
New proof systems and an OPRF from CSIDH

Cyprien Delpech de Saint Guilhem and Robi Pedersen

COSIC, KU Leuven
Kasteelpark Arenberg 10 Bus 2452, 3001 Leuven, Belgium

Abstract. Isogeny computations in CSIDH (Asiacrypt 2018) are de-
scribed using a commutative group G acting on the set of supersingular
elliptic curves. The commutativity property gives CSIDH enough �exibil-
ity to allow the creation of many cryptographic primitives and protocols.
Nevertheless, these operations are limited and more complex applications
have not yet been proposed.
When calling the composition of two group elements of G addition, our
goal in this work is to explore exponentiation, multiplication with public
elements, and multiplication between secret elements of this group. We
�rst introduce a two-party interactive protocol for multiplication of secret
group elements. Then, we explore zero-knowledge proofs of these di�erent
arithmetic operations. We present two types of approaches, using either
standard sigma protocols or the MPC-in-the-Head paradigm. Most of our
proofs need a trusted setup, which can be removed in the MPC-in-the-
Head setting using cut-and-choose techniques. We conclude this work
by presenting an oblivious pseudorandom function based on our new
framework, that is competitive with current state-of-the-art designs.

Keywords: Isogeny-based cryptography · CSIDH · Zero-knowledge proofs
· MPC-in-the-Head · Cryptographic Protocols · OPRF

1 Introduction

Isogeny-based assumptions are one of a few promising candidates for quantum-
resistant cryptography. Even after the recent break of SIKE and SIDH [20,51,56]
and related schemes, protocols based on di�erent security assumptions, such as
CSIDH [21] and SQISign [28], remain viable alternatives for isogeny-based con-
structions. The former has shown a lot of versatility over the past few years
and many protocols have been based its �exibility, such as signatures [13,27,32]
and public-key encryption [36, 52], oblivious transfer [6, 50], oblivious pseudo-
random functions [17,41], distributed protocols [4, 5, 13�15,22,25,29] and many
more [1, 2, 31].

CSIDH-based schemes can be described via a group G acting on a set E as

⋆ : G × E → E .

Given (E, a ⋆ E) ∈ E2, where a ∈ G, it is computationally infeasible to learn a.
Here, E is the set of supersingular elliptic curves over a prime �eld Fp with some

https://orcid.org/https://orcid.org/0000-0002-0147-2566
https://orcid.org/https://orcid.org/0000-0001-5120-5709

speci�ed endomorphism ring. There is no de�ned operation on the elements of
E . The only �exibility allowing the construction of protocols comes from G, the
ideal-class group cl(O) of an order O in Q(

√
−p), which is commutative, among

other properties. This allows to easily build a Di�e�Hellman scheme between
two parties, with secret-public key pairs (a, a⋆E) and (b, b⋆E), respectively, by
each using the other's public key to compute a ⋆ (b ⋆ E) = ab ⋆ E = b ⋆ (a ⋆ E).
This is exactly the operation underlying the Di�e�Hellman key exchange scheme
from Castryck et al. [21].

Expressed in terms of a public generator ⟨g⟩ ⊆ G, let a = ga and b = gb, then
this Di�e�Hellman scheme amounts to the addition of elements in the exponent
of g, i.e. ga ⋆ (gb ⋆ E) = ga+b ⋆ E, which we can compute from the knowledge of
a and gb ⋆E, even without knowing b. On the other hand, it is hard to compute
ga+b ⋆E from the knowledge of ga ⋆E and gb ⋆E only [21]. Multiplication in the
exponent of the group generator, on the other hand, does not straightforwardly
follow in the same way. In fact, there is no direct way to compute gab ⋆ E from
knowledge of a and gb ⋆ E, let alone from the knowledge of ga ⋆ E and gb ⋆ E;
this extends to exponentiation.

The possibility of using more complex arithmetic operations in the exponent
of the generator is what makes the discrete logarithm setting so versatile. The
goal of this work is to extend the �exibility of CSIDH-based schemes to also
incorporate these operations and hopefully allow to construct protocols that
appear out of reach with the current toolbox. We note that these new operations
come with new hard problems. These problems also can be used to construct
new zero-knowledge protocols based on them, which are explored in this work.

Our contributions. We extend the current isogeny-based group action tool-
box with the possibility of performing squaring and (scalar) multiplications in
the exponent of a public class group generator g acting on elliptic curves. If this
generator is public, we can de�ne the group action using the group in the ex-
ponent of the group generator. Assuming ⟨g⟩ = G of order N , this group action
looks like

[] : Z/NZ× E → E
(a,E) 7→ [a]E = ga ⋆ E .

Table 1 presents a brief overview of the di�erent arithmetic operations we de�ne
on isogenies. In order to draw some parallels to the discrete log (DLOG) setting,
we de�ne H to be a group in which the discrete logarithm problem is hard. We
can describe operations in the DLOG setting as a group D acting on H with
⋆ : D ×H → H as a ⋆ h 7→ ha. The DLOG assumption implies that it is hard to
�nd a ∈ D, given (h, ha). If D is generated by a �xed g ∈ D and #D = M , we
can also de�ne the group action [] : ZM×H → H, such that [a]h 7→ ga⋆h = hga

.
Note that we do not assume the discrete logarithm problem to be hard in D.

After introducing some background in Section 2, we start Section 3 by in-
troducing new hardness assumptions related to these new operations. We show
how they can be reduced to known problems in the literature. We then discuss
two-party protocols for multiplications of the type [ab]E = gab ⋆ E, where one

2

Table 1. Arithmetic operations for the discrete logarithm and isogeny settings. We
show how to compute operations given the minimal amount of secret information, and
indicate the minimum number of secrets necessary to do so. For better illustration, we
abuse notation by using the same letters for elements in G and D, as well as in ZN and
ZM . In both cases, we assume a and b to be secret and c and e to be public scalars.
We identify a = ga and b = gb, and assume a ⋆ E, b ⋆ E, ha, hb to be public.

Isogenies Discrete logarithm Secrets

Addition
a ⋆ (b ⋆ E) = b ⋆ (a ⋆ E) = ab ⋆ E (ha)b = (hb)a = hab =

1
= [a][b]E = [b][a]E = [a+ b]E (hga)g

b

= (hgb)g
a

= hga+b

Scalar Mult. ac ⋆ E = [ca]E hac = hgca 1

Exponentiation ga
e

⋆ E = [ae]E hga
e

1

Multiplication ab ⋆ E = ba ⋆ E = [ab]E hab = hba = hgab

2

party knows a, and the other b, without revealing those elements. We note that
interactive protocols of this type need a trusted setup, which we also introduce.

In Section 4, we then present zero-knowledge proof systems for the lan-
guages de�ned by our newly proposed hardness assumptions. These protocols
allow for example to prove that some tuples, such as (E, [a]E, [b]E, [ab]E) or
(e, E, [a]E, [ae]E) are well-formed. We achieve this in two ways, either with stan-
dard sigma protocols, or using MPC-in-the-Head (MPCitH). These proofs are
competitive with protocols proving correct structure of additive tuples, i.e. tu-
ples of the form (E, [a]E, [b]E, [a + b]E) as they were presented by Cozzo and
Smart [25]. Again, our protocols rely on a trusted setup. In the MPCitH pro-
tocols, however, we can remove the trusted setup by using the �cut-and-choose�
technique [46]. We show that proofs of multiplication and exponentiation are
reminiscent of pairings in elliptic curve cryptography, although without the ad-
vantage of public veri�ability.

We conclude this work by introducing a new post-quantum secure oblivious
pseudo-random function (OPRF) in Section 5, based on the new tools presented
in this work. Our OPRF relies on a trusted setup which can be removed using
a pre-processing protocol based on OT extensions [6,47,48], and relies on a new
hardness assumption, which we motivate well. Compared to the state-of-the-art
of post-quantum OPRFs, our protocol has very competitive computational and
communication cost, even for conservative security parameters, and is round-
optimal. Furthermore, we can extend our construction to a veri�able OPRF.

Related work. Boneh, Kogan and Woo [17] introduced the �rst two OPRF
constructions based on isogenies, one based on SIDH and one on CSIDH as-
sumptions. Although the SIDH-based OPRF was �rst broken by Basso et al. [9]
and later SIDH itself [20, 51, 56], a new design by Basso [8] solves both of these
problems, at the cost of working with much larger parameters. Indepdendently,
Heimberger et al. modi�ed the CSIDH-based OPRF of Boneh et al. to also
work in the restricted e�ective group action setting [41] (where canonical repre-
sentation of class group elements is not possible [2]), while also decreasing the

3

computational and communication cost of the protocol. On the downside, this
protocol has a much higher round complexity.

Independently of this work, Joux [44] proposed MPC-in-the-head protocols to
decrease the soundness error of the CSI-FiSh identi�cation protocol [16]. While
we are also considering MPC-in-the-head protocols, we note that there is no
direct overlap between this work and theirs, as we are introducing new types of
identi�cation schemes.

2 Background

Notation. We let λ denote the computational security parameter. A function
f(x) is negligible if for any constant c, there exists x0 such that for all x > x0,
we have f(x) < x−c. We write ZN = Z/NZ and [n] = {1, . . . , n}.

2.1 Isogeny-based cryptography

Isogenies are surjective morphisms between elliptic curves. Endomorphisms are
isogenies from elliptic curves to themselves. The endomorphisms of an elliptic
curve E, together with the zero-map, de�ne a ring under addition and composi-
tion. For supersingular elliptic curves over Fp, the ring of Fp-rational endomor-
phisms is isomorphic to an order O in the quadratic imaginary �eld Q(

√
−p).

Separable isogenies are uniquely determined by their kernel, which can be
expressed as a �nite group of points on the domain. A straightforward way to
generate such a group of points is via the kernel of ideals of the ideal-class group
cl(O), e.g. let a ∈ cl(O), then E[a] = {P ∈ E(Fp) | ∀α ∈ a : α(P) =∞} de�nes
the kernel of an isogeny. In this sense, we can interpret elements of the class
group cl(O) as acting on the set of supersingular elliptic curves over Fp whose
Fp-rational endomorphism ring is isomorphic to O. We denote this set as E and
write the action as ⋆ : cl(O) × E → E . Thus, the action of a on a supersingular
elliptic curve E ∈ E de�nes an isogeny E → a ⋆E := E/E[a] via its kernel. As a
shorthand, we will simply refer to a as an isogeny. We note that this action is free
and transitive. If the class group is cyclic and a generator g is known and �xed,
we can write the group action using the exponent notation introduced in [16],

[] : ZN × E → E
(a,E) 7→ [a]E = ga ⋆ E ,

where N = #cl(O).1 Note that ZN de�nes the group in the exponent of the
generator g, e.g. consecutive actions amount to the addition of the elements in
ZN , e.g. [a]([b]E) = ga ⋆ (gb ⋆ E) = ga+b ⋆ E = [a+ b]E.

It is important to note that the class number N is generally a composite
number. This implies that the coe�cients in the exponent are de�ned over a

1 We assume cl(O) to be cyclic. While not always the case, we can work in a cyclic sub-
group of a non-cyclic class group. With high probability, such large cyclic subgroups
exist [23]. For the rest of this work, we assume that N is not a smooth number.

4

ring, rather than a �eld as is commonly the case in cryptographic constructions.
While this does not really impact addition, we have to be more careful when
talking about multiplication, especially concerning elements that do not have a
multiplicative inverse.

Throughout this work, we consider supersingular elliptic curves de�ned over
some prime �eld Fp. For e�ciency reasons (see [21]), p is chosen to have the form
p = 4

∏n
i=1 ℓi − 1, where ℓ1, . . . , ℓn−1 are the n− 1 smallest distinct odd primes

and ℓn > ℓn−1 is the smallest possible prime that makes p a prime as well. By
this choice, the ideal ℓiO always splits into a prime ideal li and its conjugate li,
de�ning an isogeny of degree ℓi or its dual. Now, the consecutive computation of
many small isogenies of these prime degrees allows to compute isogenies of large
degree e�ciently, even if the class group is unknown. However, translating any
arbitrary isogeny, e.g. ga into small prime degree isogenies, requires knowing the
relation between the di�erent elements l1, . . . , ln. Then arbitrary elements can
be reduced modulo this lattice to yield e�ciently computable isogenies, although
the actual e�ciency depends on how short the basis of the relation lattice is.

The class group structure and a short relation lattice have been computed
for the CSIDH-512 parameter set [16] (where log p ≈ 512). Higher class group
parameter sets can be computed in polynomial time on a quantum computer [49]
or with the approach outlined by De Feo et al. [26], but algorithms to reduce
relation lattices are less e�cient. Knowing the class group and relation lattice
allows uniform sampling of elements and canonical representations of elements as
powers of a generator. Most notably, this allows to construct e�cient signatures
that do not need rejection sampling [27], such as CSI-FiSh [16].

In the ID-protocol underlying CSI-FiSh, a prover proves knowledge of a secret
element s connecting two elliptic curves E0 and E1 = [s]E0, which is a witness
for the following hard problem.

Problem 1 (Group action inverse problem (GAIP)). Given a pair of elliptic
curves (E0, E1) ∈ E2, �nd s ∈ ZN , such that [s]E0 = E1.

To prove knowledge of s, the prover commits to a curve Eb = [b]E0 for a random
b← ZN , then upon receiving a challenge c← {0, 1}, returns r = b− cs. Finally,
the veri�er accepts the proof only if [r]Ec = Es.

