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Abstract—Single-chained blockchains are being rapidly replaced by sidechains (or sharded chains), due to their high QoS (Quality of 

Service), and low complexity characteristics. Existing sidechaining models use context-specific machine-learning optimization techniques, 

which limits their scalability when applied to real-time use cases. Moreover, these models are also highly complex and require constant 

reconfigurations when applied to dynamic deployment scenarios. To overcome these issues, this text proposes design of a novel low-complexity 

Q-Learning Model based on Proof-of-Context (PoC) consensus for scalable sidechains. The proposed model initially describes a Q-Learning 

method for sidechain formation, which assists in maintaining high scalability even under large-scale traffic scenarios. This model is cascaded 

with a novel Proof-of-Context based consensus that is capable of representing input data into context-independent formats. These formats assist 

in providing high-speed consensus, which is uses intent of data, instead of the data samples. To estimate this intent, a set of context-based 

classification models are used, which assist in representing input data samples into distinctive categories. These models include feature 

representation via Long-Short-Term-Memory (LSTM), and classification via 1D Convolutional Neural Networks (CNNs), that can be used for 

heterogeneous application scenarios. Due to representation of input data samples into context-based categories, the proposed model is able to 

reduce mining delay by 8.3%, reduce energy needed for mining by 2.9%, while maintaining higher throughput, and lower mining jitters when 

compared with standard sidechaining techniques under similar use cases. 
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I. INTRODUCTION 

Many data security solutions, including cryptocurrencies like 

Bitcoin and Ethereum's smart contract service, rely on 

blockchain technology [1, 2, 3, 4]. As a result of the hash 

chain, the integrity of the blockchain's data is only as strong as 

the difficulty of tampering with individual blocks of 

information. There are a lot of technological hurdles that 

blockchain-based systems must overcome right now. 

Ethereum co-creator Vitalik Buterin claims that distributed 

ledgers can only have two out of the three desirable properties 

of decentralization, scalability, and security. Technically, 

scalability is a major obstacle for real-time applications and 

other industrial integrations of blockchain systems because of 

the exponential development of a blockchain's size, which 

makes it impossible to store, disseminate, verify, and add new 

blocks to the chain via Stackelberg Game (SG) [5, 6]. In 

Bitcoin and other traditional blockchains, a new block is added 

every 10 minutes or so. The block chosen for inclusion in the 

blockchain is the candidate block with the longest list of 

transactions and the highest response to the cryptographic hash 

computation (which is done using a method known as Proof of 

Work, or PoW). The miner who created the block is rewarded 

for their time and energy. There are many miners all vying to 

build the next block for the network. At regular intervals, 

miners produce blocks, which are then broadcast over the 

network, where other validation nodes check their integrity by 

comparing the block's headers and transaction list to those of 

other blocks [7, 8]. Whenever a majority of validator nodes 

agree that a block has a legitimate transaction list and the 

required minimum hash value, the block is added to the 

blockchain and validators maintain a shared distributed ledger. 

Therefore, all nodes examine each candidate block each time a 

block is created, which raises issues about scalability as the 

number of nodes grows owing to an increase in message 

overhead. Sharding is a mechanism that has been suggested as 

a way to address blockchain scalability problems SG [5]. 
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Database sharding, in which a single database is divided into 

many shards so that separate transactions may be processed 

and verified in parallel, was the inspiration for blockchain 

sharding. In other words, numerous shards may execute 

transactions concurrently since each transaction is only sent to 

a small subset of the network (a shard). The number of 

transactions processed per second on a blockchain that has 

been sharded will grow in direct proportion to the number of 

shards that have been added (TPS) [9, 10, 11, 12]. However, 

as the number of shards grows, fewer nodes take part in the 

validation of a sharded block, making it simpler for malicious 

nodes to take over the consensus effort on a single shard via 

Graph Mining (GM) and Reputation Mining (RM) [13, 14, 15, 

16]. That makes shard-based blockchains less safe, even if the 

number of malevolent participants is small. So, even a single 

fragment may be made more vulnerable to 51% assaults. 

