
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 244

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Comparative Review of Object Detection

Algorithms in Small Single-Board Computers

Tuan Muhammad Naeem Bin Tuan Rashid1, Lokman Mohd Fadzil2
1National Advanced IPv6 Centre (NAv6)

University Sains Malaysia (USM)

Penang, Malaysia

e-mail: tnaeemtrashid@student.usm.my
2National Advanced IPv6 Centre (NAv6)

University Sains Malaysia (USM)

Penang, Malaysia

e-mail: lokman.mohd.fadzil@usm.my

Abstract— Object detection is a crucial task in computer vision with a wide range of applications. However, deploying object detection

algorithms on small single-board computers (SBCs) poses unique challenges. In this review article, we present an in-depth comparative analysis

of object detection algorithms tailored for small SBCs. We have conducted an extensive literature review on existing research in object detection

algorithms and evaluated the performance of different approaches on benchmark datasets. Our review encompasses cutting-edge deep learning

methods, which are YOLO, SSD, and Faster R-CNN. We delve into the challenges and limitations of implementing these algorithms on small

SBCs and offer recommendations for optimizing their performance in such environments. Our analysis aims to shed light on the strengths and

weaknesses of various object detection algorithms for small SBCs, ultimately guiding practitioners in making informed decisions and

identifying potential avenues for future research in this domain.

Keywords- computer vision, machine learning, embedded system, IoT applications, performance benchmarking.

I. INTRODUCTION

Object detection, a key task in computer vision, is centered

around identifying the presence and location of objects within

images or video sequences. It is increasingly gaining

prominence with wide-ranging applications in robotics,

surveillance systems, and autonomous vehicles [1]. In the

contemporary digital era, deep learning-based object detection

algorithms have been extensively explored and have achieved

state-of-the-art performance. The algorithms leverage

convolutional neural networks (CNNs) to extract representative

features from input images and generate bounding boxes around

objects of interest. Despite the significant improvements in

object detection accuracy facilitated by deep learning, these

algorithms are computationally intensive and require high-

performance hardware for efficient operation [2].

In previous research, a variety of object detection algorithms

have been evaluated and compared on different fronts, including

accuracy, speed, and resource usage [7][8][9][10][11][12].

These studies have utilized a broad range of datasets, such as

VOC2007, VOC2017, COCO, ImageNet, or a custom dataset,

applying metrics like mean average precision (mAP), frame-per-

second (FPS), receiver operating characteristic (ROC), training

time, and precision for a comprehensive evaluation. Despite

their considerable contributions, most investigations have been

constrained to industrial-grade systems or high-performance

computing platforms. Consequently, there remains a notable

research gap in understanding and quantifying the performance

of these algorithms when executed on small single-board

computers (SBCs). This gap signifies the necessity for further

study in this area, particularly considering the increasing

relevance of low-cost, compact computing solutions in today's

technologically driven world.

SBCs, though limited in computational resources and

memory, are low-cost, compact devices extensively used in

embedded systems and IoT applications [3]. Their constrained

processing power, memory, and storage capabilities present

unique challenges when running complex algorithms such as

deep learning-based object detection [3]. Nevertheless, recent

advancements in SBC technology, like the Jetson Nano, have

started to make possible the execution of these algorithms on

small form-factor devices, thereby expanding the horizons for

object detection applications [3].

This review article casts a wide net to provide a

comprehensive overview of the contemporary deep learning-

based object detection algorithms applied to SBCs. We focus

particularly on the Jetson Nano [4], given its standing as a

representative example of current SBC technology. By

analyzing the performance of these algorithms, we evaluate their

suitability for deployment on SBCs. Our comparison primarily

involves deep learning-based object detection algorithms, which

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 245

IJRITCC | July 2023, Available @ http://www.ijritcc.org

are YOLOv7 [5], SSD [6] and Faster-RCNN [7], with emphasis

on their smaller models. We also delve into the computational

and memory limitations of this device.

The objective of this review is twofold: to offer valuable

insights into the strengths and weaknesses of different object

detection algorithms when deployed on small SBCs, and to

identify potential areas for future research in this burgeoning

field. We hope our findings will be useful for researchers and

practitioners interested in developing object detection systems

for small single-board computers. In this way, our work

contributes to the ongoing effort to make deep learning-based

object detection more accessible on low-cost devices.

