
Defeating Low-Cost Countermeasures against
Side-Channel Attacks in Lattice-based Encryption

A Case Study on Crystals-Kyber

Prasanna Ravi1, Thales Paiva2, Dirmanto Jap1, Jan-Pieter D’Anvers3 and
Shivam Bhasin1

1 Temasek Laboratories, Nanyang Technological University, Singapore
2 Fundep and CASNAV, Brazil

3 imec-COSIC KU Leuven, Kasteelpark Arenberg 10 - bus 2452, 3001 Leuven, Belgium
prasanna.ravi@ntu.edu.sg thalespaiva@gmail.com djap@ntu.edu.sg

janpieter.danvers@esat.kuleuven.be sbhasin@ntu.edu.sg

Abstract. In an effort to circumvent the high cost of standard countermeasures
against side-channel attacks in post-quantum cryptography, some works have de-
veloped low-cost detection-based countermeasures. These countermeasures try to
detect maliciously generated input ciphertexts and react to them by discarding the
ciphertext or secret key. In this work, we take a look at two previously proposed
low-cost countermeasures: the ciphertext sanity check and the decapsulation failure
check, and demonstrate successful attacks on these schemes. We show that the
first countermeasure can be broken with little to no overhead, while the second
countermeasure requires a more elaborate attack strategy that relies on valid cho-
sen ciphertexts. Thus, in this work, we propose the first chosen-ciphertext based
side-channel attack that only relies on valid ciphertexts for key recovery. As part of
this attack, a third contribution of our paper is an improved solver that retrieves
the secret key from linear inequalities constructed using side-channel leakage from
the decryption procedure. Our solver is an improvement over the state-of-the-art
Belief Propagation solvers by Pessl and Prokop, and later Delvaux. Our method is
simpler, easier to understand and has lower computational complexity, while needing
less than half the inequalities compared to previous methods.
Keywords: Lattice-based cryptography · Side-Channel Attack · Kyber · Key
Encapsulation Mechanism · Chosen Ciphertext Attack

1 Introduction
In July 2022, a new Key Encapsulation Mechanism (KEM) and 3 digital signature schemes
were selected as the first standardized PQC algorithms [AAC+22], a result of an extensive
NIST Post-Quantum standardization process. Kyber KEM [ABD+20], based on the
well-known Module Learning With Error (MLWE) problem, was the only algorithm
standardized for KEMs, and we will soon witness wide-scale adoption of Kyber on a
variety of computing devices, including resource-constrained platforms such as embedded
microcontrollers [KRSS19,AHKS22]. This naturally makes them susceptible to side-channel
attacks, which was also an important consideration during the NIST PQC standardization
process [RCDB22]. Thus, several works were reported on SCA of Kyber KEM and proposals
for concrete countermeasures [BGR+21,RRD+23,RRCB20].

Looking at these attacks, the decapsulation procedure of Kyber KEM typically serves
as the main target, and they can all be categorized into two broad categories: (1) Known

mailto:prasanna.ravi@ntu.edu.sg
mailto:thalespaiva@gmail.com
mailto:djap@ntu.edu.sg
mailto:janpieter.danvers@esat.kuleuven.be
mailto:sbhasin@ntu.edu.sg

2 Defeating low-cost countermeasures

Ciphertext (KC) based SCA and (2) Chosen Ciphertext based SCA. In KC-based SCA,
the attacker only requires the knowledge of inputs to the decapsulation procedure [PPM17,
PP19,MWK+22]. However, for CC-based SCA, the attacker must control the input to the
decapsulation procedure [RRCB20,XPRO20,BDH+21]. CC-based attacks form the largest
category of attacks and are considered more powerful than KC attacks. The reason is
that CC-based attacks can exploit leakage from the entire decapsulation procedure for key
recovery, while KC-based attacks have a much narrower attack surface for key recovery.
This means that protection against CC-based attacks is costlier than KC-based attacks
and requires combining masking and shuffling countermeasures [BGR+21,RPBC20]. Thus,
CC-based side-channel attacks form the main focus of our work.

CC-based side-channel attacks utilize maliciously crafted ciphertexts for key recovery.
Standard countermeasures against these attacks include masking and shuffling, which come
at a certain cost. In a different approach, some works have focused on low-cost detection-
based countermeasures [XPRO20,RCDB22]. The idea of detection-based countermeasures
is to look for maliciously formed ciphertexts. Upon detection of a malicious ciphertext,
the ciphertext can be discarded, or the secret key can be refreshed, preventing further
exposure towards the attacker. While these countermeasures look attractive for a designer
owing to their low cost, we are unaware of a dedicated study of the concrete protection
they offer against CC-based side-channel attacks. In this work, we attempt to bridge
this gap, we perform a concrete analysis of two such detection countermeasures against
CC-based attacks, the (1) Ciphertext Sanity Check and the (2) Decapsulation Failure
Check, and demonstrate new types of CC-based attacks are capable of breaking both these
countermeasures.

Our Contribution

In this work, we present the following new contributions:

1. We give the first analysis of the effectiveness of low-cost detection-based counter-
measures against CC-based side-channel attacks. In particular, we analyze two
countermeasures - (1) Ciphertext Sanity Check and (2) Decapsulation Failure Check.
We demonstrate novel CC-based side-channel attacks that can break both counter-
measures efficiently and apply these attacks in the case of Kyber KEM.

(a) Our first attack targets the ciphertext sanity check countermeasure, which
detects low-entropy ciphertexts used for a large subset of CC-based side-channel
attacks. We introduced a novel method to mask malicious low-entropy cipher-
texts with the public key to increase their entropy and circumvent the ciphertext
sanity check countermeasure. One main advantage of our approach is that, after
masking, the attack strategy is the same as the attack strategy without the
countermeasure. Our attack works with probability 0.57% and can be restarted
if unsuccessful.

(b) Our second attack targets the decapsulation failure check countermeasure,
which refreshes the secret key upon observing a single decapsulation failure.
This countermeasure offers concrete protection as all CC-based attacks rely on
multiple invalid/malicious ciphertexts for key recovery. In this work, we propose
the first CC-based side-channel attack that only relies on valid ciphertexts to
counter the decapsulation failure check countermeasure.

2. We develop a novel solver to obtain the secret key from linear inequalities obtained
from leakage. This solver improves upon the Belief Propagation approach, which
has been the de-facto approach in prior works [PP21,HPP21,Del22]. Our solver is
easier to understand, more efficient to run and can recover the secret key with less
than 2× number of linear inequalities compared to the state-of-the-art.

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 3

We perform experimental validation of our CC attack using valid ciphertexts, on both
the unprotected and masked open-source implementations of Kyber KEM taken from the
pqm4 library [KRSS] and mkm4 library [HKL+22] respectively. On the unprotected imple-
mentations, we can recover the secret key in ≈ 325 traces for the reference implementation
and ≈ 7800 traces for the optimized implementation. We also show that our attack can be
adapted to both the shuffled and masked implementations in a straightforward manner.
While both shuffling and masking increase the attacker’s complexity for key recovery, they
do not concretely prevent the attack.

Our work therefore shows that low-cost detection countermeasures can be rendered
completely ineffective, and do not offer standalone protection against CC-based side-channel
attacks. While these countermeasures are attractive for designers, our work encourages
more study towards the development and analysis of new detection-based countermeasures
against CC-based side-channel attacks.

2 Preliminaries

2.1 Notations
For any prime q, we let Zq denote the field of integers modulo q. Let Rq be the polynomial
ring Zq[X]/(Xn +1), then Rk

q is a module of dimension k. Polynomials a ∈ Rq are denoted
using lower case letters. Vectors a ∈ Rk

q and matrices A ∈ Rk×k
q are denoted in bold using

lower and upper case, respectively. When u, v ∈ Rk
q , we let ⟨u, v⟩ ∈ Rq denote their dot

product. The ith coefficient of a polynomial a is denoted as a[i]. For any set X, we write
x

$←− U(X) to denote that x is chosen uniformly at random from X. We denote as χ the
Centered Binomial Distribution (CBD) with range [−η, η]. In this case, we abuse notation
and let a $←− χ(Rk

q) mean that each coefficient of each polynomial of a ∈ Rk
q is drawn

according to χ. Rounding a coefficient of a polynomial a ∈ Rq from modulus q to modulus
p is denoted as ⌊a⌉p→q.

Let poly_to_vec be the function that, given a polynomial in a ∈ Rq, returns the vector
in Zn

q consisting of the n coefficients of a. Furthermore, let negashifti be the function that
returns a negacyclic shift of a vector by i positions. That is, if a = a0 +a1x+. . .+an−1xn−1,
then negashifti (a) =

[
ai, . . . , a0,−an−1, . . . ,−ai+1

]
. Using this notation, we can express

the coefficients of the product of polynomials a and b in the negacyclic ring Rq in vector
form as

poly_to_vec (ab) [i] = ⟨negashifti (a) , poly_to_vec (b)⟩ .

