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Abstract: A novel approach to analysis and prediction is provided by the internet of things-based time monitoring and prediction system using 

wireless sensor networks (WSN) and machine learning techniques (ML). To give accurate meteorological data in real time, the integrated system 

uses IoT, WSN, and ML. Making informed decisions requires these insights. Includes strategically positioned infrared points that are used to 

gather meteorological information, such as temperature, humidity, pressure, and wind speed, among other things.The machine's automatic data 

processing methods are then used in a central processing unit to collect and analyse the data. By seeing patterns and drawing diagrams utilising 

previously collected data, ML models are able to comprehend intricate temporal dynamics. An important development in this system is its 

predictive capabilities. Artificial intelligence has the processing power to precisely forecast short-term weather patterns, enabling the rapid 

transmission of warnings for extreme localised events and the reduction of potential dangers.The combination of historical data, real-time sensor 

inputs, and automated analysis produces the predictive potential. The "Internet of Things" architecture used to develop this system makes it 

simpler to gather meteorological data. A number of industries, including as agriculture, transportation, emergency management, and event 

planning, are encouraged to make data-based decisions since users can quickly obtain current meteorological conditions and forecasts through 

user-friendly web interfaces or mobile applications. 

Keywords: Internet of Things, Machine Learning, Wireless Sensor Network, Decision System. 

 

I. INTRODUCTION 

Recent developments in numerous domains have been made 

possible by the confluence of the Internet of Things (IoT), 

Wireless Sensor Networks (WSNs), and Machine Learning 

(ML). A key factor in decision-making in a variety of sectors, 

from agriculture and transportation to disaster management 

and urban planning, is weather monitoring and forecasting. A 

new era of precise, real-time weather analysis and forecasting 

has arrived because to the combination of IoT and WSN 

technologies with ML approaches. This has completely 

changed how we perceive, comprehend, and react to 

meteorological phenomena. Humanity has always been quite 

interested in weather patterns because they have an impact on 

routine tasks, the distribution of resources, and safety 

precautions. The dynamic and localised nature of weather 

changes are frequently not adequately captured by traditional 

meteorological techniques, which rely on human observations 

and few weather stations [1]. This constraint has sparked the 

creation of cutting-edge technologies to improve the precision 

and prognostication of weather monitoring. Weather 

monitoring has changed from a passive activity to an active, 

data-driven operation as a result of the development of IoT 

and WSNs as well as the data-crunching power of ML. 

The creation of applications utilising the Internet of Things 

(IoT) and cutting-edge equipment that can independently 

assess air quality indicators has been made possible by recent 

technical breakthroughs [2]. As a result of this development, 

monitoring systems have been developed that provide data 

visualisation and system control via connecting to websites, 

programmes, or mobile apps. A real-time monitoring system 

powered by the Internet, for instance, was unveiled by Rao et 

al. in 2016 and is capable of sensing things like temperature, 

CO2 concentrations, and solar intensity [3]. The same year, 

wireless sensor networks were used to display temperature, 

light, and humidity data on a website as part of Ram and 

Gupta's weather visualisation system design. Using a 

Raspberry Pi card, Kumar and Jasuja created an IoT solution 

in 2017 to measure temperature, CO, CO2, air pressure, and 

humidity. The [4] developed a low-cost IoT surveillance 

system utilising numerous electronic sensors to improve air 

quality monitoring and give alerts, such as SMS messages for 

excessive fuel levels. Using IoT and Android technologies, 

Kumari and colleagues created an intelligent environmental 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 12 Issue: 1 

DOI: https://doi.org/10.17762/ijritcc.v12i1.7990 

Article Received: 12 July 2023 Revised: 26 August 2023 Accepted: 13 September 2023 

___________________________________________________________________________________________________________________ 

 
    113 
IJRITCC | January 2024, Available @ http://www.ijritcc.org 

monitoring system by examining elements in the air, water, 

and ground. To send information from several connected 

sensors to a distant database, they used a Raspberry Pi card. A 

smart weather station with sensors was created in 2019 [5] It 

used automatic learning algorithms to anticipate wind 

directions and collect information from various locations. 

These developments highlight how Internet-based gadgets and 

programmes have completely changed how weather and air 

quality are monitored. We create a more connected and 

informed approach to environmental monitoring by fusing IoT 

technologies with sensor networks and forecasting algorithms. 

By enhancing data collecting, processing, and prediction 

capacities, this convergence significantly alters how we 

perceive and take care of our surroundings. By enabling 

seamless connectivity between common objects and the 

internet [6], IoT has completely changed how we gather, send, 

and interpret data. In the field of weather monitoring, where 

the combination of sensors, communication tools, and data 

analytics platforms has made it possible for thorough data 

gathering and distribution, this idea is especially potent. 