II. LITERATURE REVIEWS

A. Region-Based Convolutional Neural Network

1) R-CNN

R-CNN was introduced by Girshick et al. in 2014. The

primary goal of R-CNN was to improve detection accuracy by

using deep learning techniques to generate powerful feature

representations for objects within an image. R-CNN consists of

three main steps:

• Region proposal generation using selective search [27],

which identifies a set of candidate regions (bounding

boxes) in the image that may contain objects,

• Feature extraction uses a pre-trained CNN, which

processes each region proposal and generates a high-

dimensional feature vector.

• Classification using a set of support vector machines

(SVM) [28] classifiers, which assign a class label to

each region proposal based on the extracted features.

While R-CNN achieved significantly better accuracy

compared to previous object detection methods, it had several

limitations:

• It was computationally expensive due to the need to

process each region's proposal separately, resulting in

slow inference times.

• The selective search algorithm for region proposal

generation was slow and not optimized for object

detection tasks.

• The multi-stage pipeline, involving selective search,

CNN, and SVM, was complex and could not be trained

end-to-end.

2) Fast R-CNN

Fast R-CNN, introduced by Girshick in 2015, further

improved the efficiency of R-CNN by introducing several key

advancements. The Region of Interest (ROI) pooling layer was

added, allowing for faster processing of region proposals. Fast

R-CNN also simplified the training process by replacing the

SVM classifiers with a single multi-task loss function that

optimized classification and bounding box regression.

Furthermore, Fast R-CNN processed the entire image through

CNN to create a feature map, unlike R-CNN, which processed

each region proposal individually. Fast R-CNN consisted of

three main steps:

• Feature extraction using CNN is to process the entire

image and generates a feature map, capturing high-level

features from different parts of the image.

• Region proposal generation using selective search

which shared with R-CNN, is to identify a set of

candidate regions (bounding boxes) in the image that

may contain objects. However, it is important to note

that the selective search algorithm can be slow, which

limits both Fast R-CNN and R-CNN.

• ROI pooling and classification using a fully connected

network is to assign a class label and refine the bounding

box coordinates for each region proposal based on the

pooled features extracted from the feature map.

Fast R-CNN significantly improved the inference speed and

efficiency compared to R-CNN and Spatial Pyramid Pooling

(SPP-net). However, it relied on the slow selective search

algorithm for region proposal generation.

3) Faster R-CNN

Faster R-CNN, introduced by Ren et al. in 2015, aimed to

overcome the remaining bottleneck in Fast R-CNN by replacing

the selective search algorithm with a Region Proposal Network

(RPN), a neural network designed specifically for generating

region proposals. This change resulted in a fully end-to-end

trainable object detection pipeline that was both fast and

accurate. Faster R-CNN consists of two main components:

• The RPN processes the feature map a CNN generates,

producing a set of candidate region proposals (bounding

boxes) and their corresponding objectness scores. The

RPN uses anchor boxes, predefined bounding box

shapes and sizes, to generate proposals that are more

likely to contain objects.

• The ROI pooling and classification module takes the

region proposals generated by the RPN and pools

features from the CNN feature map for each proposal. A

fully connected network then assigns a class label and

refines the bounding box coordinates for each region

proposal based on the pooled features.

By incorporating the RPN into the pipeline, Faster R-CNN

significantly improved the inference speed compared to Fast R-

CNN while maintaining high accuracy. Faster R-CNN has

become one of the most widely used and well-regarded object

detection algorithms in the computer vision community due to

its combination of speed and accuracy.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 246

IJRITCC | July 2023, Available @ http://www.ijritcc.org

TABLE I. RCNN-FAMILY PERFORMANCE

Reference Models
Test

Set

Input

Size

mAP

(%)
FPS

[5] SSD
VOC
2007

300x300 77.2 46

[5] SSD
VOC

2012
300x300 75.8 46

[5] SSD COCO 300x300 43.1 46

[5] SSD
VOC
2007

500x500 79.8 19

[5] SSD
VOC

2012
500x500 78.5 19

[5] SSD COCO 500x500 48.5 19

B. Single-Shot Detection

SSD, introduced by Liu et al. in 2016, is a fast and accurate

object detection algorithm that aims to address some of the

limitations of the R-CNN family, such as the need for a separate

region proposal generation step. Instead, SSD directly predicts

the class labels and bounding box coordinates in a single forward

pass through the network, hence the name "Single Shot." SSD

consists of the following main components:

• A base CNN architecture processes the input image and

generates a feature map. This base network is typically

a pre-trained deep CNN, such as a 16-layer-depth Visual

Geometry Group Very Deep Convolutional Networks

(VGG-16) or Residual Network (ResNet), with the fully

connected layers removed to allow for variable input

sizes.

• Convolutional layers with different aspect ratios and

scales are added to the base network. These additional

layers enable the detection of objects at various scales

and aspect ratios, improving the ability of the network

to manage objects with different shapes and sizes.

