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INTRODUCTION 

The main aim of radiation therapy is to deliver a dose to a 

target volume while protecting the surrounding organs. To 

ensure proper and accurate dose distribution, quality 

assurance (QA) of a linear accelerator (linac) is performed 

daily, weekly, monthly, and annually to a clinically 

acceptable commissioned data tolerance based on the 

relevant guidelines.1-3 

Traditionally, linac output QA tests are conducted on the 

Daily QA3 (QA3) system (Sun Nuclear Corporation; 

Melbourne, USA) before any patient treatment. Recently, 

a novel system, the machine performance check (MPC), 

derived from the TrueBeam Edge 2.0 platform (Varian 

Medical Systems, Palo Alto, CA, USA), has been 

suggested. It relies on a fully integrated and automated 

imaging system that includes an electronic portal imaging 

device (EPID), kilovoltage (kV), megavoltage (MV), and 

an on-board imager (OBI). The MPC-EPID-based system, 

a 2D detector array ushered in by Baily et al can perform 

daily output checks.4 First intended for patient position 

verification, it has emerged as a dosimetric and now as a 

linac output verification.5,6 In this study, the variation in 

daily output in terms of photon and electron energies was 

monitored over a month to follow trends and patterns in 

the measurement. Hosain et al suggested that the linac 

output variation may be because of an environmental and 

seasonal deviation, causing cyclical changes that affect 

electronic response.7 Other have stated that the 

uncorrected output could increase or decrease sometimes 

and could be possibily attributed to the disparity in the 
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ABSTRACT 

 

Background: Machine Performance Check (MPC) is an automated TrueBeam quality control (QC) tool used to verify 

beam output, isocenter, and uniformity. The aim of this study was to build an MPC output variation time series modeled 

on the Holt-Winters method over thirty days. 

Methods: After AAPM TG-51 and baseline data were established for the Edge TrueBeam, daily MPC output data were 

gathered and analyzed through a Holt-Winters (additive and multiplicative) method. The model's performance was 

assessed via three standard error measures: the mean squared error (MSE), the mean absolute percentage error (MAPE), 

and the mean absolute deviation (MAE). The aim was achieved using a nonlinear multistart solver on the Excel 

platform. 

Results: The results showed that MPC output variation forecasting is energy and model dependent. Both additive and 

multiplicative Holt-Winters methods were suitable for the analysis. The performance metrics MSE, MAPE, and MAD 

were found to be well within acceptable limits. 

Conclusions: A Holt-Winters model was able to accurately forecast the MPC output variation. 

 

Keywords: Machine performance check, Holt-Winters additive method, Multiplicative method 

 

DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20232769 



Gloi AM et al. Int J Res Med Sci. 2023 Sep;11(9):3206-3211 

                                                  International Journal of Research in Medical Sciences | September 2023 | Vol 11 | Issue 9    Page 3207 

monitor chamber design differences.8,9 Equally important, 

the representation of the level (α), trend (β), and 

seasonality (γ), in the output data is triggered by infrequent 

output modifications and tunings made to the linac, thus 

creating gaps in the measured data caused by service 

maintenance events. Therefore, forecasting is vital and 

warranted for decision-making and strategic planning. 

Forecasting involves three main stages that include short, 

medium, and long-term strategies dependent on the 

planning quality assurance (QA) schedule. In this report, 

the Holt-Winters (HW) method with triple exponential 

smoothing was used to reduce irregularities in the time 

series data.10 Usually, historical data are used as input to 

make informed estimates that are predictive in terms of 

determining the direction of future trends. As a result, 

preventive maintenance could start to improve efficiency 

and reduce linac downtime. To the best of our knowledge, 

this is the first comparative report based on MPC output 

variation modeled by HW. 

METHODS 

A research output measurements study from an Edge 

TrueBeam (Varian Medical Systems, Palo Alto) linac were 

carried out based on clinically available photon (6 and 10 

MV, 6 and 10 free flattening filter (FFF) and electron (6, 

9, 12, 15 MeV) energies. First, the linac was calibrated 

annually using the AAPM TG51 protocol.11 Then, MPC 

baseline data was obtained. Finally, MPC's daily output 

was acquired and recorded over thirty days from May to 

June 2022 at Genesis Care Clinic. 

