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Abstract—The demand for Contiguous Memory Allocation (CMA) has witnessed significant growth in both low-end and high-end devices 

in recent years. However, the existing practices for utilizing CMA prove insufficient, particularly when catering to the needs of low-end (32-

bit) devices. CMA, a Linux program used for memory reservation and allocation, faces limitations in its current implementations. Presently, 

techniques such as Scatter-Gather Direct Memory Access (DMA), Input Output Memory Management Unit (IOMMU), and Memory 

Reservation are commonly employed for contiguous memory allocation. Unfortunately, these methods are financially impractical for low-end 

devices and struggle to efficiently allocate substantial memory chunks, leading to latency concerns. In this paper, we introduce an improved 

CMA approach that intelligently allocates virtual memory for data mapping as needed. Alternatively, it directly allocates and deallocates 

physical memory without the necessity of virtual memory mapping, employing the DMA_KERNEL_NO_MAPPING attribute within the DMA 

Application Programming Interface (API). By adopting this method, latency is reduced, and the facilitation of larger memory allocations is 

promoted, addressing the limitations of the current techniques. 

Keywords- Contiguous Memory Allocation (CMA), Scatter-Gather Direct Memory Access (DMA), Input Output Memory Management Unit 

(IOMMU), Memory reservation technique, Latency. 

 

I.  INTRODUCTION 

Nowadays, the requirement of physical contiguous memory 

is in extreme demand, specifically for low-end devices (32-bit 

devices). The currently available techniques like for allocation 

and deallocation are inadequate. The Scatter-Gather Direct 

Memory Access (DMA), Input Output Memory Management 

Unit (IOMMU), Memory Reservation technique/ hardware are 

the frequently used techniques for contiguous memory 

allocation. These techniques are very costly for low-end devices. 

Hence, CMA was introduced for low-end devices. The CMA 

technique introduced to allocate and deallocate memory big size 

physical continuous memory blocks and improve latency. There 

are some 32-bit low-end embedded systems, which requires 

allocating large size physical memory and can’t afford to embed 

extra hardware like IOMMU and Scatter Gather DMA due to 

cost and space limitations. This condition encourages the low-

end devices to use CMA. The CMA basically emphasizes on 

Migration Type and Page block modules. 

 

 Regardless of the way that it is extremely advantageous for 

the memory task, it can limit memory use and waste 

emphatically. There are a few hardware arrangements for 

settling this issue, like Scatter-Gather DMA and IOMMU. In any 

case, the expenses of the extra hardware are fundamentally 

higher for 32-bit gadgets. CMA is a Linux programming thing 

fully intent on deciding memory part as well as capable memory 

use hardships. There are various gadgets on embedded structures 

that miss the mark on Scatter-Gather DMA or IOMMU office, 

as well as adjacent memory blocks for identification [1], [2]. 

They assemble gadgets like cameras, video decoders, encoders, 

etc. Nevertheless, such gadgets habitually need a lot of memory, 

bringing about the shortfall of structures. Specific mounted 

gadgets fuel extra necessities on the supports. They can, for 

instance, follow up on upholds distributed to a specific memory 

breaking point or supports doled out to an unequivocal memory 

bank (expecting somewhere around one memory bank is 

available in the system). As of late, there has been a gigantic 

progression in the advancement of introduced contraptions 

(especially in the V4L locale), and there have been different 

kinds of drivers that solidify their memory part code. A gigantic 

piece of them utilizes bootmem-based methodologies[7], [8]. 

The CMA structure is an exceptional memory structure that 

associates memory circulation systems. It gives an immediate 

API to device drivers while being portable and private [9]. This 

is conceivable because of the constant area, which doesn't hurt 

confirmed CMA. The CMA puts a solid accentuation on 

memory. During the boot cycle, it stores a huge memory space 

for coterminous allocation[10], [11]. If the held memory isn't 

completely used by the bordering memory, it is available to 

inferior clients, for example, elective gadgets that don't require 

coterminous memory; any other way, that memory would be 

squandered. The adjoining memory part required the pages 

assigned to inferior clients. At the point when the CMA cycle 

requires it, it puts together the pages and uses them for adjoining 
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memory assignments [12], [13]. The organized block diagram of 

CMA is as mentioned in Figure 1. 

