
Crystalor: Persistent Memory Encryption Mechanism
with Optimized Metadata Structure and Fast Crash Recovery

Rei Ueno
Tohoku University, Japan
rei.ueno.a8@tohoku.ac.jp

Hiromichi Haneda
Tohoku Univesity, Japan

hiromichi.haneda.r5@dc.tohoku.ac.jp

Naofumi Homma
Tohoku University, Japan

naofumi.homma.c8@tohoku.ac.jp

Akiko Inoue
NEC, Japan

a_inoue@nec.com

Kazuhiko Minematsu
NEC, Japan

k-minematsu@nec.com

Abstract
This study presents an efficient persistent memory encryp-
tion mechanism, named Crystalor, which efficiently realizes
a secure persistent/non-volatile memory based on an authen-
tication tree with structural optimization, such as the split
counter (SC). Crystalor can completely exploit the advan-
tage of metadata compression techniques, whereas existing
mechanisms are incompatible with such optimization. Mean-
while, Crystalor incurs almost no latency overhead under the
nominal operation conditions for realizing the crash consis-
tency/recoverability. We implement Crystalor with a state-
of-the-art parallelizable authentication tree instance, namely
ELM (IEEE TIFS 2022), and evaluate the effectiveness by
both algorithmic analyses and system-level simulation in com-
parison with the existing state-of-the-art ones (e.g., SCUE in
HPCA 2023). For protecting a 4 TB memory, Crystalor re-
quires 29–62% fewer clock cycles per memory read/write
operation than SCUE owing to the compatibility with the
SC. In addition, Crystalor and SCUE require 312 GB and
554 GB memory overheads for metadata, respectively, which
indicates that Crystalor achieves a reduction of memory over-
head by 44%. The result of the system-level simulation using
the gem5 simulator indicates that Crystalor achieves a reduc-
tion of the workload execution time by up to 11.5% from
SCUE. Moreover, Crystalor can offer a lazy recovery, which
makes recovery several thousand times faster than SCUE.

1 Introduction

1.1 Background
Non-volatile memory and persistent memory, such as
MRAM [18], have been deployed and attracted much atten-
tion as they can preserve data without power consumption, in
contrast to volatile memories, including DRAM. Its applica-
tion currently includes Internet-of-Things (IoT) devices and
data centers to reduce power/energy consumption [19,34]. Ad-
ditionally, in some recent systems, non-volatile and persistent
memories have been deployed as main memory in addition

to/instead of DRAM for higher performance, lower power
consumption, and larger capacity, such as NVDIMM and In-
tel Optane Persistent Memory [2]. In this study, we refer to
non-volatile and persistent memories as “NVM” collectively.

In deploying NVM to practical systems, there are two chal-
lenging issues: security and crash consistency. The security
means that NVM data should be protected against attacks
(i.e., eavesdropping and manipulation/forgery of confidential
data in the NVM) as well as DRAM [26]. Such attacks are
more serious and realistic for NVM than DRAM due to the
non-volatility. In general, memory encryption has realized
the (NVM) security based on symmetric cryptography [24],
such as encryption and message authentication code (MAC).
For example, the Optane module is equipped with a 256-bit
AES–XTS engine for data privacy. Here, splicing and replay
attacks, which are the data moves in the spatial and time do-
mains, respectively (i.e., copy-and-paste of data in another
address and at past timing, respectively), are sophisticated
manipulation/forgery. These attacks cannot be protected by
the simple use of encryption and MAC, as the manipulated
data had been originally valid.

In the memory encryption, Merkle tree [48, 49] and par-
allelizable authentication tree (PAT) [27] have been devel-
oped for protection against extensive attacks with a realistic
computational latency. For example, Intel SGX integrity tree
(SIT) [14, 24, 25] is a popular PAT instance. Each leaf node
consists of encrypted data, a counter value (i.e., nonce), and
a verification tag, whereas each intermediate/root node con-
sists of a nonce and a tag to verify its child node as security
metadata. When reading (resp. storing) data corresponding to
a leaf node, all nodes on the path from the leaf to root nodes
are verified (resp. updated). Such a tree structure enables real-
time processing of verification and update because its path
verification is far faster than the MAC computation for the
whole NVM. In addition, the root node, which consists of
only several hundred bits, is stored on-chip, as the attacker
supposedly cannot manipulate on-chip data. Thus, the root
node acts as a root of trust to preclude replay attacks.

Crash consistency means a guarantee that NVM data is

1

not broken after a crash (e.g., sudden power-off/blackout)
occurs [45,82]. A write pending queue (WPQ) is employed in
CPUs as an asynchronous DRAM refresh (ADR) domain to
persist data to be stored in NVM. For secure NVM based on
Merkle tree or PAT, however, it is mandatory to guarantee the
consistency of all data, including metadata of intermediate
nodes. If the tag verification (on intermediate nodes) fails, the
related data (leaf node) becomes unavailable because it may
have been manipulated. However, it is non-trivial to guarantee
crash consistency of the whole tree because a path is to be
updated serially in practice (although the computation may be
parallelized [27]). This indicates that there exists a moment
when a path is inconsistent (i.e., some nodes are updated
while others are not yet). Thus, it is challenging to efficiently
guarantee consistency against sudden crashes whenever the
system operates.

PAT vs. Merkle tree. In PAT, the MAC tags on a path
can be updated in parallel. PAT enables algorithmically lower
latency than Merkle tree since the path update of Merkel tree
is not parallelizable. In contrast, Merkle tree realizes crash
consistency more easily than PAT [30, 82]. In this study, we
develop an efficient crash consistency mechanism of PAT,
which is promising to improve persistent memory encryption.

State-of-the-art. In HPCA 2023, Huang and Hua presented
a crash recovery mechanism for PAT, named shortcut update
(SCUE) [30]. SCUE exploits a simple property of naïve PAT
metadata; that is, a parent node counter is always equal to
the sum of child node counters. SCUE requires almost no
overhead when applied to a PAT-based secure NVM, and is
currently most efficient to realize a secure recoverable NVM.

Remaining problem. SCUE is based on a property of
counters in a naïve PAT without optimization. Meanwhile,
several PAT structural optimizations using advanced counter
mechanisms to compress security metadata have been pre-
sented, which significantly reduce the overhead incurred by
memory encryption. Split Counter (SC) is the representative
and most typical advanced counter mechanism [74], followed
by, e.g., Vault [65] and Morphable Counters [62]. SCUE has
a major and critical drawback: they do not work together with
such structural optimizations using advanced counter mecha-
nisms that do not preserve the aforementioned simple property
of counters. Other major crash consistency mechanisms are
also incompatible with the optimizations [82]. Indeed, com-
bination of crash recovery and such optimization techniques
has rarely been studied and exploited thus far, and there has
been a mismatch between them. Owing to the advantage of
optimization techniques, it is important to develop a persis-
tent memory encryption mechanism for PAT compatible with
them for the deployment of secure NVM.

1.2 Our contributions

We propose a persistent memory encryption mechanism,
named Crystalor, which stands for CRYptographically Secure

Tree-based Authentication with Leaf-Only Recovery. Crys-
talor achieves crash recoverability with almost no overhead in
terms of latency, whereas it is compatible with structural opti-
mizations, such as SC. Our ideas are twofold. First, Crystalor
does not guarantee the consistency/recovery of the whole tree
but guarantees the integrity and recovery of only leaf nodes
(i.e., payload data) using a distinct verification tag (leaf tag)
against a crash. Second, after a crash, Crystalor relinquishes
the tree except for leaf nodes and creates a new tree from the
verified leaf nodes with resilience against replay attacks.

In Section 3, we present our key observations: (1) an almost
universal (AU) hash function [13] is sufficient for a secure
leaf tag verification, and (2) it is possible to build an effi-
cient AU hash function with two properties, namely rate-1
(i.e., one block cipher calls to process one input block) and
incrementality. Based on this observation, we develop a (com-
putational) AU hash function named PXOR-Hash, which is
tailor-made for our purpose. PXOR-Hash is designed simi-
larly to PXOR-MAC, which is used in state-of-the-art PAT
named ELM [32]; PXOR-Hash is designed with a philosophy
similar to PXOR-MAC; however, PXOR-Hash achieves an-
other security goal/level and has a construction different from
PXOR-MAC, which yields highly efficient implementation1.

The performance advantage of Crystalor is extensively eval-
uated by algorithmic analyses and a system-level simulation.
Our results reveal that, for protecting a 4 TB NVM as an exam-
ple, Crystalor achieves 29–62% latency reduction per memory
read/write in the algorithmic level and a 44% reduction of
NVM overhead compared to SCUE owing to the compati-
bility with SC. The system-level simulation using the gem5
simulator [9] shows that Crystalor achieves at most 11.5%
lower latency than SCUE. In addition, Crystalor can adopt
a lazy recovery while SCUE cannot, which makes recovery
faster than SCUE by several thousand times.

1.3 Related works
Crash consistency of secure NVM. In [79], Mao et al. pre-
sented Osiris, which recovers the tree only from counter val-
ues by exploiting error-correcting code (ECC) bits equipped
with NVM. In [76], Yang et al. presented cc-NVM, which
caches flushed counter values in WPQ and employs a MAC
in contrast to Osiris. In [6], Awad et al. presented Triad-NVM
for the recovery of Merkle tree, which reconstructs the tree
from flushed nodes. In [82], Zubair and Awad presented Anu-
bis. It utilizes a shadow table stored in NVM, which contains
information on cached nodes and identifies and recovers non-
updated nodes. In [3], Alwadi et al. presented Phoenix that

1Note that our major contribution includes presenting a new persistent
memory encryption mechanism with how to use cryptographic primitives to
realize a secure and recoverable NVM and its concrete construction, rather
than cryptographic aspects (e.g., development of new proof technique or
refreshingly new cryptographic primitive). We developed Crystalor with a
simple construction for leveraging the existing cryptographic theories and
for the compatibility of existing architectures and optimization mechanisms.

2

combines Osiris and Anubis. In [75], Yang et al. presented
ShieldNVM, which introduces an epoch-based mechanism
to aggressively cache the metadata with the consistency pre-
served. In [29], Huang and Hua presented STAR to achieve a
reduction of write overhead and fast recovery, which exploits
SIT lazy scheme and instant persistency for modifications
in the cache. In [83], Zubair et al. investigated the error sen-
sitivity of metadata in Merkle tree and presented Soteria to
tolerate the errors by its lazy duplication.

Advanced mechanisms for counter and tree structures.
The SC is the pioneering advanced counter mechanism [74],
which compresses and optimizes the tree/metadata structure
by splitting nonce counters into major and minor counters.
In [65], Taassori et al. presented Vault, which adjusts the tree
arity to reduce the frequency of counter overflow and improve
the capacity of the covered region. In [62], Saileshwar et al.
presented Morphable counters, which dynamically/adaptively
determines the structure of major and minor counters in SC,
and enables to cache more counters in a line. In [81], Zhou
et al. presented Lelantus, which improves the counter-mode
AES-based secure NVM by exploiting fine-granularity copy-
and-write operations. In [20], Freij et al. presented Bonsai
Merkle Forest, which splits Merkle tree into subtrees.