2.2 Zero-Knowledge Proofs

Let X and W be sets, and let R : X × W → {0, 1} be a relation de�ning
the language L = {x ∈ X : ∃w ∈ W with R(x,w) = 1}. First introduced
by Goldwasser, Micali and Racko�, interactive proofs are two-party protocols
where a prover P convinces a veri�er V that, given x ∈ X, it knows a witness
w ∈ W such that R(x,w) = 1 [40]. Sigma protocols are protocols that execute
in three rounds, in which the prover �rst sends a commitment value b to V , who
then issues a challenge c. The prover responds to the challenge with r. After a
veri�cation step, the veri�er then either accepts or rejects the proof. In order to
be secure, such an interactive proof must be complete and sound. Completeness
implies that ifR(x,w) = 1, the honest veri�er accepts the proof, while soundness

5

requires that a malicious prover cannot make an honest veri�er accept a proof
for a relation R(x′, w′) = 0, up to negligible probability. The stronger notion of
2-special soundness requires the existence of a PPT algorithm (the extractor),
which, given two accepting transcripts for the same commitment b, but with
di�erent challenges c ̸= c′, is able to extract a witness w. Optionally, interactive
proofs can also be (honest veri�er) zero-knowledge, which implies that a (honest)
veri�er cannot extract any information about the witness w from the transcript
of the protocol. This last property can be proven by building a simulator that can
produce a protocol transcript that is indistinguishable from a real one, without
the knowledge of w.

De�nition 1 (Completeness). A sigma protocol between parties P, V is com-
plete for the relation R, if for all R(x,w) = 1, V outputs True.

De�nition 2 (Special soundness). A sigma protocol between parties P, V is
special sound, if there exists a PPT extractor Ext, which for any x ∈ L, when
given two valid protocol transcripts (b, c, r) and (b, c′, r′), can extract w ∈ W ,
such that R(x,w) = 1.

De�nition 3 (Zero-knowledge). A sigma protocol between parties P, V is
zero-knowledge, if there exists a PPT simulator Sim, which for any x ∈ L can
generate a transcript (b, c, r) of the protocol, indistinguishable from a real tran-
script of the protocol, without knowledge of w.

MPC-in-the-Head. First proposed by Ishai, Kushilevitz, Ostrovsky and Sahai
in 2007, the MPC-in-the-Head (MPCitH) framework is a recent construction for
zero-knowledge proof systems using secure multiparty computation (MPC) [43].

To prove a relation R(x,w) = 1, the prover simulates �in its head� the exe-
cution of an n-party protocol which veri�es the witness. To this end, the prover
samples random tapes for each party, gives them their share wi of the witness,
and simulates their communication and internal states according to the MPC
protocol. With the random tape ri, the witness share wi, and all the incoming
messages, the prover can save the internal view of party Pi. After receiving com-
mitments to each of these views, the veri�er selects a subset at random which
the prover has to open. The veri�er then checks for each opened views that the
incoming and outgoing messages are consistent with each other, and that the
local computations have been performed correctly and �nally, if the execution
of the MPC protocol yields R(x,w) = 1. Based on this, the veri�er accepts or
rejects the proof.

This work focuses on MPCitH proofs built from MPC protocols that use
additive secret-sharing and that are secure against passive corruptions. Assuming
ideal commitments, this implies that the resulting proof system is zero-knowledge
when the veri�er opens n−1 of the committed views, and it has soundness error
1/n, since the prover can successfully guess the veri�er's challenge and cheat on
one out of the n views. More formally, the MPC protocol Π should satisfy the
following de�nition of privacy, with t = n− 1.

6

De�nition 4 (t-privacy [43]). Let 1 ≤ t < n. We say that Π realizes f with
t-privacy if there is a PPT simulator Sim such that for any inputs x,w1, . . . , wn

and every set of corrupted players T ⊆ {1, . . . , n}, where |T | ≤ t, the joint view
ViewT (x,w1, ..., wn) of players in T is indistinguishable from
Sim(T, x, (wi)i∈T , fT (x,w1, . . . , wn)).

We refer the reader to previous works on MPCitH for the formal security state-
ments of generic proofs built within this paradigm and for the reduction of the
soundness error using repetition [43,46].

The cut-and-choose technique. The cut-and-choose method is used to pro-
vide security against malicious adversaries. When a single party has to generate
commitments to sets of correlated randomness, but is not trusted to do so hon-
estly, they are asked to provide commitments to additional sets of randomness.
Then, the other member(s) of the computation will randomly �cut and choose�
some of the commitments that the generator must open to demonstrate their
honesty. Since the generating party does not know in advance which commit-
ments will be �cut�, and which will be �chosen� for the computation, this serves
as a probabilistic test for the correctness of the unopened sets of randomness.

In the case of MPCitH argument systems, using the cut-and-choose technique
was �rst proposed by Katz, Kolesnikov and Wang to enable the use of MPC
protocols with a witness-independent pre-processing phase [46]. Concretely, the
idea is that, before simulating the views of the parties during the MPC protocol,
the prover commits to m executions of the pre-processing generation, of which
the veri�er cuts m − τ in order to verify that they were correctly computed. If
the prover has cheated on c ∈ [m] of these executions, then the probability that
the cut-and-choose technique fails to uncover this is

(
m−c
m−τ

)
/
(

m
m−τ

)
.

For each of the τ executions chosen after the cut, the prover has probability
1/n of successfully cheating if the pre-processed data is honest, and has proba-
bility 1 otherwise. Accounting for the c executions with dishonest pre-processing,
this implies that the Prover has probability 1/nτ−c of successfully cheating in
the online phase of the MPC protocol.

In summary, MPCitH proof systems based on the cut-and-choose technique
have the following soundness error formula [11, Theorem 2]:

ϵCnC(m,n, τ) = max
0≤c≤τ

{ (
m−c
m−τ

)(
m

m−τ

)
· nτ−c

}
.

Furthermore, they require that the prover pre-computes m copies of the corre-
lated randomness and that the veri�er re-computes m− τ of them.

Non-interactive MPCitH proofs. Generic MPCitH proof systems are al-
ways public-coin and secure in the honest-veri�er setting. Therefore, the proof
systems constructed in the original 3-round framework of Ishai et al. [43] can be
transformed into non-interactive zero-knowledge proofs of knowledge, and there-
fore digital signature schemes, using the generic Fiat�Shamir transform [34]. The

7

MPCitH proof systems constructed in the cut-and-choose framework introduced
by Katz et al. are usually 5-round protocols (or sometimes more) and can also
be made non-interactive using recent techniques [10,45,46].

3 Towards multiplication from addition

This section introduces our toolbox to construct the protocols that follow in
later sections. We start with the functionality to generate trusted tuples and
show how this can be used by two parties to multiply their secrets.

3.1 Tuple generation functionality

In 1991, Beaver introduced a method to securely compute the product of two
secret values using a pre-computed triple of random secret values B = (x, y, z)
such that z = xy [12]. When the elements of Beaver triples are additively secret-
shared between multiple parties, it allows them to compute the product of two
other secret-shared values, say a and b, by �rst opening masked values and then
constructing the product c = ab using only local linear operations.

More precisely, let (ai, bi, xi, yi, zi) be the additive shares that party Pi has of
(a, b, x, y, xy), respectively. By revealing their shares αi = ai−xi and βi = bi−yi,
the parties can each compute the values α =

∑
i αi = a − x and β =

∑
i βi =

b−y.2 Since x and y are random, this does not reveal information about a and b.
Then, the parties can locally compute their additive share of c = a · b by setting

ci = αyi + βxi + zi +

{
αβ if i = n,

0 otherwise,

It now follows that
∑n

i=1 ci = αy + βx + xy + αβ = (α + x)(β + y) = ab . We
can explicitly write the secret-shared triple as

B = (id; (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn)) ∈ {0, 1}∗ × (Zn
N)3 , (1)

with
∑n

i=1 zi = (
∑n

i=1 xi) (
∑n

i=1 yi), and where id ∈ {0, 1}∗ is a unique identi�er.
We call view the set of shares or elements that a party has knowledge of. In
general multi-party protocols as described above, the view of party Pi is given
by V iewPi

(B) = (id;xi, yi, zi) .

Multiplying group elements. We show how to use Beaver triples of the type (1),
when we want to compute the product of two secret-shared values a and b in ZN .
Again, let α = a− x and β = b− y and assume they are given to each of the n
parties, as if they had been opened. Now,

[ab]E =
[(

α+

n∑
i=1

xi

)(
β +

n∑
i=1

yi

)]
E

2 We note that all operations are operations in ZN , i.e. should be read modulo N .

8

=
[
αβ + α

n∑
i=1

yi + β

n∑
i=1

xi +

n∑
i=1

zi

]
E

= [αy1 + βx1 + z1] · · · [αyn + βxn + zn + αβ]E ,

and parties can compute [ab]E by each Pi computing the action [αyi + βxi + zi]
in a round-robin fashion, using only their knowledge of α, β and V iewPi

(B). The
�nal action [αβ]E is computed by Pn (but could in fact be computed by any
party). We summarize the round-robin steps in Figure 1.

MPC multiplication protocol for Pi(α, β, xi, yi, zi)

1 : from Pi−1 receive Fi−1 (P1 receives F0 = E0)

2 : if i < n then

3 : Fi ← [βxi + αyi + zi]Fi−1

4 : send Fi to Pi+1

5 : if i = n then

6 : Fn ← [αβ + βxn + αyn + zn]Fn−1

7 : Broadcast(Fn)

Fig. 1. Round-robin step in the multiplication protocol for n parties.

This protocol is only passively secure, i.e. a correct output is only guaranteed
if all parties behave according to the instructions of the protocol. In order to
make this protocol actively secure, we introduce zero-knowledge proofs later
in Section 4, which parties can append to their messages to prove that their
computations have been indeed performed correctly. But this protocol is even
more versatile: we further show in Section 4, how it can be used to create MPCitH
proof systems in order to prove correct multiplication by a party that knows a
and b.

Note that the way that α and β are communicated to the parties varies with
each of those protocols. Sometimes, they will be generated and shared by the
parties themselves as in the protocol above, sometimes by an external dealer
(e.g. for MPCitH protocols where the Prover can deal α and β to the parties as
global inputs, see Sections 2.2 and 4.4)

Tuple generation functionality. Equation (1) is just an example of a Beaver triple
sharing, in this case for n-party multiplication with passive security. Throughout
this work, we will need more general tuples, which will look di�erent depending
on the arithmetic operation to be performed or the assumptions about the ad-
versaries. In particular, we will sometimes need extra elements, such as speci�c
elliptic curves, as part of the tuples. These di�erent shapes and structures will be
introduced in the relevant sections. We now de�ne the generalized functionality
used in this work to represent these tuples, and parties' access to them. What
valid means, will depend on the context and be introduced whenever needed.

9

De�nition 5 (Tuple generation functionality). Let T be an algorithm
that generates valid tuples of a predetermined type for a set of parties P =
{P1, . . . , Pn}. On input id by party P , if P /∈ P, T returns ⊥. If no such tuple
exists, T generates a tuple new B with identi�er id. In either case, if P ∈ P, T
returns V iewP (B).

In the simplest case, we will assume that T is a trusted party, and that the
parties engaging in protocols needing such tuples have black-box access to T . In
some cases (e.g. for MPCitH) however, we can use the cut-and-choose technique
to let the prover generate them (see Section 2.2). We note that these tuples are
independent of the secret pair to be masked and as such, can be precomputed.

3.2 Two-party multiplication protocol

Suppose we have two parties Pa and Pb, which using their respective secrets
a, b ∈ ZN want to compute [ab]E0, where E0 is a speci�c starting curve. We
describe an interactive 2-party protocol between Pa and Pb to compute [ab]E0

together, using precomputed tuples by a trusted third party T . The generated
tuples have the following form

B = (id;x, y, za, zb) ∈ {0, 1}∗ × Z4
N ,

ViewPa(B) = (id, x, za), and ViewPb
(B) = (id, y, zb).

with za+zb = xy. Inspired by traditional MPC protocols, the parties �rst secret-
share their inputs a and b with each other as α = a− x and β = b− y and then
combine these sharings with secret information to compute partial curves, which
can be used to each reconstruct the desired curve [ab]E0. As such, we can also
see this protocol as an interactive Di�e�Hellman key exchange. Figure 2 details
this joint multiplication protocol for two parties, which uses a tuple B of the
aforementioned form as input. The evaluation of this protocol costs 2 group
actions per player (performed in parallel), which is only twice the cost of the
Di�e�Hellman protocol of Castryck et al. [21].3

Theorem 1. The protocol of Figure 2 is correct and private.

Proof. Correctness: This follows from the structure of the tuple.
Privacy: Let Sb be a simulator interacting with the party Pa. Whenever Pa

requests a new tuple, Sb generates B = (id;x, y, za, zb) and sends V iewPa(B) to
Pa. Upon reception of the output curve Eout, Sb �rst samples β ← ZN and sends
it to Pa in the �rst round. In the second round, Sb computes Eb = [−(αβ+βx+
za)]Eout and sends it to Pa. The transcript generated by Sb is indistinguishable
from real transcripts, as both the real and simulated β are uniformly random in
ZN and both Eb = [r]Eout, for some r uniformly random in ZN . The simulator
Sa interacting with Pb works exactly the same. ⊓⊔

3 We can remove the symmetry of this protocol and make e.g. party Pa only compute
Ea, then send it to Pb, which computes the output [ab]E. Then, each party only
has to perform a single group action, while also reducing the communication cost
between the parties. Still, the total cost of the protocol remains 2 group actions.

10

B = (id;x, y, za, zb)

Pa : a, x, za Pb : b, y, zb

α = a− x β = b− y
α

β

Ea = [βx+ za]E Eb = [αy + zb]E
Ea

Eb

return return

[αβ + βx+ za]Eb [αβ + αy + zb]Ea

Fig. 2. Passively secure 2-party multiplication protocol from additive secret sharing,
using a trusted tuple B as input.

