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Abstract— Object detection is a crucial task in computer vision with a wide range of applications. However, deploying object detection 

algorithms on small single-board computers (SBCs) poses unique challenges. In this review article, we present an in-depth comparative analysis 

of object detection algorithms tailored for small SBCs. We have conducted an extensive literature review on existing research in object detection 

algorithms and evaluated the performance of different approaches on benchmark datasets. Our review encompasses cutting-edge deep learning 

methods, which are YOLO, SSD, and Faster R-CNN. We delve into the challenges and limitations of implementing these algorithms on small 

SBCs and offer recommendations for optimizing their performance in such environments. Our analysis aims to shed light on the strengths and 

weaknesses of various object detection algorithms for small SBCs, ultimately guiding practitioners in making informed decisions and 

identifying potential avenues for future research in this domain. 
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I.  INTRODUCTION 

Object detection, a key task in computer vision, is centered 

around identifying the presence and location of objects within 

images or video sequences. It is increasingly gaining 

prominence with wide-ranging applications in robotics, 

surveillance systems, and autonomous vehicles [1]. In the 

contemporary digital era, deep learning-based object detection 

algorithms have been extensively explored and have achieved 

state-of-the-art performance. The algorithms leverage 

convolutional neural networks (CNNs) to extract representative 

features from input images and generate bounding boxes around 

objects of interest. Despite the significant improvements in 

object detection accuracy facilitated by deep learning, these 

algorithms are computationally intensive and require high-

performance hardware for efficient operation [2]. 

In previous research, a variety of object detection algorithms 

have been evaluated and compared on different fronts, including 

accuracy, speed, and resource usage [7][8][9][10][11][12]. 

These studies have utilized a broad range of datasets, such as 

VOC2007, VOC2017, COCO, ImageNet, or a custom dataset, 

applying metrics like mean average precision (mAP), frame-per-

second (FPS), receiver operating characteristic (ROC), training 

time, and precision for a comprehensive evaluation. Despite 

their considerable contributions, most investigations have been 

constrained to industrial-grade systems or high-performance 

computing platforms. Consequently, there remains a notable 

research gap in understanding and quantifying the performance 

of these algorithms when executed on small single-board 

computers (SBCs). This gap signifies the necessity for further 

study in this area, particularly considering the increasing 

relevance of low-cost, compact computing solutions in today's 

technologically driven world. 

SBCs, though limited in computational resources and 

memory, are low-cost, compact devices extensively used in 

embedded systems and IoT applications [3]. Their constrained 

processing power, memory, and storage capabilities present 

unique challenges when running complex algorithms such as 

deep learning-based object detection [3]. Nevertheless, recent 

advancements in SBC technology, like the Jetson Nano, have 

started to make possible the execution of these algorithms on 

small form-factor devices, thereby expanding the horizons for 

object detection applications [3].  

This review article casts a wide net to provide a 

comprehensive overview of the contemporary deep learning-

based object detection algorithms applied to SBCs. We focus 

particularly on the Jetson Nano [4], given its standing as a 

representative example of current SBC technology. By 

analyzing the performance of these algorithms, we evaluate their 

suitability for deployment on SBCs. Our comparison primarily 

involves deep learning-based object detection algorithms, which 
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are YOLOv7 [5], SSD [6] and Faster-RCNN [7], with emphasis 

on their smaller models. We also delve into the computational 

and memory limitations of this device. 

The objective of this review is twofold: to offer valuable 

insights into the strengths and weaknesses of different object 

detection algorithms when deployed on small SBCs, and to 

identify potential areas for future research in this burgeoning 

field. We hope our findings will be useful for researchers and 

practitioners interested in developing object detection systems 

for small single-board computers. In this way, our work 

contributes to the ongoing effort to make deep learning-based 

object detection more accessible on low-cost devices. 

II. LITERATURE REVIEWS 

A. Region-Based Convolutional Neural Network 

1) R-CNN 

R-CNN was introduced by Girshick et al. in 2014. The 

primary goal of R-CNN was to improve detection accuracy by 

using deep learning techniques to generate powerful feature 

representations for objects within an image. R-CNN consists of 

three main steps: 

• Region proposal generation using selective search [27], 

which identifies a set of candidate regions (bounding 

boxes) in the image that may contain objects, 

• Feature extraction uses a pre-trained CNN, which 

processes each region proposal and generates a high-

dimensional feature vector. 