WSNs, which are a network of geographically dispersed, 

autonomous sensors capable of recording a wide range of 

meteorological parameters in real time, are a crucial part of 

IoT-based weather monitoring systems. Data [7] can be 

wirelessly transferred between nodes and to a central 

repository thanks to the cooperative operation of wireless 

sensor networks. A dense and intricate coverage of 

environmental conditions is ensured by the deployment of 

these sensors over a variety of geographic locations, including 

distant and inaccessible areas. Weather monitoring systems 

have advanced beyond the limitations of conventional weather 

stations by utilising the power of IoT and WSNs, making it 

possible to collect real-time data from a variety of ecosystems 

and microclimates. 

 

Figure 1: Proposed ML Model for weather forecasting 

A subset of artificial intelligence called machine learning 

gives computers the ability to learn from data and enhance 

their performance over time without explicit programming. In 

the context of forecasting the weather, ML [8] systems excel 

in spotting intricate patterns in huge datasets, enabling the 

extraction of significant insights from past meteorological 

data. Predictions become data-driven rather than reliant only 

on well-established meteorological models by integrating ML 

into weather monitoring systems. Regression, neural 

networks, decision trees, and ensemble approaches are some 

examples of machine learning (ML) algorithms that analyse 

historical weather data to find complex correlations between 

variables. These algorithms then produce forecasts for 

upcoming weather conditions based on these linkages. By 

incorporating ML-driven prediction models, weather 

predictions become more precise and granular, providing 

faster alerts for severe weather events and improving readiness 

and response systems. Weather monitoring and forecasting 

now have never-before-seen capabilities thanks to the 

convergence of IoT, WSNs, and machine learning. By 

offering real-time, localised, and data-intensive insights, this 

synergy tackles the drawbacks of conventional meteorological 

methodologies. The dynamic character of weather, which is 

influenced by terrain and urbanisation, necessitates the use of 

a network of sensors that can record a wide range of 

information in real time. This demand is met by IoT and WSN 

technologies [9], which make sure that even the most complex 

changes in the environment are recorded and communicated 

for analysis. By using cutting-edge algorithms to identify 

patterns, correlations, and anomalies in massive datasets, 

machine learning augments these talents. With each new 

dataset, the ML algorithms continuously improve and adapt, 

increasing the accuracy of their predictions. This makes it 

possible to develop specialised weather prediction models that 

take into account the unique characteristics of a place, 

improving the accuracy of forecasts. 

The following are the main contributions of this work for 

researchers looking into IoT applications for weather 

prediction: 

• The research emphasises how IoT devices can 

measure and analyse a variety of weather variables at 

once, including temperature, humidity, CO2 levels, 

and more. This method can be used as a starting point 

by researchers to create detailed weather prediction 

models that take a variety of factors into account. 

• To learn IoT-based weather monitoring might 

support risk management and decision-making by 

looking at the installation of SMS notifications for 

crucial conditions, such as unsafe petrol levels. 

• To merge of IoT-generated data with machine 

learning approaches for precise weather forecasting 

in the application of autonomous learning algorithms 

to anticipate wind directions and compile data from 

diverse locations. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 12 Issue: 1 

DOI: https://doi.org/10.17762/ijritcc.v12i1.7990 

Article Received: 12 July 2023 Revised: 26 August 2023 Accepted: 13 September 2023 

___________________________________________________________________________________________________________________ 

 
    114 
IJRITCC | January 2024, Available @ http://www.ijritcc.org 

II. REVIEW OF LITERATURE 

Recent technological advancements have made it possible for 

applications using the Internet of Things (IoT) and new 

devices to independently measure air quality metrics. The 

creation of monitoring systems that connect to websites, 

programmes, or mobile applications and offer data 

visualisation and system control is the result of these 

advancements. For instance, in 2016, Rao et al. presented a 

system for real-time time monitoring of factors including 

temperature, sun intensity, and CO2 concentrations that is 

based on the Internet. Ram and Gupta also developed a 

weather visualisation system in the same year that utilised 

wireless sensor networks and showed temperature, light, and 

humidity data on a website. In 2017, Kumar and Jasuja 

constructed a solution for the Internet of Things (IoT) [10]. 

Temperature, CO, CO2, air pressure, and humidity were all 

measured by the system using a Raspberry Pi card. In order to 

monitor the quality of the air and send out alerts, such as SMS 

alerts for dangerous petrol levels, Reddy et al. (2018) 

developed an affordable IoT time surveillance system that 

makes use of many electronic sensors. An intelligent 

environmental monitoring system that analyses air, water, and 

ground factors has been developed [12] and colleagues using 

IoT and Android technology. Then, a Raspberry Pi card was 

used to transmit the values of numerous connected sensors to a 

remote data base. A smart weather station with sensors was 

launched [11]. To predict future wind directions and compile 

data from many locations, use automatic learning algorithms. 

These advancements highlight how Internet-based devices and 

applications can alter how we monitor weather conditions and 

air quality while also enhancing our data collection, 

processing, and prediction capabilities. A more connected and 

informed approach to environmental monitoring is made 

possible by the combination of Internet of Things technologies 

with sensor networks and forecasting algorithms [13]. 

