sketch. Given the statements {Com(𝑓𝑖), 𝑥𝑖 , 𝑦𝑖}𝑛𝑖=1 and proofs {𝜋𝑖 = Com (𝑄𝑖)}𝑛𝑖=1 where
𝑄𝑖 (𝑥) = 𝑓𝑖 (𝑥)−𝑦𝑖

𝑥−𝑥𝑖 . Our construction is based on the following idea. The aggregator will first commit to the
vector of proofs 𝜋1, . . . , 𝜋𝑛 . A random challenge 𝑣 is picked, and the aggregator will prove to the verifier
the random linear combination of

𝛼 =
∏
𝑖

(𝑒 (𝜋𝑖 , 𝑔𝜏/𝑔𝑥𝑖))𝑣
𝑖

.

The verifier will check if
𝛼

?
=

∏
𝑖

(𝑒 (Com(𝑓𝑖)/𝑔𝑦𝑖 , 𝑔))𝑣
𝑖

.

In more details, the proof aggregator does the following.

• Let Π(𝑥) be the polynomial interpolating (𝜋1, . . . , 𝜋𝑛). The aggregator generates HCom(Π) as the
commitment to Π(𝑥).

• Using the random oracle with input Com(Π) to sample a random challenge 𝑣 .

• Define the polynomial𝑇 (𝑥) that interpolates (𝜏 −𝑥1, 𝜏 −𝑥2, . . . , 𝜏 −𝑥𝑛). Define the polynomial𝑉 (𝑥)
that interpolates (𝑣, 𝑣2, . . . , 𝑣𝑛). Invoke Lemma 2 as

Π(𝑥) ·𝑇 (𝑥) ·𝑉 (𝑥) =
∑

𝑖 𝑄𝑖 (𝜏) · (𝜏 − 𝑥𝑖) · 𝑣𝑖
𝑛

+𝑄𝑥 (𝑥) · 𝑥 +𝑄𝑍 (𝑥) · 𝑍 (𝑥) . (4)

• The aggregator commits to 𝑄𝑥 (𝑥), 𝑄𝑍 (𝑥). We note that these polynomials are encapsulated in the
target group.

• A random challenge 𝑟 is sampled by the random oracle. The aggregator gives an opening proof
proving that the committed polynomials at 𝑥 = 𝑟 evaluate to

𝑔Π (𝑟) , 𝑔𝑇 (𝑟) ,𝑉 (𝑟), 𝑒 (𝑔,𝑔)𝑄𝑥 (𝑟) , 𝑒 (𝑔,𝑔)𝑄𝑍 (𝑟) .

Additionally, the aggregator computes and sends 𝛼 , which should equal to

𝛼 =
∏
𝑖

(𝑒 (𝜋𝑖 , 𝑔𝜏/𝑔𝑥𝑖))𝑣
𝑖

=
∏
𝑖

(𝑒 (Com(𝑓𝑖)/𝑔𝑦𝑖 , 𝑔))𝑣
𝑖

To verify the proof, the verifier checks all the opening proofs. For the opening proof of the polynomial
commitment related to the statements, i.e., 𝑇 (𝑥) that interpolates (𝜏 − 𝑥𝑖)’s, the verifier needs to check
the consistency of the first layer of the FRI openings with the statement that it holds. In particular, they
should form a correct Reed-Solomon codeword uniquely defined by the statements. The verifier will check
this using a parity check. In addition to verifying the opening proofs, the verifier also checks if Equation 4
holds at 𝑥 = 𝑟 .

Soundness. The soundness roughly is as follows. By the soundness of the polynomial commitment, there
exists a polynomial Π(𝑥) (consistent with the opening proof) that encodes some proofs (𝜋1, . . . , 𝜋𝑛). If any
one of the individual statements does not verify, by Schwartz-Zippel, with all but poly(_)/|F| probability,
the merged statement using the challenge 𝑣 will not verify. Finally, since Equation 4 holds at a random

51

location 𝑥 = 𝑟 , with all but poly(_)/|F| probability, the polynomial identity holds, which proves that 𝛼 is
the correct computation of

∏
𝑖 (𝑒 (𝜋𝑖 , 𝑔𝜏/𝑔𝑥𝑖))𝑣

𝑖

based on the committed proofs 𝜋𝑖 .

Efficiency. The aggregated proof size depends on the opening proof size of FRI, which is 𝑂 (log2 𝑛). The
aggregation time is dominated by FFT operations. Since the aggregator needs to do FFT on group elements,
the aggregation time is 𝑂 (𝑛 log𝑛) group operations. The verification time is dominated by computing
𝛼 =

∏
𝑖 (𝑒 (𝜋𝑖 , 𝑔𝜏/𝑔𝑥𝑖))𝑣

𝑖

, which takes 𝑂 (𝑛) group operations.

52

	Introduction
	Our Contribution
	Related Works

	Technical Overview
	FRI on Hidden Values
	Polynomial Commitments on Hidden Values
	Application I: Efficiently Verifiable Private Delegation of Computation
	Application II: Private Outsourcing of zkSNARKs to a Single Server
	Application III: Weighted Threshold Signature without Setup

	Preliminaries
	FRI on Hidden Values
	Linearly-Homomorphic Encapsulation
	SNARKs for Low-Degree Testing on LHEncap
	FRI on LHEncap

	Polynomial Commitments on Hidden Values
	Defining Polynomial Commitments on LHEncap
	Constructing Polynomial Commitments on LHEncap

	Efficiently Verifiable Private Delegation of Computation
	Overview of Polynomial IOP based SNARKs
	Our Construction

	Private Outsourcing of zkSNARKs to a Single Server
	Weighted Threshold Signatures without Setup
	A Construction based on Schnorr
	Extensions

	References
	Public Aggregation of KZG Opening Proofs
	The construction for aggregating KZG Opening Proofs