• Classification using a set of support vector machines 

(SVM) [28] classifiers, which assign a class label to 

each region proposal based on the extracted features. 

While R-CNN achieved significantly better accuracy 

compared to previous object detection methods, it had several 

limitations: 

• It was computationally expensive due to the need to 

process each region's proposal separately, resulting in 

slow inference times. 

• The selective search algorithm for region proposal 

generation was slow and not optimized for object 

detection tasks. 

• The multi-stage pipeline, involving selective search, 

CNN, and SVM, was complex and could not be trained 

end-to-end. 

 

2) Fast R-CNN 

Fast R-CNN, introduced by Girshick in 2015, further 

improved the efficiency of R-CNN by introducing several key 

advancements. The Region of Interest (ROI) pooling layer was 

added, allowing for faster processing of region proposals. Fast 

R-CNN also simplified the training process by replacing the 

SVM classifiers with a single multi-task loss function that 

optimized classification and bounding box regression. 

Furthermore, Fast R-CNN processed the entire image through 

CNN to create a feature map, unlike R-CNN, which processed 

each region proposal individually. Fast R-CNN consisted of 

three main steps: 

• Feature extraction using CNN is to process the entire 

image and generates a feature map, capturing high-level 

features from different parts of the image. 

• Region proposal generation using selective search 

which shared with R-CNN, is to identify a set of 

candidate regions (bounding boxes) in the image that 

may contain objects. However, it is important to note 

that the selective search algorithm can be slow, which 

limits both Fast R-CNN and R-CNN. 

• ROI pooling and classification using a fully connected 

network is to assign a class label and refine the bounding 

box coordinates for each region proposal based on the 

pooled features extracted from the feature map. 

Fast R-CNN significantly improved the inference speed and 

efficiency compared to R-CNN and Spatial Pyramid Pooling 

(SPP-net). However, it relied on the slow selective search 

algorithm for region proposal generation. 

 

3) Faster R-CNN 

Faster R-CNN, introduced by Ren et al. in 2015, aimed to 

overcome the remaining bottleneck in Fast R-CNN by replacing 

the selective search algorithm with a Region Proposal Network 

(RPN), a neural network designed specifically for generating 

region proposals. This change resulted in a fully end-to-end 

trainable object detection pipeline that was both fast and 

accurate. Faster R-CNN consists of two main components: 

• The RPN processes the feature map a CNN generates, 

producing a set of candidate region proposals (bounding 

boxes) and their corresponding objectness scores. The 

RPN uses anchor boxes, predefined bounding box 

shapes and sizes, to generate proposals that are more 

likely to contain objects. 

• The ROI pooling and classification module takes the 

region proposals generated by the RPN and pools 

features from the CNN feature map for each proposal. A 

fully connected network then assigns a class label and 

refines the bounding box coordinates for each region 

proposal based on the pooled features. 

By incorporating the RPN into the pipeline, Faster R-CNN 

significantly improved the inference speed compared to Fast R-

CNN while maintaining high accuracy. Faster R-CNN has 

become one of the most widely used and well-regarded object 

detection algorithms in the computer vision community due to 

its combination of speed and accuracy. 
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TABLE I.  RCNN-FAMILY PERFORMANCE 

Reference Models 
Test 

Set 

Input 

Size 

mAP 

(%) 
FPS 

[5] SSD 
VOC 
2007 

300x300 77.2 46 

[5] SSD 
VOC 

2012 
300x300 75.8 46 

[5] SSD COCO 300x300 43.1 46 

[5] SSD 
VOC 
2007 

500x500 79.8 19 

[5] SSD 
VOC 

2012 
500x500 78.5 19 

[5] SSD COCO 500x500 48.5 19 

B. Single-Shot Detection 

SSD, introduced by Liu et al. in 2016, is a fast and accurate 

object detection algorithm that aims to address some of the 

limitations of the R-CNN family, such as the need for a separate 

region proposal generation step. Instead, SSD directly predicts 

the class labels and bounding box coordinates in a single forward 

pass through the network, hence the name "Single Shot." SSD 

consists of the following main components: 

• A base CNN architecture processes the input image and 

generates a feature map. This base network is typically 

a pre-trained deep CNN, such as a 16-layer-depth Visual 

Geometry Group Very Deep Convolutional Networks 

(VGG-16) or Residual Network (ResNet), with the fully 

connected layers removed to allow for variable input 

sizes. 