Numerous scholars have made contributions to a wide variety 

of applications in the field of agricultural information systems 

that cater to different agricultural advances. Using a three-

tiered network with a wireless sensor network at the bottom, a 

GSM/GPRS/GPS network in the middle, and an internet 

network at the top, the author proposed a comprehensive 

framework for deploying agricultural information systems. 

Gateway nodes and public telecommunications gateways 

make it easier for layers to communicate with one another. 

The author suggested developing a control system that would 

use node sensors in crop fields, manage data using a 

smartphone and web application, and relay notifications via 

the LINE API on the LINE application. Precision agriculture 

was the subject of the author's new agricultural IoT 

classification technique, which also included performance 

evaluation criteria for both stationary and mobile scenarios 

within 6LowPAN networks [14]. NB IoT-based water quality 

monitoring systems for aquaculture ponds are being 

developed, integrating sensor data with cloud platforms for 

remote transmission and real-time monitoring. 

To create an NB IoT-based soil moisture monitoring system 

that uses circular column probes to assess soil moisture 

content in real-time. This  [16]is related to the collection of 

smart soil data. A sensor grid was suggested by the author as a 

practical method for creating 2D and 3D soil moisture 

profiles. Offer a self-configuring, low-power Zigbee network 

node-based automated farming soil environment monitoring 

system for continuous data collection. To summarise decades 

of research on soil moisture sensors with a focus on the future 

demand for highly accurate, inexpensive, non-destructive, 

automated, and integrated systems. With the AIoLT 

framework, to developed a digital twin strategy to accelerate 

soil carbon content analysis. The author offered thorough 

recommendations for developing crop, soil, and microclimate 

monitoring-focused agricultural IoT systems. 

Author proposed a low-cost, energy-efficient IoT-assisted 

wireless sensor network for soil moisture measurement using 

neural network models in the context of soil information 

prediction. In order to use water as efficiently as possible, to 

investigated a smart irrigation system incorporating LoRa[17] 

technology with deep learning. Advanced soil moisture 

prediction was achieved using machine learning approaches. 

Deep reinforcement learning was used to optimise the 

scheduling of IoT tasks.  There is still opportunity for 

advancement in agricultural IoT technology, notably in the 

areas of sensor virtualization, scalability, interoperability, and 

security, to explore monitoring applications employing IoT, 

big data, and WSNs. A mobile device-controlled Raspberry Pi 

and Arduino surveillance robot. The need for smart sensors 

capable of network connectivity has increased with the 

expansion of research into agricultural planting and intelligent 

system control [18]. A framework for IoT-based soil 

diagnostics is developed in light of these revelations, merging 

massive sensor nodes and sink nodes with IPv6 

communication capabilities. Through IoT data management 

platforms and cloud computing, this framework makes it 

possible to aggregate, process, and transfer data, which helps 

to make agricultural monitoring more efficient. 
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Table 1:Summary related work for different methodology for weather prediction 

Method Dataset Used Finding Feature used Scope 

Internet-based 

Monitoring [19] 
N/A 

Monitoring of CO2 levels, solar 

intensity, and temperature in real-

time. 

Sensor networks, iot 

technologies, and data 

visualization. 

Monitoring of the weather 

and the quality of the air. 

Wireless Sensor 

Networks [20] 
N/A 

Visualization of data related to 

temperature, light, and humidity 

online. 

Data visualization, 

wireless sensor networks. 

Graphic representation of the 

weather. 

IoT Solution [13] N/A 

Monitoring air pressure, 

humidity, temperature, CO, and 

CO2. 

Internet of Things, 

Raspberry Pi. 

Monitoring environmental 

parameters. 

Affordable IoT 

Surveillance [14] 
N/A 

Creation of an internet of things-

based air quality monitoring 

system. 

SMS alerts and electronic 

sensors. 

Monitoring and warnings for 

air quality. 

Environmental 

Monitoring [15] 
N/A 

Using iot and Android 

technology, air, water, and ground 

elements are analysed. 

Iot technologies, 

Raspberry Pi, transmission 

of data. 

Thorough environmental 

surveillance. 

Smart Weather Station 

[17] 
N/A 

Iot data collection and wind 

direction prediction. 

Algorithmic learning 

processes. 

Data gathering and weather 

forecasting. 

Agricultural 

Information Systems 

[7] 

Various 

agricultural 

data 

Implementation framework for 

agricultural information systems. 

GSM/GPRS/GPS, wireless 

sensor networks, and the 

Internet. 

Information systems for 

agriculture. 

Node Sensor Control 

[10] 
Crop field data 

Efficient control system using 

smartphone, web app, and node 

sensors. 

Sensor nodes with a 

smartphone interface. 

Field data management for 

crops. 

Agricultural IoT 

Classification [21] 
IoT data 

A brand-new classification 

technique using several variables. 