1.4 Paper organization
Section 2 introduces the persistent memory encryption and
secure NVM. Section 3 presents the proposed crash recovery
mechanism Crystalor, and explains its hardware architecture
and operation. Section 4 demonstrates the algorithm-level
evaluation regarding SC and a system-level simulation using
the gem5 simulator. Finally, Section 5 concludes this paper.

2 Preliminaries

2.1 System and threat models of secure NVM
Figure 1 shows a system model with secure NVM, which
follows many existing studies on secure NVM. We here omit-
ted CPU core(s) and a memory controller to focus on our
interest. The model separates the memory system into two
areas: the on-chip trusted area and the off-chip untrusted
area. On-chip data are assumed to be secure and trustable;
that is, any attacker can neither eavesdrop nor manipulate
on-chip data. In contrast, he/she can perform arbitrary eaves-
dropping/manipulation of off-chip data. The goal of NVM
security is to realize the confidentiality and integrity of NVM
data. Thus far, block cipher (e.g., AES) has been used for
confidentiality, while MAC (e.g., HMAC) is for integrity (i.e.,
the detection of data manipulation/forgery) [21]. The on-chip
area contains cache(s), memory protection hardware, SRAM,
and a WPQ. The SRAM stores the secret key and root nonce
of PAT. The memory protection hardware performs crypto-
graphic computation including AES and MAC. The CPU sys-

Cache

Untrusted Area

(Off-chip)

Trusted Area

(On-chip)

Memory Protection Hardware

Non-Volatile Memory

SRAM

(Key, Root, …)

Write Pending Queue (WPQ)

Figure 1: System model with secure NVM (CPU core(s) and
memory controller are omitted).

tems employ a WPQ as an ADR domain to buffer data from
the cache to NVM until it is written, which guarantees the
data persistency at the time of cache data replacement/flush.
This threat model is compatible with many existing studies on
memory encryption [21, 24, 30], with a focus on our context.
See [24] for the formalization.

Remark 2.1 (Side-channel attacks). We do not consider side-
channel attacks as in previous studies. For example, power,
EM, timing, and cache analyses on cryptographic primitives
may steal the secret key [37,38,66,67]. Micro-architectural at-
tacks represented by Flush+Reload and Prime+Probe [44,77],
which are exploited by Spectre and Meltdown [36, 43], may
also be a potential threat on the confidentiality of payload
data. Side-channel attacks are attempts to eavesdrop and ma-
nipulate on-chip data. Hence, they are outside our scope; we
trust the confidentiality and integrity of on-chip data. Side-
channel attacks should be countered by different means, such
as masking [23, 47] and cache randomization [12, 57, 58, 72]
(although there is an authentication tree named MEAS that
claims a power/EM side-channel security [69]).

Remark 2.2 (Relation to TEE). Some trusted execution en-
vironment (TEE) mechanisms, such as Intel Software Guard
eXtension (SGX) [14] and AMD Secure Encrypted Virtu-
alization (SEV) [1] support memory (DRAM) encryption
for the resource isolation, remote attestation, etc. A goal
of TEE memory encryption is to realize trust and privacy
against on-chip threats (e.g., malicious or compromised priv-
ileged user, OS, BIOS, cloud vendor, VMM, and spy pro-
cess), while its focus may not include side-channel attacks as
well [11, 40–42, 51–53, 70, 73]. TEE memory encryption may
not support (full) authenticity nor require crash consistency.
The persistent memory encryption provides stronger security
(i.e., full authenticity and crash consistency in addition to pri-
vacy), as it considers physical access to the NVM. Thus, it
would contribute to TEE memory encryption. In fact, Intel
SGX protects the memory using SIT, which is a well-known
PAT for persistent memory encryption and secure NVM.

3

2.2 Symmetric cryptography for persistent
memory encryption

Existing works on persistent memory encryption/secure NVM
(e.g., [16]) frequently employed AES encryption. For confi-
dentiality, the counter-mode AES has been utilized due to
its parallelizability and random accessibility. A nonce is also
used for the encryption as security metadata, which is com-
posed of memory address and counter. For integrity, a MAC
is commonly employed in PAT. Note here that replay attacks
cannot be prevented by simple use of MAC, because they ma-
nipulate data using valid data, nonce, and tag, which motivates
the usage of PAT for persistent memory encryption.

Recently, for encrypting and verifying payload data, some
state-of-the-art PATs, such as ELM [32], utilize an authenti-
cated encryption (AE) [59] for leaf nodes instead of a compo-
sition of the counter-mode AES encryption and a MAC [8].
For efficient memory encryption, AE should have two de-
sirable properties: block-level parallelizability2 and rate-1.
A parallelizable AE can encrypt several blocks in parallel,
which allows for low-latency implementation using a multi-
core or pipelining. Rate-1 is a property related to the number
of AES calls to complete the encryption and tag computation.
A rate-1 parallelizable AE (e.g., [61]) has a latency of almost
half of a composition of the counter-mode AES encryption
and a MAC. The usage of AE significantly improves the per-
formance of persistent memory encryption, in which payload
data essentially requires both confidentiality and integrity.

Parallelizability and rate-1 are also desirable for MAC
to achieve the integrity of intermediate nodes. Furthermore,
some MACs have another desirable property called incremen-
tality [7]. When a data block is changed, an incremental MAC
can update the tag with O(1) calls of the underlying crypto-
graphic primitive using the old data block and tag, whereas
typical non-incremental MAC, such as CMAC [17], requires
O(m) primitive calls, where m is the number of input blocks.
The tag of incremental MAC can be updated only from an
old tag, old data block, and new data block, as well as old
and new nonces. In a path update of secure NVM, the num-
ber of blocks updated in MAC computation is usually one;
hence, usage of incremental MAC significantly improves the
performance of memory encryption.

2.3 Parallelizable authentication tree (PAT)
PAT has been employed for memory encryption to realize (1)
real-time processing and (2) protection against replay attacks
with a minimal overhead of on-chip memory.

Figure 2 illustrates an overview of PAT with an arity of
two as an example. PAT encrypts the leaf node using an
AE and verifies intermediate nodes using a nonce-based
MAC. The i-th intermediate node of PAT (including the root

2Block-level parallelizability is a property of mode and MAC, whereas
node-level parallelizability is of the tree.

M[0]

AE C[0] …

MAC

ctr [0] || ctr [1]

…

…

Root Nonce

T[0]N[0]

M[1]

AE C[1]

T[1]N[1]

M[− 1]

AE C[− 1]

T[− 1]N[− 1]

ctr [− 2] || ctr [− 1]

N[] T[]

MAC

NR TR

…

…
…

MAC

N[] T[]

Untrusted Area
(Off-chip)

Trusted Area
(On-chip)

Trusted Area
(On-chip)

Figure 2: Overview of binary PAT. M[i], C[i], N[i], and T [i]
denote plaintext (i.e., payload data), ciphertext, nonce, and
tag of i-th node, respectively, where N[i] consists of address
addr[i] and counter ctr[i]. NR and TR are root nonce and tag,
respectively. Leaf node is defined as (N[i],T [i],C[i]), whereas
other nodes are defined as (N[i],T [i],C[i]).

node) consists of (N[i],T [i]), where N[i] and T [i] are its nonce
and tag, respectively. The i-th leaf node of PAT consists of
(N[i],T [i],C[i]), where C[i] is the ciphertext of payload data.
The nonce of each node is given by a concatenation of its ad-
dress addr[i] and counter ctr[i] as N[i] = addr[i] ∥ ctr[i], where
· ∥ · denotes the bit concatenation. Here, the tag of interme-
diate nodes is computed from the secret key, its nonce, and
child node counters to be verified (e.g., ctr[i−2] ∥ ctr[i−1] in
Figure 2). That is, the tag of an intermediate node verifies the
integrity of its child node counters as the MAC input. For a
leaf node, the ciphertext and its tag are computed from the se-
cret key, its nonce, and plaintext (i.e., payload data) in storing
data, whereas plaintext and its verification tag are computed
from the secret key, its nonce, and ciphertext in loading data.
In both verification and update, the tag of each node in a path
is computed in parallel as its computation does not depend on
the computation results of any lower-level nodes, indicating
the node-level parallelizability of PAT.

Recall that the nonce of the i-th node is defined as N[i] =
addr[i] ∥ ctr[i], in which the counter is incremented when
updating the node. Here, addr[i] is unique to the node, and
ctr[i] does not take the same value until an overflow occurs,
which guarantees no nonce collision over the whole tree. Note
that addr[i] does not need storing in on-chip/NVM because it
is implicitly determined from its physical address [14, 32].

ELM. ELM is a state-of-the-art PAT proposed by Inoue et
al. [32]. ELM is optimized for low latency and scalability to
large memory. For this purpose, Inoue et al. introduced an AE
and an incremental MAC named Flat-OCB and PXOR-MAC,
respectively, which are optimized for low latency of PAT veri-
fication/update. Moreover, ELM unifies some computations

4

shareable with Flat-OCB and PXOR-MAC among the whole
tree. ELM has a lower latency and less memory overhead than
Intel SGX integrity tree (SIT) [14], while both schemes use
AES-128 and have equivalent provable security reduction to
AES. Notably, in the research field of secure and persistent
memory, previous studies (e.g., [21,30]) employed a classical
HMAC, which has a larger latency due to serial structure and
does not have incrementality. The MAC of ELM (and SIT) is
far faster than the HMAC.

2.4 Shortcut update (SCUE)
SCUE is a state-of-the-art persistent memory encryption
mechanism with PAT presented by Huang and Hua in
HPCA 2023 [30]. In SCUE, the counter of the nonce in PAT is
incremented by one whenever the node is updated and never
decreases under nominal operation (without any reset nor
overflow). Its security against replay relies on the fact that a
replay attacker can decrease a counter of a node by replacing
the nonce and tag in the past but cannot increase it.

The proposals of SCUE include (i) efficient integrity verifi-
cation of leaf nodes and (ii) how to reconstruct intermediate
nodes from the leaf nodes. The basic ideas behind SCUE are
that, unless there is any manipulation, (i) the root counter is
always equivalent to the sum of all leaf counters, and (ii) a par-
ent node counter is always equivalent to the sum of its child
node counters. These facts are apparent because the counter
represents the number of updates of the node. After a crash,
the integrity of leaf nodes is verified first using AE/MAC with
the tag and nonce stored in NVM. Assuming the security
of AE/MAC, the attacker cannot perform any forgery except
for replay. Then, to detect a replay of leaf nodes, the SCUE
checks the equivalence between the root counter and the sum
of leaf counters. Here, the root counter is manipulation-free
because it is on-chip. In addition, a replay decreases a counter
but cannot increase it, indicating that the sum of leaf counters
is to be fewer than the root counter if replayed.