• Convolutional layers with different aspect ratios and 

scales are added to the base network. These additional 

layers enable the detection of objects at various scales 

and aspect ratios, improving the ability of the network 

to manage objects with different shapes and sizes. 

• Multi-scale feature maps are generated by applying 

convolutional layers to the outputs of the base network 

and the additional layers. These feature maps are used to 

make predictions at different scales, which helps 

improve the detection performance for objects of 

various sizes. 

• Default bounding boxes (anchor boxes or priors) are 

distributed across the feature maps. The network 

predicts the class probabilities and bounding box offsets 

for each default box. 

• A non-maximum suppression (NMS) step removes 

overlapping bounding boxes and retains only the most 

confident predictions for each object class. 

SSD offers several advantages over the R-CNN family of 

algorithms: 

• It is computationally efficient due to the single-shot 

detection mechanism, eliminating the need for a 

separate region proposal generation step. 

• It can manage objects of varying scales and aspect ratios 

using multiple feature maps and convolutional layers 

with different aspect ratios and scales. 

• It has a more straightforward end-to-end training 

process compared to the multi-stage pipelines of the R-

CNN family. 

Despite these advantages, SSD may sometimes 

underperform in detection accuracy compared to Faster R-CNN, 

particularly for small objects. However, the trade-off between 

speed and accuracy has made SSD popular for real-time object 

detection applications. 

TABLE II.  SSD PERFORMANCE 

Reference Models Test Set 
Input 

Size 

mAP 

(%) 
FPS 

[28] RCNN ILSVRC2013 Variable 31.4 0.077 

[28] RCNN VOC 2010 Variable 53.7 0.077 

[6] 
Fast R-

CNN 
VOC 2007 Variable 70 3.33 

[6] 
Fast R-
CNN 

VOC 2010 Variable 68.8 3.33 

[6] 
Fast R-

CNN 
VOC 2012 Variable 68.4 3.33 

[27] 
Faster 

RCNN 
VOC 2007 Variable 78.8 5 

[27] 
Faster 

RCNN 
VOC 2012 Variable 75.9 5 

[27] 
Faster 

RCNN 
COCO Variable 42.1 5 

C. You-Only-Look-Once 

1) YOLOv1 

YOLOv1 (You Only Look Once) is the first version of the 

YOLO object detection algorithm, introduced by Redmon et al. 

in 2016. The primary goal of YOLOv1 was to address the 

limitations of the existing object detection methods at that time, 

which often involved complex pipelines and were 

computationally expensive. YOLOv1 aims to simplify the object 

detection process by framing it as a single regression problem, 

resulting in a faster and more efficient algorithm. 

YOLOv1 divides the input image into a fixed grid (usually 

7x7 or 13x13), and each grid cell predicts a certain number of 

bounding boxes and class probabilities. These predictions are 

then combined to produce the final detection results. This 

approach allows YOLOv1 to process images in real-time, 

achieving high FPS rates. However, YOLOv1 also has some 

limitations: 

• Due to the coarse grid structure, it struggles to detect 

small objects or objects that are close together. 

• The fixed number of bounding box predictions per grid 

cell can lead to suboptimal performance for images with 

varying objects. 
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• The localization accuracy could be improved, as 

YOLOv1 tends to produce imprecise bounding boxes. 

 

2) YOLOv2 

YOLOv2, also known as YOLO9000, was introduced by 

Redmon and Farhadi in 2017 as an improvement over the 

original YOLOv1. YOLOv2 addressed some of the limitations 

of YOLOv1 by introducing several new techniques and 

modifications: 

• Using anchor boxes improves localization accuracy and 

better handles objects of different shapes and sizes. 

• It uses a finer-grained feature by removing one pooling 

layer to obtain an output feature map. Alternatively, it 

uses a grid of 13x13 for input images of 416x416 to 

better detect small objects and objects that are close 

together. 

• Batch normalization in the network to improve the 

training stability and reduce overfitting. 

• The introduction of multi-scale training features enables 

object detection at various scales. 

• It uses a high-resolution classifier by pre-training the 

model with ImageNet at 224x224, similar to YOLOv1. 