If we extend these two notation for vectors of polynomials u, v ∈ Rk
q by applying the

poly_to_vec and negashift to each of the k polynomials, we get the analogous property

poly_to_vec (⟨u, v⟩) [i] = ⟨negashifti (u) , poly_to_vec (v)⟩ . (1)

2.2 Kyber KEM
Kyber is a CCA-secure KEM based on the hardness of the Module-Learning With Errors
problem (MLWE) [ABD+20]. It offers parameter sets for three NIST security levels 1, 3,
and 5, named Kyber512, Kyber768, and Kyber1024 respectively. All instantiations operate
over the same anti-cyclic polynomial ring Rq = Zq/(Xn +1) with a prime modulus q = 3329
and degree n = 256. This ring is used to build the module Rk

q , where k = 2, 3 or 4, for
security levels 1, 3, and 5. The CCA-secure Kyber contains, at its core, a an IND-CPA
secure PKE scheme, which is reviewed next.

4 Defeating low-cost countermeasures

Algorithm 1: CPAPKE.KeyGen.

1 A $←− U(Rk×k
q)

2 (s, e) $←− χ(Rk
q)× χ(Rk

q)
3 b← A · s + e
4 return pk := (A, b), sk := s

Algorithm 3: CPAPKE.Dec.
Input: sk = s
Input: c = (c1, c2)

1 u′ ← ⌊c1⌉p→q

2 v′ ← ⌊c2⌉T →q

3 m′ ← v′ − ⟨s, u′⟩
4 m← ⌊m′⌉q→2
5 return m

Algorithm 2: CPAPKE.Enc.
Input: pk = (A, b)
Input: m ∈M
Input: r

$←− {0, 1}256

1 (r, e1, e2) r←− χ(Rk
q)× χ(Rk

q)× χ(Rq)
2 u← A⊤ · r + e1

3 v ← ⟨b, r⟩+ e2 +
⌊

q
2

⌉
·m

4 c1 ← ⌊u⌉q→p

5 c2 ← ⌊v⌉q→T

6 return c := (c1, c2)

2.2.1 IND-CPA Secure Kyber PKE

The IND-CPA secure Kyber PKE scheme consists of three procedures: CPAPKE.KeyGen,
CPAPKE.Encrypt and CPAPKE.Decrypt, which are shown in Algoritms 1, 2 and 3,
respectively.

Key generation. The key generation procedure shown in Algorithm 3 essentially involves
the creation of an LWE instance. The coefficients of the secret key s ∈ Rk

q and error
e ∈ Rk

q are sampled from the narrow centered binomial distribution χ, while coefficients
of A are sampled from the uniform distribution U . The MLWE instance is computed as
b = A · s + e. The public key is the pair (A, b) while the secret key is s.

Encryption. The encryption procedure shown in Algorithm 2 first samples r ∈ (Rk
q),

e1 ∈ Rk
q and e2 ∈ Rq from χ, which, together with the public key pk = (A, b), are

used to compute two LWE components: u ∈ Rk
q and v ∈ Rq. Polynomial v is computed

using the 256 bit message m ∈ {0, 1}256, for which it is encoded to a corresponding
polynomial in Rq by simply multiplying each bit of the message by ⌊q/2⌉. The vector
(u, v) undergo coefficient-wise compression after which they serve as the ciphertext outputs
(c1, c2) ∈ Rk

q ×Rq.

Decryption The decryption procedure shown in Algorithm 3 (CPAPKE.Dec) involves
the computation of the noisy message polynomial m′ = (v′ − sT · u′) ∈ Rq, where u′ ∈ Rk

q

and v′ ∈ Rq are decompressed versions of values (u, v) computed during encryption.
The compression and decompression introduces a certain error in u and v, which we

denote as ∆u = u′ − u and ∆v = v′ − v, respectively. The noisy message polynomial
m′ is then decoded to the correct message m ∈ {0, 1}256 by simply decoding each of its
coefficients m′[i] to 0 or to 1, depending if m′[i] is closer to 0 or to q/2.

Let us review why the decryption works. Notice that the noisy message polynomial m′

can be represented as follows

m′ = v′ − ⟨s, u′⟩ = (v + ∆v)− ⟨s, u + ∆u⟩ .

After expanding each term and simplifying it, we get that m′ = m
⌊

q
2
⌉

+ ∆m, where

∆m = ⟨e, r⟩ − ⟨s, e1 + ∆u⟩+ e2 + ∆v. (2)

Notice that ∆m is made of components sampled from the narrow distribution χ, and
therefore m′ can be seen as a noisy version of the original message polynomial

⌊
q
2
⌉
·m.

Kyber security parameters are responsible for ensuring that the coefficients in ∆m are
small enough so that decryption errors occur only with negligible probability.

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 5

Algorithm 4: CCAKEM.KeyGen.

1 z
$←− {0, 1}256

2 (pk, sk′) = CPA.KeyGen()
3 sk = (sk′||pk||H(pk)||z)
4 return pk, sk

Algorithm 5: CCAKEM.Encaps.
Input: Public key of CCAKEM pk

1 m
$←− {0, 1}256

2 m← H(m)
3 (K̄, r) = G(m||H(pk))
4 c = CPA.Enc(pk, m, r)
5 K = KDF(K̄||H(c))
6 return c, K

Algorithm 6: CCAKEM.Decaps.
Input: Ciphertext of CCAKEM c
Input: Secret key of CCAKEM sk

1 Extract (sk′||pk||H(pk)||z) from sk
2 m′ = CPA.Dec(sk′, c)
3 (K̄′, r′) = G(m′||H(pk))
4 c′ = CPA.Enc(pk, m′, r′)
5 if c = c′ then
6 K = KDF(K̄′||H(c))
7 else
8 K = KDF(z||H(c))
9 return K

2.3 IND-CCA Secure Kyber KEM
The IND-CPA secure Kyber KEM can be transformed into IND-CCA secure KEM using
the well-known Fujisaki Okamoto (FO) transform [FO99]. This involves instantiation
of the CPAPKE.Enc, CPAPKE.Dec procedures of Kyber PKE scheme, along with several
instances of hash functions resulting in IND-CCA secure encapsulation (CCAKEM.Encaps)
and decapsulation (CCAKEM.Decaps) procedures respectively. Algorithm 4 - 6 supplies
the details. The main idea is that the randomness required for CPAPKE.Enc is made
explicit through a seed r derived from the message m and public key pk. This enables the
decapsulation procedure to retrieve the message m from ciphertext ct, compute the seed r,
and re-compute the ciphertext ct′.

Subsequently, the recomputed ciphertext ct′ is compared with the received ciphertext
ct, and this comparison only succeeds for valid ciphertexts and fails for invalid ciphertexts
with a very high probability. In theory, the FO transform helps check the validity of
ciphertexts through a re-encryption procedure after decryption. Thus, with a very high
probability, the attacker only sees decapsulation failures for invalid ciphertexts. This
provides strong theoretical security guarantees against chosen-ciphertext attacks.

2.4 Prior Works
The decapsulation procedure of Kyber KEM has been subjected to a wide variety of
SCA for key recovery [BDH+21, RRCB20, HHP+21, RRD+23]. These attacks can be
broadly classified into two categories, based on the knowledge/control over the ciphertexts
manipulated by the decapsulation procedure: (1) Known Ciphertext (KC) based SCA and
(2) Chosen Ciphertext (CC) based SCA.

2.4.1 Known Ciphertext (KC) based SCA

Known ciphertext attacks only assume knowledge of the ciphertext to the target’s decap-
sulation procedure. In this respect, the polynomial multiplication operation between the
ciphertext component u ∈ Rk

q and s ∈ Rk
q has been the sole target for side-channel attacks,

as it directly manipulates the secret key [PPM17,PP19,YRZ+23]. The INTT operation
used in the polynomial multiplication operation was targeted by single trace attacks in
[PPM17,PP19], while the pointwise multiplication operation was targeted by single trace
template style attacks [YRZ+23, BBB+23] as well as multiple trace Correlation Power
Analysis style attacks [MWK+22].

Since the polynomial multiplication operation directly manipulates the secret key sk,
it becomes an obvious target for such side-channel attacks, and thus the designers can

6 Defeating low-cost countermeasures

lay special focus on incorporating extensive countermeasures to protect the polynomial
multiplication operation.