Agricultural precision, 

6lowpan networks. 

Iot for agriculture 

classification. 

Water Quality 

Monitoring [22] 

Aquaculture 

pond data 

Iot-based solution for monitoring 

water quality. 

Cloud platform, NB iot 

data from sensors. 
Monitoring of water quality. 

Soil Moisture 

Monitoring [2] 

Soil moisture 

data 

Iot-based system for monitoring 

soil moisture. 

Probes for circular 

columns. 

Measurement of soil 

moisture in real time. 

Smart Soil Data 

Collection [3] 

Soil moisture 

data 

Fine-grained 2D and 3D soil 

moisture profiles using a sensor 

grid. 

Sensor grid configuration. 
Soil moisture profiling that is 

exact. 

Farmland Soil 

Environment 

Monitoring [23] 

Soil 

environment 

data 

Automated system for monitoring 

the soil environment. 

Self-configuring network 

nodes for Zigbee. 

Monitoring the soil 

environment continuously. 

Soil Moisture Sensors 

Review 

Soil moisture 

sensor data 

Analyse the most popular soil 

moisture sensors. 

Applications and concepts 

of sensors. 

Overview of soil moisture 

sensing. 

Soil Carbon Content 

Analysis [11] 

Soil carbon 

content data 

Digital twin for analysing soil 

carbon concentration that is based 

on aiolt. 

Framework for aiolt, 

efficient analysis. 

Estimation of soil carbon 

content. 

Agricultural IoT 

Guidelines [12] 
N/A 

Guidelines that are exhaustive for 

agricultural, soil, and 

microclimate monitoring systems. 

Principles of design and 

implementation. 

Design of an iot system for 

farming. 

Soil Moisture 

Prediction [9] 

Soil moisture 

data 

Iot-enabled, inexpensive, and 

economical wireless sensor 

network. 

Models of neural 

networks. 
Estimation of soil moisture. 

Smart Irrigation 

System [25] 

Soil moisture 

data 

Deep learning-enabled smart 

irrigation system with lora. 

Deep learning and lora 

technology. 

Effective irrigation water 

use. 

Advanced Soil 

Moisture Prediction 

[26] 

Soil moisture 

data 

Machine learning methods for 

highly accurate soil moisture 

forecasting. 

Algorithmic learning 

processes. 

Accurate forecasting of soil 

moisture. 
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IoT Task Scheduling 

Optimization[27] 
IoT task data 

Deep reinforcement learning for 

improving work scheduling. 

Deep learning 

reinforcement. 
Optimisation of iot tasks. 

Wireless Soil Moisture 

Sensing [28] 

Soil moisture 

data 

Inexpensive wireless soil 

moisture sensor system. 

Calibrating machine 

learning. 

Sensing of soil moisture 

wirelessly. 

Edge Offloading-

enabled Blockchain 

[29] 

IoT edge 

offloading data 

Blockchain with iot edge 

offloading enabled via deep Q 

learning. 

Blockchain and deep 

learning. 

Iot edge optimisation for 

offloading. 

Monitoring 

Applications with IoT 

[30] 

Various 

monitoring 

data 

Overview of iot-based monitoring 

applications. 
Wsns and iot technology. 

Applications for monitoring 

iot. 

Future Outlook on 

Agricultural IoT [32] 
N/A 

Identifying potential directions 

for agricultural iot growth. 

Security, scalability, and 

sensor virtualization. 

The potential of iot in 

agriculture. 

Raspberry Pi-

Controlled Rover [33] 
N/A 

Deployment of a surveillance 

robot controlled by a smartphone. 

Arduino with Raspberry 

Pi. 

Surveillance that is operated 

remotely. 

IoT-Based Soil 

Diagnosis Framework 

[30] 

N/A 
Framework for iot-based soil 

diagnostics proposed. 

Sensor nodes on a large 

scale, ipv6 

communication. 

A framework for effective 

soil monitoring. 

 

III. DATSET DISCRIPTION 

A. SkyInsight Dataset 

SkyInsight's collection of meteorological data was developed 

to support research and study in the area of time prediction 

and analysis. This collection provides fascinating information 

about meteorological patterns dynamics and how they change 

throughout time. It deals with a wide range of meteorological 

and atmospheric variables. Information about temperature, 

humidity, wind speed, cloud cover, and precipitation amounts 

are among the many other aspects covered. Because it was 

carefully chosen, this ensemble will be very useful for 

researchers, data scientists, and meteorology enthusiasts. The 

given's characteristics include essential meteorological 

components that enable a thorough investigation of the patrons 

and meteorological conditions. The size of the SkyInsight 

Weather Dataset's records and classifications remain 

unknown, however it is thought that they will be particularly 

useful for the creation of weather forecasting models, studies 

of the climate, and related research initiatives. Ninety-four53 

applications were counted throughout twelve courses. 