After the verification, SCUE recovers the intermediate
nodes before the crash in a bottom-up manner. It determines
each parent node counter value as sum of its child node coun-
ters because they are always equivalent unless manipulation.

2.5 Split Counter (SC)
SC is the foremost advanced counter mechanism for PAT
structural optimization [74], which compresses the tree size
(i.e., suppresses the NVM overhead to store metadata) [5, 55,
56]. The tree size compression contributes to low latency
because the number of input blocks to MAC/AE for verifica-
tion/update of the tree becomes smaller.

Figure 3 illustrates an overview of an SC-based PAT with an
arity of two. An SC-based tree splits a counter into major and
minor counters. In computing AE for a leaf node, the nonce
is given by a concatenation of its address, its major counter,

MAC

ctrMa[0] ∥ ctrmi[0][0] ∥ ctrmi[0][1]

addr[0] ∥ ctrMa[0] ∥ ctrmi[0][0] addr[1] ∥ ctrMajor[0] ∥ ctrmi[0][1]

addr[i] ∥ ctrMa[i] ∥ ctrmi[i][0]

ctrMa[i] ∥ ctrmi[i][0] ∥ ctrmi[i][1]

T[j]

AE
C[0]

T[0]

M[0]

AE
C[1]

T[1]

M[1]

Figure 3: Example of SC-based binary PAT, where ctrMa[i]
denotes i-th major counter, and ctrmi[i][j] denotes j-th minor
counter sharing ctrMa[i]. Each node has a nonce consisting
of its address, major counter, and minor counter, whereas the
MAC input of a parent node consists of a major counter and all
minor counters of child nodes. All major and minor counters
and tags are stored in NVM as security metadata in addition
to ciphertext, while the root (major) counter is stored on-chip.

and its minor counter (e.g., addr[0] ∥ ctrMa[0] ∥ ctrmi[0][0] in
Figure 3) and the input (i.e., data to be encrypted/decrypted
and verified) is payload data (e.g., M[0]). In computing MAC
of an intermediate or root node, the nonce is given by its
address, its own major counter, and its own minor counter
(e.g., addr[i] ∥ ctrMa[i] ∥ ctrmi[i][0]) and the input (i.e., data
to be verified) is a concatenation of major counter(s) and
all corresponding minor counters of its child node (e.g.,
ctrMa[0] ∥ ctrmi[0][0] ∥ ctrmi[0][1]). Here, if a minor counter
overflows in an update of node, then all minor counters that
share a major counter are reset to zero, and the major counter
is incremented. Thus, the SC significantly reduces the total
bit length of counters, maintaining the uniqueness of nonce.

Let lctr be the bit length of the counter without SC. Let lMa

and lmi be those of the major and minor counters of an SC-
based PAT, respectively. Typically, lctr, lMa, and lmi are 64, 56,
and 8, respectively [31, 74]. If k nodes share a major counter,
the SC reduces the counter size from klctr to lMa+ klmi.

3 Proposed mechanism: Crystalor

3.1 Basic concept of Crystalor

Figure 4 illustrates the proposed crash recovery mechanism
for PAT, named Crystalor. Crystalor distinctly provides crash
recoverability and security against crashes, while PAT solely
provides confidentiality and integrity under nominal opera-
tion without a crash. The basic ideas behind Crystalor are to
use a distinct leaf tag, which verifies the leaf node integrity
only after a crash but can be updated with almost no overhead
under nominal operation, and to construct a new tree with a
proven resilience against replay after the leaf tag verification.

5

Payload Data

M[0]

AE
ctr[0]

C[0]

T[0]

…

…

Leaf Tag

Security Metadata

ctr[0] ctr[1] ctr[m]…

Root Nonce

Real time protection
during nominal operation

Used for verification
only after crash

M[1]

AE
ctr[1]

C[1]

T[1]
M[m]

AE
ctr[m]

C[]

T[m]
MAC

…
MAC
…

…

MAC
…PXOR-Hash

Figure 4: Secure NVM based on PAT and Crystalor.

If we can verify the leaf nodes (i.e., payload data) regard-
ing replay attacks without intermediate node consistency, the
intermediate node is no longer required. Thus, we give up the
whole tree consistency and relinquish the intermediate and
root nodes. Crystalor realizes the leaf node verification using
the leaf tag stored on-chip. The leaf tag verification is only per-
formed after a crash, while PAT provides integrity under nomi-
nal operation. This indicates that the leaf tag verification does
not need real-time processing3. In contrast, the tag update
requires real-time processing because it should be performed
whenever storing data. Thus, we present an incremental uni-
versal hash [13] named PXOR-Hash, which is tailor-made for
an efficient and optimal realization of such leaf tag. PXOR-
Hash is designed similarly to PXOR-MAC and PMAC; how-
ever, PXOR-Hash and PXOR-MAC/PMAC achieve different
security goals/levels the difference in their contexts (see Sec-
tion 3.2), which enables PXOR-Hash to improve efficiency
and latency compared to PXOR-MAC/PMAC. Importantly,
PXOR-Hash verifies any data regardless of its structure, which
enables the integrity verification of PAT with structural opti-
mizations (in contrast to SCUE).

The proposal of Crystalor includes how to rebuild the whole
tree (i.e., intermediate nodes) from the verified leaf nodes.
A recovery of SC-based PAT is impossible because minor
counter values at overflow are discarded, which causes un-
certainty on the intermediate counters. In contrast to existing
mechanisms, Crystalor creates a new tree, where resilience
against replay attack is proven, as described in Section 3.3.

3.2 Leaf tag verification using PXOR-Hash

AE can realize the verification of leaf nodes (i.e., payload
data) with a nonce consisting of its address and counter. Here,
as we use an implicit (i.e., physical) address for the nonce,
we can detect a forgery, including splicing, but not a replay
attack on a leaf node. To detect a replay, we should verify the
integrity of counters using a leaf tag stored on-chip securely.
As the leaf tag is verified only after a crash, only its update
requires real-time processing (while its verification does not).

3Nevertheless, PXOR-Hash is rate-1, which yields a recovery optimal in
terms of the number of AES encryption calls.

The requirements of leaf tags for security and practical per-
formance are as follows.

Requirement 1 (Security). Let F denote a function that
computes an n-bit leaf tag from input D, which consists of leaf
counter blocks. For any adversary with practical resources,
the probability of finding a collision on F (i.e. a distinct pair
D and D′ such that F(D) = F(D′)) is negligible in n.

Requirement 2 (Incremental update for nominal opera-
tion). Assume that old tag and old input blocks are available.
If one input block is changed, then the new tag can be com-
puted with O(1) calls of symmetric cryptographic primitive.
Note that this assumption is usually true for our context be-
cause old data remains on-chip before the update.

Requirement 3 (Fast recovery). The tag can be computed
and verified with m+O(1) calls of symmetric cryptographic
primitive, where m is the input length.

Requirement 1 is crucial as it directly represents a forgery
of a leaf tag given an input (i.e., leaf node counters). The
function F is either keyed or unkeyed and in the former case,
we assume that the adversary does not know the (random) key.
More concretely, if F is keyed, Requirement 1 is equivalent to
requiring F to be an almost universal (AU) hash function (See
Definition 1) [13]. AU hash functions have been extensively
studied, and they can be efficiently constructed by utilizing a
secret key dependency, compared to one-way hash functions
such as SHA-2 or SHA-3.

For a keyed function F : K ×X → Y where K is the key
space, we write FK to denote F(K,∗).

Definition 1 (AU hash function). Let F : K ×D→{0,1}n

be a function for a key K ∈ K and plaintext D ∈ D. The
function F is ε-AU hash function if Pr[K ← K : FK(D) =
FK(D′)]≤ ε holds for any D and D′ ∈D such that D ̸= D′.

We remark that a full-fledged (nonce-based) MAC will
also work; however, an AU hash function is sufficient for our
purpose. This is because, in our architecture, the leaf tag is
stored on-chip trusted/secure area, where the adversary in
Requirement 1 cannot see nor manipulate it. This feature is
crucial because if the output of the AU hash is visible to the
adversary, a collision is usually easy to find. A nonce is un-
necessary because each leaf node counter never repeats under
nominal operation. If the leaf tag was stored off-chip or the
plaintext of F could take the same value, we need to employ
a conventional MAC, or add a nonce as a new input of F and
employ nonce-based MAC. However, this will increase the
computational cost or latency compared to an AU hash func-
tion. Based on these observations, we develop an AU hash
function PXOR-Hash, which fulfills these three requirements.
An AU hash function could be built using algebraic opera-
tions (e.g., GHASH in GCM); but, such constructions have
difficulties in incremental updates for large inputs. Instead,
we adopt a computational variant of AU hash function which
is a simplified version of PMAC (i.e., sum of input-masked
AES). This enables incremental updates for large inputs and
provable security guarantee based on the symmetric primitive

6

D[1] D[2] D[m]

T

L 2 · L m · L

EK EK EK

Figure 5: Block diagram of PXOR-Hash.

Algorithm TagGen(D,K,L)

1 T ← 0n

2 for i = 1 to m
3 T ← EK(i ·L⊕D[i])⊕T
4 return T

Algorithm Verify(D,K,L,T)

1 T ′← TagGen(D,K,L)
2 if T = T ′

3 return ⊤
4 else
5 return ⊥

Algorithm Update(D[i],D′[i], i,K,L,T)

1 T ← EK(i ·L⊕D[i])⊕T
2 T ← EK(i ·L⊕D′[i])⊕T
3 return T

Figure 6: PXOR-Hash algorithms, where D = (D[1],D[2],
. . . ,D[m]) and D′[i] is new data to be updated.

we use (namely, AES in our case) [60].
Construction of PXOR-Hash. Let EK(·) denote a block

cipher encryption using a secret key K (typically, EK is AES
encryption). Let D[1],D[2], . . . ,D[i], . . . ,D[m] be input data
blocks to be verified, where m is the number of data blocks.
In the context of Crystalor, each D[i] consists of counters for
leaf node nonce (see below). Figure 5 and Figure 6 show the
block diagram and algorithmic description of PXOR-Hash,
respectively. The tag of PXOR-Hash is computed as

T = EK(L⊕D[1])⊕EK(2 ·L⊕D[2])⊕·· ·
⊕EK(i ·L⊕D[i])⊕·· ·⊕EK(m ·L⊕D[m]),

where L=EK(0), operator⊕ denotes a bit-wise XOR, and the
multiplication is over F2n (n is the block length of EK). Note
that L can be pre-computed and stored in on-chip memory in
advance to remove its latency.

Incremental update. Given an old tag T , let us consider
updating the i-th block D[i] to D′[i]. The new tag is given by

T ′ = EK(L⊕D[1])⊕EK(2 ·L⊕D[2])⊕·· ·
⊕EK(i ·L⊕D′[i])⊕·· ·⊕EK(m ·L⊕D[m]). (1)

Using the old tag T and old data D[i], the new tag T ′ is equiv-
alently computed by

T ′ = T ⊕EK(i ·L⊕D′[i])⊕EK(i ·L⊕D[i]), (2)

which requires only two EK calls, whereas the naïve compu-
tation in Equation (1) requires m calls.