2.4.2 Chosen Ciphertext (CC) based SCA

Chosen ciphertext attacks assume the attacker can query the decapsulation procedure with
chosen ciphertexts [BDH+21,RRCB20,RRD+23,UXT+22]. The modus operandi of the
attack is as follows: The attacker crafts specially structured malicious ciphertexts such that
their corresponding decrypted message m (unknown to the attacker) becomes related to the
secret key sk (or a part of it). For valid ciphertexts, the message m is independent of the
secret key, however for chosen-ciphertexts, the message m is not a key-dependent variable.
This ensures that leakage from the entire FO transform can be utilized as an oracle to
recover the secret key. We can broadly classify existing attacks in this category into
three types: (1) Plaintext Checking (PC) Oracle-based SCA [RRCB20,UXT+22,TUX+23]
(2) Full-Decryption (FD) Oracle-Based SCA [XPRO20] and Decryption-Failure (DF)
Oracle-Based SCA [BDH+21].

2.4.3 Comparing KC-based CCA and CC-based SCA

We observe that KC-based attacks observe leakage for valid ciphertexts, and thus can only
exploit leakage from the decryption procedure for key recovery. Moreover, reported attacks
have only exploited leakage from the polynomial multiplication operation in the decryption
procedure [PPM17,PP19,YRZ+23,MWK+22]. However, CC-based side-channel attacks
form the largest category of attacks on Kyber KEM, and are typically more powerful than
KC attacks, as the attacker can exploit leakage from the entire decapsulation procedure
for key recovery. Thus, protection against CC-based attacks requires countermeasures
for the entire decapsulation procedure, and is therefore naturally costlier compared to
protecting KC-based attacks against key recovery attacks. Thus, CC-based side-channel
attacks remain the main focus of our work.

There exist concrete proposals for masking as well as combination of masking and
shuffling countermeasures to protect against such CC-based attacks. However, they
are typically expensive incurring several factors of overhead, particularly in terms of
runtime [BGR+21,HKL+22]. Thus, an alternative line of approach towards countering
such attacks has been towards development of low-cost countermeasures that attempt to
detect such malicious ciphertexts [XPRO20,RCDB22]. If detected as malicious, the DUT
can choose to refresh the secret key, ensuring further exposure for attacks is prevented.

2.5 Detection Countermeasures against CC based SCA
In this section, we broadly discuss two concrete proposals for such detection based coun-
termeasures against CC-based side-channel attacks.

Ciphertext Sanity Check: The malicious ciphertexts used for PC oracle and FD oracle-
based attacks are typically very sparse and skewed, with most of the coefficients having
a value of 0 [XPRO20,RCDB22]. However, valid ciphertexts are LWE instances whose
coefficients are uniformly distributed in the range [0, q]. Thus, [RCDB22] proposed to
test the entropy of input ciphertexts to detect PC oracle or FD oracle-based attacks. This
countermeasures works in the following manner.

In the ciphertext sanity check, the mean and variance is used as measures for the entropy
of the input ciphertext. We denote the mean and standard deviation of the coefficients of a
polynomial x ∈ Rq as µ(x) and σ(x) respectively. The main idea of the countermeasure is
then to compute µ(x) and σ(x) for all the polynomials in the input ciphertext (i.e., c1 and
c2) and reject the ciphertext if the variance of these inputs is too low. One main advantage

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 7

of this approach is that the malicious ciphertexts are rejected even before manipulated by
the decapsulation procedure. Thus, the attacker cannot observe any leakage corresponding
to these malicious ciphertexts thereby offering concrete protection against PC oracle and
FD oracle attacks that utilize skewed ciphertexts. Ravi et al. [RCDB22] showed that this
countermeasure only incurs about 5% overhead in runtime. However, we remark that this
countermeasure does not protect against the DF oracle based attacks [BDH+21], which
already utilize uniformly random ciphertexts that are invalid.

Decapsulation Failure Check: A basic observation of all CC-based side-channel attacks is
that all these attacks utilize invalid ciphertexts, that always induce a decapsulation failure.
Thus, a more simpler countermeasure at the protocol level, would be to simply refresh the
secret key immediately upon observing a decapsulation failure. In this case the attacker
is restricted to recovering the secret key with only a single trace. This countermeasure
therefore offers concrete protection against all types of CC based side-channel attacks,
since most if not all CC based side-channel attacks require multiple traces (few tens to few
thousands) for key recovery. In this work, we perform a concrete analysis of both these
countermeasures and demonstrate novel CC based side-channel attacks that are capable of
breaking both these countermeasures.

3 Analysis of Ciphertext Sanity Check Countermeasure
In this section, we will show that the ciphertext sanity check countermeasure can be
bypassed at low cost and with only a small reduction in the accuracy of the attack. This is
done by masking a malicious attack ciphertext to look uniformly random using the public
key.

Attack Intuition: For the intuitive explanation, we will assume that the public key and
ciphertext vectors only consist of one polynomial (i.e., k = 1) and that no ciphertext
compression is used.

The main idea behind the masking can be intuitively explained as follows: imagine a
public key (A, b = A · s + e), and an attack ciphertext (uatk, vatk) that would not pass
the ciphertext sanity check. The goal is to obtain the message polynomial:

∆ = vatk − uatk · s. (3)

To this end we adapt our attack ciphertext to (uatk + A, vatk + b). The attack ciphertext
looks uniformly random and is accepted. The message in this case is:

∆ = v − u · s (4)
= vatk + b− (uatk + A) · s (5)
= vatk + A · s + e− uatk · s−A · s (6)
= vatk − uatk · s + e. (7)

which is the original equation up to the small error e.
One countermeasure against this attack might be to check if the ciphertext is close

to the public key, or more specifically whether (u−A, v − b) is small. However, such a
countermeasure can easily be circumvented by instead of adding the public key, adding a
small multiple of the public key (e.g. (−A,−b) or (2A, 2b)) or a rotated version of the
public key (e.g. (X ·A, X · b)).

8 Defeating low-cost countermeasures

Table 1: Attack parameters used for the CC-based side channel attack using skewed
ciphertexts in [RRD+23].

s[0][0] = -2 -1 0 1 2
uatk vatk m
208 624 1 0 0 0 0
208 832 1 1 0 0 0
208 1040 1 1 1 0 0
208 1248 1 1 1 1 0

Attack on Kyber: We now go into more detail on the practical implementation of
our attack, where we show how to mask the ciphertexts used for the PC oracle-based
side-channel attack. As in previous works, the goal of our attack is to input a chosen
ciphertext (uatk, vatk) of the form uatk = [y, 0, 0] and vatk = z with |y| < q/4. The first
message bit m[0] is then calculated as:

m[0] =
⌊

2
q
· (z − s[0][0] · y)

⌉
(8)

where m[0] is therefore only dependent on the first coefficients of the secret (i.e.) s[0][0],
while all other message bits are zero. The message thus only has two possible values, and
the attacker can instantiate a practical PC oracle through side-channel leakage from the
decapsulation procedure. The attacker chooses similar values for the tuple (y, z) such
that the message can be used as a binary distinguisher for the first secret coefficient.
By repeating this procedure for other values of y and z; and other coefficients of s, one
can retrieve the full secret key. This is a well-known attack procedure as performed
in [RRCB20, RRD+23]. In [RRD+23] the following values of y and z were selected to
attack Kyber768:

The attack strategy described above does not pass the ciphertext sanity check, and
thus we will have to add the public key to mask the input ciphertext. A first practical
problem is that the size of u ∈ Rk×1

q is not equal the size of A ∈ Rk×k
q , and the same holds

for the values v ∈ R1×1
q and b ∈ Rk×1

q . This can be solved by selecting only one row of
the matrix A, which we will indicate with a∗, and the corresponding polynomial element
of the vector b, which will be indicated with b∗. The introduced error will be indicated e∗

and is the corresponding element of the vector e
A second inconvenience is that the ciphertext is compressed, which means we cannot

exactly input the ciphertext. This introduces an error to the values of a∗ + uatk and
b∗ + vatk that can be inputted in the attack ciphertext. One can calculate that this results
in a message ∆ defined as:

∆ = vatk − uatk · s + E, where E = e− sT ·∆u + ∆v.

This is essentially the noisy message equation from 2.2.1 where r = 1, e1 = 0 and e2 = 0
(interestingly, one can see the original unmasked attack as an instance where r = 0). This
means that the message ∆ calculated in the attack (see 7), has an additional error term
due to the compression and decompression.

For power-of-two moduli schemes (e.g., Frodo, Saber), there is typically an additional
public key compression of the b term. The compression, in this case, works as follows: first
LSBs are discarded from log2(q) bits to log2(p) bits in public key compression, then from
log2(p) to log2(T) in ciphertext compression. This means that the public key compression
is essentially contained in the ciphertext compression, so its effect can be ignored.