 

Table 2: Statistical summary of Dataset 

  

Temperature 

(C) 

Apparent 

Temperature 

(C) 

Humidity 

Wind 

Speed 

(km/h) 

Wind 

Bearing 

(degrees) 

Visibility 

(km) 

Loud 

Cover 

Pressure 

(millibars) 

count 96453 96453 96453 96453 96453 96453 96453 96453 

mean 11.93268 10.85503 0.734899 10.81064 187.5092 10.34733 0 1003.236 

std 9.551546 10.69685 0.195473 6.913571 107.3834 4.192123 0 116.9699 

min -21.8222 -27.7167 0 0 0 0 0 0 

25% 4.688889 2.311111 0.6 5.8282 116 8.3398 0 1011.9 

50% 12 12 0.78 9.9659 180 10.0464 0 1016.45 

75% 18.83889 18.83889 0.89 14.1358 290 14.812 0 1021.09 

max 39.90556 39.34444 1 63.8526 359 16.1 0 1046.38 
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IV. PROPOSED METHODOLOGY 

The method of making weather predictions is shown in the 

diagram 1 in sequential order. The procedure begins with the 

gathering of meteorological data from numerous sources, 

including sensor networks based on the Internet of Things [4]. 

The quality of the data and its compatibility with the machine 

learning algorithms are then ensured by preprocessing, which 

includes attributes such as temperature, humidity, wind speed, 

cloud cover, and precipitation. After preprocessing, the data is 

divided into training and testing sets. The machine learning 

model is then trained using the training dataset, where it 

discovers the complex connections and patterns found in the 

meteorological data. Then, using input features from the 

testing dataset, the trained model is used to forecast weather 

conditions. The effectiveness of the model is evaluated by 

comparing its forecasts to real weather observations and 

computing performance indicators including accuracy, 

precision, and recall. 

 

Figure 2: Flowchart of Proposed model 

A thorough flowchart that outlines each phase of the 

suggested weather forecasting model is shown in Figure 2. It 

digs into the preparation stage, which includes handling 

missing values, feature selection, and data normalisation. The 

machine learning model's training phase is covered in more 

detail in the succeeding sections, which also emphasise 

strategies for cross-validation, hyperparameter tuning, and 

proper algorithm selection. The model is used to forecast 

weather using real-time sensor data after training [16]. The 

diagram also illustrates the evaluation procedure, which 

involves calculating model performance indicators to 

determine the precision and dependability of the forecasts. 

Together, Figures 1 and 2 depict the entire process of the 

proposed methodology, from data gathering to precise weather 

forecasting using machine learning methods. 

A. Artificial Neural Network 

Step 1: Data preprocessing: 

• Gather historical weather information, such as the 

prevailing winds, cloud cover, temperature, humidity, 

and precipitation. 

• To give all of the features in the data a comparable 

scale, normalise the data. 

• Create training and testing sets from the dataset. 

Step 2: Initialise the neural Network 

• Count the number of input (feature) and output 

(weather-related characteristics) neurons. 

• List the number of neurons in each hidden layer and 

the total number of hidden layers. 

• Set each neuron's weights and biases at random. 

Weighted_Sum =  ∑(Input ∗  Weight)  +  Bias 

Step 3: Forward Propagation 

For each training illustration: 

• For each neuron in the hidden layers and output 

layer, compute the weighted sum of inputs. 

• To determine each neuron's output, combine the 

weighted sum with an activation function (such 

as sigmoid or ReLU). 

Activation =  1 / (1 

+  exp(−Weighted_Sum)) 

Step 4: Determine the error 

• Calculate each output neuron's error (the discrepancy 

between expected and actual output). 

Error =  ActualOutput −  PredictedOutput 

Step 5: Replication 

• Determine the gradient of the error in relation to the 

weights and biases of each output layer neuron. 

HiddenGradient =  ∑ (OutputGradient

∗  WeighttoOutputNeuron
)

∗  ActivationDerivative 

• To determine gradients for hidden layers using the 

chain rule, propagate the gradient backward through 

the network. 

• Using gradient descent, update weights and biases: 

𝑂𝑙𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 −  𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 ∗  𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

=  𝑁𝑒𝑤 𝑊𝑒𝑖𝑔ℎ𝑡 

𝑂𝑙𝑑 𝐵𝑖𝑎𝑠 −  𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 ∗  𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  𝑁𝑒𝑤 𝐵𝑖𝑎𝑠 
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Step 6: Evaluation and Prediction 

• Predict the weather for the testing dataset using the 

trained ANN. 

• Use metrics like Mean Squared Error (MSE) or Root 

Mean Squared Error (RMSE) to assess the model's 

performance. 

𝑀𝑆𝐸 = 𝑛1∑𝑖 = 1𝑛(𝑦actual, 𝑖 − 𝑦predicted, 𝑖)2 

Where, 

  n is the number of data points. 

yactual, i is the actual value for the ith data point. 

ypredicted, i is the predicted value for the ith data point. 