The CMA can store the necessary memory. It will be retained 

at boot time via the part order line or the contraption tree. In 

Linux, these pages are listed next to the CMA memory that was 

stored as being adaptable, durable, locked, etc. The handy pages 

are _2nd-class clients_ that non-CMA processes can use. The 

compact pages can be relocated or coordinated off [1][14]-[16] 

if the adjoining assignment expects them. The CMA uses 

explicit CMA memory, which is crucial for blended media and 

non-sight and sound workouts in any case, as shown in Figure 1. 

At boot time, the CMA stores the memory. Whatever method is 

used; it can handle the memory task well. Through the 

organizational structure of DMA, CMA gains. The initial 

capability of the CMA region was a global memory that was 

accessible to anyone. CMA has a beginning and an end, and as 

of right now, each page is designated as either a portable or long-

term page. The memory included in this CMA start and end 

address is accessible to everyone. Different cycles can make use 

of plain flexible pages. [1] [17]-[20]. 

To allocate CMA memory using DMA, a close-by memory 

attributes API could be used. It is distributed from the CMA 

memory area when CMA memory is referred to using the DMA 

API. With the preparation of real memory to virtual memory, the 

portable pages can be moved[1] [12], [13]. As a result, the 

planned system will probably make use of it. Linux uses virtual 

memory for every cycle. Figure 1 illustrates the ongoing 

reservation-based strategy and the CMA-based methodology. 

The CMA was not fully resolved at startup time. As shown in 

Figure 1, the system included memory for exchange, mmpaed 

archives, and flexible memory pages when CMA didn't use this 

memory region operation.  

 

 

Figure 1.  Block Diagram of CMA. 

The CMA is expected for I/O gadgets that can manage actual 

memory that is nearby. This wouldn't be a worry on systems with 

an I/O IOMMU since the IOMMU might course non-abutting 

memory areas to coterminous bits of genuine memory [1], [24]-

[27]. Moreover, a couple of gadgets are equipped for 

scattering/gathering DMA. All I/O gadgets ought to be equipped 

for working with an IOMMU or scattering/collecting DMA. 

Tragically, this isn't true, and a few gadgets need truly 

coterminous help. A device driver can convey a close-by pad in 

one of two ways. At startup time, the contraption driver can 

disperse a lump of actual memory. Since a significant level of 

the actual RAM would be accessible at boot time, this is 

dependable. Notwithstanding, if the I/O gadget isn't utilized, the 

dispensed actual memory is just squandered[1][24], [28],- [30]. 

Albeit a piece of actual memory can be dispersed upon demand, 

it could be hard to find a neighboring unfenced of the expected 

size. The benefit, then again, is that memory might be relegated 

when required. CMA resolves this particular issue by 

consolidating the advantages of the two methodologies while 

killing their drawbacks. The essential idea is to make it possible 

to move distributed genuine pages to set aside satisfactory room 

for lining support. More information on how CMA capacities 

can be found here [1] [19], [27]-30]. 

 

 

Figure 2.  Workflow of Contiguous Memory Allocation System. 

Figure 2 illustrates the current work cycle of the CMA in the 

Linux location and how it tries to relocate and reestablish pages. 

I) It should be possible to reserve CMA memory when an 

application requests it from a held CMA location by referring to 

the amount of memory that will be saved at the time of the 

request; ii) When a booking request is sent off CMA, it begins 

selecting the number of pages to assign from the saved CMA 

district in the hopes that the CMA driver was aware of the 

application's request for memory. The page block is then isolated 

from that reach so that no one can use the district simultaneously. 

If the number of pages isn't detected, the component fails the 

referenced memory test; iii) Following page block segregation 

by the CMA driver. Then, it begins searching for blank pages 

and makes an effort to transfer blank pages or blank pages used 

by another non-CMA activity; v) If from the constraint block no 

pages were used by various cycles, mark pages there as free and 

fix the disengagement of page blocks will follow the delivery of 

referenced memory [1] [20], [35]- [37]. iii) If from the constraint 

block no pages were used by various cycles, mark pages there as 
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free and fix the disengagement of page blocks until referenced 

memory can be allotted. 

II. LITERATURE REVIEW 

A. Contiguous Memory Allocation and Memory 

Management 

Contiguous memory allocation is a critical aspect of modern 

operating systems, particularly in the context of the Linux 

kernel. Suryavanshi and Sharma (2022) [1] propose an approach 

to enhance contiguous memory allocation within the Linux 

kernel. They review existing strategies, aiming to improve 

memory utilization and allocation efficiency. Similarly, Park, 

Kim, and Yeom (2019) [2] introduce GCMA (Guaranteed 

Contiguous Memory Allocator), which focuses on ensuring 

contiguous memory allocation for performance-critical tasks. 