• Multi-scale feature maps are generated by applying

convolutional layers to the outputs of the base network

and the additional layers. These feature maps are used to

make predictions at different scales, which helps

improve the detection performance for objects of

various sizes.

• Default bounding boxes (anchor boxes or priors) are

distributed across the feature maps. The network

predicts the class probabilities and bounding box offsets

for each default box.

• A non-maximum suppression (NMS) step removes

overlapping bounding boxes and retains only the most

confident predictions for each object class.

SSD offers several advantages over the R-CNN family of

algorithms:

• It is computationally efficient due to the single-shot

detection mechanism, eliminating the need for a

separate region proposal generation step.

• It can manage objects of varying scales and aspect ratios

using multiple feature maps and convolutional layers

with different aspect ratios and scales.

• It has a more straightforward end-to-end training

process compared to the multi-stage pipelines of the R-

CNN family.

Despite these advantages, SSD may sometimes

underperform in detection accuracy compared to Faster R-CNN,

particularly for small objects. However, the trade-off between

speed and accuracy has made SSD popular for real-time object

detection applications.

TABLE II. SSD PERFORMANCE

Reference Models Test Set
Input

Size

mAP

(%)
FPS

[28] RCNN ILSVRC2013 Variable 31.4 0.077

[28] RCNN VOC 2010 Variable 53.7 0.077

[6]
Fast R-

CNN
VOC 2007 Variable 70 3.33

[6]
Fast R-
CNN

VOC 2010 Variable 68.8 3.33

[6]
Fast R-

CNN
VOC 2012 Variable 68.4 3.33

[27]
Faster

RCNN
VOC 2007 Variable 78.8 5

[27]
Faster

RCNN
VOC 2012 Variable 75.9 5

[27]
Faster

RCNN
COCO Variable 42.1 5

C. You-Only-Look-Once

1) YOLOv1

YOLOv1 (You Only Look Once) is the first version of the

YOLO object detection algorithm, introduced by Redmon et al.

in 2016. The primary goal of YOLOv1 was to address the

limitations of the existing object detection methods at that time,

which often involved complex pipelines and were

computationally expensive. YOLOv1 aims to simplify the object

detection process by framing it as a single regression problem,

resulting in a faster and more efficient algorithm.

YOLOv1 divides the input image into a fixed grid (usually

7x7 or 13x13), and each grid cell predicts a certain number of

bounding boxes and class probabilities. These predictions are

then combined to produce the final detection results. This

approach allows YOLOv1 to process images in real-time,

achieving high FPS rates. However, YOLOv1 also has some

limitations:

• Due to the coarse grid structure, it struggles to detect

small objects or objects that are close together.

• The fixed number of bounding box predictions per grid

cell can lead to suboptimal performance for images with

varying objects.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 247

IJRITCC | July 2023, Available @ http://www.ijritcc.org

• The localization accuracy could be improved, as

YOLOv1 tends to produce imprecise bounding boxes.

2) YOLOv2

YOLOv2, also known as YOLO9000, was introduced by

Redmon and Farhadi in 2017 as an improvement over the

original YOLOv1. YOLOv2 addressed some of the limitations

of YOLOv1 by introducing several new techniques and

modifications:

• Using anchor boxes improves localization accuracy and

better handles objects of different shapes and sizes.

• It uses a finer-grained feature by removing one pooling

layer to obtain an output feature map. Alternatively, it

uses a grid of 13x13 for input images of 416x416 to

better detect small objects and objects that are close

together.

• Batch normalization in the network to improve the

training stability and reduce overfitting.

• The introduction of multi-scale training features enables

object detection at various scales.

• It uses a high-resolution classifier by pre-training the

model with ImageNet at 224x224, similar to YOLOv1.

This time, however, they fine-tuned the model for ten

epochs on ImageNet with a resolution of 448x448. It

improves network performance on higher-resolution

input and the mAP.

• Use Darknet 19 as the backbone classifier.

These improvements led to higher accuracy and mAP scores

while maintaining the real-time processing speed of YOLOv1.

3) YOLOv3

YOLOv3, introduced by Redmon and Farhadi in 2018,

further improved upon YOLOv2 by introducing several key

changes:

• Using multi-scale predictions by employing feature

pyramids allows for more accurate detection of objects

at different scales and aspect ratios.

• Predicts four coordinates for each bounding box and an

objectness score using logistic regression. It assigns one

anchor box to each object. Only classification loss is

affected if no anchor box is assigned, not localization or

confidence loss.