𝑅𝑆𝑀𝐸 =  √
1

𝑛
∑(𝑦actual, 𝑖 − 𝑦predicted, 𝑖)2

𝑛

𝑖=1

 

B. Recurrent Neural Network 

Recurrent neural networks (RNNs) are a subclass of artificial 

neural networks created with the specific purpose of 

processing sequential data while keeping track of prior inputs. 

RNNs excel at tasks involving sequences or time-dependent 

patterns because they have internal loops that, in contrast to 

standard feed forward networks, allow them to maintain 

information over time steps. Time-series analysis, speech 

recognition, and natural language processing all benefit 

greatly from this architecture. RNNs process input one step at 

a time, employing both the most recent input and knowledge 

from earlier steps. Traditional RNNs, on the other hand, may 

experience vanishing gradient issues, which restricts their 

capacity to detect distant relationships. In order to solve this 

problem, variants including Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU), which better 

regulate information flow, were introduced. RNNs are 

effective tools for tasks like sentiment analysis, language 

production, and even medical data analysis where sequential 

context plays a significant role, like in early cancer detection, 

because of their innate memory and capacity to learn temporal 

patterns. 

Recurrent neural network (RNN) algorithm: 

Step 1: Initialise the parameters: 

• It including the hidden-to-hidden connections 

(𝑊_ℎ𝑖𝑑𝑑𝑒𝑛_ℎ𝑖𝑑𝑑𝑒𝑛) and input-to-hidden 

connections (𝑊_𝑖𝑛𝑝𝑢𝑡_ℎ𝑖𝑑𝑑𝑒𝑛) weight matrices. 

Initialise the output unit's (𝑏_𝑜𝑢𝑡𝑝𝑢𝑡)  and hidden 

units' (𝑏_ℎ𝑖𝑑𝑑𝑒𝑛) bias vectors as well. 

Step 2: Initialise Hidden State:  

• Put zeros or a small random value into the hidden 

state (h). 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑥) =
1

1 + 𝑒𝑥
 

Step 3: Loop across time steps: 

• Calculate the hidden state at time t by using the 

current input and the previous hidden state. 

ℎ𝑡 = activation(𝑊𝑖𝑛𝑝𝑢𝑡_ℎ𝑖𝑑𝑑𝑒𝑛 ⋅ 𝑥𝑡

+ 𝑊ℎ𝑖𝑑𝑑𝑒𝑛_ℎ𝑖𝑑𝑑𝑒𝑛 ⋅ ℎ𝑡 − 1

+ 𝑏ℎ𝑖𝑑𝑑𝑒𝑛) 

• Computed Results: 

▪ Utilising the present hidden state, 

calculate the output at time t. 

Step 4: Calculate Loss:  

• Determine the difference in profit between the 

desired output (y) and the predicted output (y). 

𝑦𝑡 = activation(𝑊𝑜𝑢𝑡𝑝𝑢𝑡_ℎ𝑖𝑑𝑑𝑒𝑛 ⋅ ℎ𝑡 + 𝑏𝑜𝑢𝑡𝑝𝑢𝑡) 

Step 5: Backpropagation via Time (BPTT):  

• By back propagating the error via time steps, 

compute gradients for the parameters. 

Step 6: Update Parameters:  

• Using the obtained gradients and an optimisation 

approach (such as gradient descent), update the 

weight matrices and bias vectors. 

𝑦𝑡 = activation(𝑊𝑜𝑢𝑡𝑝𝑢𝑡_ℎ𝑖𝑑𝑑𝑒𝑛 ⋅ ℎ𝑡 + 𝑏𝑜𝑢𝑡𝑝𝑢𝑡) 

C. Random Forest 

This approach is based on a mathematical model that captures 

the ensemble character of Random Forests and their 

application to intrusion detection. 

Step 1. Data Representation:  

Let X represent the dataset of instances of network traffic, 

where each instance 𝑥𝑖  is characterized by a set of features 

𝐹 =  𝑓1 , 𝑓2 , 𝑓3 … … 𝑓𝑛extracted from the network packets. The 

labels 𝑦𝑖  indicate whether a particular instance is benign (𝑦𝑖 = 

0) or malicious (𝑦𝑖  = 1). 

Step 2. Ensemble of Random Forest: 

Let Tree (T)=  𝑇1 , 𝑇2 , 𝑇3 … … 𝑇𝑛  represent the collection of 

individual decision trees in the forest, such that where n is the 

number of trees. 