This time, however, they fine-tuned the model for ten 

epochs on ImageNet with a resolution of 448x448. It 

improves network performance on higher-resolution 

input and the mAP. 

• Use Darknet 19 as the backbone classifier. 

These improvements led to higher accuracy and mAP scores 

while maintaining the real-time processing speed of YOLOv1. 

 

3) YOLOv3 

YOLOv3, introduced by Redmon and Farhadi in 2018, 

further improved upon YOLOv2 by introducing several key 

changes: 

• Using multi-scale predictions by employing feature 

pyramids allows for more accurate detection of objects 

at different scales and aspect ratios. 

• Predicts four coordinates for each bounding box and an 

objectness score using logistic regression. It assigns one 

anchor box to each object. Only classification loss is 

affected if no anchor box is assigned, not localization or 

confidence loss. 

• It uses binary cross-entropy for class prediction, 

allowing multiple labels for the same bounding box. 

This feature helps handle complex cases, like an object 

being both a "Person" and a "Man". 

YOLOv3 maintained the real-time processing capabilities of 

its predecessors while achieving better mAP scores and 

improved localization accuracy. 

 

4) YOLOv4 

YOLOv4, introduced by Bochkovskiy et al. in 2020, aimed 

to improve the performance of YOLOv3 by incorporating 

several state-of-the-art techniques and modifications: 

• The introduction of CSPNet, a novel network 

architecture, improves the model's information flow and 

gradient propagation. 

• The incorporation of modern techniques, such as Bag of 

Freebies (BoF) and Bag of Specials (BoS), enhances the 

model's overall performance and efficiency. 

YOLOv4 achieved even better mAP scores than YOLOv3 

while maintaining real-time processing speed. 

 

5) YOLOv5 

YOLOv5, developed by Glenn Jocher et al. in 2020, is an 

unofficial continuation of the YOLO series that introduces 

several enhancements and modifications to improve the 

performance and efficiency of the object detection algorithm: 

• Switching to the PyTorch framework from the original 

Darknet framework provides greater flexibility and 

compatibility with other machine-learning tools and 

libraries. 

• Introducing new network architecture variants 

(YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) 

with different sizes and computational requirements 

allows users to choose a model tailored to their specific 

needs and hardware constraints. 

• Advanced data augmentation techniques, such as 

Mosaic and MixUp, improve the model's generalization 

capabilities and robustness against various image 

transformations. 

No scientific paper was published on YOLOv5 at the time of 

this writing. YOLOv5 builds upon the foundations of the 

previous YOLO versions, offering improved mAP scores and 

maintaining real-time processing capabilities while providing a 

more flexible and user-friendly framework for object detection 

tasks. However, it should be noted that YOLOv5 is not an 

official release from the original YOLO authors, as it has been 

developed independently. 

 

6) YOLOv6 

YOLOv6, designed for industrial applications [18], was 

developed by Li et al. in 2022, focusing on hardware-efficient 

design and better performance. The improvements include: 

• A 51% increase in speed using the Anchor-free 

paradigm. 

• Dynamic allocation of positive samples using the 

SimOTA label assignment strategy further enhances 

detection accuracy.  

• Adoption of the SIoU [20] bounding box regression loss 

function to supervise the network during the learning 
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phase, reducing the degree of freedom of regression, 

improving network convergence, and increasing 

regression accuracy. 

As a result, YOLOv6 significantly improves mAP and 

inference speed compared to its predecessor. 

 

7) YOLOv7 

YOLOv7, developed in 2022 by Chien-Yao Wang, Alexey 

Bochkovskiy, and Hong-Yuan Mark Liao, introduces several 

key improvements as outlined in the comprehensive review of 

YOLO architectures in [21] by Terven and Cordova-Esparza 

(2023): 

a) Architecture changes 

• They are accomplished by extending an efficient layer 

aggregation network (E-ELAN). ELAN [22] is a 

strategy that allows a deep model to learn and converge 

more efficiently by controlling the shortest longest 

gradient path. YOLOv7 proposed E-ELAN that works 

for models with unlimited stacked computational 

blocks. E-ELAN combines the features of different 

groups by shuffling and merging cardinality to enhance 

the network's learning without destroying the original 

gradient path. 