Ethereum 2.0, Zilliqa, and ELASTICO are just a few examples 

of blockchain-based cryptocurrencies that employ sharding, 

and they all use a random shard distribution to provide a level 

playing field [17, 18, 19, 20]. This mechanism does not deter 

irresponsible conduct, and the shards are assigned using basic 

randomization, which is not secure enough to be employed in 

block consensus techniques protecting against a wide range of 

damaging assaults. On top of that, block validators' ability to 

protect themselves from malicious actions is severely limited 

while the network is reaching a consensus.Some potential 

works can be done on different domains using blockchain 

technologies. For instance,it can be applied over the works 

[21, 22, 23, 24, 25]. 

Separate approaches to blockchain sharding exist for splitting 

up transactions and for splitting up states. Transaction 

sharding allows for the processing of several transactions at 

once by a separate shard, which improves throughput 

performance [26, 27, 28, 29]. When more shards are 

employed, the performance boost is roughly proportionate to 

the total number of shards. Using ledger pruning, state 

sharding reduces the amount of data that must be stored by 

only keeping the atomic parts of a transaction. It is common 

practice to change which shards a node belongs to at the 

beginning of each epoch in both forms of sharding. The 

current sharding protocol uses a PoW-based random technique 

to allocate shards to nodes. Each node in ELASTICO 

participates in a proof-of-work (PoW) hashing contest to 

establish its unique identity before being arbitrarily placed into 

one of many shards SG [30, 31, 32, 33]. Similar to how hash 

value volatility is used during the peer discovery phase in 

Rapidchain's shard building approach [18], nodes on 

participating networks may be randomly allocated. However, 

these systems suffer hash computation overheads due to the 

fact thatPoW is used in the distributed shard grouping process 

to verify identities. However, the SSChain blockchain uses the 

current PoW algorithm for shard consensus and, because of its 

non-reshuffled structure, supports sharding of both 

transactions and states [34, 35, 36]. The security of the root 

chain may also be seriously compromised since SSChain 

operates on two separate chain architectures. Sharding 

protocols' block consensus methods may be broken down into 

the following steps [1, 19]: Each node, using a PoW-based 

randomization scheme, checks to see whether its neighbor is 

included in a shard. After nodes have been partitioned into 

separate shards, each shard will use intra-shard consensus to 

handle transactions separately. Transactions are distributed 

among shards based on the input address associated with each 

one. Once agreement has been reached within a shard, a 

consensus-building committee decides how the block to be 

added to the blockchain should be built. A hash of each SHA-

256 transaction executed across all nodes is recorded in the 

connected block. Intra-shard takeover of a single shard 

presents a security issue due to the possibility that a rogue 

validator would cause a shard to lose consensus or process 

transactions incorrectly. 

As a result, it is clear that existing sidechaining models use 

machine-learning optimization algorithms that are context-

dependent, hence limiting their scalability for real-time 

applications. Furthermore, these models are quite intricate and 

need ongoing reconfiguration when employed in a dynamic 

setting. To address these problems, this study proposes a new 

kind of Proof-of-Context (PoC) consensus for scalable 

sidechains based on a revolutionary low-complexity Q-

Learning Model. In section 3, we evaluated the proposed 

model's performance under varying real-time situations to that 

of popular sharding methods already in use. The paper 

concludes with observations on the proposed model's context 

and suggestions toimprove it for practical applications. 

II. TYPE DESIGN OF THE PROPOSED LOW-

COMPLEXITY Q-LEARNING MODEL BASED ON 

PROOF-OF-CONTEXT CONSENSUS FOR SCALABLE 

SIDECHAINS 

Wherever On the basis of a review of existing sidechain 

techniques, it was determined that these models use context-

specific machine-learning optimization techniques, limiting 

their scalability when applied to real-time use cases. In 

addition, these models are extraordinarily intricate and require 

constant reconfiguration when applied to dynamic deployment 

scenarios. This sectiondiscusses the design of a novel, low-

complexity Q-Learning Model for scalable sidechains that is 

based on Proof-of-Context (PoC) consensus. Flow of the 

model is depicted in figure 1, where it can be observed that the 

proposed model initially describes a Q-Learning method for 

sidechain formation, which aids in maintaining a high degree 

of scalability even in scenarios involving large volumes of 
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traffic. This model is cascaded with an innovative Proof-of-

Context-based consensus that can represent input data in 

context-independent formats. These formats facilitate the 

provision of a rapid consensus based on data intent rather than 

data samples. To estimate this intent, a set of context-based 

classification models are employed, which aid in categorizing 

input data samples into distinct groups. These models include 

feature representation via Long-Short-Term-Memory (LSTM) 

and classification via 1D Convolutional Neural Networks 

(CNNs), which are applicable to a variety of application 

scenarios. 