• It uses binary cross-entropy for class prediction,

allowing multiple labels for the same bounding box.

This feature helps handle complex cases, like an object

being both a "Person" and a "Man".

YOLOv3 maintained the real-time processing capabilities of

its predecessors while achieving better mAP scores and

improved localization accuracy.

4) YOLOv4

YOLOv4, introduced by Bochkovskiy et al. in 2020, aimed

to improve the performance of YOLOv3 by incorporating

several state-of-the-art techniques and modifications:

• The introduction of CSPNet, a novel network

architecture, improves the model's information flow and

gradient propagation.

• The incorporation of modern techniques, such as Bag of

Freebies (BoF) and Bag of Specials (BoS), enhances the

model's overall performance and efficiency.

YOLOv4 achieved even better mAP scores than YOLOv3

while maintaining real-time processing speed.

5) YOLOv5

YOLOv5, developed by Glenn Jocher et al. in 2020, is an

unofficial continuation of the YOLO series that introduces

several enhancements and modifications to improve the

performance and efficiency of the object detection algorithm:

• Switching to the PyTorch framework from the original

Darknet framework provides greater flexibility and

compatibility with other machine-learning tools and

libraries.

• Introducing new network architecture variants

(YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x)

with different sizes and computational requirements

allows users to choose a model tailored to their specific

needs and hardware constraints.

• Advanced data augmentation techniques, such as

Mosaic and MixUp, improve the model's generalization

capabilities and robustness against various image

transformations.

No scientific paper was published on YOLOv5 at the time of

this writing. YOLOv5 builds upon the foundations of the

previous YOLO versions, offering improved mAP scores and

maintaining real-time processing capabilities while providing a

more flexible and user-friendly framework for object detection

tasks. However, it should be noted that YOLOv5 is not an

official release from the original YOLO authors, as it has been

developed independently.

6) YOLOv6

YOLOv6, designed for industrial applications [18], was

developed by Li et al. in 2022, focusing on hardware-efficient

design and better performance. The improvements include:

• A 51% increase in speed using the Anchor-free

paradigm.

• Dynamic allocation of positive samples using the

SimOTA label assignment strategy further enhances

detection accuracy.

• Adoption of the SIoU [20] bounding box regression loss

function to supervise the network during the learning

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 248

IJRITCC | July 2023, Available @ http://www.ijritcc.org

phase, reducing the degree of freedom of regression,

improving network convergence, and increasing

regression accuracy.

As a result, YOLOv6 significantly improves mAP and

inference speed compared to its predecessor.

7) YOLOv7

YOLOv7, developed in 2022 by Chien-Yao Wang, Alexey

Bochkovskiy, and Hong-Yuan Mark Liao, introduces several

key improvements as outlined in the comprehensive review of

YOLO architectures in [21] by Terven and Cordova-Esparza

(2023):

a) Architecture changes

• They are accomplished by extending an efficient layer

aggregation network (E-ELAN). ELAN [22] is a

strategy that allows a deep model to learn and converge

more efficiently by controlling the shortest longest

gradient path. YOLOv7 proposed E-ELAN that works

for models with unlimited stacked computational

blocks. E-ELAN combines the features of different

groups by shuffling and merging cardinality to enhance

the network's learning without destroying the original

gradient path.

• They are scaling the model for a concatenation-based

model. Scaling generates models of different sizes by

adjusting some model attributes. The architecture of

YOLOv7 is a concatenation-based architecture in which

standard scaling techniques, such as depth scaling, cause

a ratio change between the input channel and the output

channel of a transition layer which, in turn, leads to a

decrease in the hardware usage of the model. YOLOv7

proposed a new strategy for scaling concatenation-based

models in which the depth and width of the block are

scaled with the same factor to maintain the optimal

structure of the model.

b) Bag-of-freebies updates

• They planned a re-parameterized convolution. Like

YOLOv6, the architecture of YOLOv7 is also inspired

by re-parameterized convolutions (RepConv) [23].

However, they found that the identity connection in

RepConv destroys the residual in ResNet [24] and the

concatenation in DenseNet [25]. For this reason, they

removed the identity connection and called it

RepConvN.

• The coarse label assignment is targeted at the auxiliary

head, and the fine label assignment is for the lead head.

The lead head is responsible for the final output, while

the auxiliary head assists with the training.

• Batch normalization in conv-bn-activation integrates the

mean and variance of batch normalization into the bias

and weight of the convolutional layer at the inference

stage.

• The implicit knowledge is inspired by YOLOR [26].

• Exponential moving average as the final inference

model.