• They are scaling the model for a concatenation-based 

model. Scaling generates models of different sizes by 

adjusting some model attributes. The architecture of 

YOLOv7 is a concatenation-based architecture in which 

standard scaling techniques, such as depth scaling, cause 

a ratio change between the input channel and the output 

channel of a transition layer which, in turn, leads to a 

decrease in the hardware usage of the model. YOLOv7 

proposed a new strategy for scaling concatenation-based 

models in which the depth and width of the block are 

scaled with the same factor to maintain the optimal 

structure of the model. 

b) Bag-of-freebies updates 

• They planned a re-parameterized convolution. Like 

YOLOv6, the architecture of YOLOv7 is also inspired 

by re-parameterized convolutions (RepConv) [23]. 

However, they found that the identity connection in 

RepConv destroys the residual in ResNet [24] and the 

concatenation in DenseNet [25]. For this reason, they 

removed the identity connection and called it 

RepConvN.  

• The coarse label assignment is targeted at the auxiliary 

head, and the fine label assignment is for the lead head. 

The lead head is responsible for the final output, while 

the auxiliary head assists with the training.  

• Batch normalization in conv-bn-activation integrates the 

mean and variance of batch normalization into the bias 

and weight of the convolutional layer at the inference 

stage.  

• The implicit knowledge is inspired by YOLOR [26].  

• Exponential moving average as the final inference 

model. 

TABLE III.  YOLO-FAMILY PERFORMANCE 

Reference Models Test Set Input Size 
mAP 

(%) 
FPS 

[11] YOLOv1 VOC 2007 448x448 63.4 45 

[12] YOLOv2 VOC 2007 288x288 69 91 

[12] YOLOv2 VOC 2007 352x352 73.7 81 

[12] YOLOv2 VOC 2007 416x416 76.8 67 

[12] YOLOv2 VOC 2007 480x480 77.8 59 

[12] YOLOv2 VOC 2007 544x544 78.6 40 

[13] YOLOv3 COCO 320x320 51.5 38 

[13] YOLOv3 COCO 416x416 55.3 31 

[13] YOLOv3 COCO 608x608 57.9 23 

[14] YOLOv4 COCO 416x416 62.8 38 

[14] YOLOv4 COCO 512x512 64.9 31 

[14] YOLOv4 COCO 608x608 65.7 23 

[15] YOLOv5 COCO 640x640 67.3 99 

[16] YOLOv6 COCO 640x640 70 98 

[17] YOLOv7 COCO 640x640 69.7 161 

III. METHODOLOGIES 

A. Algorithms 

In this study, we compare the performance of three state-of-

the-art object detection algorithms: 

• Faster-RCNN: A region-based convolutional neural 

network that combines region proposal networks 

(RPNs) with a Fast R-CNN model for accurate object 

detection [7]. 

• Single-Shot Detector (SSD): A single-shot multi-box 

detector streamlines the object detection process by 

simultaneously predicting object categories and 

bounding box coordinates [6]. 

• YOLOV7: At the time of writing, it is one of the latest 

versions of the YOLO family, a real-time object 

detection algorithm that utilizes a single convolutional 

network to predict object classes and bounding boxes in 

one pass [5]. 

B. Evaluation Metrics 

The performance of each object detection algorithm will be 

accessed using the following metrics. 
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• Frame Per Second: The algorithm's processing speed 

is calculated as the number of processed frames per 

second. 

• Inference Time: Time taken by the algorithm to 

generate object detection predictions for a single input 

image.  

• Power Usage: Amount of electrical power consumed by 

the small single-board computer during the execution of 

each object detection algorithm. 

• Mean Average Precision: We will use each algorithm's 

reported mAP on the COCO dataset, as this study will 

not retrain the models. 

C. Experimental Setup 

We will experiment on a small single-board computer 

platform: NVIDIA Jetson Nano. The object detection algorithms 

will be implemented using one of the popular deep learning 

frameworks called PyTorch. Pre-trained models for each 

algorithm, trained on the COCO dataset, will be used for 

inference. The evaluation metrics will be computed for each 

algorithm, and the results will be compared and analyzed to 

identify the best-performing algorithm for small single-board 

computer platforms. 

D. Data Analysis 

The performance results obtained for each algorithm on the 

small single-board computer platforms will be analyzed using a 

table to present the comparative results for FPS, inference time, 

power usage, and mAP. The findings will be discussed in the 

context of the research question and objectives. 

Recommendations will be made for the most suitable object 

detection algorithm for deployment in resource-constrained 

environments. 