4 Zero-Knowledge Proof Systems

In this section, we present zero-knowledge proof systems for di�erent arithmetic
operations in ZN . Among other applications, these will allow us to augment
the passively secure protocol from the previous section to active security. We
distinguish proofs along two dimensions: the relation that they prove (addition,
scalar multiplication, exponentiation or secret multiplication) and the paradigm
that they follow (from computational assumptions or from MPC-in-the-Head).

4.1 Languages and Security Assumptions

We consider the following languages, with E,E′, Ei, E
′
i ∈ E , a, b, ci ∈ ZN and

ei ∈ N:

LAddk =
{(

(Ei, E
′
i)i=1,...,k, a

)
:

k∧
i=1

E′
i = [a]Ei

}
(2)

LScalk =
{(

(Ei, E
′
i, ci)i=1,...,k, a

)
:

k∧
i=1

E′
i = [cia]Ei

}
(3)

LExp =
{(

([a]E,E′, e), a
)
: E′ = [ae]E

}
(4)

LMult =
{(

([a]E, [b]E,E′), (a, b)
)
: E′ = [ab]E

}
(5)

A zero-knowledge protocol for LAddk already exists [25], while a version of LScalk

was proposed by Atapoor et al. [4], but with c1 = 1 �xed. Both languages
coincide for c1 = · · · = ck = 1, thus LAddk can be seen as a special case of
LScalk . We can see that LAdd1 is exactly the language underlying the ID protocol
of CSI-FiSh outlined in Section 2.1, with GAIP (Problem 1) the associated
security assumption. For LAdd2 , the underlying assumption corresponds to the
computational Di�e�Hellman problem.

11

Problem 2 (Computational Di�e-Hellman problem (CDH) [21, 24, 57]). Given
(E, [a]E,F), where a ∈ ZN and E,F ∈ E , compute [a]F .

We can de�ne similar computational problems when looking at scalar multipli-
cation, i.e. for LScal1 , we can de�ne

Problem 3 (Scalar-CDH [7,33]). Given (c, E, [a]E) where c, a ∈ ZN and E ∈ E ,
compute [ca]E.

For our purposes, these assumptions cover the hardness of executing additions
or scalar multiplications with unknown secrets. Increasing k would de�ne more
hardness assumptions but will not be relevant in this work. Instead, we introduce
the following new assumptions, which also cover exponentiation and multiplica-
tion, i.e. are related to LMult and LExp.4

Problem 4 (Exp-CDH). Given (E, [a]E, e), where e ∈ N, a ∈ ZN and E ∈ E ,
compute [ae]E.

Problem 5 (Mult-CDH). Given (E, [a]E, [b]E), where a, b ∈ ZN and E ∈ E ,
compute [ab]E.

In Appendix A, we show that the following reductions hold when N is odd. This
condition is guaranteed by choosing p ≡ 3 mod 4 [21].

CDH ≡ Scalar-CDH ≤ Exp-CDH ≡ Mult-CDH ≤ GAIP . (6)

Note that following from [38,58], CDH and GAIP are equivalent under quantum
reductions, implying that the hardness of all problems in this section collapse to
the quantum hardness of GAIP.

4.2 Addition and Scalar Multiplication

In this section, we present the more general version of the protocol �rst intro-
duced by Atapoor et al. [4]. This protocol is a proof system for the general scalar
multiplication language LScalk , but a proof system for LAddk can be obtained as
discussed above. These protocols have furthermore been proven secure in the
QROM [4,13]. We note that the latter proof can straightforwardly be extended
to the case c1 ̸= 1. We summarize the protocol in Figure 3. We note that the
soundness error is 2−λ. Throughout this section, we de�ne the cryptographic
hash function H : {0, 1}∗ → {0, 1}λ, where λ is a given security parameter.

Cost. The computational cost of the protocol is kλ group actions, for both
the proof and also for the veri�cation part, neglecting other costs, such as ZN -
arithmetic and hash computations.

4 We emphasize that the notation in [33] deviates from ours, as e.g. squaring in [33]
is related to computing [2a]E from (E, [a]E), which we call doubling.

12

Scal.Proveλ(a,X)

Input: Secret a, set X = {(Ei, E
′
i, ci)}i=1,...,k, s.t. Ei, E

′
i ∈ E and {c1, . . . , ck} an

exceptional set modulo N , security parameter λ.5

Output: A proof π for the language LScalk .

1. For j = 1, . . . , λ:
(a) bj ← ZN

(b) For i = 1, . . . , k, compute Êi,j = [cibj]Ei

2. d1 . . . dλ = H(X, {Êi,j}j=1,...,k
i=1,...,m) ∈ {0, 1}λ

3. For j = 1, . . . , λ, compute rj = bj − dja.
4. Return π = ((d1, . . . , dλ), (r1, . . . , rλ)).

Scal.Verify(X,π)

Input: Statement X = {(Ei, E
′
i, ci)}i=1,...,k, proof π = ((d1, . . . , dλ), (r1, . . . , rλ)).

Output: accept or reject

1. For j = 1, . . . , λ:
� If dj = 0, then let Êi,j = [cirj]Ei for i = 1, . . . , k,
� If dj = 1, then let Êi,j = [cirj]E

′
i for i = 1, . . . , k.

2. Return (d1, . . . , dk)
?
= H(X, {Êi,j}j=1,...,k

i=1,...,m).

Fig. 3. Non-interactive zero-knowledge proof and veri�cation for the language LScalk .

Example. As an application example, with c1 = c2 = 1, this protocol can be
used to prove that four elliptic curves constitute a well-formed �Di�e-Hellman
tuple�, i.e. (E, [a]E, [b]E, [a+ b]E) ∈ LAdd2 without revealing the secrets a and b,
an observation that was initially proposed by Cozzo and Smart [25]. In the case
where [a]E and [b]E are public elements, a prover needs to know only one of the
secrets. Assuming for example that the prover knows a and [b]E, it can prove
correctness of the tuple via

π ← Scal.Proveλ(a, {(E, [a]E), ([b]E, [a+ b]E)}),

where, for conciseness, we drop the ci factor in the case where ci = 1.

4.3 Multiplication with trusted setup

We use the scalar multiplication protocol from the previous section to create a
protocol for general multiplication. This means that we assume a prover knowing
a, b ∈ ZN wants to prove that a tuple (E, [a]E, [b]E, [ab]E) ∈ LMult. The high
level idea is that we can prove this in a way similar to the approach explained in
Section 3.1. Initially, the prover discloses α = a−x and β = b− y and computes
the action of [ab]E = [(α + x)(β + y)]E consecutively as [αβ][βx][αy][xy]E. In
order to prove that the individual actions have been computed correctly, the

5 A set is exceptional modulo N , if the pairwise di�erence between any two elements
is invertible in ZN . This ensures extractability for any challenge.

13

Mult.Proveλ(s,BP)

Input: Secret pair s = (a, b), tuple BP = V iewP (B) = (id, x, y,Mx,My,Mz).
Output: A proof π for the language LMult.

1. Set α = a− x and β = b− y.
2. Compute E1 = [αy]Mz and π1 = Scal.Proveλ(y, {(E0,My), (Mz, E1, α)}).
3. Compute E2 = [βx]E1 and π2 = Scal.Proveλ(x, {(E0,Mx), (E1, E2, β)}).
4. Return π = ((E1, E2), (π1, π2), (α, β))

Mult.Verify(X,BV , π)

Input: Proof π = ((E1, E2), (π1, π2), (α, β)) of statement X = (E,Ea, Eb, Eab),
tuple BV = (Mx,My,Mxy) = V iewV (B) of committed triple.

Output: accept or reject

1. Verify, if [α]Mx
?
= Ea, [β]My

?
= Eb and [αβ]E2

?
= Eab.

2. Check Scal.Verify({(E0,My), (Mz, E1, α)}, π1) and
Scal.Verify({(E0,Mx), (E1, E2, β)}, π2).

3. Accept if all veri�cations succeed, otherwise reject.

Fig. 4. Non-interactive zero-knowledge proof and veri�cation for the language LMult

in the additive secret sharing case.

prover uses Scal.Prove at each step. As a reference for these proofs, the prover
further needs commitments to the shares

Mx = [x]E0, My = [y]E0, Mxy = [xy]E0 .

Then, in order to prove correct execution of e.g. the action F ′ = [αy]F , the prover
runs Scal.Proveλ(y, {(E0,My), (F, F

′, α)}). Using this idea, we show a protocol
for the language LMult in Figure 4. In order to guarantee that the commitments
Mx,My,Mz have the correct structure, we assume that they are generated by
the functionality T of De�nition 5. We require the tuples to have the form

B = (id;x, y,Mx,My,Mxy) ∈ {0, 1}∗ × Z2
N × E3 , (7)

with Mx,My,Mxy as above, such that the prover has full access to the elements,
but only the Mi are public, i.e. accessible to the veri�ers. We de�ne their views
as ViewP (B) = B and ViewV (B) = (id;Mx,My,Mxy).

Theorem 2. The algorithms Mult.Prove and Mult.Verify realize a non-interactive
zero-knowledge proof of knowledge for the language LMult.

Proof. Completeness. After correct execution of the protocol, we have

[α]Mx = [a− x][x]E0 = [a]E0, [β]My = [b− y][y]E0 = [b]E0,

and [αβ]E2 = [αβ + βy + αx+ xy]E0 = [ab]E0 .

Furthermore, since My = [y]E0 and E1 = [αy]Mz, as well as Mx = [x]E0 and
E2 = [βx]E0, both the veri�cations of π1 and π2 will succeed.

14

Soundness. Soundness of the full protocol is directly related to the soundness
of Scal.Proveλ and Scal.Verify. We note that the extractor in either invocation of
Scal.Prove allows the extraction of x or y, respectively. The secrets can then be
recovered as a = α+ x or b = β + y. The total soundness error is 2−λ, given by
the maximal soundness error of the di�erent Scal.Prove subalgorithms.

Zero-knowledge. Zero-knowledge of our protocol immediately follows from the
zero-knowledge property of Scal.Prove and the theorem of sequential composition
for zero-knowledge [39, Theorem 9]. ⊓⊔

Remark 1. Similarly to Figure 4, using Scal.Prove allows us to make protocols
like Figure 2 actively secure. It su�ces to attach a proof that the correct x or
y has been used. To this end, the trusted tuples would also need to contain the
curves Mx and My, which are accessible by both parties (but not Mxy). These
commitments also give parties the possibility to verify the received α and β, by

testing whether [α]Mx
?
= Ea and [β]My

?
= Eb.

Cost. In Figure 4, the prover computes a total of 2 + 4λ group actions and the
veri�er 3 + 4λ. This is about twice the cost of proving correctness of DH-tuples
in LAdd2 using Scal.Prove, or verifying them using Scal.Verify.

Exponentiation with trusted setup. A similar idea to multiplication with
Beaver triples can be used in order to prove elements in LExp, e.g. compute
powers of a secret a ∈ ZN , such as [ae]E0, for some e ∈ N. In Appendix B.1, we
introduce protocols for squaring and cubing, which can be combined to arbitrary
exponents using a square-and-multiply approach.

4.4 MPC-in-the-Head protocols

In this section, we propose alternative proofs of correct multiplication and ex-
ponentiation, using the MPCitH technique. These proofs again use tuples which
have auxiliary elliptic curves in them, similar to the protocols in the previous
section. If these tuples are generated by a trusted third party, such as the one
in De�nition 5, then the protocols in this section outperform the protocols pre-
sented previously, which also use such a trusted setup. But another advantage
of the MPCitH technique is that we can use the cut-and-choose approach to re-
move the trusted third party. This results in slightly slower, but still competitive
protocols that do not require a trusted setup.

4.4.1 Multiplication-in-the-Head with trusted setup. For the protocol
in this section, we initially assume the existence of a trusted third party T ,
accessible by both prover and veri�er, to generate random sharings of tuples of
the type

B = (id; (xi, yi, zi)i∈[n],Mx,My) ∈ {0, 1}∗ × Z3n
N × E2

15

for n parties, such that Mx = [x]E0 and My = [y]E0, and where
∑n

i=1 xi = x,∑n
i=1 yi = y and

∑n
i=1 zi = xy. Whenever the prover queries a new tuple, we

let T respond with BP = (id; (xi, yi, zi)i∈[n]); when the veri�er queries T for an
existing tuple with identi�er id, we let T respond with BV = (id;Mx,My) if id
exists, and with ⊥ otherwise. As part of the proof, we assume that the prover
can give the veri�er access to tuples of the form Bi = (id;xi, yi, zi).

Once in possession of (xi, yi, zi)i∈[n], the prover distributes these values among
the n parties, together with the public values α = a − x and β = b − y. In
the same way as in Figure 1 (with the round-robin communication), the parties
jointly compute Fn = [ab]E0. We denote the joint execution of parties P1, . . . , Pn

as MultITHn(α, β,BP).
To construct an interactive proof of knowledge from this MPC protocol, the

prover commits to the views of the n parties (i.e. to their inputs and the messages
they received) as well as the public values α and β. We denote party i's view
as Vi = (Bi, Fi−1, Fi). In order to commit to these views, the prover samples
secret values µi ← {0, 1}λ and computes the commitments Ci = C(Vi, µi). After
receiving the commitments, the veri�er responds with a random challenge c ∈ [n]
which determines the party whose view the prover does not open. The prover
therefore sends the set of n− 1 views {Vi}i∈[n]\{c} for which the veri�er checks
that (1) Fi has been correctly computed from Fi−1 using α, β and Bi; (2) the
views are consistent with each other, i.e. if for all pairs {i, i+1} ̸∋ c, whether Fi

contained in Vi is consistent with Fi contained in Vi+1; (3a) in the case c ̸= 1,
the initial curve F0 is equal to Mxy and (3b) in the case c ̸= n, the �nal curve
Fn implied by Vn is equal to the expected outcome Eab of the protocol.