These studies reflect a concerted effort to refine memory 

allocation techniques in operating systems. 

 

Corbet's articles on five-level page tables [3] shed light on 

the evolving complexity of memory management in modern 

systems, while Zeng (2012) [5] delves into the Android ION 

memory allocator, highlighting its significance in resource 

management for mobile devices. These references underscore 

the ongoing research into enhancing memory allocation and 

management strategies in diverse computing environments. 

B. Efficient Virtual Memory and Big Memory Systems 

Efficiency in memory management is pivotal for various 

contexts, including big memory servers and emerging scale-out 

workloads. Basu et al. (2013) [6] propose techniques for efficient 

virtual memory management in big memory servers. Their work 

showcases the importance of tailored memory strategies to 

optimize resource utilization. Nazarewicz (2012) [7] discusses 

the contiguous memory allocator, further emphasizing the 

relevance of effective memory management in modern 

computing. 

Kwon et al. (2016) [15] focus on coordinated and efficient 

management of huge pages, aligning with the growing demand 

for optimized memory usage in large-scale systems. These 

studies highlight the importance of efficient memory allocation 

strategies to meet the demands of resource-intensive workloads. 

C. Dynamic Memory Allocation and Role in Memory 

Management 

Dynamic memory allocation plays a pivotal role in 

optimizing memory usage. Patil and Irabashetti (2014) [16] 

emphasize the significance of dynamic memory allocation in 

memory management, particularly within ad hoc networks. The 

dynamic allocation approach is integral to adapting to varying 

workloads and resource requirements. 

D. Memory Compression and Advanced Techniques 

Memory compression is a technique that aims to alleviate 

memory pressure and enhance memory utilization. 

Magenheimer (2013) [26] discusses in-kernel memory 

compression, which presents a method to reduce memory usage 

by compressing data in memory. Similarly, Stultz (2013) [27] 

explores the integration of the ION memory allocator, which 

contributes to efficient memory handling in Android systems. 

E. Memory Management Analysis and Techniques 

Analyzing memory management techniques is essential to 

optimize resource allocation. Liu and Rival (2017) [29] delve 

into array content static analysis based on non-contiguous 

partitions. This type of analysis contributes to a deeper 

understanding of memory usage patterns and aids in designing 

effective memory allocation strategies. 

This review highlights the diverse research efforts in 

memory allocation and management across various domains, 

including operating systems, virtual memory systems, big 

memory servers, and mobile devices. Efforts to ensure 

contiguous memory allocation, improve dynamic memory 

allocation, and introduce advanced techniques like memory 

compression are evident. As computing systems continue to 

evolve, refining memory management strategies remains a 

crucial pursuit to enhance system performance and resource 

utilization. 

III. PROBLEM IDENTIFICATION 

Contiguous memory allocation is a critical aspect of 

operating system design, especially within the context of the 

Linux kernel. It aims to allocate memory blocks that are 

physically adjacent to each other, thus optimizing memory 

access patterns and reducing fragmentation. While contiguous 

memory allocation offers several advantages, it is not without its 

challenges. Two major issues that warrant attention are 

allocation failure and the associated high cost. This section 

identifies and discusses these challenges in detail. 

A. Allocation Failure 

One of the primary challenges in improving contiguous 

memory allocation within the Linux kernel is the occurrence of 

allocation failures. Allocation failures can arise due to various 

reasons, such as insufficient available contiguous memory 

blocks, memory fragmentation, or conflicts with other memory 

management mechanisms. When an allocation request cannot be 

satisfied with a contiguous memory block, it results in allocation 

failure, potentially leading to performance degradation, system 

instability, or even application crashes[2]. 

Allocation failures have far-reaching consequences. They 

can adversely affect the overall system performance by leading 

to increased memory access times, inefficient memory 

utilization, and reduced responsiveness. Additionally, frequent 
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allocation failures can trigger complex error-handling 

mechanisms that consume valuable system resources, further 

exacerbating the problem. The Linux kernel must address these 

allocation failure scenarios to ensure robust memory 

management and efficient resource utilization[5]. 