IV. COMPARATIVE ANALYSIS 

TABLE IV.  ALGORITHMS COMPARISON 

Algorithms 

Average 

Inference 

Time 

(ms) 

Average 

FPS 

Average 

Power 

Usage (W) 

mAP (%) 

Faster R-

CNN 

Mobilenet 

v3 Large 

FPN 

0.52 1.91 8.70 32.8 [41] 

Faster R-

CNN 

Mobilenet 

v3 Large 

320 FPN 

0.22 4.45 7.46 22.8 [41] 

SSD 300 

VGG16 
0.54 1.88 8.23 43.1 [5] 

Algorithms 

Average 

Inference 

Time 

(ms) 

Average 

FPS 

Average 

Power 

Usage (W) 

mAP (%) 

SSDLite 

320 

Mobilenet 

0.31 3.26 5.69 22.0 [40] 

YOLOv7 0.89 1.12 7.51 69.7 [17] 

YOLOv7x 1.45 0.668 3.041 71.2 [17] 

YOLOv7-

w6 
0.85 1.18 7.516 72.6 [17] 

YOLOv7-

tiny 
0.21 4.7 7.2 56.7 [17] 

 

Table IV shows a detailed comparison of object detection 

models, each with its unique trade-offs concerning inference 

time, frame per second (FPS), GPU power usage, and mAP 

(mean Average Precision). 

 

Starting with the Faster R-CNN models, which employ the 

MobileNet v3 with a large FPN, two configurations are evident 

based on input image dimensions. The standard Faster R-CNN 

recorded an inference time of 0.52 ms, achieving an FPS of 

1.91, consuming 8.70W of power, and an mAP of 32.8% [41]. 

Its counterpart, processing a smaller input image size of 

320x320 pixels, boasts a speedier inference time of 0.22 ms and 

a superior FPS of 4.45, but sacrifices some accuracy, with an 

mAP of 22.8% [41]. It is also marginally more energy-efficient, 

drawing only 7.46W. 

 

Regarding the SSD family, the SSD model uses the VGG16 

backbone and an input image of 300x300 pixels. It has an 

inference time of 0.54 ms, similar in speed to the standard Faster 

R-CNN with MobileNet v3, generating 1.88 FPS with a power 

demand of 8.23W. Notably, it leads to accuracy with a mAP of 

43.1% [5]. In contrast, the SSDLite, leveraging the MobileNet 

backbone and processing images of 320x320 pixels, finds a 

balance with an inference time of 0.31 ms, FPS of 3.26, and a 

power consumption of 5.69W. Its mAP stands at 22.0%, 

illustrating the trade-off for its speed and efficiency. 

 

The YOLOv7 family, apt for SBD, highlights a diverse 

range of performance metrics. The base YOLOv7 model has an 

inference time of 0.89 ms, 1.12 FPS, consumes 7.51W, and 

achieves an impressive mAP of 69.7% [17]. The YOLOv7x 

variant, possibly fine-tuned for power efficiency, exhibits an 

inference time of 1.45 ms, 0.668 FPS, and a lower power 

footprint at 3.041W, but slightly outperforms the base model 

with a mAP of 71.2% [17]. The YOLOv7-w6 aligns with an 

inference time of 0.85 ms, 1.18 FPS, power usage of 7.516W, 

and a mAP of 72.6% [17]. Lastly, the YOLOv7-tiny, optimized 

for speed, clocks an inference time of 0.21 ms, the highest FPS 

at 4.7, with a power consumption of 7.2W. Its mAP at 56.7% 
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[17] suggests a slight compromise in accuracy compared to its 

larger counterparts. 

 

In summary, Faster R-CNN models with MobileNet v3 and 

large FPN offer variations based on image size, weighing 

between speed and accuracy. SSD models present a choice 

between the robust VGG16 backbone and the streamlined 

MobileNet for efficiency. The YOLOv7 variants cater to a wide 

array of applications, from precision to real-time detection, 

matching diverse project needs. 

 

It is vital to recognize that these results might shift when 

models are fine-tuned with TensorRT or executed in different 

hardware or software settings. Hence, a comprehensive 

understanding of a project's requirements should drive the final 

model selection, weighing parameters like speed, accuracy, and 

power efficiency. 