MPC variation forecast 

MPC output variation forecasts were conducted using HW 

time series. It is a combination of triple exponential 

smoothing that includes level (α), trend (β), and 

seasonality (γ), and is characterized by the following 

equations: 

Overall smoothing 

𝑆𝑡 = 𝛼
𝑦𝑡

𝐼𝑡−𝐿
+ (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1)    

Smoothing by trend 

𝑏𝑡 = 𝛽(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛽)𝑏𝑡−1     

Smoothing by seasonality 

𝐼𝑡 = 𝛾
𝑦𝑡

𝑆𝑡
+ (1 − 𝛾)𝐼𝑡−𝐿  

The total forecast is given by the equations; 

𝐹𝑡+𝑚 = (𝑆𝑡 + 𝑚𝑏𝑡)𝐼𝑡−𝐿+𝑚  

Which is multiplicative and by;  

𝐹𝑡+𝑚 = (𝑆𝑡 + 𝑚𝑏𝑡) + 𝐼𝑡−𝐿+𝑚  

Which is additive. 

Where 0 < α < 1; 0 < β < 1; 0 < γ < 1, and α represents the 

level smoothing factor, β constitutes the trend-smoothing 

factor and γ serves as the seasonality smoothing factor. y 

and S are the actual and smoothed observations, where b 

is the trend factor, I is the seasonal index, F is the forecast, 

m are steps ahead, L is the cycle length, and t is the period.  

The method is based on five equations that calculate the 

value of the sequence in the past (level), the future 

tendency (trend), and a seasonal term (seasonality), which 

allows for the development of repetitive patterns. Finally, 

equations mentioned above compute the weighted sum of 

the previous terms as a forecast. The general architecture 

of this study is shown in (Figure 1). The (Table 1) 

summarizes both HW additive (HWA) and multiplicative 

(HWM) approaches. 

 

Figure 1: Flow chart of the MPC output variation 

forecast simulation. 

Optimization 

Goodness-of-fit is the measure of the accuracy of the 

predicted model compared to actual values. A classic 

approach is based on the closeness between the predicted 

and actual values. Three measurement criteria were 

employed in this study: the mean squared error (MSE), the 

mean absolute percentage error (MAPE), and the mean 

absolute deviation (MAE). For all three metrics, the 

smaller the value, the better the predicted accuracy. 

Mean squared error 

The MSE is a measure of the dispersion of forecast errors. 

The smaller the value of the MSE, the more stable the 

model. 
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𝑀𝑆𝐸 =  
1

𝑛
∑(𝑝𝑟𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)

2

𝑛

𝑖=1

 

Mean absolute percentage error 

The MAPE is an error measurement that does not 

emphasize large errors. The MAPE is given by: 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑎𝑐𝑡𝑢𝑎𝑙𝑖

𝑛

𝑖=1

| 

 

Mean absolute error 

The MAE can be described as the average of the absolute 

error value without regard to whether the error was 

overestimated or underestimated.  

𝑀𝐴𝐸 =
∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)

𝑛
𝑖=1

𝑛
 

An Excel-based nonlinear optimizer solver, namely a 

generalized reduced gradient (GRG) optimization, was 

used to identify the values of the smoothing constants by 

minimizing MSE and deducing optimized (α, β, у) factors. 

MSE, MAPE, and MAE were determined to assess the 

model fit. 

Table 1: Comparative equations for the multiplicative and additive Holt-Winters models. 

Parameters Additive Holt-Winters Multiplicative Holt-Winters 

Level 𝑆𝑡 = 𝛼
𝑦𝑡

𝐼𝑡 − 𝐿
+ (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1) 𝑆𝑡 = 𝛼

𝑦𝑡

𝐼𝑡 − 𝐿
+ (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1) 

Trend 𝑏𝑡 = 𝛽(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛽)𝑏𝑡−1 𝑏𝑡 = 𝛽(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

Seasonality 𝐼𝑡 = 𝛾
𝑦𝑡

𝑆𝑡
+ (1 − 𝛾)𝐼𝑡−𝐿 𝐼𝑡 = 𝛾

𝑦𝑡

𝑆𝑡
+ (1 − 𝛾)𝐼𝑡−𝐿 

Forecast 𝐹𝑡+𝑚 = (𝑆𝑡 + 𝑚𝑏𝑡)+𝐼𝑡−𝐿+𝑚 𝐹𝑡+𝑚 = (𝑆𝑡 + 𝑚𝑏𝑡)𝐼𝑡−𝐿+𝑚 

Table 2: Performance quantities of the HW model additive. 