 

Fig. 1. Design of the proposed consensus model for scalable mining 

scenarios 

Thus, all the collected input data samples are initially passed 

through a Q-Learning process, which assists in splitting 

current blockchain into multiple sidechains. To perform this 

task, the following process is used, 

• Initially, find Q-Values of all the existing sidechains as 

per equation 1, 

 

Where,  are the current number of blocks in the chain, while 

 are a set of dummy blocks which are added to the chain in-

order-to find the block reading delay ( ), block writing 

delay ( ), and block verification delay ( ), 

which assist in estimation of the mining delay needed for 

addition of new blocks to individual chains. In this evaluation 

 represents the delay needed for mining 

individual blocks, and the maximum delay needed for mining 

operations. 

• Based on these values, identify new  levels via equation 

2, 

 

Where,  is the total delay needed for mining new 

blocks, and is represented via equation 3, 

 

• This new  value is estimated for every sidechain (if 

there are no sidechains, then only single Q value is 

estimated by this process) 

• As per this new  value, a  factor is estimated via 

equation 4, 

 

Where,  represents total number of sidechains currently 

present in the network that are actively used for storing blocks. 

• The current sidechain is split into 2 equal parts as per 

equation 5, 

 

• After this process, the  value for all new sidechains is 

estimated, and the sidechain with minimum  value is 

used for addition of new blocks 
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Table 1. Design of the context-specific block structure for PoC 

consensus 

Prev. Hash Source IP Dest. IP 
Other Network 

Info. 

Nonce Timestamp 
Data 

Samples 

Meta Data 

Samples 

Context 

Flags 

Meta Data of 

Context Flags 
Current Hash 

 

Due to this process, the model is able to generate new 

sidechains, and can be scaled for larger number of nodes, 

which improves it usability for real-time scenarios. While 

adding blocks to the selected sidechain, a Proof-of-Context 

(PoC) based model is used, which assists in identification of 

miner nodes with context-specific intents. To perform this 

task, the model uses a contextual-block structure which can be 

observed from table 1. 

The block structure stores the following information sets, 

• Prev. Hash, which is hash of the previous blocks 

• Source & Destination IP address 

• Other Network Information, which stores additional 

information (like energy levels, network performance, 

etc.) about the network scenarios 

• Nonce is a stochastic number which is estimated as per 

equation 6, and assists in uniquely identifying individual 

blocks 

 

Where, represents a stochastic Markovian process for 

estimation of number sets, and  is the range of available 

number sets. Nonce values are generated until current hash of 

the block is unique, when compared with existing blocks. 

• Timestamp, which represents the timestamp at which the 

packet addition request has arrived for adding blocks 

• Data Samples & Meta Data Samples, which represent 

values of data and their meta data value sets 

• Context Flags & Meta Data of Context Flags, which 

contains information about the context of the miners 

• Current Hash, which is the hash of current block, that is 

estimated using Secured Hash Algorithm (SHA) via 

equation 7, 

 

The context flags are used to represent miner nodes that have 

participated in the mining process. These miner nodes are 

selected via a combination of flexible-contextual feature 

information that is evaluated via a fusion of Long Short-Term 

Memory (LSTM) & Gated Recurrent Unit (GRU) operations. 

These operations assist in representing miner information into 

context-independent feature sets. To perform this task, the 

model initially extracts an initialization feature vector via 

equation 8, 

 

Where,  are the contextual information sets about 

individual miners, and is estimated via equation 9, 

 

Where,  represents the delay needed for 

mining, energy needed for mining, throughput while mining, 

and packet delivery ratio while mining  blocks. In 

equation 8,  is the variance of the feature sets, and is 

estimated via equation 10, while  are constants of the 

LSTM process. 