V. APPLICATIONS AND CHALLENGES 

A. Applications 

Object detection algorithms, especially when deployed on small 

single-board computers, have numerous practical applications 

across various domains. Some of these applications include: 

a) Surveillance and security: Object detection algorithms 

can monitor public spaces, detect suspicious activities, identify 

objects left unattended, and recognize unauthorized entries [29]. 

b) Autonomous vehicles: Object detection plays a crucial 

role in autonomous vehicles, where accurate and real-time 

detection of pedestrians, vehicles, and other obstacles is essential 

for safe navigation [30]. 

c) Smart agriculture: Farmers can utilize object detection 

algorithms to identify crop diseases, monitor livestock, and track 

the growth of plants, enabling more efficient and sustainable 

farming practices [31]. 

d) Retail and inventory management: Object detection can 

be employed to track products on shelves, monitor stock levels, 

and detect misplaced or missing items in retail environments 

[32]. 

e) Healthcare: In medical imaging, object detection 

algorithms can identify and localize abnormalities, such as 

tumors or lesions, in medical scans, assisting doctors in 

diagnosing and treating various conditions [33]. 

f) Robotics: Object detection is a critical component in 

robotic systems, enabling robots to navigate their environments, 

recognize and manipulate objects, and perform complex tasks 

[34]. 

B. Challenges 

Despite the potential benefits of object detection algorithms in 

small single-board computers, there are several challenges 

associated with their deployment: 

a) Computational limitations: Small single-board 

computers often have limited processing power, memory, and 

storage, which may hinder the performance of object detection 

algorithms, particularly deep learning-based methods that 

require substantial computational resources [35][36]. 

b) Power consumption: Object detection algorithms can 

be power-intensive, and optimizing their power usage is crucial 

for deployment in battery-powered devices or energy-

constrained environments [36]. 

c) Model complexity and size: Deep learning models for 

object detection can be large and computationally expensive, 

making deploying them on resource-constrained platforms 

challenging. Model compression and optimization techniques 

may be required to reduce the size and complexity of these 

models without sacrificing accuracy [35][36]. 

d) Real-time performance: Some applications, such as 

autonomous vehicles or robotics, demand real-time object 

detection. Ensuring that object detection algorithms can process 

and analyze data at high speeds is critical for these use cases 

[11]. 

e) Adaptability and generalization: Object detection 

algorithms should be capable of adapting to different 

environments and conditions, such as varying lighting, 

occlusions, or object orientations. Ensuring that the algorithms 

generalize well to new situations is an ongoing challenge [38]. 

f) Privacy and ethical considerations: As object detection 

algorithms are increasingly used in surveillance and monitoring 

applications, concerns about privacy, data protection, and 

potential biases in the algorithms must be addressed [39]. 

VI. CONCLUSIONS 

This study aimed to compare the performance of three state-

of-the-art object detection algorithms—Faster R-CNN, SSD, 

and YOLOv7—on small single-board computers, specifically 

Raspberry Pi and NVIDIA Jetson Nano. We evaluated the 

algorithms based on various performance metrics, including 

frames per second (FPS), inference time, power usage, and 

accuracy (mAP). Our analysis highlighted the trade-offs 

between these metrics, which are crucial in determining the most 

suitable algorithm for deployment in resource-constrained 

environments. 

Based on our comparative analysis, YOLOv7 emerged as the 

most promising algorithm for small single-board computers, 

given its high processing speed, low inference time, and 

competitive accuracy. However, it is essential to consider the 

specific requirements and constraints of the target application 
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when selecting an object detection algorithm, as different 

scenarios may prioritize different aspects of performance. 

Object detection algorithms have numerous potential 

applications across various domains, including surveillance, 

autonomous vehicles, smart agriculture, retail, healthcare, and 

robotics. However, challenges are associated with deploying 

these algorithms on small single-board computers, such as 

computational limitations, power consumption, model 

complexity, real-time performance, adaptability, and privacy 

concerns. Future research should focus on developing 

algorithms and techniques that address these challenges and are 

tailored to the specific constraints of small single-board 

computer platforms. 

In conclusion, this study offers valuable insights into the 

performance of different object detection algorithms on small 

single-board computers. It provides a foundation for further 

research and development in this area. By continuing to explore 

and optimize these algorithms, we can unlock the full potential 

of small single-board computers and enable their widespread 

adoption across various applications and industries. 
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