Parameters 6MV 6FFF 10MV 10FFF 6 MeV 9 MeV 12 MeV 15 MeV 

α 0.0426 0.4764 0.6314 0.4633 0.5910 0.6277 0.5647 0.5970 

β 1 0 0.0255 0.0163 0.0411 0.0588 0 0.0877 

γ  0.4408 0.6345 0.7614 0.5172 1 1 1 0.9967 

MSE 0.0244 0.0094 0.0091 0.0087 0.0920 0.0325 0.0138 0.0164 

MAE 0.1360 0.0944 0.0092 0.0942 0.2591 0.1540 0.0917 0.1065 

MAPE 1.5775 1.5869 0.5321 0.5368 2.0016 1.0681 11.4929 1.1461 

Table 3: Performance quantities of the HW model multiplicative. 

Parameters 6MV 6FFF 10MV 10 FFF 6 MeV 9 MeV 12 MeV 15 MeV 

α 0.1456 0.2832 0.0066 0.1339 0.0283 0.0520 0.020569 0.2410 

β 0.1713 0.5895 0.0243 0.0557 0.3497 0.0854 0 0.5746 

γ 0.0407 0.3066 0.3927 0.5764 0.0018 0.2709 0.8953 0.5898 

MSE 0.0195 0.0099 0.0142 0.0114 0.0669 0.0434 0.0214 0.0177 

MAE 0.1084 0.0801 0.0941 0.0817 0.2123 0.1738 0.1189 0.0987 

MAPE 0.6922 1.2452 0.6038 0.4540 1.1421 1.0017 9.5019 0.9277 

RESULTS 

The HW forecasting method was achieved by minimizing 

the MSE (prediction error) using GRG with initial 

smoothing parameters (α0, β0, γ0). Three smoothing 

parameters (α, β, γ) were attained based on better 

convergence between observed and estimated MPC output 

data. Tables 2 and 3 show the derived smoothing 

parameter values and the performance metrics MSE, 

MAPE, and MAE for seasonal HWA and HWM. Values 

close to zero for the smoothing parameters suggest that 

little weight is placed on the most recent observations 

when predicting future values. In contrast, values closer to 

one suggest that much more weight is associated with 

observations in the far distant past when acquiring forecast 

values. However, the estimated value of zero for β shows 

that slope b of the trend component of the seasonal HWA 

is not revised over the time series but is set equal to its 

initial value. In this study, both models produced relatively 

small MSE errors, implying that they could be used as a 

better metric than MAPE or MAE. Yet HWM had a lower 

MAPE than HWA. A benchmark of less than 10% for 
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MAPE was deemed for highly accurate models 12. Both 

models had a MAPE of less than 10, showing high 

performance. Figure 2 illustrates the performance metrics 

of MSE, MAPE, and MAE results. They revealed average 

MSE values of 0.0257±0.02655 and 0.0255±0.0184 for 

HWA and HWM seasonality, respectively.  

 

Figure 2: MSE, MAPE, and MAE values for MPC 

datasets output variation using the additive and 

multiplicative Holt- Winters methods. Symbol A and 

M denote additive and multiplicative, respectively. 

 

Figure 3: HW Smooth parameters (α, β, γ) derived to 

minimize MSE: a, m denotes additive and 

multiplicative, respectively. 

The MAPE values were estimated as 2.4927±3.4354 and 

1.9460±2.86669 for HWA and HWM seasonality, 

respectively. Also, the MAE values were calculated as 

0.1181±0.0710 and 0.1210±0.04739 for HWA and HWM 

seasonality, respectively. In this study, the MSE for MPC 

output predictions is less than or equal to 0.05 for all 

energies. A lower MSE corresponds to a predictive model 

that better correlates with the actual variation in the MPC 

output. In addition, optimized values of the smoothing 

parameters (α, β, γ) were found by converging MSE to its 

lowest possible value for each energy. The final 

convergence behavior for all performance metrics MSE, 

MAPE, and MAE for each model is displayed in Figure 2 

for HWA and HWM, respectively.  

 

Figure 4: Comparison between HW multiplicative and 

additive method in level, trend, and seasonality. 

 

Figure 5: Residual diagnostics of additive and 

multiplicative HW Smoothing for MPC output 

variation with 6 MeV. 

Further, the influence of the smoothing parameters (α, β, 

γ) on the objective function MSE was assessed and 

displayed in Figure 3 for HWA and HWM, respectively. 

These parameters characterize the underlying dynamics of 

the time series. Figure 4 presents the fitted seasonal factor, 

level, and trend for the MPC output variations between 
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observed and forecasted values via Holt-Winters 

multiplicative and additive model decomposition for all 

energies.  