Concrete realization. For the leaf node verification, we
compute and store a leaf tag T using PXOR-Hash on-chip,
where the inputs are ctr[1] ∥ ctr[2] ∥ · · · ∥ ctr[m]. We use AES-
128 for a block cipher, and 64-bit counters (without SC). The

input data is given by D[2i] = ctr[2i] ∥ ctr[2i+ 1]. If the 2i-
or (2i+1)-th node is updated, then D[2i] is also updated us-
ing the computation in Equation (2). Also, if we use SC, the
i-th input data block is given by all node counters related to
the i-th major counter; that is, D[i] = ctrMa[i] ∥ ctrmi[i][0] ∥
ctrmi[i][1] ∥ · · · ∥ ctrmi[i][m′], where m′ is the number of mi-
nor counters. If a leaf node related to ctrMa[i] and ctrmi[i][j]
(1 ≤ j ≤ m) is updated, then D[i] is updated as well. Note
that address is not required to input to PXOR-Hash because
PXOR-Hash can detect a change of block order (i.e., splicing).
If a crash occurs, Crystalor first verifies the leaf node using
the AE and then detects a replay attack by comparing the
on-chip leaf tag and the tag computed by Equation (1).

Security of PXOR-Hash. As mentioned, PXOR-Hash is a
computational AU hash function, or more precisely, an almost
XOR-universal (AXU) hash function. An AXU hash function
is an AU hash function. Note here that, for a leaf node with
ctrMa[i] and ctrmi[i][j], i and j are implicit inputs to PXOR-
Hash (that is, the input order of major and minor counters,
which represents the node address). Since PXOR-Hash can
detect a swap of bits/blocks, Crystalor is secure against splic-
ing. Thus, PXOR-Hash can detect any manipulation on leaf
node counters, if the collision probability is negligible.

If the securely stored hash value (T) and output of PXOR-
Hash taking a modified (forged) input collide, integrity will
be lost. Concretely, this probability for each forgery attempt
is at most 4m/2n when m ≤ 2n−2, where n = 128 and m is
the number of input blocks, assuming the underlying AES is
computationally secure (i.e., a pseudorandom permutation).
Hence, the collision probability is negligible in practice if
m≪ 2n−2 = 2126. For example, even for a very large NVM
of 1 P bits, the collision probability is less than 2−83, which
is practically negligible. The collision probability of PXOR-
Hash could be obtained by analyzing (message hashing part
of) PMAC [60]. Originally the collision probability was at
most m2/2n [60], however, Minematsu and Matsushima [50,
Lemma 2] improved it to 4m/2n, assuming m≤ 2n−2. These
proofs considered doubling-based masks, meaning that the
i-th input mask is 2i · L, where “2” denotes the generator
of the field GF(2n). This differs from i · L in PXOR-Hash
as we adopted for hardware suitability. However, the proof
of [50, Lemma 2] also holds for our case, with almost no
change. Hence, we omit the proof here.

In case that we want a stronger security bound, which may
happen in case m is even larger, or the block size is smaller,
we can use stronger methods. For example, (the message
hashing part of) PMAC with multiple masks [22] or TBC-
based PHASH [60]. The former could be instantiated low-
latency block ciphers such as Prince [10], and the latter could
be instantiated with a low-latency TBC such as QARMA [4].
Both methods further reduce the contribution of input length
in the collision bound.

7

3.3 NVM recovery by constructing new tree
To date, PAT recovery after a crash has been realized by re-
constructing intermediate nodes (i.e., nonce counters) using
redundancy or relation between parent and child nodes. For
example, Anubis used a shadow table to preserve the node
addresses under updates [82]. The SCUE reconstructs inter-
mediate nodes from leaf nodes in a bottom-up manner, owing
to the consistency between the sum of child node counters
and a parent node counter. These existing methods cannot
work with SC because minor counter values are discarded and
reset when an overflow occurs.

Here, intermediate nodes are not payload data but only for
verifying the leaf nodes regarding a replay attack. In other
words, the intermediate nodes are unnecessary if we can verify
the leaf nodes in another way (e.g., the leaf tag of PXOR-
Hash). Therefore, Crystalor relinquishes the old tree except
for the leaf node but constructs a new tree instead. However,
if an old counter is used in the new tree, it is exploited by a
replay attack, resulting in a feasible forgery. Accordingly, we
should construct a new tree with counter values greater than
the old ones for resilience against replay.

Our idea is to use an upper bound of the number of updates
as the new counter. Consider a case in which k leaf nodes
share a major counter and the minor counter bit length is l. A
parent node has a major counter ctrMa[i] and a minor counter
ctrmi[i][j] for each 1 ≤ j ≤ k. For a PAT with arity of β, it
has β child nodes with major counters ctrMa[i′] and minor
counters ctrmi[i′][j′] (1 ≤ i′ ≤ β/k and 1 ≤ j′ ≤ k). After a
crash, Crystalor computes the possible maximum number of
the parent nodes, denoted by ctrpa[i][j], as

ctrpa[i][j] =
β/k

∑
i′=1

(
ctrMa[i′]

(
k(2l−1)+1

)
+

k

∑
j′=1

ctrmi[i′][j′]

)
,

Crystalor then computes the major and j-th minor counter
values of i-th intermediate node as

ctrMa[i] =
k

∑
j=1

⌊
ctrpa[i][j]

2l

⌋
, (3)

ctrmi[i][j] = ctrpa[i][j] mod 2l , (4)

respectively, where ⌊·⌋ is the floor function. All counters of
intermediate and root nodes are computed bottom-up by re-
peating this computation from the leaf nodes. This represents
that the upper bits of nonce are shared as a major counter and
lower l bits are unique to each minor counter.

We prove Proposition 1 to validate the security of Crys-
talor’s recovery against replay attack.

Proposition 1. Let ctrMa[i] and ctrmi[i][j] be the i-th parent
node major and minor counter values computed by Equa-
tions (3) and (4). Any new tree is resistant to replay attacks.

Proof. First, we consider a single crash. Let c be the number
of updates from the previous reset of minor counters until
the next reset (i.e., major counter increment). It always holds
2l − 1 ≤ c ≤ k(2l − 1) because c is minimum if only one
node is updated (and others are not updated at all), while c is
maximum if each of k minor counters has the maximum value
(i.e., 2l−1). Let ui′ be the total number of updates of nodes
sharing the i′-th major counter, which is bounded above as

ui′ ≤ ctrMa[i′]
(

k(2l−1)+1
)
+

k

∑
j′=1

ctrmi[i′][j′],

because ctrMa[i′] denotes the number of minor counter re-
sets. Let ui, j be the number of updates of a parent node with
ctrmi[i][j], which is bounded as

ui, j ≤
b

∑
i′=1

ui′ = ctrpa[i][j].

This indicates that ctrpa[i][j] is greater than or equal to the
number of updates of the node (i.e., the true value of parent
counter ever before). The equality holds if c has taken the
maximum whenever and wherever the minor counter resets or
if any minor counter reset has not occurred (i.e., ctrMa[i′] = 0
for all i′). Thus, for all 1≤ j≤ k, the parent node was updated
at most ctrpa[i][j] times. Because it also holds for the parent
node that 2l−1≤ c≤ k(2l−1), the number of updates of the
parent major counter must be less than ∑

k
j=1
⌈
ctrpa[i][j]/2l

⌉
,

which indicates the new major counter value never appears
before the crash. Thus, its replay is impossible.

We then consider multiple crashes, in which counter values
are given by Equations (3) and (4) in the past. If a leaf node
counter is incremented, then a corresponding ctrpa[i] always
takes a greater value than the previous state, because it is
strictly monotonically increasing in terms of both ctrMa[i′]
and ctrmi[i′][j′]. This implies that either or both ctrMa[i] and
ctrmi[i][j] in Equations (3) and (4) are greater than any previ-
ous state. In addition, if a child node is updated, its parent node
counter accordingly increases; however, its increase amount
is not as great as the number of updates as abovementioned.
Thus, the new counter values determined by Equations (3)
and (4) are always new, which guarantees the resistance to
replay attacks.

The integrity of leaf nodes is verified by AE, excluding
replay attacks. The leaf tag verification detects the replay
attacks on leaf nodes. Moreover, Proposition 1 states that the
counter values of the new tree are always greater than values
before the crash, indicating the new tree’s resistance to replay
attacks. Thus, Crystalor provides both crash recoverability
and integrity against any manipulation attacks. Note that,
in a recovery operation, the new tree construction and leaf
node/tag verification should be carefully executed in such a
way as to avoid replay attacks (see Section 3.5).

8

Tree Nodes

Encrypted Data

Cache WPQ

Secure Processor (On-Chip)

Tree

Root

NVM Main Memory

(Off-Chip)

Data1 Root+1

Data2 Root+2

Data3 Root+3

MAC

Engine

Leaf TAG

Leaf TAG Cache

Encryption

Engine

PXOR-Hash

Accelerator

PXOR-Hash Hardware

ELM Hardware

KEY

SRAM

Figure 7: Crystalor hardware architecture.

3.4 Hardware architecture
Figure 7 displays the hardware architecture of Crystalor for
persistent memory encryption [32], in which we employ ELM.
Crystalor utilizes dedicated hardware components to compute
and update the leaf tag apart from memory protection hard-
ware for ELM computation, as Crystalor operates distinctly
and independently of PAT. The dedicated hardware consists
of an SRAM to store and update the leaf tag (Leaf TAG reg-
ister) in addition to the secret key of PXOR-Hash key (KEY
register). PXOR-Hash hardware consists of pipelined AES
encryption hardware, which can process multiple update trans-
actions in parallel in the most efficient manner. The leaf tag is
stored in both the SRAM and cache (Leaf TAG register and
cache) to improve the speeds of tag computation. This dedi-
cated hardware operates at every timing of leaf node update
(i.e., storing encrypted payload data to NVM) to simultane-
ously and consistently update/store the leaf tag to Leaf TAG
register and cache. In Figure 7, the leaf tag is always updated
on-chip but is not disclosed to the off-chip NVM. This is
mandatory for security to prevent any manipulation attack on
these data. In other words, as the leaf tag is securely processed
and stored, it does not require protection as strong as MAC,
leading to an efficient implementation of PXOR-Hash.

Crystalor requires an on-chip SRAM for storing the 128-
bit leaf tag and PXOR-Hash keys (K and L). So, the SRAM
overhead is 384 (= 128×3) bits in total. Crystalor also uti-
lizes a 128-bit on-chip cache for Leaf TAG cache and the
AES encryption engine in PXOR-Hash hardware which is
implemented with less than 15 K GE [68].