B. High Cost of Contiguous Memory Allocation 

Improvement 

Another significant challenge is the high cost associated with 

implementing improvements to contiguous memory allocation 

techniques in the Linux kernel. Developing and integrating more 

advanced memory management algorithms and strategies 

requires substantial engineering effort, testing, and validation. 

This process can be time-consuming and resource-intensive, 

requiring careful consideration of trade-offs between 

performance gains and the overhead incurred by the new 

mechanisms [1][3][4]. 

Furthermore, modifying memory allocation subsystems in 

the Linux kernel necessitates thorough testing to ensure 

backward compatibility, stability, and security. The introduction 

of new mechanisms or modifications to existing ones may lead 

to unintended side effects or system instabilities. As a result, the 

high cost of development, testing, and validation must be 

carefully weighed against the potential benefits of improved 

contiguous memory allocation [7]. 

IV. PROPOSED DESIGN 

The proposed solution aims to address the inadequacies and 

challenges associated with the existing Contiguous Memory 

Allocation (CMA) mechanism within the Linux Kernel. The 

solution focuses on enhancing the allocation process and 

reducing allocation failure, while also minimizing the overhead 

and latency introduced by the current CMA approach. The 

proposed solution is based on a strategic modification of the 

CMA mechanism, involving a remapping strategy for virtual 

memory usage. The detailed solution is as follows: 

A. Removal of Continuous Contiguous Memory 

Requirement 

The proposed solution acknowledges that not all processes 

or tasks require continuous contiguous memory. The solution 

suggests that not all memory allocations need to adhere to the 

strict requirement of contiguous memory blocks. This realization 

forms the foundation for introducing a more flexible memory 

allocation mechanism. 

B. Addressing Allocation Failure and Overhead 

The current CMA approach suffers from allocation failures 

and overhead associated with the physical-to-virtual memory 

mapping. This mapping introduces latency and can lead to 

allocation failures. The proposed solution aims to eliminate this 

mapping at the time of CMA memory allocation, and instead, 

perform the mapping only when a process is projected to work 

with virtual memory. 

C. Implementation of Custom Driver 

To implement the proposed solution, a new device driver is 

developed specifically for CMA memory allocation. This driver 

will intercept all CMA memory allocation and deallocation 

requests and manage the memory from the CMA-held region. 

D. Usage of Custom API and Trait 

The new driver will utilize a custom API provided by the 

proposed solution. This API will allow the driver to allocate and 

de-allocate memory from the CMA-held region without the need 

for immediate physical-to-virtual memory mapping. Instead, the 

actual location of the allocated memory will be tracked, and 

mapping will be performed only when virtual memory usage is 

required. 

E. Dynamic Remapping 

When a process or application necessitates virtual memory 

usage, the driver will offer an API to dynamically remap the 

actual physical memory location into the virtual memory space. 

This remapping process will occur during runtime, reducing the 

overhead and latency associated with the continuous physical-

to-virtual mapping. 

F. Evaluation and Performance Testing 

The proposed solution's effectiveness is evaluated using a 

Beagle-bone Black ARM board. The performance of the 

solution is measured in terms of reduced allocation failure, 

decreased overhead, and improved system responsiveness. 

G. Startup and Allocation Process 

At system startup, the memory allocated for CMA remains 

the same as in the existing approach. However, during memory 

allocation, the new driver implements the proposed strategy of 

dynamic remapping for virtual memory usage. The driver 

allocates CMA memory with the DMA KERNEL NO 

MAPPING attribute, deferring the physical-to-virtual mapping 

until it is explicitly required. 

H. Resolution of Challenges 

The proposed solution effectively resolves both allocation 

failure and overhead challenges present in the current CMA 

mechanism. By remapping memory only when virtual memory 

usage is essential, the solution minimizes latency and allocation 

failures. 

I. Application to Android Devices 

The proposed solution is applied to a 32-bit Android device, 

specifically the Beagle-bone Black ARM board. The 

performance improvements and reduction in allocation failures 

are measured and evaluated on this platform. 
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The proposed solution addresses the limitations of the 

existing Contiguous Memory Allocation (CMA) mechanism, 

ensuring the efficient allocation of CMA without failures. CMA 

operations involve both physical and virtual memory, as Linux 

processes operate within virtual memory spaces. The proposal 

challenges the notion that all processes require continuous 

contiguous memory, identifying a source of failure in the current 

CMA system. The current CMA approach introduces latency 

and allocation failures due to the mandatory physical-to-virtual 

mapping during allocation. 