 

The initialization features are cascaded with scaled feature sets 

 and operational feature sets , via equations 11 and 12, 

 

 

To further augment these features, they are cascaded with 

convolutional features, that are estimated via equation 13, and 

converted into ternary output feature vectors via equations 14 

& 15 as follows, 

 

 

 

Where,  represents output kernel metric, that is updated 

for individual set of iterations. The output kernel metric is 

used to estimate GRU specific impedance and resistance 

features via equations 16 & 17, that assist in retaining high 

density feature sets. 

 

 

Based on these features, the model estimates an output feature 

set via equation 18, and an updated feedback kernel metric via 

equation 19, 
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This process is repeated until variance levels of features 

between two consecutive evaluations is almost constant, which 

assists in estimation of highly variant context-independent 

feature sets. These feature sets are classified into ‘selected’, 

and ‘non-selected’ categories via equation 20, that uses an 

efficient set of SoftMax based activation layers. 

 

Where,  represents total features estimated by the LSTM & 

GRU operations,  represents their feature values, while w and 

b represents individual weights and biases for different feature 

sets. These weights and biases are tuned by a standard 1D 

CNN model, that iteratively modifies these values to improve 

the accuracy of classification for different miners. The miners 

classified as ‘selected’ as used for the mining process. This 

assists in improving the mining performance for individual 

side chain block addition requests. This performance is 

evaluated in terms of mining delay, energy needed for mining, 

throughput levels, and PDR levels in the next section of this 

text. 

III. RESULT ANALYSIS & COMPARISON 

Before the proposed model is perceived to make use of Q-

Learning for sidechain formation at the outset, which helps to 

keep scalability high even when dealing with massive amounts 

of traffic. In order to represent input data in context-

independent formats, this model is cascaded with a novel 

Proof-of-Context based consensus. The intent of data, rather 

than data samples, is used by these formats to provide rapid 

consensus. To estimate this goal, we employ a suite of 

context-based classification models that aid in mapping input 

data samples to meaningful classes. Some of the models used 

here are 1D Convolutional Neural Networks (CNNs) for 

classification and Long-Short-Term-Memory (LSTM) for 

feature representation, both of which can be put to use in a 

wide variety of different kinds of applications. Performance of 

this model is estimated in terms of delay (D) needed for 

mining, energy (E) needed during mining, throughput (T) of 

mining, and packet delivery ratio (PDR) of mining request 

sets. These request sets were collected from the following 

sources, 

• Cryptocurrency mining sets 

(https://www.kaggle.com/datasets/amritpal333/crypto-

mining-data) 

• Bitcoin mining sets 

(https://datahub.io/cryptocurrency/bitcoin) 

• Cantora’s Cryptocurrency Sets 

(https://datarade.ai/data-categories/cryptocurrency-

data) 

• AWS Public Blockchain Sets 

(https://registry.opendata.aws/aws-public-blockchain/) 

All these sets were combined to form a total of 25k block 

addition requests, which were segregated into 60% for 

training, 20% for testing, and 20% for validation of the chains. 

Nearly 500 miner nodes were used for mining these blocks, 

and their ‘selected’, and ‘non-selected’ classes were decided 

based on their location and previous mining performance for 

initial block addition request sets. Based on this strategy, the 

delay of mining was estimated and compared with SG [5], GM 

[14], and RM [16] in table 2 where it was compared w.r.t. 

different Number of Blockchain Addition (NBA) Requests as 

follows. 

Table 2. Delay needed for mining different blocks 

NBA D (ms) D (ms) D (ms) D (ms) 

SG [5] GM [14] RM [16] Proposed 

1250 0.98 0.99 1.01 0.71 

2500 1.06 1.06 1.08 0.76 

3750 1.13 1.12 1.14 0.8 

5000 1.18 1.18 1.2 0.84 

6250 1.24 1.24 1.28 0.9 

7500 1.32 1.38 1.45 1.05 

9375 1.5 1.69 1.8 1.31 

11250 1.96 2.15 2.25 1.62 

12500 2.46 2.59 2.66 1.89 

15000 2.86 2.9 2.97 2.1 

16250 3.09 3.2 3.29 2.34 

17500 3.48 3.6 3.7 2.63 

18750 3.91 4.03 4.15 2.95 

21875 4.36 4.56 4.67 3.24 

23750 4.7 5.03 5.16 3.53 

25000 5.09 5.56 5.66 3.81 

 