TABLE III. YOLO-FAMILY PERFORMANCE

Reference Models Test Set Input Size
mAP

(%)
FPS

[11] YOLOv1 VOC 2007 448x448 63.4 45

[12] YOLOv2 VOC 2007 288x288 69 91

[12] YOLOv2 VOC 2007 352x352 73.7 81

[12] YOLOv2 VOC 2007 416x416 76.8 67

[12] YOLOv2 VOC 2007 480x480 77.8 59

[12] YOLOv2 VOC 2007 544x544 78.6 40

[13] YOLOv3 COCO 320x320 51.5 38

[13] YOLOv3 COCO 416x416 55.3 31

[13] YOLOv3 COCO 608x608 57.9 23

[14] YOLOv4 COCO 416x416 62.8 38

[14] YOLOv4 COCO 512x512 64.9 31

[14] YOLOv4 COCO 608x608 65.7 23

[15] YOLOv5 COCO 640x640 67.3 99

[16] YOLOv6 COCO 640x640 70 98

[17] YOLOv7 COCO 640x640 69.7 161

III. METHODOLOGIES

A. Algorithms

In this study, we compare the performance of three state-of-

the-art object detection algorithms:

• Faster-RCNN: A region-based convolutional neural

network that combines region proposal networks

(RPNs) with a Fast R-CNN model for accurate object

detection [7].

• Single-Shot Detector (SSD): A single-shot multi-box

detector streamlines the object detection process by

simultaneously predicting object categories and

bounding box coordinates [6].

• YOLOV7: At the time of writing, it is one of the latest

versions of the YOLO family, a real-time object

detection algorithm that utilizes a single convolutional

network to predict object classes and bounding boxes in

one pass [5].

B. Evaluation Metrics

The performance of each object detection algorithm will be

accessed using the following metrics.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 249

IJRITCC | July 2023, Available @ http://www.ijritcc.org

• Frame Per Second: The algorithm's processing speed

is calculated as the number of processed frames per

second.

• Inference Time: Time taken by the algorithm to

generate object detection predictions for a single input

image.

• Power Usage: Amount of electrical power consumed by

the small single-board computer during the execution of

each object detection algorithm.

• Mean Average Precision: We will use each algorithm's

reported mAP on the COCO dataset, as this study will

not retrain the models.

C. Experimental Setup

We will experiment on a small single-board computer

platform: NVIDIA Jetson Nano. The object detection algorithms

will be implemented using one of the popular deep learning

frameworks called PyTorch. Pre-trained models for each

algorithm, trained on the COCO dataset, will be used for

inference. The evaluation metrics will be computed for each

algorithm, and the results will be compared and analyzed to

identify the best-performing algorithm for small single-board

computer platforms.

D. Data Analysis

The performance results obtained for each algorithm on the

small single-board computer platforms will be analyzed using a

table to present the comparative results for FPS, inference time,

power usage, and mAP. The findings will be discussed in the

context of the research question and objectives.

Recommendations will be made for the most suitable object

detection algorithm for deployment in resource-constrained

environments.

IV. COMPARATIVE ANALYSIS

TABLE IV. ALGORITHMS COMPARISON

Algorithms

Average

Inference

Time

(ms)

Average

FPS

Average

Power

Usage (W)

mAP (%)

Faster R-

CNN

Mobilenet

v3 Large

FPN

0.52 1.91 8.70 32.8 [41]

Faster R-

CNN

Mobilenet

v3 Large

320 FPN

0.22 4.45 7.46 22.8 [41]

SSD 300

VGG16
0.54 1.88 8.23 43.1 [5]

Algorithms

Average

Inference

Time

(ms)

Average

FPS

Average

Power

Usage (W)

mAP (%)

SSDLite

320

Mobilenet

0.31 3.26 5.69 22.0 [40]

YOLOv7 0.89 1.12 7.51 69.7 [17]

YOLOv7x 1.45 0.668 3.041 71.2 [17]

YOLOv7-

w6
0.85 1.18 7.516 72.6 [17]

YOLOv7-

tiny
0.21 4.7 7.2 56.7 [17]

Table IV shows a detailed comparison of object detection

models, each with its unique trade-offs concerning inference

time, frame per second (FPS), GPU power usage, and mAP

(mean Average Precision).

Starting with the Faster R-CNN models, which employ the

MobileNet v3 with a large FPN, two configurations are evident

based on input image dimensions. The standard Faster R-CNN

recorded an inference time of 0.52 ms, achieving an FPS of

1.91, consuming 8.70W of power, and an mAP of 32.8% [41].