As the challenge space from which c is sampled has size only n, this MPCitH
protocol has soundness error 1/n (see also Section 2.2) and must be repeated
τ = ⌈λ/ log2 n⌉ times to achieve soundness error 2−λ. (See also Section 2.2 for
the transformation into a non-interactive argument system.)

Theorem 3. Assuming ideal commitments, the protocol in Figure 5 is an in-
teractive and honest-veri�er zero-knowledge proof of knowledge for the language
LMult with soundness error 1/n.

Proof. Completeness: The code in Figure 1 computes En = [ab]E0 via

En =
[
αβ + β

n∑
i=1

xi + α

n∑
i=1

yi +

n∑
i=1

zi

]
E0 = [αβ + βx+ αy + xy]E0 .

We note that the checks in step 8 uniquely �x α = a− x and β = b− y.

Special soundness: Let c and c′ be two di�erent challenges and let (C, c,R)
and (C, c′,R′) be two accepting transcripts, where C = ({Ci}i∈[n], α, β) and
R = ({Vi, µi}i∈[n]\{c}). By the binding property of the idealised commitment
scheme, we have that Bi = B′

i for all i ∈ [n], since Cc is veri�ed as a valid
commitment for V ′

c in R′. Thus, the extractor can reconstruct x and y from
{Bi}i∈[n]\{c} ∪ {B′

c} and recover a and b from α and β respectively.
As discussed in Section 2.2, standard techniques then show that this protocol

has soundness error 1/n if executed once, and 1/nτ if repeated τ times.

16

Input: Secret pair s = (a, b), statement X = {[a]E0, [b]E0, [ab]E0},
security parameter λ.

Output: accept or reject whether X ∈ LMult.

Prover:

1. Query T for tuple BP = (id, (xi, yi, zi)i∈[n]).
2. Execute (V1, . . . ,Vn)← MultITHn(α, β,BP),

with α = a− x and β = b− y.
3. For i = 1, . . . , n, sample µi ← {0, 1}λ and commit to Ci = C(Vi, µi).

Send {C1, . . . , Cn} to the veri�er as well as α and β.
Veri�er:

4. Sample a challenge c ∈ [n] uniformly at random and send c to the prover.
Prover:

5. Send {Vi, µi}i∈[n]\{c}.

Veri�er:

6. Check that all Vi, for i ∈ [n] \ {c}, contain the same id.
7. Query T with id for tuple BV = (id, (Mx,My,Mxy)).

8. Check [α]Mx
?
= Ea and [β]My

?
= Eb.

9. Check the commitments Ci
?
= C(Vi, µi), for i ∈ [n] \ {c}.

10. If c ̸= 1, verify that F0
?
= Mxy, where F0 ∈ V1.

11. If c ̸= n, verify that Fn
?
= Eab and that Fn

?
= [αβ+βxn+αyn+ zn]Fn−1, where

Fn−1, Fn ∈ Vn and xn, yn, zn ∈ Bn.
12. For i ∈ [n− 1] \ {c},

(a) verify that Fi = [βxi + αyi + zi]Fi−1 for Fi−1, Fi ∈ Vi and xi, yi, zi ∈ Bi.
(b) if c ̸= i+ 1, verify that Fi ∈ Vi is equal to Fi−1 ∈ Vi−1.

13. If all checks succeed, return accept, otherwise reject.

Fig. 5. Interactive ZK proof for LMult using MPC-in-the-Head with trusted party.

Zero-knowledge: The simulator S plays the role of the prover (without knowl-
edge of a or b), of the trusted third party, and of the challenge generation in order
to output a transcript that is indisguishable from one made with a valid witness.
(Note that the argument below is equivalent to proving the (n − 1)-privacy of
the protocol of Figure 1.)

First, S samples α and β at random. As the third party T , it then creates
a new tuple by sampling all xi, yi, zi at random, for i ∈ [n] and setting Mx =
[−α]Ea,My = [−β]Eb, and creating a random id.

Next, S samples c ∈ [n] at random on behalf of an honest veri�er. Since
α and β contain no information about a and b, and the simulated triple is not
correct, computing Fi honestly, for i ∈ [n], will not produce Fn = Eab as expected
by the veri�er. Instead, the simulator computes Fi for 1 ≤ i < c �forwards�, as
per the protocol, but computes Fi for c ≤ i ≤ n �backwards� from Fn = Eab,

17

ensuring that the chain results in the correct �nal curve. Thus:

Fi =

[βxi + αyi]Fi−1 1 ≤ i < c

[−βxi+1 − αyi+1]Fi+1 c ≤ i < n− 1

[−αβ − βxn − αyn]En i = n− 1,

where F0 = E0.
The simulator can now set Vi = (id, xi, yi, Fi−1, Fi), sample µi as per the

protocol, and compute the set of commitments {Ci}. This gives the transcript
({Ci}i∈[n], α, β, c, {Vi, µi}i∈[n]\{c}) as the �nal output of S.
Correctness: The simulated transcript will verify since [α]Mx = Ea and [β]My =
Eb by construction; Fn = Eab by construction of Fn−1; all of the Fi curves, for
i ̸= c, satisfy the right relation.

Indistinguishability: Since x and y are uniformly generated by T in the protocol,
sampling α and β directly in the simulation is perfectly indistinguishable. By the
same argument, the curves Mx and My of the simulated tuple are distributed
identically to an honest tuple, since in addition the idealised commitment per-
fectly hides xc and yc from the Veri�er, who therefore cannot recover x and y.
Within the MPC protocol, the only inconsistency is the computation of Fc which
Veri�er cannot detect since xc and yc are hidden by the commitment scheme. ⊓⊔

Cost. In Figure 1, each party computes one isogeny computation. The prover
runs this protocol τ times for n parties, resulting in a total computational cost of
nτ = n⌈λ/ log2 n⌉ for the prover. The veri�er on the other hand has to verify the
steps in Figure 1 for n− 1 parties and compute 2τ further isogeny computations
in step 8 of the protocol, resulting in the total (n+ 1)τ . By choosing n = 3, we
optimize with respect to the total cost of the proof and veri�cation. In that case,
the prover computes approximately 1.89λ isogenies, and the veri�er 2.52λ.6 We
note that this cost is competitive with proofs of DH-tuples, which cost 2λ in
proof and in veri�cation costs, see Section 4.2.

Scalar-in-the-Head. Since scalar operations on additively-shared secret values
are linear, they can be computed locally by parties in MPC protocols. Similarly,
for public c and secret a, an MPCitH prover can secret-share a =

∑
i∈[n] ai and

have every party compute [cai]Ei−1 and pass it on to the next one in the same
round-robin fashion as the multiplication protocol. This will clearly result in
En = [ca]E0. Furthermore, since the veri�er sees that every MPC party used
the public value c, there is no trusted helper required here.

4.4.2 Exponentiation-in-the-Head with trusted setup. Proving Expo-
nentiation with MPCitH works along the same idea as multiplication. For expo-
nentiation to the power e, we need tuples of the type

B =
(
id; (x

(k)
i)

k∈[e]
i∈[n] ,Mx

)
∈ {0, 1}∗ × (ZN)e·n × E , (8)

6 Alternatively, n = 4, leads to the higher average of 2.00λ for the prover and the
slightly lower average of 2.50λ for the veri�er.

18

MPC exponentiation protocol for Pi(α, x
(1)
i , . . . , x

(e)
i)

1 : from Pi−1 receive Fi−1 (P1 receives F0 = E0)

2 : if i < n then

3 : Fi ←

[
e∑

k=1

(
e

k

)
αe−kx

(k)
i

]
Fi−1

4 : send Fi to Pi+1

5 : if i = n then

6 : Fn ←

[
αe +

e∑
k=1

(
e

k

)
αe−kx

(k)
i

]
Fi−1

7 : Broadcast(Fn)

Fig. 6. MPC pseudocode for exponentiation

where Mx = [x]E0. The shares are de�ned, such that
∑n

i=1 x
(k)
i = xk. The

trusted third party T sends ViewP (B) =
(
id; (x

(k)
i)

k∈[e]
i∈[n]

)
to the prover and

ViewV (B) = (id;Mx) to the veri�er. The prover distributes the values (x
(k)
i)k∈[e]

to each party Pi, together with α = a − x. We describe the MPC protocol in
Figure 6, which we denote ExpITHe

n(α,BP). We defer the full interactive proof
of knowledge to Appendix B.2. We note that, in contrast to the approach from
the previous section, this cost is independent of the exponent e.

4.4.3 Polynomial evaluation in-the-Head with trusted setup. The pro-
tocol from Figures 6 and 13 can be extended to the case where multiple parties
want to evaluate a public polynomial on a shared input.

Let f(x) =
∑d

k=0 fkx
k; then we can see that [f(x)]E can be evaluated on a

shared x, using the consecutive application of exponentiations. Thus, this can be
achieved with the same trusted setup as in the case of exponentiation, see Equa-
tion (8). We summarize the MPC protocol in Figure 7. The full zero-knowledge
protocol follows straightforwardly from the protocol in Figure 13.

4.4.4 Removing the trusted helper with cut-and-choose. We now show
how the cut-and-choose technique can be used to remove the trusted helper in
our multiplication and exponentiation protocols. The idea is that the prover
now generates the structured tuple instead of the helper. However, the veri�er
must also be convinced that the elements in this tuple are well formed, such
as e.g. z = xy or Mx = [x]E0. This can be achieved with the cut-and-choose
method described in Section 2.2: the prover precomputes and commits to a
large amount m of these tuples and is then challenged to open m − τ of them.
Afterwards, the veri�er can check that they have the desired structure.

The prover then runs the proof using the τ undisclosed tuples, also convincing
the veri�er that the proof statement is correct. These proofs are computed by

19

MPC polynomial evaluation protocol for Pi(α, f, x
(1)
i , . . . , x

(d)
i)

1 : from Pi−1 receive Fi−1 (P1 receives F0 = E0)

2 : if i < n then

3 : Fi ←

[
d∑

e=1

e∑
k=1

fk

(
e

k

)
αe−kx

(k)
i

]
Fi−1

4 : send Fi to Pi+1

5 : if i = n then

6 : Fn ←

[(
f0 +

d∑
e=1

αe
)
+

d∑
e=1

e∑
k=1

(
e

k

)
αe−kx

(k)
i

]
Fi−1

7 : Broadcast(Fn)

Fig. 7. MPC pseudocode for polynomial evaluation

running MultITHn or ExpITHe
n, respectively, for each of the τ tuples. If all of

these checks succeed for appropriate choices of m and τ , the veri�er is convinced
of the truth of the statement up to a negligible error probability.

We present the protocol for LMult in Figure 8. The protocol for LExp can be
built with the exact same tools from the protocol in the previous section and
can be found in Appendix B.3.

Theorem 4. Assuming ideal commitments, the protocol in Figure 8 is an in-
teractive and honest-veri�er zero-knowledge proof of knowledge for the language
LMult with soundness error ϵCnC(m,n, τ).

Proof. Correctness: It is clear that correctly formed tuples pass the veri�cation
conditions for j ∈ I. For each execution j ∈ [m] \I, correctness follows from the
correctness of MultITH.

Special soundness: By the same argument as for Theorem 3, for a given j, the
extractor can obtain xj and yj by using a malicious prover's accepting responses
to two di�erent party challenges cj and c′j . By also rewinding the prover back
to the commitment of the pre-processing data, and obtaining a third accepting
transcript with a di�erent opening of τ datasets, the extractor can ensure that
the (xj , yj , zj) tuple used above is a valid multiplication tuple.

Zero-knowledge: To ouput an indistinguishable transcript, the simulator S
�rst samples I at random and then generates honest secret-sharings
({xi}[n], {yi}[n], {zi}[n],Mx,My)j for j ∈ I. For the remaining j ∈ [m]\I, S does
as for Theorem 3 by sampling αj and βj at random and setting M j

x = [−αj]Ea

and M j
y = [−βj]Eb. It then falsi�es the round-robin computation of F j

n in the

same way: by sampling the challenge cj at random, and computing F j
c−1 �for-

wards� from E0 and F j
c �backwards� from Eab. Since xj

c, y
j
c , z

j
c remain hidden

from the Veri�er, and since there is no commitment as in the protocol with
trusted setup, no other simulation is necessary.

20

Input: Secret pair s = (a, b), statement X = {[a]E0, [b]E0, [ab]E0},
security parameter λ.

Output: accept or reject whether X ∈ LMult.

Prover:

1. Generate the secret-shared pre-processing data:{(
{xi}[n], {yi}[n], {zi}[n],Mx,My

)
j

}
j=[m]

.

2. Commit to the pre-processed data for each party and to the curves M j
x,M

j
y for

each copy j ∈ [m], and send the commitments to the veri�er.
Veri�er:

3. Sample a random subset I ⊂ [m] of size m− τ and send I to the prover.
Prover:

4. For each j ∈ [m] \ I, Execute (Vj
1 , . . . ,Vj

n)← MultITHn(α
j , βj , (x, y, z)j),

with αj = a− xj and βj = b− yj .
5. For j ∈ [m] \ I and i ∈ [n], sample µj

i ← {0, 1}
λ and commit to Cj

i = C(Vj
i , µ

j
i).

Send ({Cj
1 , . . . , C

j
n}, αj , βj)j=[m]\I to the veri�er, as well as and the opening of

({xi}[n], {yi}[n], {zi}[n],Mx,My)j∈I .
Veri�er:

6. Sample challenges cj ∈ [n], for j ∈ [m] \ I uniformly at random and send {cj}
to the prover.

Prover:

7. Send {Vj
i , µ

j
i}i∈[n]\{c},j∈[m]\I .