 

Figure 6: Additive HW and multiplicative HW 

Gaussian white noise with 6 MeV. 

For completeness, an additional investigation was 
conducted on one energy (6 MeV). While most of the 
results from error measurements were relatively small, a 
test of the residuals was performed for white noise 
validation without any patterns. Consequently, the 
autocorrelation function (ACF) was computed and 
examined to verify that all residuals gravitated around 
zero. Figure 5 shows the MPC output variation residual for 
6 MeV. Based on the ACF and periodogram residuals 
plots, the spikes are within the suggested limits, meaning 
none is significant and thus not autocorrelated. 
Afterwards, the plots corroborate that the variance is 
constant, and the mean of the residuals is zero. Hence, the 
residual data closely follows a normal distribution. As a 
result, the HW model evaluates the seasonal effects. 
Besides, a normal QQ plot also shows that the residuals 
were normally distributed and that all patterns lie within 
the 95% confidence interval. Again, this is an indicator of 
the significance threshold, suggesting that anything within 
the dotted area is statistically close to zero and anything 
outside is statistically non-zero. Additionally, the model 
robustness was tested using Gaussian white noise with 
different intensities for both HWA and HWM. The 
randomly generated Gaussian white noise is illustrated in 
Figure 6 with the corresponding noise intensity. The 
inherent robustness is evaluated via the effect of the noise 
intensity over the accuracy of the model, measured by the 
coefficient of determination R2. Low variance in R2 shows 
high robustness, whereas high variance denotes low 
robustness. In fact, the correlation and determination 
coefficients were R2 (0.339, 0.282) and (0.115, 0.076) for 
both HWA and HWM, respectively. 

DISCUSSION 

The HW model was applied to the MPC output dataset 
over thirty days with specifications for the level, trend, and 
seasonal components, which were instrumental in the 
forecasting procedure. The analysis showed that both HW 
models were suitable for MPC output variation forecasting 
since the value of MSE was smaller for all energies 

compared to the other performance metrics, MAPE and 
MAE. It follows from the report that the smoothing 
parameters (α, β, γ) are energy- and HW-specific. The need 
to select the model's initial values is one of its main 
disadvantages. These parameters affect the level, trend, 
and seasonality. 

Moreover, MPC output forecast modeling through the HW 
method for different energies is subject to the inherent 
long-term pixel stability of the EPID panels. They exhibit 
a variation between 0.29% and 0.6% per pixel, and 99% of 
all pixels show a deviation of less than 1%, as noted by 
several investigators.13,14 Further, EPID panels are 
contingent on maintenance and recalibration procedures, 
which are the most likely sources of unexpected systematic 
changes in MPC output values, as reported by Barnes et 
al.15 Other events may include the EPID ghosting effect, 
which usually depicts the modification of detector 
response due to previous irradiation. As a result, the 
magnitude of ghosting will depend on the number of 
monitor units delivered as well as the time interval used 
between the two radiation fields.  

Therefore, it will change the sensitivity of the detector and 
affect the image gain correction to the pixel sensitivity 
distribution.16 Several authors have also reported on the 
flux of the dose-response reproducibility of the EPID 
system, characterized by 1.0% variability from the 
nominal output, and have suggested that the beam flatness 
is a major contributor to the MPC output deviation.17-20 
They attribute this drift in the MPC response to the 
continuing fading in panel sensitivity. These events will 
alter MPC output and hence the input data for the forecast 
model. Future works will involve the use of a neural 
network (NN) model that will be used to house the 
correlation between two nonlinear variables (actual and 
forecasted). Also, various moving average models such as 
autoregressive moving average (ARMA), autoregressive 
integrated moving average (ARIMA), and autoregressive 
integrated moving average-neural network (ARIMA-NN) 
are of greatest interest and could be used for comparison. 
Finally, Theil's U statistics will be used to verify the 
accuracy test of the model and will allow us to compare 
the predicted results to the actual model results with 
minimal historical data. 

CONCLUSION 

The aim of the study was to forecast MPC output and 
identify patterns via Holt-Winters smoothing. The study 
showed that HW, both additive and multiplicative, is 
adequate for MPC output modeling. Performance metrics 
such as RMSE, MAPE, and MAE could assess HW 
goodness of fit. The model robustness could be evaluated 
using the residuals through ACF and the cumulative 
periodogram. 
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