Its counterpart, processing a smaller input image size of

320x320 pixels, boasts a speedier inference time of 0.22 ms and

a superior FPS of 4.45, but sacrifices some accuracy, with an

mAP of 22.8% [41]. It is also marginally more energy-efficient,

drawing only 7.46W.

Regarding the SSD family, the SSD model uses the VGG16

backbone and an input image of 300x300 pixels. It has an

inference time of 0.54 ms, similar in speed to the standard Faster

R-CNN with MobileNet v3, generating 1.88 FPS with a power

demand of 8.23W. Notably, it leads to accuracy with a mAP of

43.1% [5]. In contrast, the SSDLite, leveraging the MobileNet

backbone and processing images of 320x320 pixels, finds a

balance with an inference time of 0.31 ms, FPS of 3.26, and a

power consumption of 5.69W. Its mAP stands at 22.0%,

illustrating the trade-off for its speed and efficiency.

The YOLOv7 family, apt for SBD, highlights a diverse

range of performance metrics. The base YOLOv7 model has an

inference time of 0.89 ms, 1.12 FPS, consumes 7.51W, and

achieves an impressive mAP of 69.7% [17]. The YOLOv7x

variant, possibly fine-tuned for power efficiency, exhibits an

inference time of 1.45 ms, 0.668 FPS, and a lower power

footprint at 3.041W, but slightly outperforms the base model

with a mAP of 71.2% [17]. The YOLOv7-w6 aligns with an

inference time of 0.85 ms, 1.18 FPS, power usage of 7.516W,

and a mAP of 72.6% [17]. Lastly, the YOLOv7-tiny, optimized

for speed, clocks an inference time of 0.21 ms, the highest FPS

at 4.7, with a power consumption of 7.2W. Its mAP at 56.7%

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 250

IJRITCC | July 2023, Available @ http://www.ijritcc.org

[17] suggests a slight compromise in accuracy compared to its

larger counterparts.

In summary, Faster R-CNN models with MobileNet v3 and

large FPN offer variations based on image size, weighing

between speed and accuracy. SSD models present a choice

between the robust VGG16 backbone and the streamlined

MobileNet for efficiency. The YOLOv7 variants cater to a wide

array of applications, from precision to real-time detection,

matching diverse project needs.

It is vital to recognize that these results might shift when

models are fine-tuned with TensorRT or executed in different

hardware or software settings. Hence, a comprehensive

understanding of a project's requirements should drive the final

model selection, weighing parameters like speed, accuracy, and

power efficiency.

V. APPLICATIONS AND CHALLENGES

A. Applications

Object detection algorithms, especially when deployed on small

single-board computers, have numerous practical applications

across various domains. Some of these applications include:

a) Surveillance and security: Object detection algorithms

can monitor public spaces, detect suspicious activities, identify

objects left unattended, and recognize unauthorized entries [29].

b) Autonomous vehicles: Object detection plays a crucial

role in autonomous vehicles, where accurate and real-time

detection of pedestrians, vehicles, and other obstacles is essential

for safe navigation [30].

c) Smart agriculture: Farmers can utilize object detection

algorithms to identify crop diseases, monitor livestock, and track

the growth of plants, enabling more efficient and sustainable

farming practices [31].

d) Retail and inventory management: Object detection can

be employed to track products on shelves, monitor stock levels,

and detect misplaced or missing items in retail environments

[32].

e) Healthcare: In medical imaging, object detection

algorithms can identify and localize abnormalities, such as

tumors or lesions, in medical scans, assisting doctors in

diagnosing and treating various conditions [33].

f) Robotics: Object detection is a critical component in

robotic systems, enabling robots to navigate their environments,

recognize and manipulate objects, and perform complex tasks

[34].

B. Challenges

Despite the potential benefits of object detection algorithms in

small single-board computers, there are several challenges

associated with their deployment:

a) Computational limitations: Small single-board

computers often have limited processing power, memory, and

storage, which may hinder the performance of object detection

algorithms, particularly deep learning-based methods that

require substantial computational resources [35][36].

b) Power consumption: Object detection algorithms can

be power-intensive, and optimizing their power usage is crucial

for deployment in battery-powered devices or energy-

constrained environments [36].

c) Model complexity and size: Deep learning models for

object detection can be large and computationally expensive,

making deploying them on resource-constrained platforms

challenging. Model compression and optimization techniques

may be required to reduce the size and complexity of these

models without sacrificing accuracy [35][36].

d) Real-time performance: Some applications, such as

autonomous vehicles or robotics, demand real-time object

detection. Ensuring that object detection algorithms can process

and analyze data at high speeds is critical for these use cases

[11].

e) Adaptability and generalization: Object detection

algorithms should be capable of adapting to different

environments and conditions, such as varying lighting,

occlusions, or object orientations. Ensuring that the algorithms

generalize well to new situations is an ongoing challenge [38].

f) Privacy and ethical considerations: As object detection

algorithms are increasingly used in surveillance and monitoring

applications, concerns about privacy, data protection, and

potential biases in the algorithms must be addressed [39].