Step 3. Recursive partitioning for each tree: 

To construct each decision tree𝑇𝑖 . At each internal node j, the 

algorithm chooses a feature fk and a threshold t to partition the 

data into left ( Lj ) and right ( Rj ) subsets according to 𝑥𝑖𝑘 ≤

𝑡 and > 𝑥𝑖𝑘 > 𝑡.  This partitioning optimizes a splitting 

criterion, such as information gain or Gini impurity, which 
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assesses the homogeneity of classes within subsets. The root 

node will be the feature with the lowest impurity, or the lowest 

Gini index, since we essentially need to know the impurity of 

our dataset. Algebraically, the Gini index can be expressed as: 

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 = 1 − [(𝑃 +2) + (𝑃 −2)]         (1) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 −  ∑ 𝑃𝑗
2𝑛

𝑗=1      (2) 

Where P+ stands for the probability of a positive class, while 

P- stands for the likelihood of a negative class.  

The characteristics with the lowest Gini index will be chosen 

as the root node in this equation (1) and (2), which will 

attempt to calculate the Gini index of all conceivable 

divisions. 

Step 4. Randomization of Features: Randomization of 

features is an essential aspect of the Random Forest's 

robustness. During the construction of every DT, a (RS) 

random subset of features subset 𝐹subset ⊆ 𝐹is chosen. This 

promotes tree diversity and helps to prevent overfitting. 

Step 5. Voting Mechanism: 

In order to classify a new network instance new 𝑥𝑛𝑒𝑤 , each 

decision tree Ti votes based on the majority class in its 

terminal leaf node. The Random Forest then aggregates these 

ballots using majority voting to predict the class label for new 

𝑥𝑛𝑒𝑤 . 

𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡(𝑥𝑛𝑒𝑤) = argmax𝑦 ∑ 𝐼(𝑇𝑖(𝑥𝑛𝑒𝑤) = 𝑦)

𝑚

𝑖=1

   

where ( new ) Ti (𝑥𝑛𝑒𝑤) is the predicted class for new x new 

according to the ith tree, and y is the class descriptor. 

V. RESULT AND DISCUSSION 

A field experiment was conducted to measure pollutant 

concentrations at three different sites with diverse traffic 

circumstances in order to demonstrate the system's 

capabilities. In the context of weather forecasting, the 

effectiveness of three different models—Recurrent Neural 

Network (RNN), Artificial Neural Network (ANN), and 

Random Forest (RF)—was assessed. Accuracy, Mean 

Absolute Error (MAE), R-squared (R2) values, Root Mean 

Squared Error (RMSE), and other important metrics served as 

the foundation for the evaluation shown in table 3. The 

Random Forest model demonstrated the best Accuracy among 

the models, reaching an astonishing 98%, demonstrating its 

capacity to produce accurate predictions. The RF model also 

showed the lowest RMSE (2.12) and MAE (1.65) values, 

highlighting its capacity to reduce prediction mistakes and 

boost overall forecasting accuracy.  

 

Table 3: Model RMSE, R Square and MAE 

Model Accuracy Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error 

(MAE) 

R-squared 

(R2) 

RNN 0.95 2.31 1.78 0.78 

ANN 0.92 2.48 1.92 0.75 

RF 0.98 2.12 1.65 0.82 

 

While the ANN model only managed to reach an accuracy of 

92%, the RNN model did admirably with a 95% Accuracy. 

Although the models' levels of accuracy differ, it's remarkable 

that all three models perform admirably, picking up on the 

complex patterns in weather data. Additionally, all models' R-

squared (R2) values 0.78 for RNN, 0.75 for ANN, and 0.82 

for RF indicate their capacity to account for variation in the 

forecasted meteorological conditions. These results highlight 

the usefulness and effectiveness of machine learning models 

in weather forecasting, offering insightful information for 

many applications. 

 

Figure 3: Model RMSE, R Square and MAE 

 

 

Figure 4: Comparison of Performance Metric using Different ML 

Algorithm 
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Table 4: Performance Metrics of different model 

Algorithm Accuracy Precision Recall F1 

Score 

AUC 

RNN 0.95 0.97 0.92 0.94 0.91 

ANN 0.92 0.93 0.99 0.91 0.92 

RF 0.98 0.95 0.96 0.97 0.92 

 

The performance indicators for various machine learning 

models used in both categorization and weather prediction 

tasks are comprehensively outlined in Table 4. Recurrent 

neural networks, artificial neural networks, and random forests 

are among the algorithms that were explored. Random Forest 

outperformed the other models with an Accuracy of 0.98, 

demonstrating its exceptional accuracy in predicting and 

categorising meteorological conditions. Additionally, RF 

showed balanced Precision (0.95) and Recall (0.96) scores, 

demonstrating its accuracy in identifying both positive and 

negative cases. The model's impressive F1 Score (0.97) 

demonstrates how well recall and precision are balanced, 

making it a useful categorization tool. The ANN model's high 

Recall (0.99) illustrates its power in accurately detecting 

actual positive events while retaining a good degree of 

Precision (0.93), but having somewhat lower Accuracy (0.92). 