For a given mask (a∗, b∗), the value of E is nearly identical for the recovery of different
coefficients. This means that each mask is (a∗, b∗) is tied to a certain unknown approximate
error E∗. If this approximate error is too large, the attack will fail with high probability,
but if this approximate error is low enough, the attack proceeds without the masking

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 9

having any effect other than defeating the detection countermeasure. Note that one cannot
predict the value of this error E∗ in advance. If the key recovery fails, one can restart the
attack with a different mask (e.g. using a different row of A and b, using a rotated version
(X · a∗, X · b∗) or using a multiple of the mask (c · a∗, c · b∗)).

In our experiments on Kyber768, each mask (a∗, b∗) had a p = 57.8% success probability
for full key recovery. This means that one has to restart only 0.73 times on average (i.e.∑∞

i=1 i · p · (1− p)i) before hitting a working mask and thus performing a successful attack.
We did perform software simulations of our attack, but since the oracle outputs are exactly
the same as the PC oracle-based attack in [RRD+23], we did not perform side-channel
evaluation, as the realization of the oracle has already been demonstrated in [RRD+23].

Result: We introduced a method to mask malicious input ciphertext with the public key
to avoid the ciphertext sanity check countermeasure. The power of our methodology is that
we do not have to change the attack strategy to circumvent the countermeasure: any attack
that is possible without the sanity check countermeasure is also possible with the sanity
check countermeasure with our masking technique. Our technique works successfully in
57.8% of cases an if the attack is unsuccessful, one can restart the attack with a new mask.
This means that to successfully retrieve the secret key, one needs to restart the attack
only 0.73 times on average. As an example, we can use the same attack methodology and
parameters as in [RRD+23], or our technique can be used to mask ciphertexts for other
CC based side-channel attacks including FD oracle-based attacks [XPRO20].

4 Analysis of Decapsulation Failure Check Countermeasure
The goal of this section is to develop attacks that can circumvent countermeasures, that
refresh the secret key, even upon observing a single decapsulation failure. Defeating this
countermeasure calls for a completely new approach, that utilizes valid chosen ciphertexts
for key recovery. Our approach stands contrary to the typical state-of-the-art attacks that
rely on invalid ciphertexts that fail the re-encryption with high probability.

4.1 Targets for CC-based SCA with Valid Ciphertexts
Since the attacker needs to rely on valid ciphertexts, he/she is limited to targeting operations
in the decryption procedure for key recovery. A first possible target would be leakage from
the multiplication operation of the secret key s ∈ Rk

q with the ciphertext u ∈ Rk
q . Choosing

this operation is quite natural since it directly manipulates the secret key. Previous attacks
that perform this are [PPM17,PP19,MWK+22], but these attacks can just work with
known ciphertexts for key recovery. Moreover, given the direct manipulation of the secret
key, the designer might incorporate additional countermeasures to deter key recovery
attacks.

This raises the question whether there are other potential operations that can be
targeted within the decryption procedure. In this respect, we observe that side-channel
leakage from the noisy message polynomial m′ can also be used to attack and retrieve
the secret key. Exploiting this leakage for practical attacks is not trivial due to two main
reasons. Firstly, it is not possible to mount CPA-style attacks that use a divide-and-conquer
approach since every coefficient of m′ depends on all coefficients of the secret key. Secondly,
while the value of m′ depends on the secret key, operations manipulating m′ do not directly
involve the secret key. This means that one will only obtain indirect information on
the secret, and no direct information on individual coefficients as in typical CC attacks.
Consequently, to obtain the key from the leakage of m′, one needs an additional key
recovery step. In this work, we demonstrate how to overcome these obstacles and show

10 Defeating low-cost countermeasures

that an attacker who queries only valid chosen ciphertexts can still exploit leakage of m′

for efficient key recovery attacks.

4.2 Intuitive Explanation of our Attack
We represent the noisy message polynomial m′ as m′ = ⌊q/2⌉ ·m + ∆m where ∆m is the
decryption noise component. We recall from Section 2.2.1, that ∆m is linearly dependent
on the secret s and error e as ∆m = ⟨e, e⟩ − ⟨s, e1 + ∆u⟩+ e2 + ∆v.

For a valid chosen ciphertext, the attacker knows r, e1 and e2, as well as the extra noise
factors ∆u and ∆v, which are caused by the compression and decompression of ciphertexts.
Knowledge of ∆m ∈ Rq for 2 · k ciphertexts results in direct recovery of the secret key s
using linear algebra. The same applies if single coefficients of ∆n can be recovered across
2 ·k ·n ciphertexts. As we are limited to a KC attack, we cannot retrieve exact information
about ∆m. However, in this work, we show that leakage of the coefficients of m′ can be
used to obtain information on the Hamming weight of ∆m, which can then in turn be
used to find the sign of the coefficients of m′. From there we can use a linear inequality
solver to retrieve the secret vectors s and error e.

As we are limited to a KC attack, we cannot retrieve exact information about ∆m.
However, in this work, we show that leakage of the Hamming weight of coefficients of
m′ can be used to define bounds on ∆m. From there we can use solvers for systems of
linear inequalities to retrieve the secret vectors s and error e. Our chosen ciphertext attack
proceeds in three steps:
Step 1. Recovering HW(m′) through Side-Channels: Manipulation of the coefficients
of m′ leaks its Hamming Weight (HW), and we assume that the attacker can recover HW
of the single coefficients of m′. In Section 5, we will experimentally demonstrate recovery
of HW of the coefficients of m′ from different implementations of Kyber KEM.

Step 2. Relating HW(m′) with ∆m: We observe that for a message bit mi = 0,
the distribution of HW(m′[i]) has a very clear bias, that clearly indicates the sign of ∆m[i].
In particular, when HW(m′[i]) is very low, then ∆m[i] > 0 with a very high probability,
while a very high value for HW(m′[i]), signifies ∆m[i] < 0 with a very high probabil-
ity. This information can be used to construct a linear inequality in the coefficients of
s and e. Generating a sufficient number of inequalities can be used to recover the secret key.

Step 3. Solving Linear Inequalities in s and e for Key Recovery: In this
step we solve the linear inequalities from Step 2 to retrieve the secret vectors s and e.
This approach is shown in Section 6. Pessl and Prokop [PP21], Hermelink et al. [HPP21]
and later Delvaux [Del22] proposed efficient methods based on the Belief Propagation
techniques to solve these linear inequalities in the context of fault attacks. We propose a
novel greedy solver approach that is simpler to understand, uses lesser compute resources
and at the same time requires 2× fewer inequalities to extract the secret key.

4.3 Adversary model
The attacker attempts to recover the long-term secret key sk used by the target’s de-
capsulation procedure of Kyber KEM. We assume physical access to DUT performing
decapsulation for power/EM measurements. The attacker has ability to communicate with
the target decapsulation procedure with chosen ciphertexts of his/her choice. Note that all
used chosen ciphertexts are valid ciphertexts. The attacker has access to a clone device, on
which the attacker can control the secret key, in order to capture side-channel measurements
for building side-channel templates, and also obtain access to any intermediate variable
within the decapsulation procedure.

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 11

5 Recovering HW(m′) through Side-Channels
We first present details of our experimental setup, followed by side-channel analysis to
detect leakage of single coefficients of m′ in different implementations of Kyber KEM.

5.1 Experimental Setup
We performed experiments on reference and optimized implementations of Kyber KEM
from the well-known pqm4 library [KRSS] running on the STM32F407 microcontroller
clocked at 24 MHz. We obtain EM side-channel leakage using a Langer RF-U 5-2 near-field
EM probe, and the traces were collected using a Lecroy 610Zi oscilloscope at a sampling
rate of 1.25 GSam/sec, amplified 30dB with a pre-amplifier and filtered using a 48 MHz
low-pass filter.

We split our analysis into two categories: (1) Reference Implementation [ABD+20] (2)
Assembly-Optimized Implementation [HZZ+22].

5.2 SCA of Reference Implementation
Refer to Fig.1 for the assembly code snippet of the subtraction operation between sT · u
and v (Line 4 in CPAPKE.Dec procedure in Alg.3), when compiled with the O3 optimization
level. The coefficients of m′ are computed and stored in memory, sequentially one coefficient
at a time, which allows to observe leakage from multiple coefficients simultaneously. To
illustrate this, we simultaneously profile leakage of the first 8 coefficients m′[i] for i ∈ {0, 7}.

We build 100k valid ciphertexts for random messages m, but choose mi = 0 for i ∈ {0, 7}.
We perform CPA for the coefficients m′[i] for i ∈ {0, 7} and refer to Fig. 2(a) that shows 8
CPA plots, one for each coefficient m′[i] for i ∈ {0, 7} for the O3 optimized implementation.
The peaks for each of the coefficients are easy to distinguish and sufficiently separated
from one another indicating clear leakage from individual coefficients.