To mitigate these issues, the proposed approach suggests 

eliminating immediate mapping during CMA memory 

allocation. Instead, mapping will occur only when a process is 

expected to operate on virtual memory. When virtual memory 

operations are required, a partial remapping of memory is 

performed based on the specific size of the task. This approach 

entails the development and implementation of a specialized 

device driver for managing CMA operations. All CMA calls are 

directed through this driver, which handles memory allocation, 

deallocation, and maintenance within the CMA region. The 

driver adheres to the original API with the addition of the 

proposed trait. 

 

 

Figure 3.  Improved CMA 

This trait maintains the allocation of physical memory 

without a direct connection to virtual memory. Instead, the actual 

allocated physical memory location is tracked for future 

reference, and remapping to virtual memory occurs on-demand. 

The suggested method comprehensively addresses the 

limitations of the current CMA system, including allocation 

failure and latency concerns. To validate the approach's 

effectiveness, its implementation is evaluated on a 32-bit ARM 

board, specifically the Beagle-bone Black. 

Figure 3 shows that during system startup, CMA 

memory reservation remains consistent with the existing 

approach. However, during actual memory allocation, the new 

driver strategy is employed. The driver allocates CMA memory 

using the DMA KERNEL NO MAPPING attribute, postponing 

the physical-to-virtual mapping until it is required by an 

application or user. Physical-to-virtual memory translation does 

not occur during initial CMA allocation. If virtual memory usage 

is requested, the driver provides an API to facilitate the dynamic 

remapping of physical memory to virtual memory during 

runtime. By adopting this approach, issues related to latency and 

allocation failures within the current CMA mechanism are 

mitigated. The implementation and validation of the proposed 

driver are facilitated through the use of the Beagle-bone Board, 

providing a practical platform for testing and development. 

For Running the proposed Improved CMA, we require the 

following Experimental Setup 

TABLE I.  EXPERIMENTAL SETUP FOR PROPOSED METHODOLOGY 

Sr. No. Particulars Min. Requirement 

01. Configuration 600 MB CMA reserved 

02. Total RAM 1 GB 

03. Board Raspberry Pi: 3 

04. Setup Status Nothing is running on setup. 

 

 The above mentioned table shows Pre-Requisite 

Experimental Setup for implementation of Improved CMA. The 

figure 4 also gives us practical idea of the setup. 

 

 

Figure 4.  Pre-requisite Setup for Improved CMA Allocation  

The proposed solution for improving contiguous memory 

allocation in the Linux Kernel presents a strategic alteration to 

the existing CMA mechanism. By deferring physical-to-virtual 

memory mapping and introducing dynamic remapping, the 

solution mitigates allocation failure and overhead issues, while 

enhancing system performance and responsiveness. Through 

thorough testing and evaluation, the proposed solution 

showcases its effectiveness and potential benefits for various 

ARM-based devices, including Android platforms. 

V. RESULT ANALYSIS 

The Contiguous memory allocation was a critical aspect of 

modern operating systems, playing a pivotal role in optimizing 

hardware performance. The Improved CMA makes the system 

faster than it is with regular CMA. The Proposed Improved 

CMA System was tested with and without optimization by 

allocating different memory sizes. we have received the 

following results. 
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A. System without optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Setup without Optimization 

B. System with optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Setup with Optimization 

When we compared the both sets of execution time and 

resource utilization metrics for the user_space program with 

different flag settings: 

In First Set of Metrics without Optimization (Flag=0), we got 

following execution time 

Real Time: 0m0.806s 

User Time: 0m0.029s 

System Time: 0m0.697s 

 

In Second Set of Metrics with Optimization (Flag=1), we got 

following execution time 

Real Time: 0m0.793s 

User Time: 0m0.022s 

System Time: 0m0.677s 

 

Following analysis is made on the basis of above metrics 

A. Real Time 

In the first run (Flag=0), the real time was approximately 

0.806 seconds. 

In the second run (Flag=1), the real time was slightly lower 

at approximately 0.793 seconds. 

The real time represents the total time elapsed, including 

both the time the CPU spends executing the program and any 

time spent waiting for I/O or other resources. A lower real time 

indicates slightly improved overall execution speed in the 

second run with Improved CMA. 

B. User Time 

In the first run (Flag=0), the user time was 0m0.029s. In the 

second run (Flag=1), the user time was lower at 0m0.022s. 