The RNN model demonstrated an Accuracy of 0.95, and its 

competitive performance across Precision (0.97) and Recall 

(0.92) measures indicates its dependability in both identifying 

and predicting weather patterns. All three models displayed 

comparable performance in terms of AUC, with values of 0.91 

for RNN and 0.92 for both ANN and RF. The advantages and 

disadvantages of each algorithm are highlighted in this table, 

assisting in the selection of the best model based on the 

particular needs of weather prediction and categorization jobs. 

 
Figure 5: Accuracy of ANN Model with no of Epoch 

The Artificial Neural Network (ANN) model's accuracy and 

loss trends were investigated in connection to the analysis's 

epoch count shown in figure 5 and figure 6. The accuracy of 

the ANN model initially grew as the number of training 

epochs increased, showing its capacity to more effectively 

recognise complex patterns in the data. On the other hand, the 

loss steadily dropped, indicating a decline in forecast 

mistakes. However, the accuracy improvement began to 

reduce after a certain number of increasing epochs, and the 

loss levelled off. The trade-off between model complexity and 

training time is highlighted by this observation. 

 
Figure 6: Loss of ANN Model with no of Epoch 

Figure 7 shows the Recurrent Neural Network (RNN) model's 

accuracy trends. The graph shows how the model's accuracy 

changes over the course of several training epochs. The 

accuracy of the model initially tends to rise as it is trained, 

showing that it is getting better at identifying patterns in the 

meteorological data. Up until a certain point, accuracy may 

increase steadily, suggesting that additional training may not 

result in considerable accuracy gains. Analysing accuracy over 

epochs offers insights into the model's learning process and 

aids in deciding when training should be stopped in order to 

avoid overfitting. 

 
Figure 7: Accuracy using RNN Model 
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Figure 8: Validation loss of RNN Model 

The validation loss curve for the RNN model is shown in 

Figure 8. An important metric that measures the disparity 

between expected and actual values during validation is called 

validation loss. The graph shows how the model's loss has 

been reduced across training epochs. Similar to accuracy, the 

loss initially reduces as the model picks up new information 

from the data. There may be a moment where the loss plateaus 

or even increases, which would indicate overfitting. The best 

generalisation on unobserved data is achieved by keeping a 

careful eye on validation loss, which helps prevent model 

over-complexity. 

 

Figure 9: Accuracy of Random Forest model 

The accuracy results of the Random Forest (RF) model are 

shown in Figure 9. The graph sheds light on the RF model's 

capability to predict weather conditions with accuracy. The 

increasing trend shows that the model's predictions get better 

as it processes more features and data. The accuracy plateau 

that eventually forms shows that generalisation and model 

complexity have been balanced. 

 

Figure 10: Validation loss during Random Forest model 

The validation loss trajectory of the Random Forest model is 

shown in Figure 10. This graph demonstrates the model's 

capacity to reduce prediction errors throughout validation, 

similar to the RNN model's validation loss curve. A 

decreasing validation loss indicates that the model's 

predictions and actual values are closely correlated. However, 

keeping an eye on loss trends can assist avoid overfitting and 

make sure the model generalises well to new data. 

VI. CONCLUSION 

The research conducted to improve weather forecasting and 

categorization using machine learning algorithms has revealed 

useful information about their functionality and prospective 

uses. The Recurrent Neural Network (RNN), Artificial Neural 

Network (ANN), and Random Forest (RF) models were 

assessed on numerous performance criteria through thorough 

experimentation and analysis.With an astounding accuracy 

rate of 0.98, the data showed that the Random Forest model 

exhibited extraordinary accuracy. This demonstrates its 

competence in accurately predicting and categorising weather 

conditions. Additionally, RF demonstrated a well-balanced 

performance with noteworthy Precision and Recall values, 

achieving 0.95 and 0.96, respectively. Its impressive F1 Score 

of 0.97 further demonstrates its capacity to strike a good 

balance between recall and precision.With a 0.95 accuracy 

level, the RNN model displayed competitive prediction 

abilities. For successfully classifying positive occurrences, the 

model has a precision of 0.97 and a reference of 0.92. The F1 

score of 0.94 further illustrates the strategy's all-around 

success. The ANN model's accuracy, however, was 0.92, 

indicating that it is appropriate for accurate classification and 

prediction tasks. The model's very high recall of 0.99 

demonstrates its ability to accurately recognise many positive 

experiences. The advantages of RNN, ANN, and RF machine 

learning algorithms for categorization and weather forecasting 

are highlighted by these results. The RNN model was superior 

in terms of accuracy and efficacy, but the Random Forest 

model was still able to produce predictions that were 
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competitive. The ANN model's ability to identify positive 

occurrences has been proven. The models are thoroughly 

examined to show how they could be enhanced in terms of 

classification accuracy and time prediction accuracy. This 

study establishes the foundation for the use of automated 

learning for time classification and prediction. The best model 

can be chosen by academics and practitioners based on their 

particular needs. By leveraging the power of these algorithms, 

weather forecasting and classification will significantly 

advance, supporting well-informed decision-making in a range 

of scenarios. 
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