5.3 SCA of Assembly Optimized Implementation
We studied the assembly-optimized implementation of Kyber KEM, based on the

work of Huang et al. [HZZ+22], and refer to Fig.3 for the assembly code snippet of the
assembly-optimized polynomial subtraction operation. As can be seen, it is implemented
using highly optimized and vectorized assembly instructions and in particular, we observe
that 10 coefficients of the operands are simultaneously loaded into 5 registers using the
vectorized ldmia instruction (Lines 3, 5).

Thus, each register is packed with two coefficients, where one coefficient is in the higher
16 bits and the other coefficient in the lower 16 bits of the same register. Subsequently,

1
2 /* Load Coeff . of A (2 bytes) in r2 */
3 ldrh.w r2 , [r4 , #2]!
4 /* Load Coeff . of B (2 bytes) in r1 */
5 ldrh.w r1 , [r3 , #2]!
6 /* Check Loop Counter for Iteration */
7 cmp r4 , r5
8 /* Subtract A from B and store in r2 */
9 sub.w r2 , r2 , r1

10 /* Store result in r2 into memory */
11 strh.w r2, [r0, #2]!
12 /* Branch if not end of loop */
13 bne.n 0 x8005d30

Figure 1: Assembly code snippet of PolySub operation (polynomial subtraction) when
compiled with O3 optimized implementation. The target store operation that leaks the
HW of the coefficients are highlighted in red.

12 Defeating low-cost countermeasures

5000 10000 15000
Features

0.0

0.2

0.4

0.6

0.8

1.0
Co

rre
la

tio
n

Implementation o0
coeff 0
coeff 1
coeff 2
coeff 3
coeff 4
coeff 5
coeff 6
coeff 7

10000 15000 20000 25000
Features

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Implementation opt_10
coeff 0
coeff 10
coeff 20
coeff 30
coeff 40
coeff 50
coeff 60
coeff 70
coeff 80
coeff 90
coeff 100
coeff 110
coeff 120

(a) Ref. Implementation (O3-opt) (b) Assembly Optimized Implementation

Figure 2: Correlation Power Analysis (CPA) plot corresponding to coefficients of the noisy
message polynomial m′ for the reference implementation O0-optimized (a), O3-optimized
optimization (b) and Assembly optimized implementation (c)
the usub16 instruction is used to simultaneously subtract two coefficients, and five such
instructions are used to subtract 10 coefficients (Line 7-11). Then, the vectorized store
instruction (stmia) is used to simultaneously store 10 coefficients in memory. We therefore
observe that one can only observe simultaneous leakage from 10 coefficients, and leakage
for single coefficients can only observed with a significant amount of noise from the other
coefficients that are also stored in parallel.

We will now show leakage detection for the first coefficient m′[0], for which we build
100k ciphertexts for random messages such that, the first message bit mi = 0, while the
subsequent nine (9) message bits have a value of 1 (i.e.) mi = 1 for i ∈ {1, 9}, and the
remaining bits of m′ are random. We choose this structure for m, to ensure uniform noise
from 9 coefficients m′[i] for i ∈ {1, 9} on m′[0]. The same can be repeated by splitting the
message m into a set of 10 bits each, where the first bit in each set is 0, while all the other
bits are 1.

Refer to Figure 2(c) that shows 13 CPA plots, corresponding to leakage from 13
coefficients (i.e.) m′[i · 10] for i ∈ [0, 12]. Though 10 coefficients are simultaneously stored
in memory, we are able to observe leakage from a single targeted coefficient, by setting the
other 9 message bits to a value of 1. We can observe the CPA peaks corresponding to the
targeted coefficients, and that the peaks are identical and uniformly separated from one
another. This demonstrates that simultaneous leakage from one every ten coefficients can

1
2 /* Load 10 Coeffs . of A in r3 - r7 */
3 ldmia r1!, {r3 , r4 , r5 , r6 , r7}
4 /* Load 5 Coeffs . of B in r8 - r12 */
5 ldmia .w r2!, {r8 , r9 , r10 , r11 , r12}
6 /* Simultaneously subtract two coeffs in r3 -r8 from r8 -r12 */
7 usub16 r3 , r3 , r8
8 usub16 r4 , r4 , r9
9 usub16 r5 , r5 , r10

10 usub16 r6 , r6 , r11
11 usub16 r7 , r7 , r12
12 stmia r0!, r3, r4, r5, r6, r7
13 /* Update loop counter */
14 subs.w lr , lr , #1
15 /* Branch if not end of loop */
16 bne.w 0 x8005a14

Figure 3: Assembly code snippet of PolySub operation (polynomial subtraction) for the
highly optimized assembly implementation of Kyber KEM for the ARM Cortex-M4
microcontroller. The target store operation that leaks the HW of the coefficients are
highlighted in red.

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 13

be exploited for key recovery. In the following, we demonstrate how the detected leakage
can be exploited to recover HW(m′[i]).

5.4 Building a Classifier for HW(m′[i])
The HW classifier is built in two phases: (1) Profiling phase and (2) Recovery phase. We
illustrate the technique for a single coefficient m′[0] and the same can be repeated for other
coefficients.

5.4.1 Profiling Phase

This phase is carried out using leakage from a clone device. From the CPA plot cor-
responding to m′[0] (Fig.2), we select those features whose correlation value is above a
certain threshold Th0, as our points of interest (PoI) denoted as P0. We stress that Th0
is a parameter of the experimental setup, and can be experimentally determined. We
use the selected features P0 to build a reduced trace set RT (0,i) for every possible value
of HW(m′[0]) = i for i ∈ {0, 16}. We can compute the mean and co-variance matrix of
each reduced trace set RT (0,i) for i ∈ {0, 16}, which we denote as µ(0,i) ∈ R∥P0∥ and
Σ(0,i) ∈ R(∥P0∥)×(∥P0∥). Thus, the reduced template for HW(m′[0]) = i is denoted as
tmp(0,i) = (µ(0,i), Σ(0,i)) for i = {0, 1}. The same procedure can be repeated to build
side-channel templates for multiple coefficients of m′.

To perform classification of the HW classes, we have decided to Random Forest, the
reason being is that it has been shown to be successful in the previous works [CDCG22] and
it does not have to deal with a more complex hyperparameter tuning usually encountered
in more complex models. Random Forest or RF [Bre01] is an ensemble learning algorithm,
based on the construction of multiple decision trees. The predictions from these decision
trees are combined (for example, through majority voting) in order to achieve a better
prediction. The individual decision tree by itself is usually sensitive to small changes in the
training data, and when grown large enough, will usually tend to overfit the training data.
RF is designed to address these problems of instability in the decision tree, and multiple
trees are allowed to grow large, without the need of post-processing. These decision trees
are trained on different subsets of the training data using bootstrapping methods (the
training data is sampled uniformly with replacement), and the decision is then made by
taking the average or majority voting of the decisions given by the trees.

5.4.2 Recovery Phase

In the recovery phase, we obtain a trace tr for a chosen ciphertext from the decryption
procedure, and build a reduced trace tr′

0, corresponding to P0. We utilize the trained RF
model for prediction, with the number of trees fixed to 1.5k, where we observed a good
accuracy performance on the validation set. To check if the data imbalance affects the
performance, we also verify other statistical tests, such as precision and recall, and obtain
a similar score as the accuracy. We then fit in the attack traces to obtain the prediction,
which will then be forwarded to the solver to recover the key.

5.4.3 Experimental Results for HW Recovery

We performed experimental validation to recover the HW of single coefficients of m′ for
both the reference implementation and assembly optimized implementations of Kyber
KEM. For the reference implementation compiled with O3 optimization level, we obtain
an accuracy of 91.1% in recovering the HW of single targeted coefficients. In case of
the assembly optimized implementation, we obtain a much lower accuracy of 32.0% for
recovering HW of single targeted coefficients. This much lower accuracy for the HW

14 Defeating low-cost countermeasures

classifier can be attributed to the noise due to simultaneous storage of multiple coefficients.
However, in the following section, we show that such imperfect HW classifiers with low
accuracy do not deter key recovery using valid chosen ciphertexts.

6 Key recovery
We have shown the attacker’s ability to recover HW(m′) (i.e.) HW of individual coefficients
of m′. In this section, we demonstrate a key recovery attack exploiting this information.
We start by explaining how HW(m′) can be used to derive information about key-dependent
noise component ∆m and thereby construct linear inequalities in the secret key coefficients.
Subsequently, we explain our novel solver to perform full key recovery.