The user time represents the time spent executing user-level 

code within the program. A lower user time indicates that the 

program spent less time in user-level code execution in the 

second run, which suggests improved efficiency in the program's 

core logic with Improved CMA. 

C. System Time 

In the first run (Flag=0), the system time was 0m0. 697s. In 

the second run (Flag=1), the system time was slightly lower at 

0m0.677s. 

The system time represents the time spent in the kernel or 

system-level operations, such as I/O or system calls. A lower 

system time suggests that the program incurred fewer system-

level operations or experienced slightly improved efficiency in 

interacting with the kernel in the second run with Improved 

CMA. 

In summary, the second run with Improved CMA 

demonstrated better performance compared to the first run with 

existing CMA, as indicated by a lower real time, lower user time, 

and lower system time. These improvements suggest that setting 

the "kmaping flag" to 1 might have led to some optimizations or 

pankaj-ubuntu18@pankajubuntu18-VirtualBox: ~/Anmol-CMA-Project$ cat output_noflag 

********************************* 

 

Opening Driver 

CMA alloc base =0x0, size = 4000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 8000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 1600000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 3200000 kmaping flag = 0 

Free above allocated CMA mem 
CMA alloc base =0xffffffff, size = 6400000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 10000000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 12000000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 18000000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 20000000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 100000 kmaping flag = 0 
Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 200000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 300000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 400000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 500000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 600000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 2000000 kmaping flag = 0 
Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 600000000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 200000000 kmaping flag = 0 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 610000000 kmaping flag = 0 

failed cma alloc Call 

CMA alloc base =0xffffffff, size = 1000 kmaping flag = 0 

Free above allocated CMA mem 

Closing Driver 

 
pi@raspberrypi: ~$ time sudo. /user_space > output_noflag 

 

real    0m0.806s 

user    0m0.029s 

sys     0m0.697s 

 

 

pankaj-ubuntu18@pankajubuntu18-VirtualBox:~/Anmol-CMA-Project$ cat output flag 

********************************* 

 

Opening Driver 

CMA alloc base =0x0, size = 4000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 8000 kmaping flag = 1 

Free above allocated CMA mem 
CMA alloc base =0xffffffff, size = 1600000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 3200000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 6400000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 10000000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 12000000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 18000000 kmaping flag = 1 
Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 20000000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 100000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 200000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 300000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 400000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 500000 kmaping flag = 1 
Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 600000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 2000000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 600000000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 200000000 kmaping flag = 1 

Free above allocated CMA mem 

CMA alloc base =0xffffffff, size = 610000000 kmaping flag = 1 

failed cma alloc Call 
CMA alloc base =0xffffffff, size = 1000 kmaping flag = 1 

Free above allocated CMA mem 

Closing Driver 

 
 

pi@raspberrypi: ~$ time sudo ./user_space > output flag 
 

real    0m0.793s 
user    0m0.022s 

sys     0m0.677s 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11s 

DOI: https://doi.org/10.17762/ijritcc.v11i11s.8169 

Article Received: 26 June 2023 Revised: 22 August 2023 Accepted: 08 September 2023 

___________________________________________________________________________________________________________________ 

 

    414 

IJRITCC | October 2023, Available @ http://www.ijritcc.org 

efficiencies in the program's execution, resulting in a faster and 

more efficient run. 

VI. CONCLUSION 

The pursuit of enhanced hardware performance through 

improved contiguous memory allocation in the Linux Kernel 

offers a compelling solution to the challenges posed contiguous 

memory allocator. By leveraging advanced memory 

compaction algorithms and the strategic use of the 

DMA_KERNEL_NO_MAPPING attribute, this approach 

optimizes memory allocation. The real-world case studies 

underscore its effectiveness, demonstrating reduced data 

transfer latencies, increases time execution efficiency, and 

heightened hardware efficiency. 

The implications of this approach span diverse domains, from 

networking and multimedia processing to high-speed data 

transfers. As hardware technologies evolve, the methodology's 

future scope encompasses refining memory compaction 

techniques, dynamic allocation algorithms, and integration with 

emerging hardware trends. Balancing performance with 

security considerations and collaborating with hardware 

manufacturers further enhance its potential. The journey 

towards achieving hardware excellence is an ongoing pursuit, 

powered by the aspiration for superior efficiency, 

responsiveness, and overall performance. 
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