 
Fig 2: Delay needed for mining different blocks 

 

As per this evaluation, it can be observed that the proposed 

model is able to reduce the mining delay by 10.5% when 
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compared with SG [5], 12.4% when compared with GM [14], 

and 12.8% when compared with RM [16], which makes it 

useful for high-speed applications. The reason for this 

reduction in delay is use of Q-Learning for creation of 

contextual sidechains, which assists in reducing the effort 

during different mining operations. Similarly, the energy 

consumed during mining operations, can be observed from 

table 3. As per this evaluation, it can be observed that the 

proposed model is able to reduce the energy needed for mining 

by 15.4% when compared with SG [5], 19.5% when compared 

with GM [14], and 16.4% when compared with RM [16], 

which makes it useful for high lifetime applications. The 

reason for this reduction in energy consumption is use of Q-

Learning for creation of contextual sidechains& use of LSTM 

& GRU based miner selection, which assists in identification 

of miner nodes with higher energy levels. Similarly, the 

throughput obtained during mining operations, can be 

observed from table 4 

 

Table 3. Energy needed for mining different blocks 

NBA E (mJ) E (mJ) E (mJ) E (mJ) 

SG [5] GM [14] RM [16] Proposed 

1250 2.31 3.24 2.71 1.96 

2500 2.7 3.56 2.93 2.12 

3750 2.8 3.75 3.1 2.24 

5000 2.99 3.98 3.28 2.37 

6250 3.14 4.2 3.46 2.49 

7500 3.32 4.4 3.61 2.6 

9375 3.45 4.57 3.75 2.7 

11250 3.59 4.74 3.9 2.82 

12500 3.72 4.97 4.11 2.98 

15000 3.94 5.32 4.39 3.17 

16250 4.25 5.64 4.61 3.32 

17500 4.52 5.9 4.79 3.44 

18750 4.71 6.07 4.92 3.54 

21875 4.83 6.28 5.11 3.68 

23750 5.02 6.52 5.3 3.81 

25000 5.22 6.75 5.48 3.94 

 

Table 4. Throughput achieved while mining different blocks 

NBA T (kbps) T (kbps) T (kbps) T (kbps) 

SG [5] GM [14] RM [16] Proposed 

1250 316.1 294.6 317.99 454.65 

2500 319.06 296.95 320.47 458.2 

3750 321.14 299.17 322.94 461.88 

5000 323.8 301.81 325.79 466 

6250 326.84 304.5 328.68 470.06 

7500 329.6 307.04 331.47 473.99 

9375 332.36 309.59 334.27 477.92 

11250 335.12 312.13 337.02 481.85 

12500 337.88 314.68 339.77 485.78 

15000 340.64 317.23 342.52 489.72 

16250 343.4 319.82 345.27 493.65 

17500 346.16 322.41 348.02 497.58 

18750 348.91 325 350.77 501.51 

21875 351.67 327.51 353.5 505.4 

23750 354.43 330.01 356.22 509.29 

25000 357.19 332.51 358.94 513.16 

As per this evaluation, it can be observed that the proposed 

model is able to improve the throughput for mining operations 

by 19.5% when compared with SG [5], 23.5% when compared 

with GM [14], and 18.3% when compared with RM [16], 

which makes it useful for high data rate applications. The 

reason for this improvement in throughput is use of LSTM & 

GRU based selection of miner nodes, which assists in 

identification of contextual miner sets with higher temporal 

throughput levels. Similarly, the PDR obtained during mining 

operations, can be observed from table 5. 