6.1 Recovering Information on ∆m using HW(m′)
In this section, we consider the type of information we can learn about the decryption
noise ∆m from the leaked Hamming weight of the message HW(m′). The intuitive idea of
our approach is to characterize the relation between this Hamming weight and the sign of
∆m. From this characterization, we can assign to each Hamming weight a probability of
the sign being positive or negative.

6.1.1 A First Approach

It is known that the coefficients of m′ are distributed as a narrow bell-shaped discrete
distribution around q/2 or 0 in the following manner

m′[i] =
{

q/2±∆m[i] for mi = 1,

0±∆m[i] for mi = 0,
(9)

where the standard deviation of the noise ∆m[i] is σ(∆m[i]) ≈ 79.
In most practical implementations of Kyber, such as pqm4, coefficients of m′ are

represented as signed 16-bit integers. Then, because of the narrow distribution of the noise
∆m[i], we hypothesized that it should be possible to learn something about the size of
∆m[i] from the observation of HW (m′[i]).

Figure 4 shows the distribution of HW(m′[i]) when ∆m[i] ≥ 0 and ∆m[i] < 0, consid-
ering m[i] = 0 and m[i] = 1. We can see that, when m[i] = 0, there is a clear distinction
between positive and negative errors. This happens since a small negative error when
added to a zero message bit (i.e. m[i] ⌊q/2⌉ = 0), results in a small negative number, which
has a very high Hamming weight in the typically used two-complement representation.
Similarly, small positive errors would result in values around 0 on the positive side, which
in turn have very small Hamming weights. On the other hand, when m[i] = 1, then the
HW distributions for positive and negative noise ∆m[i] are very close to each other, and
therefore it is hard to obtain meaningful information on ∆m[i] from HW (m′[i]).

From this observation, if an attacker learns the HW of multiple m′[i] where m[i] = 0,
they can build a series of inequalities on ∆m[i]. These types of inequalities can then be
solved using Belief Propagation algorithms [PP21,Del22,HPP21]. While this approach
is theoretically sound, it wastes some of the information that comes from the Hamming
weight. In the following section, we discuss how to obtain more information than only the
sign of ∆m[i] from HW (m′[i]).

6.1.2 Obtaining Tighter Inequalities

The Hamming weight of the message can not only be used to infer information about
the sign of ∆m but also on the possible values that ∆m can take. That is, a certain

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 15

Table 2: Maximum and minimum values of m′[i] for each possible value of its Hamming
weight that was observed in 100,000 decryptions using Kyber’s reference implementation.
HW (m′[i]) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

max m′[i] 0 256 320 328 338 351 324 319 316 251 253 -32 -16 -8 -4 -2 -1
min m′[i] 0 1 -257 -256 -254 -250 -352 -357 -314 -338 -319 -332 -324 -305 -321 -257 -1

Spread 0 255 577 584 592 601 676 676 630 589 572 586 308 297 317 255 0

Hamming weight can only be linked to a limited number of possible values of ∆m and
some Hamming weights can only occur within a limited range of values. Therefore, it
is possible to compute both a lower bound and an upper bound on m′[i] based on the
Hamming weight. There is one important caveat when implementing this idea in practice:
efficient Kyber implementations perform lazy modular reduction, and therefore it is not
guaranteed that −q/4 ≤ m′[i] < q/4 before the reduction. While it is not easy to give a
theoretical estimate on the bounds on m′[i] for each Hamming weight from 0 to 16, we
can run a simulation to compute these values.

Table 2 shows the maximum and minimum values of m′[i] observed for each possi-
ble Hamming weight, considering Kyber’s reference implementation. The tightness of
the inequalities are represented by the spread, which is simply the difference between
max m′[i]−min m′[i]. It is also possible to see the effect of the lazy reduction. Notice how
one would expect max m′[i] to be −64 for the case when HW (m′[i]) = 10, since it’s two’s
complement representation 0b1111111111000000 makes it the maximum value that can
be the result of a narrow distribution around 0 with the given Hamming weight. However,
instead we observe 253 because HW (253 + q) = HW (0b110111111110) = 10.

Now, for each observed HW (m′[i]) with m[i] = 0, an attacker is able to construct two
inequalities, one for the maximum and one for the minimum. This gives more information
to the inequalities solver, which we will cover next.

6.2 Solving Inequalities to Find The Secret Key

In this section, we formalize how a system of linear inequalities related to the secret key is
built with SCA information. We then construct a new solver to retrieve the secret key
from these inequalities.

0 5 10 15
HW

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Fr
eq

ue
nc

y

n[i] < 0
n[i] > 0

0 5 10 15
HW

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

n[i] < 0
n[i] > 0

(a) Message Bit mi = 0 (b) Message Bit mi = 1

Figure 4: Distribution of HW of message polynomial coefficients m′[i] for positive error
(∆n[i] > 0) and negative error (∆n[i] < 0), when mi = 0 (a) and mi = 1 (b)

16 Defeating low-cost countermeasures

6.2.1 Defining the System of Linear Inequalities Related to the Key

In the previous section, we saw that when m[i] = 0, then m′[i] = ∆m[i], and HW (m′[i])
gives us information on ∆m[i]. Suppose an attacker asks the target device to decrypt
a number κ of ciphertexts, whose corresponding messages m1, . . . , mκ. Similarly, let
rj , (e1)j , uj , (e2)j and vj be the values resulting from the encryption of the corresponding
ciphertexts, for j = 1 to κ, which the attacker knows.

Now, for any indexes (j, i) ∈ {1, . . . , κ} × {0, . . . , 255}, we know that

∆m[i] = ⟨rj , e⟩ [i]−
〈

(e1)j + ∆uj , s
〉

[i] + (e2)j [i] + ∆vj [i].

But, from Equation 1, we know that{
⟨rj , e⟩ [i] = ⟨negashifti (rj) , poly_to_vec (e)⟩ ,〈

(e1)j + ∆uj , s
〉

[i] =
〈

negashifti

(
(e1)j + ∆uj

)
, poly_to_vec (s)

〉
.

Therefore, if we let

h(i,j) =
[
negashifti (rj) ∥ − negashifti

(
(e1)j + ∆uj

)]
∈ Z2kn

q ,

then 〈
h(i,j), [poly_to_vec (e) ∥poly_to_vec (s)]

〉
+ (e2)j [i] + ∆vj [i] = ∆mj [i].

Now, when mj [i] = 0, then the attacker can use Table 2 to obtain two values ω(i,j)
and Ω(i,j) such that ω(i,j) ≤ ∆mj [i] ≤ Ω(i,j). This means the attacker can build two
inequalities in this case{

h(i,j) [poly_to_vec (e) ∥poly_to_vec (s)] + (e2)j [i] + ∆vj [i]− ω(i,j) ≥ 0,

−h(i,j)[poly_to_vec (e) ∥poly_to_vec (s)]− (e2)j [i]−∆vj [i] + Ω(i,j) ≥ 0.
(10)

The attacker can then select a number γ of pairs (j, i) such that mj [i] = 0 and get
a linear system of inequalities. This system of inequalities is represented by a matrix
H ∈ Z2γ×2kn

q , and a vector w ∈ Z2γ
q as defined next, based Equation 10.

Algorithm 7: Greedy key recovery algorithm.
Input: H ∈ Zγ×2kn, w ∈ Zγ

1 x← 0 ∈ Z2kn

2 for it = 1 to max_iterations do
3 action_scores← {} ▷ dictionary where keys are actions and values are scores
4 for (j, v) ∈ {0, . . . , 2kn− 1} × {−η, . . . , η} do
5 action_scores[j, v]← ComputeScore (x, (j, v), H, v)
6 best_actions← List of keys (j, v) with the αit highest scores in action_scores
7 for (j, v) in best_actions do
8 x[j]← x[j] + v ▷ Apply action (j, v) to x
9 return x

Each pair of rows of matrix H consists of the vectors h(i,j) and −h(i,j). Entries of w con-
sist of the factors

(
(e2)j [i] + ∆vj [i]− ω(i,j)

)
and

(
− (e2)j [i]−∆vj [i] + Ω(i,j)

)
. Then, if γ

is sufficiently large and if the inequalities are sufficiently tight, then a small solution x to the
linear system Hx + w ≥ 0 should give us the secret [poly_to_vec (e) ∥poly_to_vec (s)].

One may be tempted to use every single inequality that is generated. However, some
of them will be very loose. There is an important trade-off when selecting a good spread

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 17

Algorithm 8: Score function.
Input: x ∈ Z2kn, (j, v) ∈ {0, . . . , 2kn− 1} × {−η, . . . , η}, H ∈ Zγ×2kn, w ∈ Zγ

1 score← 0
2 Hj ← jth column of H
3 t← Hx + w + vHj ▷ Resulting target vector when action (j, v) is applied
4 for i = 1 to γ do

▷ For each inequality, lower score by the distance it is from being satisfied
5 if t[i] < 0 then
6 score← score− |t[i]|
7 return score

value to filter pairs of inequalities. If it is too small, then a larger number of traces may
be needed, but if it is too large, then the algorithm must be prepared to deal with a
potentially very large number of inequalities. To find the spread minimizing the number
of ciphertexts needed for a successful attack, we ran a simple simulation considering all
spread values in Table 2, and obtained the value of 317.