Furthermore, the proposed architecture has an on-chip non-
volatile register to store temporal data during ELM (i.e., AE
and MAC) computation. When the ELM computation for the
temporal data is completed, the architecture raises a flag bit
to start writing the data to the WPQ. If a system crash occurs
with the frag raised, the on-chip non-volatile register data is
written to the WPQ after the system reboots. Otherwise (i.e.,
without the flag raised), data in the register is discarded.

The remaining parts other than Crystalor operate similarly

to the conventional ones. A memory controller controls the
NVM data to handle encrypted payload data and security
metadata. The ELM hardware includes a 952-bit cache for
storing the ELM secret key and its precomputable intermedi-
ate values. We employ an on-chip WPQ to persist data during
store operation using ADR [64]. Namely, as leaf nodes must
be consistent with the on-chip leaf tag, we explicitly use a
WPQ as an ADR domain for the leaf node to guarantee its
persistence. Note that the intermediate nodes are discarded
at a crash, hence they do not require persistency; thus, MAC
outputs (i.e., intermediate nodes) are directly written to NVM
without using WPQ (which indicates the intermediate nodes
are computed and updated with background processing like
SCUE). Furthermore, we utilize atomic persistency mecha-
nism(s) and hardware redo logging as in existing methods.

Remark 3.1 (Combination with other mechanisms). Fig-
ure 7 presents the simplest construction without any opti-
mization mechanism. Advanced counter mechanisms such
as SC, Vault, and Morphable counters are applicable. Adop-
tion of mechanism(s) for atomic data persistency would
also be essential for consistent transactions with high per-
formance [15,28,33,35,46,54,63,71,78,80]. As PXOR-Hash
distinctly operates from PAT, such optimization mechanisms
for PAT can be readily incorporated together.

Performance overhead. The latency overhead of Crystalor
during nominal operation does not depend on the cache size
nor covered NVM region, but solely depends on the computa-
tional cost of leaf tag update. As mentioned in Section 3.2, the
leaf tag update is completed within only two AES encryption
calls for new and old D[i]’s. The two AES encryptions are
performed in parallel using pipelined AES hardware, which
requires far smaller latency of ELM update. Therefore, the
latency overhead of Crystalor is negligible and has no impact
on the system performance, as Crystalor and PAT distinctly
operate. Owing to the simplicity of Crystalor, it is easy to im-
plement and incurs little overhead in the memory controller.

3.5 Operations

We describe the store and recovery operations of ELM–
Crystalor. Read operation requires no Crystalor operation.

Store operation. For crash recoverability and security, we
must simultaneously and consistently update the leaf node
counter in the NVM and the on-chip leaf tag, which is realized
by the following steps:

1. Store operation to the NVM is issued. It would corre-
spond to a cache data replacement (i.e., cache miss) or an
explicit instruction to guarantee the data persistency at a
timing, such as clflush and clwb in x86 architecture.

2. (ELM computation) Payload data is encrypted, corre-
sponding intermediate nodes and root node tags are com-
puted in the background, and the corresponding counters

9

are incremented. The results are stored in the on-chip
non-volatile register.

3. (PXOR-Hash computation) The new leaf tag is com-
puted from the old tag, old data, and new data.

4. (Write to WPQ) The non-volatile register data is moved
to WPQ. When leaf node is in the WPQ, a busy flag for
this transaction (on-chip non-volatile register) is raised.

5. (Tag update) Leaf TAG cache and registers are updated.

6. (Store data) WPQ data is stored in NVM, and the root
node counter is incremented. The busy flag is put down
when completed.

Note that Steps (2, 3) and (4, 5) should be synchronously exe-
cuted in parallel for consistency between the leaf tag and leaf
counters. In addition, data should be updated in an atomically
persistent manner, with the help of some mechanisms for this
purpose (e.g., [15, 28, 33, 35, 46, 54, 63, 71, 78, 80]).

Recovery. After a crash and system reboot, Crystalor se-
curely recovers the NVM as follows:

1. (WPQ data reflection) If the busy flag has been raised,
the WPQ data is written to the NVM; otherwise, it is
discarded. Then, the WPQ data is reflected in the NVM
based on the redo logs. We here suppose that the data
are atomically persistent, as mentioned before.

2. (New tree construction) According to Section 3.3,
counter values of intermediate and root nodes are de-
rived in a bottom-up manner. The MAC tag of each node
is also computed from the counters and addresses.

3. (Leaf tag verification) The verification leaf tag of
PXOR-Hash is computed from all leaf node counters,
and then the computed tag is compared to the on-chip
Leaf TAG register value. If they are equivalent, the nom-
inal operation restarts; otherwise, Crystalor detects a
manipulation and gives an error signal.

We should perform Steps 2 and 3 in this order to prevent
replay attacks. Namely, we create a new tree, although leaf
nodes may be manipulated. Hereafter, PAT can detect any
manipulation, while it cannot detect leaf node manipulation
during a crash. Then, we verify the leaf tag to detect a re-
play of the leaf node. Thus, the attacker cannot manipulate
after the new tree construction. In contrast, all manipulations
before the new tree construction are detected by the leaf tag
verification and the subsequent leaf node AE verification (lazy
verification/recovery). Note that if we execute Steps 2 and 3
in the reverse order, a replay attack is possible after the leaf
tag verification before starting new tree construction.

On lazy verification/recovery. Crystalor can detect any
counter replay solely by the leaf tag verification, while SCUE
cannot4. Hence, at a reboot, Crystalor does not require verify-
ing the AE leaf node for protection because it will be verified

4At a crash, an attacker can insert a replay data without SCUE detected
by incrementing another leaf node counter, such that the sum of leaf node

before it is actually used. In other words, the leaf node AE
verification can be omitted at the time of recovery, and the ver-
ification is completed lazily and concurrently during nominal
operation after the recovery. Thus, Crystalor does not have to
read the leaf node data nor compute AE for the leaf node at
reboot time. This yields a significant reduction of recovery
cost (as evaluated in Section 4.3) compared to the non-lazy
recovery of SCUE because the leaf node occupies a major
part of secure NVM. Such a lazy strategy was taken in some
previous sutdies [82], and is considered practically secure.
An attacker in a practical use scenario of memory encryption,
who can manipulate off-chip data and can trigger crashes,
cannot bypass the leaf tag verification and PAT verification
simultaneously, while their combination detects any replay.

4 Performance evaluation

4.1 Algorithm-level evaluation

In the following, we consider the typical SC parameter [31,
55]: the lengths of major and minor counters (i.e., lMa and
lmi) are given by 56 and 8 bits, respectively, and the number
of nodes sharing a major counter (i.e., k) is 8.

SC was originally proposed as an optimization method
to reduce the metadata size (i.e., NVM overhead). The size
reduction of metadata may also contribute to a latency reduc-
tion because the length of data to be verified by MAC is also
reduced. We derive the relation between the covered region
size and ELM parameters to calculate the (optimal) latency of
ELM for a given covered region size. Then, we can choose an
optimal parameter that covers the region with the minimum
latency. Note here that the advantages of SC directly represent
the supremacy of Crystalor over SCUE.

Latency and covered region size. Let b denote the number
of input blocks to MAC and let ℓ denote the bit length of a
leaf node. Here, b is derived from the tree arity β as b = β/2
and b = β/8 without and with SC, respectively. Without SC,
an intermediate node has 2b child nodes because a counter
is given by 64 bits. This indicates that the tree has 2dbd leaf
nodes. If SC is applied, an intermediate node can have 8b
nodes because an input block D[i] consists of a 64-bit major
counter and 8-bit minor counters of eight child nodes. This
indicates that the tree with SC has 23dbd leaf nodes. For given
b and ℓ, ELM can cover a region of 2dbdℓ and 23dbdℓ bits
without and with SC, respectively. Meanwhile, the update
latencies of Flat-OCB and PXOR-MAC hardware in [32] are
14+ ℓ/128 and 12+ b clock cycles, respectively. Note that
the metadata size does not include bits to indicate the address

counters is preserved. If the replayed node is loaded before detecting incre-
mented counters, the replay attack is not detected and succeeded. Thus, whole
leaf node AE verification is essential to detect such a replay with a counter
increment. This implies the insecurity of lazy recovery for SCUE. Therefore,
SCUE cannot use such a lazy strategy and essentially requires verifying the
leaf node AE at the timing of recovery for security against replay attacks.

10

Table 1: Latency and covered region of ELM with and without
SC, where b is number of input blocks (corresponding to tree
arity), ℓ is bit length of AE, and d is tree depth

Covered region [Byte]
ELM w/o SC ELM with SC

b ℓ Update† Verify d = 3 d = 5 d = 7 d = 3 d = 5 d = 7

4

512 21 18 33 K 2 M 134 M 2 M 2 G 2 T
1,024 25 22 66 K 4 M 268 M 4 M 4 G 4 T
2,048 33 30 131 K 8 M 537 M 8 M 8 G 9 T
4,096 49 46 262 K 17 M 1 G 17 M 17 G 18 T
8,192 81 78 524 K 34 M 2 G 34 M 34 G 35 T

8

512 22 20 262 K 67 M 17 G 17 M 69 G 281 T
1,024 25 22 524 K 134 M 34 G 34 M 137 G 563 T
2,048 33 30 1 M 268 M 69 G 67 M 275 G 1 P
4,096 49 46 2 M 537 M 137 G 134 M 550 G 2 P
8,192 81 78 4 M 1 G 274 G 268 M 1 T 5 P

16

512 30 28 2 M 2 G 2 T 134 M 2 T 36 P
1,024 30 28 4 M 4 G 4 T 268 M 4 T 72 P
2,048 33 30 8 M 9 G 9 T 537 M 9 T 144 P
4,096 49 46 17 M 17 G 18 T 1 G 18 T 288 P
8,192 81 78 34 M 34 G 35 T 2 G 35 T 576 P

32

512 46 44 17 M 69 G 281 T 1 G 70 T 5 E
1,024 46 44 34 M 137 G 563 T 2 G 141 T 9 E
2,048 46 44 67 M 275 G 1 P 4 G 281 T 18 E
4,096 49 46 134 M 550 G 2 P 9 G 563 T 37 E
8,192 81 78 268 M 1 T 5 P 17 G 1 P 74 E

64

512 78 76 134 M 2 T 36 P 9 G 2 P 590 E
1,024 78 76 268 M 4 T 72 P 17 G 5 P 1 Z
2,048 78 76 537 M 9 T 144 P 34 G 9 P 2 Z
4,096 78 76 1 G 18 T 288 P 69 G 18 P 5 Z
8,192 81 78 2 G 35 T 576 P 137 G 36 P 9 Z

128

512 142 140 1 G 70 T 5 E 69 G 72 P 76 Z
1,024 142 140 2 G 141 T 9 E 137 G 144 P 151 Z
2,048 142 140 4 G 281 T 18 E 275 K 288 P 302 Z
4,096 142 140 9 G 563 T 37 E 550 K 576 P 604 Z
8,192 142 140 17 G 1 P 74 E 1 P 1 Z 1 Y

† “Update” actually means “Verify then Update,” because PAT requires tag
verification always before update for security [14, 32].

because it is implicit. Table 1 reports the latency and covered
region size for different values of b and ℓ without and with SC,
where the latency means min(14+ ⌈ℓ/128⌉ ,12+ b) as the
bottleneck. From Table 1, we confirm that SC significantly
reduces the latency to cover a given region. For example,
for d = 5 and 7, to cover a 4 TB region, ELM without SC
requires at least 78 and 30 clock cycles for the update, whereas
ELM with SC requires only 30 and 22 clock cycles. Thus, SC
reduces the latency overhead by 38 and 8 cycles for d = 5
and 7 (i.e., 62% and 29%).