Veri�er:

8. For j ∈ I, verify if the commitments to ({xi}[n], {yi}[n], {zi}[n],Mx,My)j open
correctly and are correctly formed.

9. For all j ∈ [M] \ I, perform the same veri�cations as in Figure 5.
10. If all checks succeed, return accept, otherwise reject.

Fig. 8. Interactive ZK proof for LMult using MPCitH without trusted party.

Correctness: Here, F j
n will equal the correct curves by construction and the views

will be consistent due to the �forward� and �backward� computations.

Indistinguishability: The public values αj and βj are sampled at random, which
means they are distributed identically to the protocol, assuming that the Veri�er
has no knowledge of xj , yj , zj . Similarly, M j

x and M j
y are distributed identically

to an honest tuple. The idealised commitments perfectly hide xj
c, y

j
c , z

j
c from the

Veri�er, so the perfect secrecy of the additive secret-sharing scheme implies the
perfect zero-knowledge of the protocol. ⊓⊔

Cost. In the protocol of Figure 8, the prover computes a total of 2m + nτ
isogenies, 2m when generating the tuples and nτ when running the MultITH

protocol. The veri�er checks 2(m − τ) of these tuples and veri�es the protocol
using another (n+ 1)τ isogenies, yielding the total 2m+ (n− 1)τ .

21

The computational costs of the protocols introduced in this section depend
on the choices of m and τ , which themselves are determined by the equation
established in Section 2.2. Using numerical techniques, we found that choosing
n = 3 always minimizes these costs. In particular we can �nd, that for the
multiplication protocol, the prover has to approximately compute 4.96λ isogenies
and the veri�er 4.25λ.

4.4.5 Cost overview. We summarize the costs of the protocols introduced
throughout this section and in Appendix B in Table 2.

Table 2. Number of isogeny computations of the prover and veri�er for the protocols
introduced in this work. The costs are given in terms of the security parameter λ, to
ensure a soundness error of 2−λ. We further indicate, if the protocols need a trusted
setup or not and which type of statements they are proving. We note that Scal.Provek=1

coincides with the binary CSI-FiSh ID-protocol. The subscripts T and cnc indicate the
protocol versions with trusted setup and cut-and-choose, respectively. We also note
that the cost for ExpITHT and ExpITHcnc are the same as for the respective polynomial
evaluation protocols described in Section 4.4.3.

Prover cost Veri�er cost Trusted Party Statement type

Scal.Provek=1 λ λ No (E, [s]E)
Scal.Provek=2 2λ 2λ No (E, [a]E, [b]E, [a+ b]E)

Mult.Prove 4λ 4λ Yes
MultITHT 1.89λ 2.52λ Yes (E, [a]E, [b]E, [ab]E)
MultITHcnc 4.96λ 4.25λ No

Exp.Prove ⌊log2 e⌋6λ ⌊log2 e⌋6λ Yes
ExpITHT 1.89λ 1.89λ Yes (e, [a]E, [ae]E)
ExpITHcnc 3.52λ 3.52λ No

4.5 New signatures

To give an idea of the applications we can build with the tools from this sec-
tion, we introduce two examples of signature schemes, based on proofs of scalar
multiplication and multiplication, respectively. The ideas behind these signature
schemes are loosely based on the schemes of Boneh, Lynn and Shacham [18]
(BLS) and of Zhang, Safavi-Naini and Susilo [59] (ZSS). The original schemes,
proposed in the discrete logarithm setting, produce particularly short signatures
and are veri�ed using elliptic curve pairings, neither of which is the case here.

Rather, we present the signatures as instructive examples on how (scalar)
multiplication proofs can be used to prove statements reminiscent of pairings in
elliptic curve cryptography. The underlying observation is that statements of the
language LMult, e.g. tuples of the form (E, [a]E, [b]E, [ab]E) have a similar feel

22

Keygen(pp)

1. Sample s← ZN and compute Es = [s]E0.
2. Return (sk, pk) = (s, Es).

Scal-Sign(m, s)

1. Compute σ = [sH(m)]E0.
2. Construct a LScal2 -proof π for the

statement ((E0, Es), (E0, σ,H(m))).
3. Return σ, π.

Scal-Verify(m,Es, σ, π)

1. Compute H(m) and verify
(H(m), Es, σ) using π.

2. If veri�cation succeeds, return True,
otherwise False.

Mult-Sign(m, s)

1. Compute σ =
[

1
s+H(m)

]
E0 and

F = [H(m)]Es.
2. Construct a LMult-proof π for the

statement (E0, σ, F, [1]E0).
3. Return σ, π.

Mult-Verify(m,Es, σ, π)

1. Compute F = [H(m)]Es and verify
σ using π.

2. If veri�cation succeeds, return True,
otherwise False.

Fig. 9. Two signature schemes using proofs of scalar multiplication or multiplication.

to pairing-based veri�cation equations of the type e([a]P, [b]P) = e(P, [ab]P).
The caveats with respect to this interpretation are plentiful, however. As an
example, elliptic curve points and the codomain of pairings both form groups,
and operations in these groups are often crucial to allow veri�cation, a perk
that the elliptic curve set E doesn't bene�t from. Furthermore, while pairing
equations can be performed using public elements, in our setting, we always
need the prover to generate these publicly veri�able proofs �rst.

With this in mind, we present our signatures in Figure 9. The �rst scheme
uses a proof for the language LScal2 , while the latter uses proofs for LMult. We
note that any of the appropriate proof systems introduced in this work can be
used. For both cases, we de�ne the hash function H : {0, 1}∗ → ZN .

Security of these schemes immediately follows from the security of the proof
schemes they employ. We note however, that in the multiplicative signature,
for the element s +H(m) to be invertible, we would need to assume that N is
prime, so that ZN is a �eld, since in any ring, the �allowed" values for H(m)
would reveal information about s.

While the signatures in this section do not outperform the current state-
of-the-art isogeny-based signature schemes (see Table 2 for reference), we hope
that this inspires more research into other potential applications of the tools
presented in this work.

5 An oblivious pseudo-random function

We �nish our work by introducing an oblivious pseudo-random function based
on the tools developed throughout the last sections.

An oblivious pseudo-random function (OPRF) is a protocol between a client C
and a server S. The server has a secret key k, which de�nes a function Fk(·). The

23

client has a secret input m, on which it wants to evaluate this function. The goal
of an OPRF is for the client to receive the evaluation Fk(m) without learning
anything about k, while the server doesn't learn anything, i.e. neither the input
m, nor the output Fk(m). A veri�able OPRF further allows the client to verify
that the server has indeed correctly used its secret k towards the computation
of Fk(x).

In our case, we assume the secret key of the server to be a polynomial f(x),
represented in terms of the polynomial coe�cients k = (f0, f1, . . . , fd), where
d = deg f . On input a message m, we de�ne the OPRF evaluation to be the
function Fk(m) = [f(m)]E0, for some starting curve E0.

The idea behind the OPRF is that two parties engage in a polynomial eval-
uation protocol similar to the idea in Section 4.4.3. A major di�erence here, is
that the polynomial coe�cients are not public, but rather secrets of the server.
As a result, they also have to be hidden. Therefore the parties jointly have to
evaluate terms of the type [fjm

j]E with fj and m hidden. The resulting proto-
col is therefore rather a blend of the multiplication and exponentiation protocols
introduced previously. To compute terms of this type, we assume that there is a
functionality T that generates the following kind of tuples:

B = (id;x, {yj}j∈[d], (z̃C , z̃S), {(z(j,k)C , z
(j,k)
S)}j∈[d]

k∈[j−1]) , (9)

ViewC(B) = (id;x, z̃C , {z(j,k)C }j∈[d]
k∈[j−1]) ,

ViewS(B) = (id, {yj}j∈[d], z̃S , {z(j,k)S }j∈[d]
k∈[j−1]) ,

such that7

z
(j,k)
C + z

(j,k)
S = yjx

k and z̃C + z̃S =

d∑
j=1

yjx
j .

We present our construction in Figure 10 and discuss its security in the theorem
below. Some of the security properties of our OPRF will depend on properties
of the polynomial f . We outline the necessary restrictions as part of the proof
and defer the discussion about concrete instantiations of f to Section 5.1.

Theorem 5. The protocol in Figure 10 satis�es the security requirements of
an OPRF, i.e. correctness, hiding against a malicious client, hiding against a
malicious server, binding and one-more unpredictability.

Proof. We omit the full de�nition of the security properties of an OPRF here,
and refer the reader to [17,37,53] more details.

7 Note that we could as well have de�ned the tuples to contain {(z(j,k)C , z
(j,k)
S)}j∈[d]

k∈[j].
Since in our protocol, the coe�cients of terms where j = k is always 1, we can
summarize all of these terms in z̃C and z̃S , which leads to a smaller trusted setup
by reducing the amount of such terms by d− 1.

24

Input: Secret key k = (f0, f1, . . . , fd) ∈ Zd+1
N held by the server S, secret input

m ∈ Z∗
N by the client C. Shared tuple B as in equation (9).

Output: Evaluation Fk(m) = [f(m)]E0.

Client:

1. Compute α = m− x and send it to the server.

Server:

2. For j = 1, . . . , d, compute βj = fj − yj .
3. Compute

ES =

[
f0 + z̃S +

d∑
j=1

fjα
j +

d∑
j=1

j−1∑
k=1

(
j

k

)
αj−kz

(j,k)
S

]
E0 .

4. Send (β1, . . . , βd) and ES it to the client.

Client:

5. Return [
z̃C +

d∑
j=1

βjx
j +

d∑
j=1

j−1∑
k=1

(
j

k

)
αj−k

(
βjx

k + z
(j,k)
C

)]
ES .

Fig. 10. Oblivious pseudo-random function based on joint polynomial evaluation.

Correctness: By summing the action of the client and of the server, it can be
quickly veri�ed that the action on E0 is given by

f0 + z̃S + z̃C +

d∑
j=1

(fjα
j + βjx

j) +

d∑
j=1

j−1∑
k=1

(
j

k

)
αj−k

(
z
(j,k)
S + z

(j,k)
C + βjx

k
)
.

By plugging in the de�nitions of Equation (9) as well as the fact that βj+yj = fj ,
this simpli�es to

f0 +

d∑
j=1

fj

(
αj +

j−1∑
k=1

(
j

k

)
αj−kxk + xj

)
,

which is the expression
∑d

j=0 fj(α+ x)j = f(m) .

Hiding against malicious server: It is clear that α information-theoretically
hides m: as the functionality T , the simulator samples B uniformly at random
from the di�erent sets and sends ViewS(B) to the server. Then, as the client, it
samples α← ZN and send it to the server. This simulation is perfectly indistin-
guishable from the real execution of the protocol.

Hiding against malicious client: To prove this, we show that the malicious
client has a negligible advantage in the hiding game. After receiving α from the
adversary, the challenger samples b← {0, 1}. Then,

25

� if b = 0, it computes β
(0)
j = fj − yj for j = 1, . . . , d and

r(0) = f0 + z̃S +

d∑
j=1

fjα
j +

d∑
j=1

j−1∑
k=1

(
j

k

)
αj−kz

(e,k)
S ,

� if b = 1, it samples r(1) ← ZN and β
(1)
j ← ZN for j = 1, . . . , d.

In either case, the server sends (β
(b)
1 , . . . , β

(b)
d) and E

(b)
S = [r(b)]E0 to the client.

The adversary then outputs b′ ∈ {0, 1} and wins the game if b′ = b. It is clear

that (β
(1)
1 , . . . , β

(1)
d) and (β

(0)
1 , . . . , β

(0)
d) follow perfectly indistinguishable dis-

tributions as fj and yj are unknown to the adversary. Similarly, r(0) and r(1)

should be indistinguishable, but we note, that in the �rst case, the adversary
can evaluate the OPRF correctly and receive [f(m)]E0 after applying its half of
the action. Now, due to the freeness of the group action, the adversary will still
not be able to distinguish both cases, as long as the output distribution of the
polynomial f(m) is indistinguishable from uniform. We note that this is an im-
portant restriction when we are working in rings. In particular, since the client's
queries are hidden, a malicious client could only send inputs in a subgroup of
ZN , which it could easily distinguish from a random r(1). We therefore have to
assume that we are working in a subgroup of the class group of prime order if we
want to protect against malicious clients.For semi-honest clients, this restriction
is not necessary.

Binding: Due to the freeness of the group action, we only have a collision, if
f(m) = f(m′). The OPRF is binding, if f is collision-resistant.

One-more unpredictability: We assume the adversary A has oracle access to
an OPRF oracle, which on input m outputs [f(m)]E0. After r evaluations of the
OPRF, the adversary has knowledge of

(m1, [f(m1)]E0), . . . , (mr, [f(mr)]E0) .

The client breaks one-more security by �nding a pairm∗, [f(m∗)]E0, wherem
∗ /∈

{m1, . . . ,mr}. The hardness of this again depends on the polynomial f . We
discuss these restrictions in Section 5.1. ⊓⊔

5.1 Choosing the polynomial

The �rst restriction from Theorem 5, is that we have to work in a prime order
subgroup of the class group to guarantee security against a malicious adversary.
So, throughout this section, we assume that ZN is a prime order subgroup of
Z#cl(O), and thus constitutes a �eld. In the proof of Theorem 5, we also found
the following restrictions on f :

1. f has output distribution indistinguishable from uniform,
2. f is collision-resistant,
3. the one-more unpredictability problem is hard.

26

From Equation (9), we see that polynomials of high degree lead to a higher
communication and storage cost in terms of tuples. We can easily count that the
number of elements in the tuple B is 3+d2. As a further restriction, we therefore
add, that

4. f has small degree.