6.2.2 New Solver for Key Recovery

Until now, the most efficient solver available for recovering the key from inequalities was the
Belief Propagation algorithm proposed by Pessl and Prokop [PP21] with the improvements
by Delvaux [Del22]. This solver, however, has an important limitation: it is not efficient
when dealing with lots of inequalities and requires a large amount of RAM.

We propose a simpler greedy algorithm to find the key from the inequalities constructed
from the Hamming weight of the noisy message coefficients. Our algorithm is presented
as Algorithm 7. It starts with x = 0 ∈ Z2kn and then, on each iteration, it performs a
number of actions that, according to the heuristic score function in Algorithm 8, should
guide x closer to the solution. Each action is a pair (j, v), where j is an index of x and v
is an integer that is added to x[j]. To obtain a faster convergence, we let the number αit
of actions to be applied on iteration it to start as a large number and decay exponentially
in the number of iterations.

The score function for actions defined in Algorithm 8 works as follows. First, it applies
the action on x and verifies which inequalities are not satisfied after the action was applied.
Then, for each unsatisfied inequality, it penalizes the action score with the numerical
distance from the offending number to the closest value that satisfies the inequality.

Figure 5 shows a comparison between our greedy search solver and the one based
on belief propagation (BP) [Del22]. We can see that, despite its simplicity, our solver
compares favorably with respect to the number of ciphertexts needed to recover the key.
Furthermore, it appears to be more robust with respect to noise in the SCA observations.

Notice that the performance of the belief propagation algorithm degrades fast. Therefore,
we could not generate more points for larger standard deviations, because, since we need
to run a binary search for the computing the minimum number of ciphertexts needed,
the simulation took too long to finish. For comparison, when the SCA noise standard
deviation is σ = 0.5, the BP algorithm takes, on average, more than 10 minutes, while our
algorithm takes less than 20 seconds.

6.3 Experimental Results for Key Recovery
We implemented the entire attack on Kyber768 (recommended parameter set) to recover 10
random secret keys, and will separately explain the results for the reference (O3 optimized)
as well as assembly optimized implementation of Kyber KEM.

Reference Implementation: We remark that any randomly generated message m
contains an average of 128 zero bits, and thus the attacker can simultaneously exploit

18 Defeating low-cost countermeasures

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Standard deviation of simulated Gaussian SCA error

0

250

500

750

1000

1250

N
u

m
b

er
of

ci
p

h
er

te
x
ts

Belief Propagation

Greedy Search

Figure 5: Comparison of our Greedy Search Solver compared to Belief Propagation for key
recovery, considering different levels of Gaussian noise (i.e.) σ = 0.0 to 2.0
leakage from all the 128 bits. However, to simplify our attack demonstration and setup,
we only exploit leakage from the first 8 zero bits of the message. Using this leakage, we
were able to recover all the 10 secret keys in about ≈ 5200 traces. Thus, exploiting leakage
from 128 zero bits in a message means that full key recovery is possible in just 325 traces,
which correlates well with our attack simulations as presented in Figure 5.

Optimized Implementation: We showed in Section 5.3 that simultaneously storing 10
coefficients in memory ensures the attacker can only exploit leakage from one every 10
coefficient of m′. For illustration, we exploited leakage from 13 coefficients of m′ (i.e.)
m10∗i for i ∈ {0, 12}, and were able to recover all secret keys in about ≈ 7800 traces. Thus,
the number of traces is 24× higher than that to attack the reference implementation (325).
This can be attributed to the reduced number of exploited coefficients and the reduced
accuracy of the HW classifier (≈ 32% for the optimized implementation, compared to
≈ 91% for the reference implementation). In the optimized implementation, we exploited
leakage of single coefficients from 13 vectorized store instructions. However, we remark
that an attacker can exploit from several more vectorized store instructions, out of a total
of 26 vectorized instructions for key recovery.

Thus, it is clear that leakage of m′ can be efficiently exploited by an attacker for key
recovery with valid chosen ciphertexts. In the following, we demonstrate the applicability
of our attack to the shuffling and masking countermeasures.

7 Attacking Shuffled Implementation
We now consider the case when the operations manipulating the coefficients of m′ are
shuffled. In this case, the attacker does not know when the zero message bits are being
processed, and therefore even if they know that m[i] = 0, they cannot tell if m′[i] have a
high or low Hamming weight. But notice that, since the leakage of the message polynomial
coefficients still exists, the attacker can recover HW of single coefficients of m′ in the same
manner as an unprotected implementation. This can be done by using templates created
using leakage from a clone device, on which the attacker has knowledge of the random
permutation used for every execution. However, we cannot directly use the same key
recovery procedure without knowing the permutation used for processing these coefficients
on the target device.

Attack Idea: Since the attacker can only exploit leakage from coefficients m′[i] correspond-
ing to mi = 0, we propose to choose a message m that has only a very small number of zero
bits. We remark that the attacker can explicitly choose the value of the message for valid
chosen ciphertexts. Suppose that the chosen message m has θ = 2 null bits at positions i
and j, and that the attacker sees a sequence of Hamming weights W = (w1, w2, . . . , wn)
being processed. Then, if this sequence contains two very small values wi⋆ , wj⋆ ≤ 1 or two

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 19

very large values wi⋆ , wj⋆ ≥ 15, then i⋆ and j⋆ must be associated with the zero positions i
and j in some way. Once this is done, we can proceed using the same key recovery strategy
presented in the previous section, considering either 1 or 15 as the HW for both m′[i] and
mť[j], depending on the HW values that were observed.

The main difficulty in using this idea in practice is that we need really tight intervals
on a Hamming weight w to associate it to a zero message bit m[i] = 0, since we need to
be sure to exclude all possible valid HW associated with m[i] = 1. This results in the
observations within these intervals being very rare. Unfortunately, using θ = 2 as in the
example does only gives us

(
n
2
)

= 32640 different ciphertexts, which are not enough for us
to make a high number of such rare observations. However, we can relax this idea and use
messages with θ = 4 null entries, but accept inequalities in case we see 2 extreme values.
Then all indexes corresponding to m[i] = 0 be counted as having an extreme Hamming
weight. Notice that this would generate some invalid inequalities.

As a proof of concept, we tested this idea and obtained a successful recovery, assuming
perfect classification of the HW of the coefficients m′[i]. With 300000 inequalities, out of
which around 16% were wrong, we were able to recover the key using a little more than 8
million ciphertexts. Although the number of ciphertexts is very large, it does supports the
validity of the approach, and we leave improving this value for future work.

8 Attacking Masked Implementation
In the masked implementation of the decryption procedure, the message polynomial m′

is additively masked, and thus the attacker can observe leakage from the d independent
arithmetic shares for each coefficient m′[i] of the message polynomial, where d− 1 is the
order of masking. We performed our experiments on the first order masked implementation
of Kyber768 from the open-source mkm4 library [HKL+22].

Consider the MaskedPolySub operation responsible for the masked computation of the
subtraction m′ = v − ⟨s, u⟩. Let w = ⟨s, u⟩ ∈ Rq, and consider its arithmetic shares
w = w0 + w1 + . . . + wd−1. The computation is done in two steps. First, it uses the
poly_sub to compute v − w0. Then the other shares are simply negated. Notice that
poly_sub is similar to the unprotected version.

While the mkm4 library utilizes an assembly optimized implementation for the poly-
nomial subtraction operation, for our analysis, we modified this routine with a C based
implementation and compiled it with the O0 compiler optimization level for simplicity.
Our analysis of the assembly code also reveals that the attacker can observe leakage
of the individual coefficients of all the arithmetic shares of m′. We performed CPA to
detect leakage from coefficients of all the arithmetic shares of m′ and refer to Figure 6

5000 10000 15000 20000 25000 30000 35000
Features

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Implementation masked

share 0
mask 0
share 1
mask 1
share 2
mask 2
share 3
mask 3

Figure 6: Correlation Power Analysis (CPA) plot for four coefficients of the two arithmetic
shares of m′, from the reference implementation of masked Kyber KEM, compiled with O0
optimization level.