Metadata size. We evaluate how much SC contributes to
reducing NVM overhead to store metadata. Without SC, the
metadata size is given by 112∑

d
i=0 βi−56, whereas, with SC,

it is 72∑
d
i=0 βi−56∑

d−1
i=0 βi, according to [31]. For example,

to cover a 4 TB region with a tree of b = 4, ELM without
and with SC has overhead of 554 GB and 312 GB to store
the metadata, respectively, which indicates a 44% reduction
of the overhead by SC. Thus, SC significantly improves the
performance of memory encryption.

Additional latency due to minor counter overflow. When
a major counter is incremented (i.e., minor counter over-
flows), SC requires the re-computation of tags related to the
major counter. If the j-th node of i-th major counter over-
flows, then the major counter ctrMa[i] is incremented, and the
minor counters ctrmi[i][j] for all j (1 ≤ j ≤ k) are reset to
zero. We should recompute the tag of nodes for all j, as its

nonce counter ctrMa[i] ∥ ctrmi[i][j] is updated. This means that
k−1 MAC/AE updates accompany a minor counter overflow.
The system-level simulation for the performance evaluation
should regard the latency due to minor counter overflow. Nev-
ertheless, the latency overhead by minor counter overflow is
not critical as its frequency is low. On average, it incurs less
than one clock cycle latency per store operation.

Remark 4.1 (Tree depth and hardware resource). Tree depth
d is a parameter that exploits tradeoffs between a hardware
resource (i.e., the number of MAC engines) and covered re-
gion/latency, while b and ℓ optimal in terms of latency are
determined systematically for a given covered region. In other
words, for an optimal fixed b and ℓ, we can enlarge the cov-
ered region size by increasing d, using d−1 parallel MAC
engines. Conversely, we can reduce the latency for a fixed
covered size by increasing d. In other words, the significance
of covered region size and improvement by SC depends on d.

4.2 System-level simulation
We perform system-level simulations of secure NVM using
the gem5 simulator [9] for the validation. In this simulation,
we evaluate the crash mechanisms with ELM, as ELM is the
state-of-the-art and achieves the highest performance among
PATs5. We assume to utilize AE and MAC hardware pre-
sented in [21, 32] for the ELM hardware in this evaluation.
We evaluate the proposed and existing methods as follows:

• Insecure: NVM without any security mechanism.

• ELM w/o SC: ELM without SC (Not recoverable).

• ELM with SC: ELM with SC (Not recoverable).

• ELM–SCUE: ELM with SCUE (SC is inapplicable).

• ELM–ASIT: ELM with Anubis (SC is inapplicable).

• ELM–Crystalor (this work): ELM with Crystalor, to
which SC is applied.

Insecure and ELMs (Not recoverable) are the baselines to
evaluate the overhead of PAT and crash recoverability, respec-
tively. We determined the latency according to the memory
capacity (i.e., 4 TB) and Table 1. For the ease, feasibility,
and reproducibility of the experiment, we employed several

5Some previous studies (e.g., [30]) utilized a classical HMAC, which is as-
sumed to require 40, 80, or 160 clock cycles for Verify and Update. However,
its concrete realization/implementation is not mentioned, and the number
of input blocks to AE/MAC is not considered, although they determine the
latency; thus, its practical validity and feasibility are unclear. We employ the
ELM-style evaluation to determine the clock cycles for a fair, modern, and
practical performance comparison, different from previous studies. Our re-
sults are based on the in-depth evaluation of latency in the ELM paper, which
considers a concrete cryptographic hardware implementation and the number
of input blocks to AE/MAC, while the previous studies did not. Note that
HMAC is not optimal in terms of latency and incrementality, and therefore
PXOR-MAC in ELM was proposed for an optimized latency [32].

11

Table 2: Simulation conditions

CPU and caches
CPU core One core, out-of-order, 2.4 GHz
L1 instruction cache 32 KB, 8-way, 2 cycles
L1 data cache 64 KB, 8-way, 2 cycles
L2 cache 32 KB, 8-way, 2 cycles
Metadata cache 256 kB with cache line 64 Byte

Memorey controller and NVM
WPQ size 8 entries
NVM latency Read 50 ns and Write 150 ns
NVM size (Covered region) 4 TB

ELM (d = 5), to which SC is applied
Update and verify latency 30 and 28 cycles
Tree parameters b = 16 and ℓ= 1,024

ELM (d = 5), to which SC is inapplicable/not applied
Update and verify latency 78 and 76 cycles
Tree parameters b = 64 and ℓ= 1,024

ELM (d = 7), to which SC is applied
Update and verify latency 22 and 20 cycles
Tree parameters b = 8 and ℓ= 1,024

ELM (d = 7), to which SC is inapplicable/not applied
Update and verify latency 30 and 28 cycles
Tree parameters b = 16 and ℓ= 1,024

simplifications for the simulation and previous studies. We
omitted the simulation of packet metadata written to NVM.
We virtually inserted the latency to write and store operations
due to ELM according to Table 1. For ELM with SC, to eval-
uate the latency about minor counter overflow, we employed
an apportionment, in which we assume that the writings to
NVM are uniformly distributed, calculate the expected latency
due to the minor counter overflow, and add the rounded-up
value to the latency in Table 1. These simplifications are ap-
plied to all the above methods, allowing for a fair and sound
comparison in addition to reproducibility.

We employ a benchmarking workload set, which has been
commonly used in many previous studies on secure and re-
coverable NVM like a de facto standard (e.g., [29,39,75,84]).
The workloads include random insertions of data to a hash ta-
ble (HT), binary search tree (BST), red-black tree (RBT), and
queue (Queue), each of which has a distinct memory access
pattern. To analyze the difference, we simulate the workloads
with data sizes of 64, 512, 1,024, and 4,096 Bytes.

Results. Figure 8 reports the normalized workload execu-
tion times of the gem5 simulation, in which Insecure is the
baseline. We do not evaluate d = 3, as ELM with d = 3 with-
out SC cannot cover a 4 TB region with a practical latency
(this shows SC’s significance). ELM–Crystalor has almost
the same performance as ELM with SC what ELM–SCUE is
to ELM without SC. Because Crystalor and SCUE incur no
latency overhead under nominal operation, the performance
of ELM–Crystalor and ELM–SCUE depends solely on the
tree parameter. In contrast, ASIT incurs a non-trivial latency
overhead to verify and update the shadow table. Comparing
ELM with and without SC (i.e., ELM–Crystalor and ELM–
SCUE), the performance gain by SC is more significant when

the data size is larger. This is because the reduction of latency
in reading and writing (i.e., verifying and updating) NVM
data is more dominant and visible as the numbers of data
read and write increase for the larger data size. In addition,
the improvement in execution time by SC is more signifi-
cant when d = 5 than d = 7, because the reduction ratio of
latency by SC is larger when d = 5 for covering a 4 TB re-
gion. In consequence, we confirm that ELM–Crystalor can
reduce the workload execution time by at most 11.5% than
the state-of-the-art mechanism (i.e., ELM–SCUE).

Improved scalability for larger NVM. Regarding the tree
depth d, the performance gain by the proposed method is
greater for a shorter tree (i.e., d = 5 in this experiment). Re-
call that d is a parameter that exploits tradeoffs between a
hardware resource (i.e., the number of MAC engines) and a
covered region. As the cover region size in the experiment is
fixed as 4 TB, the size is relatively larger for d = 5, and the
latency overhead by PAT-based protection is larger for d = 5.
The SC compresses the tree/metadata size more effectively
when protecting a larger NVM. Hence, the performance gain
by SC (and the proposed method) is greater for d = 5. More
quantitatively, for a given arity β, the use of SC can reduce the
number of input blocks to PXOR-MAC to 1/4 in the used pa-
rameter. This indicates that the use of SC reduces the latency
of PXOR-MAC asymptotically by 1/4 for a larger β. Thus,
the use of SC (and ELM-Crystalor) reduces the latency of
NVM read/write to up to 1/4 when protecting a larger NVM.
The experimental results on d = 5 and 7 indicate the proposed
method’s improved scalability.

4.3 Recovery cost estimation

Lazy recovery cost of Crystalor. We consider here an ELM–
Crystalor with SC, whose major and minor counters are 56
and 8 bits, respectively. The recovery time of Crystalor is
evaluated by the number of AES calls for PXOR-hash of
leaf tag verification and PXOR-MAC of new tree construc-
tion. To protect an M-bit NVM, the number of AES calls
in PXOR-Hash is equivalent to M/8ℓ, while the leaf node
verification by Flat-OCB is not required at the time of recov-
ery as mentioned in Section 3.5. In addition, for arity of β, a
PXOR-MAC computation requires 1+β/8 AES calls, while a
new tree construction is realized with ∑

d
i=1 βi−1 PXOR-MAC

computations. This indicates that the new tree construction
requires (1+β/8)∑

d
i=1 βi−1 AES calls in total. Moreover, a

new tree construction requires computations of new counter
value ∑

d
i=1 βi−1 times. Recall that M = βdℓ. Thus, Crystalor

recovery is realized with βd/8 + (1 + β/8)∑
d
i=1 βi−1 AES

calls and ∑
d
i=1 βi−1 new counter computations, which corre-

sponds to the number of intermediate nodes (including root
node). In addition, Crystalor requires to read 8βd bits from
NVM, where 8βd bits are leaf node metadata, while Crystalor
writes 128(1/2+ β/8)∑

d
i=2 βi−1 bits of metadata to NVM

during a recovery. Note that, according to the lazy reduction,

12

ELM without SC (Not Recoverable)
ELM with SC (Not Recoverable)

64 Bytes 512 Bytes 1,024 Bytes 4,096 Bytes

ELM–SCUE
ELM–ASIT

ELM–Crystalor

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 b
y

In
se

cu
re

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue

(a) d = 5

ELM without SC (Not Recoverable)
ELM with SC (Not Recoverable)
64 Bytes 512 Bytes 1,024 Bytes 4,096 Bytes

ELM–SCUE
ELM–ASIT

ELM–Crystalor

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 b
y

In
se

cu
re

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue

(b) d = 7

Figure 8: Simulated execution times normalized by Insecure, where proposed method is right-most bin.

the costs are independent of the leaf node bit length (i.e., ℓ).
Recovery cost of SCUE. For comparison, we here con-

sider ELM–SCUE recovery with 64-bit counter. The SCUE
recovery cost is evaluated by the number of counter-summing
and PXOR-MAC computations. For the equivalence check
between the root counter and the sum of leaf node counters,
∑

d
i=1 βi−1 counter-summings are required. Then, the tree re-

covery performs one counter-summing and one PXOR-MAC
computation per node, while a PXOR-MAC requires 1+β/2
AES calls. In addition, there are ∑

d
i=1 βi−1 intermediate nodes.