It is immediately clear that the �rst two restrictions can be achieved by
permutation polynomials, i.e. a bijective polynomial f : ZN → ZN . Any linear
polynomial already �ts the bill here, but unfortunately, linear polynomials turn
out to not be secure against quantum adversaries. If d = 1, the output is a
multiplication with an o�set, i.e. [f0 + f1m]E0. In the reduction from GAIP to
Parallelization outlined by Galbraith et al. [38], the authors show that access to
an oracle, which on input m outputs [f1m]E is su�cient to recover f1. It is clear
that this breaks one-more-unpredictability.

For d = 2, permutation polynomials only exist over �elds with characteris-
tic 2, which contradicts the premise that N is a prime. Thankfully, when going
to d = 3, if p ≡ 2 (mod 3), any polynomial of the form f(m) = a(m+b)3+c with
a ̸= 0 is a permutation polynomial [30]. We do however note that heuristically,
a polynomial of degree 2 (with non-zero coe�cients) is also enough. In a �eld,
using a quadratic polynomial satis�es the binding property, since for every f(m),
there exists at most a second input that evaluates to f(m) (this follows from the
fact that f(m) = f(m′) is an equation of degree 2 and therefore admits at most
two solutions). Similarly, since at least half of ZN is covered by the outputs of
f (with each element reached at most twice), we can also guarantee the hiding
property against a malicious client.

So, we have found polynomials that �t our bill, assuming the one-more un-
predictability problem is hard. Let us �rst rephrase the latter as a game, where
the adversary A against one-more unpredictability has oracle access to an OPRF
oracle O, which on inputm, outputs [f(m)]E0. After polynomially many queries,
A outputs (m∗, E∗) with m∗ not previously queried to O, and wins the game,
if E∗ = [f(m∗)]E0. We �rst start by noticing that our assumption reduces to
(Scalar-)CDH, i.e. access to such an oracle, allows us to �nd [f(m∗)]E0 as follows
(for simplicity, we outline the case d = 2, while other cases work analogously):

1. Query O onm ∈ {−1, 0, 1} to get [f0]E0, [f0+f1+f2]E0 and [f0−f1+f2]E0.
2. Use the CDH-oracle to build [f1 + f2]E0 and [−f1 + f2]E0 from these by

subtraction of [f0]E0, then build [2f1]E0 and [2f2]E0 from addition and
subtraction.

3. For any message m∗, compute m∗/2 and (m∗)2/2 and call the Scalar-CDH
oracle to compute [f1m

∗]E0 and [f2(m
∗)2]E0.

4. Finally, compute and output [f0 + f1m
∗ + f2(m

∗)2]E0 = [f(m∗)]E0.

Showing the converse is less trivial, however. Assuming oracle access to an
OPRF-oracle, which on input m gives us the output [f(m)]E0 does not give
us much to work with, when we want to use this to break some assumption. As
a result, we have to rely on a more heuristic argumentation to convince ourselves
that it is hard for A to win the game. To this end, let's view our map as follows.

27

ZN −→ ZN −→ E
m 7−−→ f(m) 7−−→ [f(m)]E0

The adversary interacting with O chooses m and learns [f(m)]E0, thus the left
and the right hand side of our map. We can argue that from both of these sides,
the adversary is not able to infer any information about f(m). We already know
from the proof of Theorem 5 that by choosing m, we can't learn anything about
f(m) as long as it has output indistinguishable from uniform. Furthermore,
inferring anything about f(m) from [f(m)]E0 contradicts the assumptions of a
cryptographic group action being one-way and unpredictable. This last sentence
has to be taken with a large grain of salt, as this argument would also apply in the
case where f(m) is a linear function, which we have proven to be insu�cient, and
allowing the extraction of the secret. However, linear functions de�ne instances
of the hidden subgroup problem, while non-linear (non-monomial) polynomials
ostensibly do not. As a result, none of the standard attacks from the literature
seem to be applicable to our problem, from which we conjecture that it is a hard
problem. With this, we leave further scrutiny of our security assumption as an
open problem for future research.

5.2 Adding veri�ability

We discuss how to turn our OPRF into a veri�able OPRF. The idea is similar
to protocols like the one in Figures 4 and 11, where we add elliptic curves to the
honestly generated tuples B and use Scal.Prove in order to convince the veri�er
that the computation has been done as instructed.

To this end, we de�ne the server's public key as {Pj = [fj]E0}j=0,...,d and
we need to add the following publicly visible elements to the trusted tuple

M̃ = [z̃S]E0, {M (j,k) = [z
(j,k)
S]E0}j∈[d]

k∈[j−1].

Then the server computes the di�erent additions in Step 3 of Figure 10 consecu-
tively, starting from its public key, and appends a proof of correct computation.
The server steps then become[

αjfj

]
j∈[d]

[(
j
k

)
αj−kz

(j,k)
S

]j∈[d]

k∈[j−1]

[
z̃S

]
P0 ,

with appended proofs at each step, that the correct witness was used with the
correct factor from a curve Ei−1 to Ei, e.g.

Scal.Proveλ
(
z
(j,k)
S , {(E0,M

(j,k)), (Ei−1, Ei,
(
j
k

)
αj−k)},

)
.

All the proofs are sent to the client, which veri�es them and �nally computes its
own action, to get the OPRF output [f(m)]E0.

28

5.3 Comparison to the literature

We end this section by comparing the cost of our OPRF with CSIDH-based (and
other isogeny-based) OPRFs in the literature. The �rst CSIDH-based OPRF was
introduced by Boneh et al. [17] and is based on a Naor-Reingold PRF, where
the server and the client engage in λ

(
2
1

)
-oblivious transfers. Note that this ini-

tial design is based on the OT by Lai et al. [50] which requires a trusted setup.
Follow-up work by Heimberger et al. [41] improves the protocol of Boneh et al.
by reducing its round-complexity and presents a new OPRF protocol without
trusted setup, and which also works when the class group is unknown. We sum-
marize the di�erent protocols and their relative costs in Table 3, and compare
polynomial degrees d = 2 and 3 of our design.

In our protocol, a malicious client comes at no extra communication or com-
putational cost to the semi-honest case and our number of rounds is optimal,
even in the veri�able case. The non-veri�able version of our protocol strongly
outperforms the other protocols from the literature in terms of computation and
communication costs, by at least two orders of magnitude. Even when we add
veri�ability, which hasn't been done before in the CSIDH setting, our protocol
still outperforms the designs of Boneh et al. [17] and only has about twice the
computational cost of the semi-honest protocol by Heimberger et al. [41], while
still being round-optimal and having lower communication cost.

Remark 2. For completeness, we would also like to note that an isogeny-based
OPRF has recently been proposed by Basso [8] in the M-SIDH (masked torsion
point) setting of Fouotsa, Moriya and Petit [35]. Basso's work introduces a round-
optimal veri�able OPRF based on a trusted setup, with a total communication
cost of approximately 60λ log p+87λ2. Due to the point masking procedure of M-
SIDH, the prime is chosen to be 8868 bits long to achieve NIST level I security.
A comparison with our protocol in terms of theoretical costs is not directly
possible, as Basso's works with isogenies over Fp2 and with operations such as
scalar multiplication and pushing through of points. The author foregoes a direct
analysis of the computational complexity. Furthermore, the quantum security of
CSIDH in relation to NIST level I is not completely settled yet [19,54], so that it
is hard to de�ne the same security level in both settings. However, we note that
even with the most conservative estimate of a 4096-bit prime for level I security,
the communication cost of our OPRF outperforms Basso's by a factor 8 in the
veri�able case (4.6, if d = 3), and by a factor 122 in the non-veri�able case (81,
if d = 3). We point the interested reader to [41, Section 8] for a more thorough
comparison of current post-quantum OPRF designs.

5.4 Removing the trusted setup

Generating trusted tuples of the form required by our protocol can be seen as
an arithmetic computation over ZN . When ZN is a �eld, this can be e�ciently
realized, even with malicious security, using multi-party protocols. In particular,
the MASCOT protocol of Keller, Orisini and Scholl [48] enables this, using only

29

Table 3. Comparison of the OPRFs by Boneh et al. [17] and Heimberger et al. [41]
with our protocol in Figure 10 and the veri�able OPRF from Section 5.2, both for the
polynomial degrees d = 2, 3. The computational cost is expressed in the amount of
group actions to be performed. ∗In Section 5.4, we discuss how the trusted setup can
be removed for our protocol.

Number Total Total No Without
Source Malicious Veri�able of Computational Communication Trusted Class

Client Rounds cost cost Setup Group

[41] X X 2λ+ 2 3λ+ 3 (3λ+ 2) log p ✓ ✓

[17]
X X 2 5λ+ 2 (2λ+ 1) log p+ 2λ2 X X

✓ X 4 11λ+ 2 (5λ+ 1) log p+ 5λ2 X X

d = 2 ✓ X 2 2 6 log p X∗ X

d = 3 ✓ X 2 2 9 log p X∗ X

d = 2 ✓ ✓ 2 8λ+ 4
(
2λ+ 17

2

)
log p+ 4λ X X

d = 3 ✓ ✓ 2 14λ+ 7
(
7
2
λ+ 29

2

)
log p+ 7λ X X

oblivious transfer (OT) as a public-key primitive. The particular advantage of
using OT as the fundamental primitive is that, with symmetric-key OT extension
techniques, a large number of tuples can be produced using a small number of OT
instances [42,47]. Furthermore, isogeny-based OT constructions exist [3, 6, 50].

OPRF is a useful tool for larger protocols, such as private set intersection;
see Rindal and Schoppmann [55, Section 4] for the standard construction of a
PSI protocol from an OPRF. Application to PSI means that larger numbers of
OPRF calls are required � in the case of private contact discovery, one party
may need to make hundreds of thousands of OPRF calls. In this scenario, the
amortization o�ered by MASCOT brings a tremendous advantage to reduce the
number of base OT executions that are necessary.

For 128-bit �elds, the MASCOT protocol for two parties, with full malicious
security, can reach throughputs of up to 4,800 triples per second over a 1 Gbit/s
network [48]. To this throughput cost we must add a one-time setup cost to
execute the base-OTs required for the OT extension. Keller, Orsini and Scholl's
extension protocol requires λ base OTs [47] and Badrinarayanan et al.'s isogeny-
based OT protocol requires 5 isogeny computations [6], thus totalling a one-time
cost of 5λ isogeny computations.

After the setup, each triple generated by the symmetric OT extension pro-
tocol is su�cient to construct one multiplication tuple for our trusted setups.
When d = 2, we require four multiplications to construct the tuple of Equa-
tion (9) which implies that throughputs upwards of 1,000 tuples per second
could be acheived. For 256-bit �elds, we estimate that this would be reduced
by a factor of 1/4, yielding a throughput of 250�300 tuples per second, and for
d = 3 still about half of that.

30

Acknowledgments. This work was supported in part by the European Re-
search Council (ERC) under the European Union's Horizon 2020 research and
innovation programme (grant agreement ISOCRYPT - No. 101020788) and by
CyberSecurity Research Flanders with reference number VR20192203. Cyprien
Delpech de Saint Guilhem is a Junior FWO Postdoctoral Fellow under project
1266123N.

The authors would like to thank Karim Baghery, Steven Galbraith, Yi-Fu Lai,
Emmanuela Orsini, Nigel Smart and Frederik Vercauteren for helpful discussions
regarding the contents of this work.

References

1. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
authenticated key exchange from group actions. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 699�728. Springer, Heidelberg (Aug
2022). https://doi.org/10.1007/978-3-031-15979-4_24

2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II.
LNCS, vol. 12492, pp. 411�439. Springer, Heidelberg (Dec 2020). https://doi.
org/10.1007/978-3-030-64834-3_14

3. Alamati, N., Montgomery, H., Patranabis, S., Sarkar, P.: Two-round adaptively
secure MPC from isogenies, LPN, or CDH. In: Tibouchi, M., Wang, H. (eds.)
ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 305�334. Springer, Heidelberg
(Dec 2021). https://doi.org/10.1007/978-3-030-92075-3_11

4. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-FiSh with
sharing-friendly keys. In: Simpson, L., Baee, M.A.R. (eds.) ACISP 2023. Lecture
Notes in Computer Science, vol. 13915, pp. 471�502. Springer (2023). https://
doi.org/10.1007/978-3-031-35486-1_21

5. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: Practical robust DKG protocols
for CSIDH. In: Tibouchi, M., Wang, X. (eds.) ACNS 2023, Part II. Lecture Notes
in Computer Science, vol. 13906, pp. 219�247. Springer (2023). https://doi.org/
10.1007/978-3-031-33491-7_9

6. Badrinarayanan, S., Masny, D., Mukherjee, P., Patranabis, S., Raghuraman,
S., Sarkar, P.: Round-optimal oblivious transfer and MPC from computational
CSIDH. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol.
13940, pp. 376�405. Springer, Heidelberg (May 2023). https://doi.org/10.1007/
978-3-031-31368-4_14

7. Baghery, K., Cozzo, D., Pedersen, R.: An isogeny-based ID protocol using struc-
tured public keys. In: Paterson, M.B. (ed.) 18th IMA International Conference on
Cryptography and Coding. LNCS, vol. 13129, pp. 179�197. Springer, Heidelberg
(Dec 2021). https://doi.org/10.1007/978-3-030-92641-0_9

8. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptol-
ogy ePrint Archive, Report 2023/225 (2023), https://eprint.iacr.org/2023/225

9. Basso, A., Kutas, P., Merz, S.P., Petit, C., Sanso, A.: Cryptanalysis of an obliv-
ious PRF from supersingular isogenies. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part I. LNCS, vol. 13090, pp. 160�184. Springer, Heidelberg (Dec
2021). https://doi.org/10.1007/978-3-030-92062-3_6