VI. CONCLUSIONS

This study aimed to compare the performance of three state-

of-the-art object detection algorithms—Faster R-CNN, SSD,

and YOLOv7—on small single-board computers, specifically

Raspberry Pi and NVIDIA Jetson Nano. We evaluated the

algorithms based on various performance metrics, including

frames per second (FPS), inference time, power usage, and

accuracy (mAP). Our analysis highlighted the trade-offs

between these metrics, which are crucial in determining the most

suitable algorithm for deployment in resource-constrained

environments.

Based on our comparative analysis, YOLOv7 emerged as the

most promising algorithm for small single-board computers,

given its high processing speed, low inference time, and

competitive accuracy. However, it is essential to consider the

specific requirements and constraints of the target application

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 251

IJRITCC | July 2023, Available @ http://www.ijritcc.org

when selecting an object detection algorithm, as different

scenarios may prioritize different aspects of performance.

Object detection algorithms have numerous potential

applications across various domains, including surveillance,

autonomous vehicles, smart agriculture, retail, healthcare, and

robotics. However, challenges are associated with deploying

these algorithms on small single-board computers, such as

computational limitations, power consumption, model

complexity, real-time performance, adaptability, and privacy

concerns. Future research should focus on developing

algorithms and techniques that address these challenges and are

tailored to the specific constraints of small single-board

computer platforms.

In conclusion, this study offers valuable insights into the

performance of different object detection algorithms on small

single-board computers. It provides a foundation for further

research and development in this area. By continuing to explore

and optimize these algorithms, we can unlock the full potential

of small single-board computers and enable their widespread

adoption across various applications and industries.

ACKNOWLEDGMENT

This paper is the outcome of the Intelligent Connected

Streetlights research project work supported by the Renesas-

USM industry matching grant as per MoA#A2021098

agreement with grant account no 7304.PNAV.6501256.R128.

REFERENCES

[1] Pathak, A. R., Pandey, M., & Rautaray, S. (2018). Application of

deep learning for object detection. Procedia computer science,

132, 1706-1717.

[2] O'Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S.,

Hernandez, G. V., Krpalkova, L., ... & Walsh, J. (2020). Deep

learning vs traditional computer vision. In Advances in Computer

Vision: Proceedings of the 2019 Computer Vision Conference

(CVC), Volume 1 1 (pp. 128-144). Springer International

Publishing.

[3] Ildar, R. (2021). Increasing FPS for single board computers and

embedded computers in 2021 (Jetson nano and YOVOv4-tiny).

Practice and review. arXiv preprint arXiv:2107.12148.

[4] NVIDIA. (n.d.). Jetson Nano Developer Kit. NVIDIA Developer.

Retrieved May 2, 2023, from

https://developer.nvidia.com/embedded/jetson-nano-developer-

kit.

[5] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.

Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In

Computer Vision–ECCV 2016: 14th European Conference,

Amsterdam, The Netherlands, October 11–14, 2016, Proceedings,

Part I 14 (pp. 21-37). Springer International Publishing.

[6] Girshick, R. (2015). Fast r-CNN. In Proceedings of the IEEE

international conference on computer vision (pp. 1440-1448).

[7] Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object

detection with deep learning: A review. IEEE Transactions on

neural networks and learning systems, 30(11), 3212-3232. [8]

Lee, Y. H., & Kim, Y. (2020). Comparison of CNN and YOLO

for Object Detection. Journal of the semiconductor & display

technology, 19(1), 85-92.

[8] Malhotra, P., & Garg, E. (2020, July). Object detection

techniques: a comparison. In 2020 7th International Conference

on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.

[9] Lee, C., Kim, H. J., & Oh, K. W. (2016, October). Comparison of

faster R-CNN models for object detection. In 2016 16th

international conference on Control, automation and systems

(iccas) (pp. 107-110). IEEE.

[10] Jabir, B., Falih, N., & Rahmani, K. (2021). Accuracy and

Efficiency Comparison of Object Detection Open-Source

Models. International Journal of Online & Biomedical

Engineering, 17(5).

[11] [12] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).

You only look once: Unified, real-time object detection. In

Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 779-788).

[12] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You

only look once: Unified, real-time object detection. In

Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 779-788).