20 Defeating low-cost countermeasures

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Standard deviation of simulated Gaussian SCA error

0

200000

400000

600000

800000

N
u

m
b

er
o
f

ci
p

h
er

te
x
ts

Greedy Search

Figure 7: Number of ciphertexts required for key recovery considering considering different
levels of Gaussian noise
for the CPA plots, where we can observe leakage from coefficients of all shares of m′. For
the classification of HW, we used the same technique that was used for the unprotected
implementation and we were able to obtain an average accuracy of 94% for the HW classifier
of all the targeted coefficients. We now show how the HW of coefficients of arithmetic
shares of m′ can be plugged into our novel greedy search algorithm for key recovery.

Key Recovery. From the key recovery point of view, the main difference when attacking
the masked implementation is the construction of inequalities. Remember that, in the
unprotected case, we used tables of minimums and maximum values of m′[i] for each possible
HW. This idea can be adapted for building inequalities for the masked implementation.

For the first order masked implementation, we build two 17× 17 tables. In these tables,
rows and columns represent the Hamming weights of the first and second shares of m′[i].
The entry with index (ω0, ω1) of the first table is the maximum observed value for m′[i]
when its shares have Hamming weights ω0 and ω1. The second table is similarly constructed,
except that we take the minimum instead of maximum. To build the maximums and
minimums tables, we used the code from mkm4 implementation and observed 100000
decryptions. We remark that no SCA is needed for building this matrix, as they are only
dependent on the implementation, not on the device. The resulting inequalities can then be
directly plugged into the key recovery algorithm. Figure 7 shows the results performance
of our key recovery algorithm in the masked case. Notice that we did not consider the
Belief Propagation algorithm here because the required number of inequalities is too large
for it to be efficient.

9 Conclusion
We performed the first security analysis of two detection-based SCA countermeasures
against CC-based side-channel attacks: (1) Ciphertext Sanity Check and (2) Decapsulation
Failure Check, demonstrating practical attacks against both countermeasures. We first
report a novel attack to circumvent the ciphertext sanity checking, by simply applying the
public key as a mask to a maliciously crafted ciphertext. We circumvent the decapsulation
failure check, by proposing the first CC based side-channel attack that relies on valid
ciphertexts for key recovery. Our attack exemplarily exploits leakage from the noisy
message polynomial in the decryption procedure for full key recovery. We also introduced
a simpler and improved inequality solver, that can recover the secret key with less than
half the inequalities compared to these previous methods based on Belief Propagation.

We performed experimental validation of our attack on reference and optimized imple-
mentations of Kyber KEM on the STM32F4 microcontroller, requiring between≈ 325−7800
traces for full key recovery. We show how our attack can be adapted to both the shuffled
and masked implementations, with appropriate increase in number of traces for key recovery.

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 21

Our work therefore shows that low-cost detection countermeasures can be rendered com-
pletely ineffective, and do not offer standalone protection against CC-based side-channel
attacks. While these countermeasures are attractive for designers, our work encourages
more study towards the development and analysis of new detection-based countermeasures
against CC-based side-channel attacks.

Acknowledgment
Part of this work was discussed during the Dagstuhl Seminar-23152 titled "Secure and
Efficient Post-Quantum Cryptography in Hardware and Software", Apr.2023 and we are
thankful to Schloss Dagstuhl, its staff, organizers and participants of Dagstuhl Seminar-
23152.

Jan-Pieter D’Anvers is funded by FWO (Research Foundation - Flanders) as junior
postdoctoral fellow (contract number 133185). In addition, this work was supported by
CyberSecurity Research Flanders with reference number VR20192203, the European Com-
mission through the DIGITAL-SIMPLE project Be-QCI with contract number 101091625,
and the Horizon 2020 research and innovation program Belfort ERC Advanced Grant
101020005.

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the third round of the NIST post-quantum cryptography
standardization process. Technical report, National Institute of Standards
and Technology, 2022.

[ABD+20] Roberto Avanzi, Joppe W. Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint,
Vadim Lyubashevsky, John Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Kyber (version 3.0): Algorithm specifications
and supporting documentation (October 1, 2020). Submission to the NIST
post-quantum project, 2020.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J Kannwischer, and Daan
Sprenkels. Faster Kyber and Dilithium on the Cortex-M4. Cryptology ePrint
Archive, 2022.

[BBB+23] Estuardo Alpirez Bock, Gustavo Banegas, Chris Brzuska, Łukasz Chmielewski,
Kirthivaasan Puniamurthy, and Milan Šorf. Breaking dpa-protected kyber
via the pair-pointwise multiplication. Cryptology ePrint Archive, 2023.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and
Michiel van Beirendonck. Attacking and defending masked polynomial com-
parison for lattice-based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(3):334–359, Jul. 2021.

[BGR+21] Joppe Willem Bos, Marc Olivier Gourjon, Joost Renes, Tobias Schneider, and
Christine van Vredendaal. Masking kyber: First-and higher-order implementa-
tions. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(4):173–214, 2021.

[Bre01] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

22 Defeating low-cost countermeasures

[CDCG22] Brice Colombier, Vlad-Florin Drăgoi, Pierre-Louis Cayrel, and Vincent Grosso.
Profiled side-channel attack on cryptosystems based on the binary syndrome
decoding problem. IEEE Transactions on Information Forensics and Security,
17:3407–3420, 2022.

[Del22] Jeroen Delvaux. Roulette: A diverse family of feasible fault attacks on masked
Kyber. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 637–660, 2022.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual International Cryptology Conference,
pages 537–554. Springer, 1999.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure Kyber.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
88–113, 2021.

[HKL+22] Daniel Heinz, Matthias J Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Daan Sprenkels. First-order masked kyber on arm cortex-
m4. Cryptology ePrint Archive, 2022.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled
chosen-ciphertext attacks on kyber. In Progress in Cryptology–INDOCRYPT
2021: 22nd International Conference on Cryptology in India, Jaipur, India,
December 12–15, 2021, Proceedings 22, pages 311–334. Springer, 2021.

[HZZ+22] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray CC Cheung,
Çetin Kaya Koç, and Donglong Chen. Improved plantard arithmetic for
lattice-based cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2022(4):614–636, 2022.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
mupq/pqm4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[KRSS19] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4. In Second
PQC Standardization Conference: University of California, Santa Barbara
and co-located with Crypto 2019, pages 1–22, 2019.

[MWK+22] Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers,
Jose Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis of
lattice-based post-quantum cryptography: Exploiting polynomial multiplica-
tion. ACM Transactions on Embedded Computing Systems, 2022.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In International Conference on Cryptology and
Information Security in Latin America, pages 130–149. Springer, 2019.

[PP21] Peter Pessl and Lukas Prokop. Fault attacks on CCA-secure lattice KEMs.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
37–60, 2021.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

P. Ravi, T. Paiva, D. Jap, J.P. D’Anvers, S. Bhasin 23

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 513–533. Springer,
2017.

[RCDB22] Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab
Baksi. Side-channel and fault-injection attacks over lattice-based post-quantum
schemes (kyber, dilithium): Survey and new results. ACM Transactions on
Embedded Computing Systems, 2022.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay.
On configurable SCA countermeasures against single trace attacks for the NTT.
In International Conference on Security, Privacy, and Applied Cryptography
Engineering, pages 123–146. Springer, 2020.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE
and KEMs. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(3):307–335, 2020.

[RRD+23] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin,
and Anupam Chattopadhyay. Pushing the limits of generic side-channel
attacks on lwe-based kems-parallel pc oracle attacks on kyber kem and beyond.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
418–446, 2023.

[TUX+23] Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, and
Naofumi Homma. Multiple-valued plaintext-checking side-channel attacks
on post-quantum kems. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 473–503, 2023.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/em analysis on
post-quantum kems. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 296–322, 2022.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnify-
ing side-channel leakage of lattice-based cryptosystems with chosen ciphertexts:
The case study of Kyber. IACR Cryptol. ePrint Arch., 2020:912, 2020.

[YRZ+23] Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen, and Shivam Bhasin. Stamp-
single trace attack on m-lwe pointwise multiplication in kyber. Cryptology
ePrint Archive, 2023.

	Introduction
	Preliminaries
	Notations
	Kyber KEM
	IND-CCA Secure Kyber KEM
	Prior Works
	Detection Countermeasures against CC based SCA

	Analysis of Ciphertext Sanity Check Countermeasure
	Analysis of Decapsulation Failure Check Countermeasure
	Targets for CC-based SCA with Valid Ciphertexts
	Intuitive Explanation of our Attack
	Adversary model

	Recovering HW(m') through Side-Channels
	Experimental Setup
	SCA of Reference Implementation
	SCA of Assembly Optimized Implementation
	Building a Classifier for HW(m'[i])

	Key recovery
	Recovering Information on m using HW(m')
	Solving Inequalities to Find The Secret Key
	Experimental Results for Key Recovery

	Attacking Shuffled Implementation
	Attacking Masked Implementation
	Conclusion