31

https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-92075-3_11
https://doi.org/10.1007/978-3-031-35486-1_21
https://doi.org/10.1007/978-3-031-35486-1_21
https://doi.org/10.1007/978-3-031-33491-7_9
https://doi.org/10.1007/978-3-031-33491-7_9
https://doi.org/10.1007/978-3-031-31368-4_14
https://doi.org/10.1007/978-3-031-31368-4_14
https://doi.org/10.1007/978-3-030-92641-0_9
https://eprint.iacr.org/2023/225
https://doi.org/10.1007/978-3-030-92062-3_6

10. Baum, C., Delpech de Saint Guilhem, C., Kales, D., Orsini, E., Scholl, P., Za-
verucha, G.: Banquet: Short and fast signatures from AES. In: Garay, J. (ed.)
PKC 2021, Part I. LNCS, vol. 12710, pp. 266�297. Springer, Heidelberg (May
2021). https://doi.org/10.1007/978-3-030-75245-3_11

11. Baum, C., Nof, A.: Concretely-e�cient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol.
12110, pp. 495�526. Springer, Heidelberg (May 2020). https://doi.org/10.1007/
978-3-030-45374-9_17

12. Beaver, D.: E�cient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO'91. LNCS, vol. 576, pp. 420�432. Springer, Heidelberg
(Aug 1992). https://doi.org/10.1007/3-540-46766-1_34

13. Beullens, W., Disson, L., Pedersen, R., Vercauteren, F.: CSI-RAShi: Distributed
key generation for CSIDH. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryp-
tography - 12th International Workshop, PQCrypto 2021. pp. 257�276. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-030-81293-5_14

14. Beullens, W., Dobson, S., Katsumata, S., Lai, Y.F., Pintore, F.: Group signatures
and more from isogenies and lattices: Generic, simple, and e�cient. In: Dunkel-
man, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276,
pp. 95�126. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/
978-3-031-07085-3_4

15. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Fala�: Logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 464�492. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64834-3_16

16. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: E�cient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227�247. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34578-5_9

17. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isoge-
nies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol.
12492, pp. 520�550. Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/
978-3-030-64834-3_18

18. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
Journal of Cryptology 17(4), 297�319 (Sep 2004). https://doi.org/10.1007/

s00145-004-0314-9

19. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106,
pp. 493�522. Springer, Heidelberg (May 2020). https://doi.org/10.1007/

978-3-030-45724-2_17

20. Castryck, W., Decru, T.: An e�cient key recovery attack on SIDH. In:
Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008,
pp. 423�447. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/

978-3-031-30589-4_15

21. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An e�-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395�427. Springer, Heidelberg
(Dec 2018). https://doi.org/10.1007/978-3-030-03332-3_15

22. Chung, K.M., Hsieh, Y.C., Huang, M.Y., Huang, Y.H., Lange, T., Yang, B.Y.:
Group signatures and accountable ring signatures from isogeny-based assumptions.

32

https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-03332-3_15

Cryptology ePrint Archive, Report 2021/1368 (2021), https://eprint.iacr.org/
2021/1368

23. Cohen, H., Lenstra Jr, H.W.: Heuristics on class groups of number �elds. In: Num-
ber Theory Noordwijkerhout 1983: Proceedings of the Journées Arithmétiques held
at Noordwijkerhout, The Netherlands July 11�15, 1983, pp. 33�62. Springer (2006)

24. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

25. Cozzo, D., Smart, N.P.: Sashimi: Cutting up CSI-FiSh secret keys to pro-
duce an actively secure distributed signing protocol. In: Ding, J., Tillich, J.P.
(eds.) Post-Quantum Cryptography - 11th International Conference, PQCrypto
2020. pp. 169�186. Springer, Heidelberg (2020). https://doi.org/10.1007/

978-3-030-44223-1_10

26. De Feo, L., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: SCALLOP: Scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023, Part I. LNCS, vol. 13940, pp. 345�375. Springer, Heidelberg (May
2023). https://doi.org/10.1007/978-3-031-31368-4_13

27. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol.
11478, pp. 759�789. Springer, Heidelberg (May 2019). https://doi.org/10.1007/
978-3-030-17659-4_26

28. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64�93. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64837-4_3

29. De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol.
12111, pp. 187�212. Springer, Heidelberg (May 2020). https://doi.org/10.1007/
978-3-030-45388-6_7

30. Dickson, L.E.: Linear groups: With an exposition of the Galois �eld theory, vol. 6.
BG Teubner (1901)

31. Eaton, E., Jao, D., Komlo, C., Mokrani, Y.: Towards post-quantum key-updatable
public-key encryption via supersingular isogenies. In: AlTawy, R., Hülsing, A. (eds.)
SAC 2021. LNCS, vol. 13203, pp. 461�482. Springer, Heidelberg (Sep / Oct 2022).
https://doi.org/10.1007/978-3-030-99277-4_22

32. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: E�cient sig-
nature scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol.
12111, pp. 157�186. Springer, Heidelberg (May 2020). https://doi.org/10.1007/
978-3-030-45388-6_6

33. Felderho�, J.: Hard homogenous spaces and commutative supersingular isogeny
based di�e-hellman. Internship Report, LIX, Ecole polytechnique; ENS de Lyon
(2019)

34. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi�-
cation and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO'86. LNCS,
vol. 263, pp. 186�194. Springer, Heidelberg (Aug 1987). https://doi.org/10.

1007/3-540-47721-7_12

35. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering SIDH at-
tacks by masking information. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 282�309. Springer, Heidelberg (Apr 2023). https:
//doi.org/10.1007/978-3-031-30589-4_10

33

https://eprint.iacr.org/2021/1368
https://eprint.iacr.org/2021/1368
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-99277-4_22
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-031-30589-4_10

36. Fouotsa, T.B., Petit, C.: SimS: A simpli�cation of SiGamal. In: Cheon, J.H.,
Tillich, J.P. (eds.) Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021. pp. 277�295. Springer, Heidelberg (2021). https://doi.org/10.
1007/978-3-030-81293-5_15

37. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and
oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 303�324. Springer, Heidelberg (Feb 2005). https://doi.org/10.
1007/978-3-540-30576-7_17

38. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum Equivalence of the
DLP and CDHP for Group Actions. Mathematical Cryptology 1(1), 40�44 (2021)

39. Goldreich, O.: On expected probabilistic polynomial-time adversaries: A sugges-
tion for restricted de�nitions and their bene�ts. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 174�193. Springer, Heidelberg (Feb 2007). https://doi.org/
10.1007/978-3-540-70936-7_10

40. Goldwasser, S., Micali, S., Racko�, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186�208 (1989)

41. Heimberger, L., Meisingseth, F., Hennerbichler, T., Ramacher, S., Rechberger, C.:
OPRFs from Isogenies: Designs and Analysis. Cryptology ePrint Archive, Paper
2023/639 (2023), https://eprint.iacr.org/2023/639

42. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers e�-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145�161. Springer,
Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4_9

43. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121�1152 (2009). https:
//doi.org/10.1137/080725398

44. Joux, A.: MPC in the head for isomorphisms and group actions. Cryptology ePrint
Archive, Paper 2023/664 (2023), https://eprint.iacr.org/2023/664

45. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from
�ve-pass identi�cation schemes. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.)
CANS 20. LNCS, vol. 12579, pp. 3�22. Springer, Heidelberg (Dec 2020). https:
//doi.org/10.1007/978-3-030-65411-5_1

46. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018. pp. 525�537. ACM Press (Oct 2018). https:
//doi.org/10.1145/3243734.3243805

47. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 724�741. Springer, Heidelberg (Aug 2015). https://doi.org/10.
1007/978-3-662-47989-6_35

48. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 830�842. ACM Press (Oct
2016). https://doi.org/10.1145/2976749.2978357

49. Kitaev, A.Y.: Quantummeasurements and the abelian stabilizer problem. Electron.
Colloquium Comput. Complex. TR96-003 (1996), https://eccc.weizmann.ac.
il/eccc-reports/1996/TR96-003/index.html

50. Lai, Y.F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, e�cient
and UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.X.
(eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 213�241. Springer, Hei-
delberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_8

34

https://doi.org/10.1007/978-3-030-81293-5_15
https://doi.org/10.1007/978-3-030-81293-5_15
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-70936-7_10
https://doi.org/10.1007/978-3-540-70936-7_10
https://eprint.iacr.org/2023/639
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1137/080725398
https://doi.org/10.1137/080725398
https://eprint.iacr.org/2023/664
https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1145/2976749.2978357
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html
https://doi.org/10.1007/978-3-030-77870-5_8

51. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 448�471. Springer, Heidelberg (Apr 2023). https:
//doi.org/10.1007/978-3-031-30589-4_16

52. Moriya, T., Onuki, H., Takagi, T.: SiGamal: A supersingular isogeny-based PKE
and its application to a PRF. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part II. LNCS, vol. 12492, pp. 551�580. Springer, Heidelberg (Dec 2020). https:
//doi.org/10.1007/978-3-030-64834-3_19

53. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Vitter, J.S.,
Larmore, L.L., Leighton, F.T. (eds.) Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA. pp.
245�254. ACM (1999). https://doi.org/10.1145/301250.301312

54. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 463�492. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45724-2_16

55. Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and circuit-PSI from vector-
OLE. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS,
vol. 12697, pp. 901�930. Springer, Heidelberg (Oct 2021). https://doi.org/10.
1007/978-3-030-77886-6_31

56. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 472�503. Springer, Heidelberg
(Apr 2023). https://doi.org/10.1007/978-3-031-30589-4_17

57. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145 (2006), https://eprint.iacr.org/
2006/145

58. Wesolowski, B.: Orientations and the supersingular endomorphism ring problem.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 345�371. Springer, Heidelberg (May / Jun 2022). https://doi.
org/10.1007/978-3-031-07082-2_13

59. Zhang, F., Safavi-Naini, R., Susilo, W.: An e�cient signature scheme from bilinear
pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277�290. Springer, Heidelberg (Mar 2004). https://doi.
org/10.1007/978-3-540-24632-9_20

35

https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-030-64834-3_19
https://doi.org/10.1007/978-3-030-64834-3_19
https://doi.org/10.1145/301250.301312
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-031-30589-4_17
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-540-24632-9_20
https://doi.org/10.1007/978-3-540-24632-9_20

A Security reductions

We prove the security reductions claimed in equation (6). We write A ≤ B (A
reduces to B) to indicate that an algorithm against problem B can be used as a
subroutine against problem A. We further write A ≡ B (A is equivalent to B),
if A ≤ B and B ≤ A.

As an auxiliary tool, we further restate the following problem, introduced
in [33] and underlying the OT protocol in [50]. Note that in these sources, the
problem is referred to as the Inverse-CDH problem.

Problem 6 (Negative-CDH). Given (E, [a]E) where a ∈ ZN and E ∈ E and
E ̸= E0, compute [−a]E.

It is immediate that the problems mentioned in Section 4.1, as well as Problem 6,
reduce to GAIP (Def. 1), since knowledge of the secret isogenies allows to act
with (multiples of or powers of) them. In [33], it is also proven that Negative-
CDH ≡ Scalar-CDH. Furthermore, CDH ≡ Scalar-CDH under the assumption
that the acting group has odd class number, which is always the case, when
p ≡ 3 (mod 4) [21], as is the case for us.

For the rest of this section, let us introduce the oraclesOCDH,OScal,OExp and
OMult for the CDH, Scalar-CDH, Exp-CDH and Mult-CDH problems, respec-
tively. We write oracle queries as e.g.
[ab]E ← OMult(E, [a]E, [b]E). We state the obvious reductions �rst:

� Scalar-CDH ≤ Mult-CDH: On input (c, E, [a]E), query
[ca]E ← OMult(E, [a]E, [c]E) and return [ca]E.

� Exp-CDH ≤ Mult-CDH: On input (E, [a]E, e), write e in binary form and
use a square-and-multiply type approach with queries of the form [ai+j]E ←
OMult(E, [ai]E, [aj]E).8 This solves Exp-CDH with at most 2 log e queries to
OExp.

We continue by stating an algorithm for Negative-CDH ≤ Exp-CDH. The idea
behind the algorithm is to search for a number b = a + c and an exponent e,
such that be ≡ −1 (mod N). We do this, by starting from Euler's theorem and
incrementally looking for a b satisfying this property.

1. On input (E, [a]E), compute [1]E and [−1]E, and de�ne b = a.
2. Set e = ϕ(N), where ϕ is the Euler totient function.
3. Query F ← OExp(E, [b]E, e/2i), by incrementing i from 0 upwards, until

F ̸= [1]E.
4. If F ̸= [−1]E, repeat from step 2. with b ← b + 1, by constructing [b]E =

[1][a]E. Keep track of c = b− a.
5. If F = [−1]E, we have found an e, such that [be]E = [−1]E, thus we can

query [−b]E ← OExp(E, [b]E, e+ 1) and recover [−a]E = [c][−b]E.
8 Even if trivial queries of the type OMult(E, [a]E, [a]E) are prohibited, an adversary
can sample k ← ZN and query the oracle with [a2 − k2]E ← OMult(E, [a− k]E, [a+
k]E), from which it can easily recover [a2]E = [k2][a2 − k2]E, while the queried
curves will look completely random to the oracle.

36

It is clear that the complexity of this algorithm depends on the number of divisors
of N . Heuristically, we assume steps 2 through 4 to be repeated O(2r) times,
where r is the number of divisors of N .9

Finally, we show that Mult-CDH ≤ Exp-CDH for odd N , implying equiv-
alence in our setting. To this end, we give the adversary against Mult-CDH
access to OExp as well as to OCDH and OScal. Note that the latter two can be
implemented through OExp.