[13] Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster,

stronger. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 7263-7271).

[14] Farhadi, A., & Redmon, J. (2018, June). Yolov3: An incremental

improvement. In Computer vision and pattern recognition (Vol.

1804, pp. 1-6). Berlin/Heidelberg, Germany: Springer.

[15] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4:

Optimal speed and accuracy of object detection. arXiv preprint

arXiv:2004.10934.

[16] Jocher, G., et al. (2022). YOLOv5: State-of-the-art object

detection model (v7.0) [Computer software]. Zenodo.

https://doi.org/10.5281/zenodo.7347926

[17] Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., ... & Wei, X.

(2022). YOLOv6: A single-stage object detection framework for

industrial applications. arXiv preprint arXiv:2209.02976.

[18] Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2022).

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for

real-time object detectors. arXiv preprint arXiv:2207.02696.’

[19] Gevorgyan, Z. (2022). SIoU loss: More powerful learning for

bounding box regression. arXiv preprint arXiv:2205.12740.

[20] Terven, J., & Cordova-Esparza, D. (2023). A Comprehensive

Review of YOLO: From YOLOv1 to YOLOv8 and Beyond.

arXiv preprint arXiv:2304.00501.

[21] C.-Y. Wang, H.-Y. M. Liao, and I.-H. Yeh, "Designing network

design strategies through gradient path analysis," arXiv preprint

arXiv:2211.04800, 2022.

[22] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, "Repvgg:

Making vgg-style convnets great again," in Proceedings of the

IEEE/CVF conference on computer vision and pattern

recognition, pp. 13733–13742, 2021.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7904

Article Received: 04 May 2023 Revised: 20 June 2023 Accepted: 08 July 2023

 252

IJRITCC | July 2023, Available @ http://www.ijritcc.org

[23] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for

image recognition," in Proceedings of the IEEE Conference on

computer vision and pattern recognition, pp. 770–778, 2016.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,

"Densely connected convolutional networks," in Proceedings of

the IEEE Conference on computer vision and pattern recognition,

pp. 4700–4708, 2017.

[25] C.-Y. Wang, I.-H. Yeh, & H.-Y. M. Liao, "You only learn one

representation: Unified network for multiple tasks," arXiv

preprint arXiv:2105.04206, 2021.

[26] Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A.

W. (2013). Selective search for object recognition. International

journal of computer vision, 104, 154-171.

[27] Noble, W. S. (2006). What is a support vector machine?. Nature

Biotechnology, 24(12), 1565-1567.

[28] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn:

Towards real-time object detection with region proposal

networks. Advances in neural information processing systems,

28.

[29] Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object

detection in 20 years: A survey. Proceedings of the IEEE.

[30] Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for

autonomous driving? The Kitti Vision Benchmark Suite. 2012

IEEE Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/cvpr.2012.6248074

[31] Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in

agriculture: A survey. Computers and Electronics in Agriculture,

147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

[32] Deng, C., & Liu, Y. (2021). A deep learning-based inventory

management and demand prediction optimization method for

ANOMALY DETECTION. Wireless Communications and

Mobile Computing, 2021, 1–14.

https://doi.org/10.1155/2021/9969357

[33] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F.,

Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., &

Sánchez, C. I. (2017). A survey on Deep Learning in medical

image analysis. Medical Image Analysis, 42, 60–88.

https://doi.org/10.1016/j.media.2017.07.005

[34] Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D.

(2017). Learning hand-eye coordination for robotic grasping with

deep learning and large-scale data collection. The International

Journal of Robotics Research, 37(4–5), 421–436.

https://doi.org/10.1177/0278364917710318

[35] Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 6848-6856).

[36] Han, S., Mao, H., & Dally, W. J. (2015). Deep compression:

Compressing deep neural networks with pruning, trained

quantization and huffman coding. arXiv preprint

arXiv:1510.00149.

[37] Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of

model compression and acceleration for deep neural

networks. arXiv preprint arXiv:1710.09282.

[38] Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M.,

& Wichmann, F. A. (2018). Generalisation in humans and deep

neural networks. Advances in neural information processing

systems, 31.

[39] Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L.

(2018). Artificial intelligence and the ‘good society’: the US, EU,

and UK approach. Science and engineering ethics, 24, 505-528.

[40] Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M.,

... & Adam, H. (2019). Searching for mobilenetv3. In Proceedings

of the IEEE/CVF international conference on computer

vision (pp. 1314-1324).

[41] Models and pre-trained weights. Models and pre-trained weights

- Torchvision 0.15 documentation. (n.d.).

https://pytorch.org/vision/stable/models.html

http://www.ijritcc.org/