The leaf node AE verification requires βd(⌈ℓ/128⌉+1) AES
calls. Thus, the computational cost is 2∑

d
i=1 βi−1 counter-

summings and βd(⌈ℓ/128⌉+ 1)+ (1+β/2)∑
d
i=1 βi−1 AES

calls. Meanwhile, SCUE reads βdℓ+64βd bits from NVM,
while it writes 128(1/2+β/2)∑

d
i=2 βi−1 bits to NVM.

Evaluation result. Figure 9a and Figure 9b report the com-
putational cost (i.e., the number of clock cycles) and the traffic
cost between CPU and NVM for some covered region sizes,
respectively. Here, the throughputs of counter-summing, new
counter computation, and AES encryption are supposedly one
per clock cycle [14, 32]. In Figure 9b, the traffic cost is evalu-
ated by the number of transmitted bits, while the writing cost
is tripled as in Table 2. Crystalor achieved a reduction of 10–
1000% recovery costs from SCUE, thanks to the lazy recovery.
Although the computational and traffic costs of the leaf node
AE verification is a major part of SCUE (i.e., βd(⌈ℓ/128⌉+1)
AES calls and βdℓ bits read, respectively), Crystalor does not
require them. Thus, we confirm the advantage of Crystalor in
recovery cost as well as the performance.

5 Conclusion

This study presented Crystalor, a persistent memory encryp-
tion mechanism with a structural optimization such as SC.
Crystalor incurs almost no latency overhead under nominal op-

106

107

108

109

1010

1011

1012

1013

1014

2G 275G 18T 563T 1P

ELM–SCUE
ELM–Crystalor

Covered region size [bits]

C
lo

ck
 c

yc
le

s

(a) Computational cost

108

109

1010

1011

1012

1013

1014

1015

1016

2G 275G 18T 563T 1P
Covered region size [bits]

Tr
an

sm
itt

ed
 b

its

ELM–SCUE
ELM–Crystalor

(b) Traffic cost

Figure 9: Estimation of recovery costs.

eration and achieves an efficient recovery. Although existing
state-of-the-art mechanisms (e.g., SCUE) are incompatible
with structural optimizations, Crystalor fully exploits its ad-
vantages and offers the same security and recoverability. We
confirmed both algorithmically and experimentally that Crys-
talor has a significant advantage in the memory overhead and
execution time/latency over conventional mechanisms with a
reduced recovery cost. At the algorithmic level, for protecting
a 4 TB memory with ELM, Crystalor requires 29–62% fewer
clock cycles per memory read/write operation than SCUE,
while Crystalor and SCUE need 312 GB and 554 GB mem-
ory overheads for storing the security metadata, respectively
(namely, Crystalor achieves a reduction of NVM overhead
by 44%). We then performed a system-level simulation using
the gem5 simulator. We confirmed that Crystalor achieves a
reduction of workload execution time by at most 11.5% from
SCUE. Moreover, Crystalor can offer a lazy recovery owing
to its cryptographic protection, which achieved a 10–1000
times faster recovery than SCUE.

We employed the SC as the most typical optimization tech-
nique for PAT; however, Crystalor can work with any struc-
tural optimization as it employs cryptographic protection. Its
application and evaluation with other optimization techniques
(in Section 1.3) are important future work.

13

References

[1] AMD secure encrypted virtualization (SEV). https://
www.amd.com/en/developer/sev.html. Visited in
September 2023.

[2] Intel Optane technology. https:
//www.intel.com/content/www/us/
en/architecture-and-technology/
optane-technology/optane-for-data-centers.
html. Visited in September 2023.

[3] Mazen Alwadi, Kazi Abu Zubair, David Mohaisen,
and Amro Awad. Phoenix: Towards ultra-low over-
head, recoverable, and persistently secure NVM. IEEE
Transactions on Dependable and Secure Computing,
19(2):1049–1063, 2020.

[4] Roberto Avanzi. The QARMA block cipher family.
almost MDS matrices over rings with zero divisors,
nearly symmetric even-mansour constructions with non-
involutory central rounds, and search heuristics for low-
latency s-boxes. IACR Trans. Symmetric Cryptol.,
2017(1):4–44, 2017.

[5] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman,
Hector Montaner, Prakash Ramrakhyani, Francesco
Regazzoni, and Andreas Sandberg. Protecting mem-
ory contents on ARM cores. Real World Crypto (RWC),
2020.

[6] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and
Kazi Abu Zubair. Triad-NVM: Persistency for integrity-
protected and encrypted non-volatile memories. In
ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA ’19), pages 104–115,
2019.

[7] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser.
Incremental cryptography and application to virus pro-
tection. In Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, STOC ’95,
page 45–56, New York, NY, USA, 1995. Association
for Computing Machinery.

[8] Mihir Bellare and Chanathip Namprempre. Authenti-
cated encryption: Relations among notions and analysis
of the generic composition paradigm. Journal of Cryp-
tology, 21:469–491, 2008.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The Gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011. Place: New York, NY, USA
Publisher: Association for Computing Machinery.

[10] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Le-
ander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for per-
vasive computing applications - extended abstract. In
ASIACRYPT, volume 7658 of Lecture Notes in Com-
puter Science, pages 208–225. Springer, 2012.

[11] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels,
and Jean-Pierre Seifert. One glitch to rule them all: Fault
injection attacks against AMD’s secure encrypted vir-
tualization. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 2875–2889,
New York, NY, USA, 2021. Association for Computing
Machinery.

[12] Federico Canale, Tim Güneysu, Gregor Leander, Jan
Thoma, Yosuke Todo, and Rei Ueno. SCARF: A low-
latency block cipher for secure cache-randomization. In
32nd USENIX Security Symposium, 2023.

[13] J. Lawrence Carter and Mark N. Wegman. Universal
classes of hash functions. Journal of Computer and
System Sciences, 18(2):143–0154, 1979.

[14] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. Cryptology ePrint Archive, Paper 2016/086,
2016.

[15] Nai-Jia Dong, Hsiang-Yun Cheng, Chia-Lin Yang, Bo-
Rong Lin, and Hsiang-Pang Li. Efficient and atomic-
durable persistent memory through in-pm hybrid log-
ging. In 2022 IEEE 11th Non-Volatile Memory Sys-
tems and Applications Symposium (NVMSA), pages 1–7,
2022.

[16] Morris J. Dworkin. SP 800-38A 2001 edition. Recom-
mendation for block cipher modes of operation: Meth-
ods and techniques. Technical report, National Institute
of Standards & Technology, Gaithersburg, MD, USA,
2001.

[17] Morris J. Dworkin. SP 800-38B. Recommendation for
block cipher modes of operation: The CMAC mode
for authentication. Technical report, Gaithersburg, MD,
USA, 2005.

[18] Tetsuo Endoh, Hiroaki Honjo, Koichi Nishioka, and
Shoji Ikeda. Recent progresses in STT-MRAM and
SOT-MRAM for next generation MRAM. In 2020 IEEE
Symposium on VLSI Technology, pages 1–2, 2020.

[19] Alexander Freij, Shougang Yuan, Huiyang Zhou, and
Yan Solihin. Persist level parallelism: Streamlining
integrity tree updates for secure persistent memory. In
2020 53rd Annual IEEE/ACM International Symposium

14

https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html

on Microarchitecture (MICRO), pages 14–27, October
2020.

[20] Alexander Freij, Huiyang Zhou, and Yan Solihin. Bonsai
Merkle Forests: Efficiently achieving crash consistency
in secure persistent memory. In 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
1227–1240, 2021.

[21] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten
van Dijk, and Srinivas Devadas. Caches and hash trees
for efficient memory integrity verification. In the 9th
International Symposium on High-Performance Com-
puting Architecture, 2003.

[22] Peter Gazi, Krzysztof Pietrzak, and Michal Rybár. The
exact security of PMAC. IACR Trans. Symmetric Cryp-
tol., 2016(2):145–161, 2016.

[23] Hannes Gross, Stefan Mangard, and Thomas Korak.
Domain-oriented masking: Compact masked hardware
implementations with arbitrary protection order. In ACM
Workshop on Theory of Implementation Security (TIS
2016), page 3, 2016.

[24] Shay Gueron. A memory encryption engine suitable for
general purpose processors. Cryptology ePrint Archive,
Paper 2016/204, 2016. https://eprint.iacr.org/
2016/204.

[25] Shay Gueron. Memory encryption for general-purpose
processors. IEEE Secur. Priv., 14(6):54–62, 2016.

[26] J. Alex Halderman, Seth D. Schoen, Nadia Heninger,
William Clarkson, William Parl, Joseph A. Calandrino,
Ariel J. Feldman, Jacob Appelbaum, and Edward W. Fel-
ten. Lest we remember: cold-boot attacks on encryption
keys. Communication of the ACM, 52:91–98, 2009.

[27] W. Eric Hall and Charanjit S. Jutla. Parallelizable au-
thentication trees. In Selected Areas in Cryptography,
pages 95–109. Springer Berlin Heidelberg, 2006.

[28] Xijing Han, James Tuck, and Armo Awad. Dolos:
Improving the performance of persistent applications
in ADR-supported secure memory. In 54th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 1241–1253, 2021.

[29] Jianming Huang and Yu Hua. A write-friendly and fast-
recovery scheme for security metadata in non-volatile
memories. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 359–370, Seoul, Korea (South), February 2021.
IEEE.

[30] Jianming Huang and Yu Hua. Root crash consistency of
SGX-style integrity trees in secure non-volatile memory

systems. In Proceedings of the 29th IEEE International
Symposium on High-Performance Computer Architec-
ture (HPCA), 2023.

[31] Akiko Inoue, Kazuhiko Minematsu, Maya Oda, Rei
Ueno, and Naofumi Homma. ELM: A low-latency and
scalable memory encryption scheme. Cryptology ePrint
Archive, Paper 2020/1374, 2020. Preliminary and long
version of a paper with same title.

[32] Akiko Inoue, Kazuhiko Minematsu, Maya Oda, Rei
Ueno, and Naofumi Homma. ELM: A low-latency and
scalable memory encryption scheme. IEEE Transac-
tions on Information Forensics and Security, 17:2628–
2643, 2022.

[33] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seun-
gryoul Maeng. Efficient hardware-assisted logging with
asynchronous and direct-update for persistent memory.
In 2018 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 520–532,
2018.