1. On input (E, [a]E, [b]E), compute [a+ b]E ← OCDH(E, [a]E, [b]E).
2. [a2 + 2ab+ b2]E ← OExp(E, [a+ b]E, 2).
3. [a2]E ← OExp(E, [a]E, 2) and [−a2]E ← OScal(−1, E, [a2]E),

[b2]E ← OExp(E, [b]E, 2) and [−b2]E ← OScal(−1, E, [b2]E)
4. [2ab+ b2]E ← OCDH(E, [a2 + 2ab+ b2]E, [−a2]E),

[2ab]E ← OCDH(E, [2ab+ b2]E, [−b2]E).
5. Finally return [ab]E ← OScal(E, [2ab]E, 1/2 mod N).

We end up with the picture

Neg-CDH ≡ Scalar-CDH ≡ CDH ≤ Exp-CDH ≡ Mult-CDH ≤ GAIP ,

which holds for odd N .

B Algorithms for exponentiation

B.1 Exponentiation with trusted setup

The same idea as multiplication with Beaver triples can be used in order to prove
elements in LExp, e.g. compute powers of a secret a ∈ ZN , such as [ae]E0, for
some e ∈ N. We can use the same trick to compute

[a2]E0 = [(α+ x)2]E0 = [α2 + 2αx+ x2]E0 ,

where x← ZN and α = a− x. By allowing access to tuples of the type

B = (id;x,Mx,Mx2) = (id;x, [x]E0, [x
2]E0) ∈ ZN × E2 ,

where V iewP (B) = B and V iewV (B) = (id,Mx,Mx2), we can de�ne the squar-
ing protocol of Figure 11. Similarly, precomputed tuples of the type

B = (id;x,Mx,Mx2 ,Mx3) = (id;x, [x]E0, [x
2]E0, [x

3]E0) ∈ ZN × E3

with V iewP (B) = B and V iewV (B) = (id,Mx,Mx2 ,Mx3) allow cubing in the
exponent via

[a3]E0 = [(α+ x)3]E0 = [α3 + 3αx2 + 3α2x+ x3]E0 ,

which we describe in Figure 12. Security of these protocols can be proven in
exactly the same way as in Theorem 2 and is therefore omitted.

For any exponent e > 3, a square-and-multiply type approach to compute
[ae]E0 can use Square.Prove and Mult.Prove consecutively.10

9 Since we are assuming N to not be smooth, this reduction is in general quite e�cient.
10 We note that in some speci�c cases, tripling might be quicker.

37

Square.Proveλ(a,B)

Input: Secret a, tuple V iewP (B) = B = (id;x,Mx,Mx2).
Output: A proof π for the language LExp with e = 2

1. Set α = a− x.
2. Compute E1 = [2αx]Mx2 and π1 = Scal.Proveλ(x, {(E0,Mx), (Mx2 , E1, 2α)}).
3. Return π = (E1, π1, α).

Square.Verify(X,BV , π)

Input: Proof π = (E1, π1, α) of statement X = (Ea, Ea2), tuple BV =
V iewV (B) = (id;Mx,Mx2).

Output: accept or reject

1. Verify, if [α]Mx
?
= Ea and [α2]E1

?
= Ea2 .

2. Check Scal.Verify({(E0,Mx), (Mx2 , E1, 2α)}, π1).
3. Accept if all veri�cations succeed, otherwise reject.

Fig. 11. Non-interactive zero-knowledge proof and veri�cation squaring in the expo-
nent.

Cost. We can see that squaring costs 1 + 2λ group actions for the prover and
2 + 2λ for the veri�er, while tripling costs 2 + 4λ for the prover and 3 + 4λ
for the veri�er, thus the same as multiplication. For a generic e, we will need
at most ⌊log2 e⌋ squarings and multiplications, resulting in the total cost of at
most ⌊log2 e⌋(3 + 6λ) for the prover and ⌊log2 e⌋(5 + 6λ) for the veri�er.

B.2 Exponentiation-in-the-Head

In this section, we outline the full protocol for exponentiation with a trusted
setup, as introduced in Section 4.4.2. The protocol uses the in-the-Head protocol
ExpITHe

n(α,BP) from Figure 6 as a subroutine. We again assume that the prover

can give access to tuples Bi =
(
id, (x

(k)
i)k∈[e]

)
to the veri�er.

We state security below. We only sketch the proof of this theorem as it works
analogous to the proof of Theorem 3.

Theorem 6. Assuming ideal commitments, the protocol in Figure 13 is an in-
teractive and honest-veri�er zero-knowledge proof of knowledge for the language
LExp with soundness error 1/n.

Proof (Sketch). Completeness follows from

En =

[
αe +

e∑
k=1

(
e

k

)
αe−kx

(k)
i

]
E0 = [(α+ x)e]E0 = [ae]E0 .

Special soundness. Analogous to the multiplicative case, from two accepting
transcripts with c ̸= c′, we can extract x from {Bi}i ∈ [n] and extract a.

Zero-knowledge. The simulator S samples α← ZN at random and sets Mx =
[−α]Ea. Then for a challenge c, it computes F0 = Mx, F1, . . . , Fc−1 correctly

38

Cube.Proveλ(a,B)

Input: Secret a, tuple V iewP (B) = B = (id;x,Mx,Mx2 ,Mx3).
Output: A proof π for the language LExp for e = 3

1. Set α = a− x.
2. Compute E1 = [3αx2]Mx3 and

π1 = Scal.Proveλ(x
2, {(E0,Mx2), (Mx3 , E1, 3α)}).

3. Compute E2 = [3α2x]E1 and π2 = Scal.Proveλ(x, {(E0,Mx), (E1, E2, 3α
2)}).

4. Return π = ((E1, E2), (π1, π2), α).

Cube.Verify(X,BV , π)

Input: Proof π = ((E1, E2), (π1, π2), α) of statement X = (Ea, Ea3), tuple BV =
V iewV (B) = (id;Mx,Mx2 ,Mx3).

Output: accept or reject

1. Verify, if [α]Mx
?
= Ea and [α3]E2

?
= Ea3 .

2. Check Scal.Verify({(E0,Mx2), (Mx3 , E1, 3α)}, π1) and
Scal.Verify({(E0,Mx), (E1, E2, 3α

2)}, π2)
3. Accept if all veri�cations succeed, otherwise reject.

Fig. 12. Non-interactive zero-knowledge proof and veri�cation for cubing in the expo-
nent.

�forwards" and Fn = Eae , Fn−1, . . . , Fc correctly �backwards", so that all the
veri�cation conditions succeed. Indistinguishability is guaranteed through the
same arguments as in the proof of Theorem 3.

Cost. The prover computes n group actions, one for each party, per protocol
repetition. The veri�er veri�es n− 1 of those and also veri�es whether [α]Ex =
Ea, also resulting in the total of n. Since τ = ⌈λ/ log2 n⌉, this cost is minimal
for n = 3 and results in a cost of approximately 1.89λ isogeny computations
per party, which is faster than the multiplication approaches, and faster than
proofs of DH-tuples. Unlike in the square-and-multiply approach presented in
the previous section, this cost is independent of the exponent e. However, the

downside of large e is that we need many precomputed tuples x
(k)
i . Yet, square-

and-multiply type approaches would also be possible using the MPCitH protocols
from this section, where the cost would increase, but the number of precomputed
elements would scale with log2 e.

B.3 Removing the trusted setup from Exponentiation-in-the-Head.

In Figure 14, we apply the cut-and-choose technique to the proof of exponenti-
ation in LExp.

Theorem 7. Assuming ideal commitments, the protocol in Figure 14 is an in-
teractive and honest-veri�er zero-knowledge proof of knowledge for the language
LExp with soundness error ϵCnC(m,n, τ).

39

Input: Secret a, statement X = {e, [a]E0, [a
e]E0}, security parameter λ.

Output: accept or reject whether X ∈ LExp.

Prover:

1. Query T for tuple BP =
(
id; (x

(k)
i)

k∈[e]

i∈[n]

)
.

2. Execute (V1, . . . ,Vn)← ScalarITHe
n(α,BP),

with α = a− x and β = b− y.
3. For i = 1, . . . , n, sample µi ← {0, 1}λ and commit to Ci = C(Vi, µi).

Send {C1, . . . , Cn} and α to the veri�er.
Veri�er:

4. Sample a challenge c ∈ [n] uniformly at random and send c to the prover.
Prover:

5. Send {Vi, µi}i∈[n]\{c}.

Veri�er:

6. Check that all Vi, for i ∈ [n] \ {c}, contain the same id.
7. Query T with id for tuple BV = (id,Mx).

8. Check [α]Mx
?
= Ea.

9. Check the commitments Ci
?
= C(Vi, µi), for i ∈ [n] \ {c}.

10. If c ̸= 1, verify that F0
?
= E0, where F0 ∈ V1.

11. If c ̸= n, verify that Fn
?
= Eae and Fn

?
=
[
αe +

∑e
k=1

(
e
k

)
αe−kx

(k)
n

]
Fn−1,

where Fn−1, Fn ∈ Vn and (x
(k)
n)k∈[e] ∈ Bn.

12. For i ∈ [n− 1] \ {c},
(a) if i ̸= n, verify that Fi =

[∑e
k=1

(
e
k

)
αe−kx

(k)
i

]
Fi−1, for Fi−1, Fi ∈ Vi and

(x
(k)
i)k∈[e] ∈ Bi.

(b) if c ̸= i+ 1, verify that Fi ∈ Vi is equal to Fi−1 ∈ Vi−1.
13. If all checks succeed, return accept, otherwise reject.

Fig. 13. Interactive ZK proof for LExp using MPC-in-the-Head with trusted party.

Proof. Correctness: It is clear that correctly formed tuples pass the veri�cation
conditions for j ∈ I. For each execution j ∈ [m] \I, correctness follows from the
correctness of ExpITH.

Special soundness: By the same argument as for Theorem 6, for a given j, the
extractor can reconstruct (x(1))j and extract a through αj . By further rewinding
the prover back to the commitment of the pre-processing data, and obtaining a
third accepting transcript with a di�erent opening of τ datasets, the extractor
can ensure that the (x(1))j used above is a valid multiplication tuple.

Zero-knowledge: To ouput an indistinguishable transcript, the simulator S
�rst samples I at random and then generates honest secret-sharings
({xi}[n], {yi}[n], {zi}[n],Mx)j for j ∈ I. For the remaining j ∈ [m] \ I, S does
as for Theorem 3 by sampling αj at random and setting M j

x = [−αj]Ea. It
then falsi�es the round-robin computation of F j

n in the same way: by sampling
the challenge cj at random, and computing F j

c−1 �forwards� from E0 and F j
c

40

Input: Secret pair a, statement X = {e, [a]E0, [a
e]E0}, security parameter λ.

Output: accept or reject whether X ∈ LExp.

Prover:

1. Generate the secret-shared pre-processing data:
{(

(x
(k)
i)

k=[e]

i=[n] ,Mx

)
j

}
j=[m]

.

2. Commit to the pre-processed data for each party and to the curves M j
x for each

copy j ∈ [m], and send the commitments to the veri�er.
Veri�er:

3. Sample a random subset I ⊂ [m] of size m− τ and send I to the prover.
Prover:

4. For each j ∈ [m] \ I, execute (Vj
1 , . . . ,Vj

n) ← ExpITHe
n(α

j , (x(k))j), with
αj = a− xj .

5. For j ∈ [m] \ I and i ∈ [n], sample µj
i ← {0, 1}

λ and commit to Cj
i = C(Vj

i , µ
j
i).

Send ({Cj
1 , . . . , C

j
n}, αj)j=[m]\I to the veri�er, as well as and the opening of

({xi}[n], {yi}[n], {zi}[n],Mx)j∈I .
Veri�er:

6. Sample challenges cj ∈ [n], for j ∈ [m] \ I uniformly at random and send {cj}
to the prover.

Prover:

7. Send {Vj
i , µ

j
i}i∈[n]\c,j∈[m]\I .

Veri�er:

8. For j ∈ I, verify if the commitments to ({xi}[n], {yi}[n], {zi}[n],Mx)j open cor-
rectly and are correctly formed.

9. For all j ∈ [M] \ I, perform the same veri�cations as in Figure 13.
10. If all checks succeed, return accept, otherwise reject.

Fig. 14. Interactive ZK proof for LMult
1 using MPCitH without trusted party.

�backwards� from Eae . Since the (x
(k)
c)j remain hidden from the Veri�er, and

since there is no commitment as in the protocol with trusted setup, no other
simulation is necessary.

Correctness: Here, F j
n = Eae by construction and the views will be consistent

due to the �forward� and �backward� computations.

Indistinguishability: The public values αj are sampled at random, which means
they are distributed identically to the protocol, assuming that the Veri�er has no
knowledge of (x(k))j . Similarly, the M j

x are distributed identically to an honest

tuple. The idealised commitments perfectly hide (x
(k)
c)j from the Veri�er, so the

perfect secrecy of the additive secret-sharing scheme implies the perfect zero-
knowledge of the protocol. ⊓⊔

41

	New proof systems and an OPRF from CSIDH
	Introduction
	Background
	Isogeny-based cryptography
	Zero-Knowledge Proofs

	Towards multiplication from addition
	Tuple generation functionality
	Two-party multiplication protocol

	Zero-Knowledge Proof Systems
	Languages and Security Assumptions
	Addition and Scalar Multiplication
	Multiplication with trusted setup
	MPC-in-the-Head protocols
	New signatures

	An oblivious pseudo-random function
	Choosing the polynomial
	Adding verifiability
	Comparison to the literature
	Removing the trusted setup

	Security reductions
	Algorithms for exponentiation
	Exponentiation with trusted setup
	Exponentiation-in-the-Head
	Removing the trusted setup from Exponentiation-in-the-Head.