Table 5. PDR achieved while mining different blocks 

NBA 

PDR (%) PDR (%) PDR (%) PDR (%) 

SG [5] GM [14] RM [16] Proposed 

1250 74.53 75.44 77.56 86.59 

2500 75.23 76.04 78.17 87.27 

3750 75.72 76.6 78.78 87.96 

5000 76.35 77.29 79.48 88.74 

6250 77.07 77.97 80.18 89.52 

7500 77.72 78.63 80.84 90.27 

9375 78.36 79.28 81.52 91.01 

11250 79.02 79.94 82.19 91.76 

12500 79.67 80.59 82.86 92.52 

15000 80.32 81.25 83.53 93.27 

16250 80.97 81.9 84.21 94.01 

17500 81.62 82.56 84.88 94.76 

18750 82.27 83.21 85.55 95.52 

21875 82.92 83.87 86.22 96.27 

23750 83.57 84.52 86.89 97.02 

25000 84.22 85.17 87.55 97.76 

 

As per this evaluation, it can be observed that the proposed 

model is able to improve the PDR for mining operations by 

12.5% when compared with SG [5], 10.4% when compared 

with GM [14], and 12.3% when compared with RM [16], 

which makes it useful for high consistency mining 

applications. The reason for this improvement in PDR is use of 

LSTM & GRU based selection of miner nodes, which assists 

in identification of contextual miner sets with higher temporal 

PDR levels. Due to these operations, the proposed model is 

able to improve the scalability performance for mining under 

real-time scenarios. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 8 

DOI: https://doi.org/10.17762/ijritcc.v11i8.7922 

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 20 July 2023 

___________________________________________________________________________________________________________________ 

 

    42 

IJRITCC | August 2023, Available @ http://www.ijritcc.org 

IV. CONCLUSION AND FUTURE SCOPE 

It is believed that the proposed model utilizes Q-Learning for 

sidechain formation at the outset, which helps to maintain 

scalability even when massive amounts of traffic are present. 

This model is cascaded with a novel Proof-of-Context based 

consensus to represent input data in context-independent 

formats. These formats provide rapid consensus by relying on 

the intent of data rather than data samples. To estimate this 

objective, we employ a collection of context-based 

classification models that map input data samples to 

meaningful classes. These models include 1D Convolutional 

Neural Networks (CNNs) for classification and Long-Short-

Term-Memory (LSTM) for feature representation, both of 

which are applicable to a broad range of applications. In terms 

of mining speed, it was discovered that the proposed model 

reduces mining delay by 10.5% when compared to SG [5], 

12.4% when compared to GM [14], and 12.8% when 

compared to RM [16], making it suitable for high-speed 

applications. This reduction in delay is due to the use of Q-

Learning for the creation of contextual sidechains, which aids 

in the reduction of effort during various mining operations. In 

terms of mining energy, it was observed that the proposed 

model reduces energy consumption by 15.4% when compared 

to SG [5], 19.5% when compared to GM [14], and 16.6% 

when compared to RM [16], making it suitable for long-lasting 

applications. This reduction in energy consumption is due to 

the utilization of Q-Learning for the creation of contextual 

sidechains and LSTM and GRU-based miner selection, which 

aids in the identification of miner nodes with higher energy 

levels. The proposed model improves the throughput of 

mining operations by 19.5% when compared to SG [5], 23.5% 

when compared to GM [14], and 18.3% when compared to 

RM [16], making it suitable for high data rate applications. 

This improvement in throughput is attributable to the use of 

LSTM and GRU-based miner node selection, which aids in the 

identification of contextual miner sets with higher temporal 

throughput levels. The proposed model improves the PDR for 

mining operations by 12.5% when compared to SG [5], 10.4% 

when compared to GM [14], and 12.3% when compared to 

RM [16], making it applicable for high consistency mining 

applications. This improvement in PDR is due to the use of 

LSTM and GRU-based miner node selection, which aids in the 

identification of contextual miner sets with higher temporal 

PDR levels. Due to these operations, the proposed model can 

enhance the scalability performance of mining in real-time 

scenarios. 

In the future, the performance of this model must be validated 

for various use cases, and it can be extended through the 

application of hybrid bioinspired models that can 

incrementally tune mining performance in complex scenarios. 

Moreover, this performance can be enhanced by integrating 

deep learning models such as Auto Encoders (AEs) and 

Generative Adversarial Networks (GANs) that can anticipate 

mining requests and scale blockchains based on contextual 

parameter sets. 
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