[34] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo
Cintra. ATOM: Atomic durability in non-volatile mem-
ory through hardware logging. In 2017 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 361–372, February 2017.
ISSN: 2378-203X.

[35] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo
Cintra. ATOM: Atomic durability in non-volatile mem-
ory through hardware logging. In 2017 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 361–372, 2017.

[36] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on
Security and Privacy (S&P), pages 1–19, 2019.

[37] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differ-
ential power analysis. In Advances in Cryptology—
CRYPTO 1999, volume 1666 of Lecture Notes in Com-
puter Science, pages 388–397. Springer, 1999.

[38] Paul C. Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
Advances in Cryptology—CRYPTO 1996, volume 1109
of Lecture Notes in Computer Science, pages 104–113.
Springer, 1996.

[39] Mengya Lei, Fan Li, Fang Wang, Dan Feng, Xiaomin
Zou, and Renzhi Xiao. SecNVM: An efficient and write-
friendly metadata crash consistency scheme for secure

15

https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204

NVM. ACM Transactions on Architecture and Code
Optimization, 19(1):1–26, March 2022.

[40] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas
Eisenbarth, Radu Teodorescu, and Yinqian Zhang. A
systematic look at ciphertext side channels on AMD
SEV-SNP. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 337–351, 2022.

[41] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan
Solihin. Exploiting unprotected I/O operations in
AMD’s secure encrypted virtualization. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1257–
1272, Santa Clara, CA, August 2019. USENIX Associa-
tion.

[42] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. CIPHERLEAKS: Breaking
constant-time cryptography on AMD SEV via the ci-
phertext side channel. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 717–732. USENIX
Association, August 2021.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), pages 973–990, Baltimore, MD,
August 2018. USENIX Association.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In IEEE Symposium on Security and Privacy,
pages 244–256. IEEE, 2015.

[45] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira
Khan. Crash consistency in encrypted non-volatile main
memory systems. In 2018 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 310–323, February 2018. ISSN: 2378-
203X.

[46] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira
Khan. Crash consistency in encrypted non-volatile main
memory systems. In 2018 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 310–323, 2018.

[47] Stefan Mangard, Elisabeth Oswald, and Thomas Popp.
Power Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer New York, 2007.

[48] Ralph C. Merkle. Method of providing digital signatures.
US4309569A, 1979. https://patents.google.com/
patent/US4309569.

[49] Ralph C. Merkle. A digital signature based on a conven-
tional encryption function. In Advances in Cryptology—
CRYPTO ’87, pages 369–378, Berlin, Heidelberg, 1988.
Springer Berlin Heidelberg.

[50] Kazuhiko Minematsu and Toshiyasu Matsushima. New
bounds for PMAC, TMAC, and XCBC. In Internatinoal
Conference on Fast Software Encryption (FSE), volume
4593 of Lecture Notes in Computer Science, pages 434–
451. Springer, 2007.

[51] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In International Conference on Cryp-
tographic Hardware and Embedded Systems (CHES),
pages 69–90. Springer International Publishing, 2017.

[52] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s virtual
machine encryption. In 11th European Workshop on
Systems Security, pages 1–6, 2018.

[53] Mathias Morbitzer, Sergej Proskurin, Martin Radev,
Marko Dorfhuber, and Erick Quintanar Salas. SEVer-
ity: Code injection attacks against encrypted virtual ma-
chines. In 2021 IEEE Security and Privacy Workshops
(SPW), pages 444–455, 2021.

[54] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen
Zhao. Steal but no force: Efficient hardware undo+redo
logging for persistent memory systems. In 2018 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA), pages 336–349, 2018.

[55] Qi Pei and Seunghee Shin. Efficient split counter mode
encryption for NVM. In 2021 IEEE International Sym-
posium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 93–95, 2021.

[56] Qi Pei and Seunghee Shin. Improving the heavy re-
encryption overhead of split counter mode encryption
for NVM. In 2021 IEEE 39th International Conference
on Computer Design (ICCD), pages 425–432, 2021.

[57] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede. Systematic analysis of randomization-
based protected cache architectures. In IEEE Sympo-
sium on Security and Privacy (S&P), pages 987–1002,
2021.

[58] Moinuddin K. Qureshi. CEASER: Mitigating conflict-
based cache attacks via encrypted-address and remap-
ping. In 51st Annual IEEE/ACM Internal Symposium on
Microarchitecture (MICRO ’51), pages 775–787, 2018.

[59] Phillip Rogaway. Authenticated-encryption with
associated-data. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, CCS

16

https://patents.google.com/patent/US4309569
https://patents.google.com/patent/US4309569

’02, page 98–107, New York, NY, USA, 2002. Associa-
tion for Computing Machinery.

[60] Phillip Rogaway. Efficient instantiations of tweakable
blockciphers and refinements to modes OCB and PMAC.
In Pil Joong Lee, editor, Advances in Cryptology—
ASIACRYPT 2004, pages 16–31, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[61] Phillip Rogaway, Mihir Bellare, and John Black. OCB:
A block-cipher mode of operation for efficient authen-
ticated encryption. ACM Trans. Inf. Syst. Secur.,
6(3):365–403, aug 2003.

[62] Gururaj Saileshwar, Prashant J. Nair, Prakash Ram-
rakhyani, Wendy Elsasser, Jose A. Joao, and Moinud-
din K. Qureshi. Morphable counters: enabling compact
integrity trees for low-overhead secure memories. In
51th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 416–427, 2018.

[63] Seunghee Shin, Satish Kumar Tirukkovalluri, James
Tuck, and Yan Solihin. Proteus: A flexible and fast soft-
ware supported hardware logging approach for NVM. In
2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 178–190, 2017.

[64] Solid State Storage Initiative. NVDIMM Messaging
and FAQ, January 2014.

[65] Meysam Taassori, Ali Shafiee, and Rajeev Balasubra-
monian. VAULT: Reducing paging overheads in SGX
with efficient integrity verification structures. In Pro-
ceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 665–678, Williamsburg
VA USA, March 2018. ACM.

[66] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient
cache attacks on AES, and countermeasures. Journal of
Cryptology, 23(1):37–71, 2010.

[67] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki
Shigeri, and Hiroshi Miyauchi. Cryptanalysis of DES
implemented on computers with cache. In International
Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2003), pages 62–76. Springer Berlin
Heidelberg, 2003.

[68] Rei Ueno, Sumio Morioka, Noriyuki Miura, Kohei Mat-
suda, Makoto Nagata, Shivam Bhasin, Yves Mathieu,
Tarik Graba, Jean-Luc Danger, and Naofumi Homma.
High throughput/gate AES hardware architectures based
on datapath compression. IEEE Transactions on Com-
puters, 69(4):534–548, 2020.

[69] Thomas Unterluggauer, Mairo Werner, and Stefan Man-
gard. MEAS: memory encryption and authentication
secure against side-channel attacks. Journal of Cryptog-
arphic Engineering, 9:137–158, 2019.

[70] Wubing Wang, Mengyuan Li, Yinqian Zhang, and
Zhiqiang Lin. PwrLeak: Exploiting power reporting
interface for side-channel attacks AMD SEV. In In-
ternational Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), pages
46–66, Berlin, Heidelberg, 2023. Springer-Verlag.

[71] Xueliang Wei, Dan Feng, Wei Tong, Jingning Liu, and
Liuqing Ye. MorLog: Morphable hardware logging for
atomic persistence in non-volatile main memory. In
2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 610–623, 2020.

[72] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting cache attacks via cache set
randomization. In 28th USENIX Security Symposium
(USENIX Security ’19), pages 675–692, 2019.

[73] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No security without
integrity : Breaking integrity-free memory encryption
with minimal assumptions. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1483–1496, 2020.

[74] Chenyu Yan, D. Englender, M. Prvulovic, B. Rogers,
and Yan Solihin. Improving cost, performance, and
security of memory encryption and authentication. In
33rd International Symposium on Computer Architec-
ture (ISCA’06), pages 179–190, June 2006. ISSN: 1063-
6897.

[75] Fan Yang, Youmin Chen, Haiyu Mao, Youyou Lu, and
Jiwu Shu. ShieldNVM: An efficient and fast recov-
erable system for secure non-volatile memory. ACM
Transactions on Storage, 16(2):1–31, June 2020.

[76] Fan Yang, Youyou Lu, Youmin Chen, Haiyu Mao, and
Jiwu Shu. No compromises: Secure NVM with crash
consistency, write-efficiency and high-performance. In
56th Annual Design Automation Conference (DAC ’19),
number 31, pages 1–6. IEEE, 2019.

[77] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A
high resolution, low noise, L3 cache side-channel attack.
In 23rd USENIX Security Symposium, 2014.

[78] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Yan Sha,
Xiaofei Liao, Hai Jin, and Yan Solihin. Reconciling
selective logging and hardware persistent memory trans-
action. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages
664–676, 2023.

17

[79] Mao Ye, Clayton Hughes, and Amro Awad. Osiris: A
low-cost mechanism to enable restoration of secure non-
volatile memories. In 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
pages 403–415, Oct 2018.

[80] Zhan Zhang, Jianhui Yue, Xiaofei Liao, and Hai Jin. Ef-
ficient hardware redo logging for secure persistent mem-
ory. In 2021 IEEE 23rd Int Conf on High Performance
Computing Communications; 7th Int Conf on Data Sci-
ence Systems; 19th Int Conf on Smart City; 7th Int Conf
on Dependability in Sensor, Cloud Big Data Systems
Application (HPCC/DSS/SmartCity/DependSys), pages
41–48, 2021.

[81] Jian Zhou, Amro Awad, and Jun Wang. Lelantus: fine-
granularity copy-on-write operations for secure non-
volatile memories. In ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA

’20), pages 597–607, 2020.

[82] Kazi Abu Zubair and Amro Awad. Anubis: ultra-
low overhead and recovery time for secure non-volatile
memories. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 157–168,
Phoenix Arizona, June 2019. ACM.

[83] Kazi Abu Zubair, Sudhanva Gurumurthi, Vilas Srid-
haran, and Amro Awad. Soteria: Towards resilient
integrity-protected and encrypted non-volatile memories.
In 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 1214–1226, 2021.

[84] Pengfei Zuo, Yu Hua, and Yuan Xie. SuperMem: En-
abling application-transparent secure persistent memory
with low overheads. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 479–492, Columbus OH USA, October 2019.
ACM.

18

	Introduction
	Background
	Our contributions
	Related works
	Paper organization

	Preliminaries
	System and threat models of secure NVM
	Symmetric cryptography for persistent memory encryption
	Parallelizable authentication tree (PAT)
	Shortcut update (SCUE)
	Split Counter (SC)

	Proposed mechanism: Crystalor
	Basic concept of Crystalor
	Leaf tag verification using PXOR-Hash
	NVM recovery by constructing new tree
	Hardware architecture
	Operations

	Performance evaluation
	Algorithm-level evaluation
	System-level simulation
	Recovery cost estimation

	Conclusion

