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Abstract—Due to its flexibility, scalability, and cost-effectiveness of cloud computing, it has emerged as a popular platform for hosting 

various applications. However, optimizing workflow scheduling in the cloud is still a challenging problem because of the dynamic nature of 

cloud resources and the diversity of user requirements. In this context, Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) 

algorithms have been proposed as effective techniques for improving workflow scheduling in cloud environments. The primary objective of 

this work is to propose a workflow scheduling algorithm that optimizes the makespan, service cost, and load balance in the cloud. The proposed 

HGWOCPSO hybrid algorithm employs GWO and Constriction factor based PSO (CPSO) for the workflow optimization. The algorithm is 

simulated on Workflowsim, where a set of scientific workflows with varying task sizes and inter-task communication requirements are executed 

on a cloud platform. The simulation results show that the proposed algorithm outperforms existing algorithms in terms of makespan, service 

cost, and load balance. The employed GWO algorithm mitigates the problem of local optima that is inherent in PSO algorithm. 

Keywords- Workflow, Scheduling; PSO; GWO; Cloudsim; Workflowsim; Cloud Scheduling. 

 

I.  INTRODUCTION 

Cloud computing has become an increasingly popular 

platform for hosting various applications due to its flexibility, 

scalability, and cost-effectiveness. However, optimizing 

workflow scheduling in the cloud is still a challenging problem 

due to the scale of the resources, dynamic nature of the resources 

and the diversity of user requirements. Workflow scheduling 

involves allocating resources and scheduling tasks in a way that 

minimizes makespan (i.e., the time it takes to complete all tasks) 

and reduces costs while efficiently utilizing available resources. 

A workflow can be represented as a directed acyclic graph 

(DAG), where each node represents a task subset of Tasks (T) 

and edges (E) represent dependencies between tasks. The DAG 

is denoted as G(T, E), where T is the set of tasks and E is the set 

of edges. The entry task, which has no parent, and the exit task, 

which has no children, are two special tasks. The paired set of 

tasks in E indicates that the second task must be executed after 

the first task. For instance, if the pair {T1, T2} exists in E, then 

T2 is dependent on T1 and must be executed after T1. 

Figure 1 shows an example of a simple workflow DAG, 

consisting of six tasks: T1, T 2, T3, T4, T5, T6 with T1 and T6 

being the start and end tasks, respectively. The complete set of 

dependencies in the example DAG is {{T1, T2}, {T1, T3}, {T2, 

T4}, {T2, T4}, {T2, T5}, {T4, T6}, and {T5, T6}}. 

The Pegasus project offers various scientific workflows, 

including Montage, Inspiral, Epigenomics, and Sipht, to 

facilitate tasks such as disaster modeling and prediction, 

gravitational waveform analysis, custom mosaic creation, and 

bioinformatics research. These workflows serve as benchmark 

models for comparing scheduling algorithms and provide 

behavioral insights on the  real-world applications. Workflow 

scheduling is viewed as a problem to map the tasks to VMs, 

where tasks are assigned to available virtual machines to 

optimize specific objectives. 

 
Figure 1. A Sample Workflow 
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To address this problem, various optimization techniques have 

been proposed, including meta-heuristic algorithms such as 

Particle Swarm Optimization (PSO), Round Robin, 

Heterogeneous Earliest Deadline First, Grey Wolf Optimization 

(GWO), and Ant Colony Optimization (ACO) in literature [1]. 

Each of these algorithms have shown optimizing workflow 

scheduling in cloud computing on specific set of objectives. 

In this context, this work proposes a workflow scheduling 

algorithm that optimizes makespan,  cost and improves load 

balance on resources using GWO [2] and PSO [3] algorithms in 

cloud computing. The algorithm is evaluated using a 

simulation-based approach, where a set of scientific workflows 

with varying task sizes and inter-task communication 

requirements are executed on a cloud platform. 

The remaining part of this paper is organized as follows: Section 

II provides a review of related work on workflow scheduling in 

cloud computing. Section III describes the proposed workflow 

scheduling algorithm using PSO and GWO. Section IV presents 

the results of the experimentation and analysis of the proposed 

algorithm. Finally, Section V provides conclusion of the and the 

scope for future work. 

II. TYPE STYLE AND FONTS 

The problem of workflow scheduling in cloud computing has 

received significant attention in the literature. Various 

techniques have been proposed to optimize workflow 

scheduling, including heuristics, meta-heuristics, and machine 

learning approaches.  

PSO is a meta-heuristic optimization algorithm that is 

inspired by the social behavior of bird flocking. PSO has been 

applied to various optimization problems, including workflow 

scheduling in cloud computing. For example, in a study by Maria 

A. Rodriguez [4], PSO was used to optimize workflow 

scheduling in cloud computing while considering total execution 

cost and deadline constraints. The results show improvement in 

meeting the deadlines to execute workflows. 

Authors in [5] proposed a novel PSO algorithm that employs 

a chaotic search mechanism to improve global convergence is 

demonstrated. They have applied the technique on various test 

functions to evaluate the performance. 

Dynamic Non-Linear PSO [6] proposes a new inertia weight 

that solves the local optima problem and effectively reduce the 

energy consumption without considering other parameters. 

GWO is another meta-heuristic optimization algorithm that 

is inspired by the social behavior of grey wolves. GWO has been 

applied to various optimization problems, including workflow 

scheduling in cloud computing. For example, in a study in [7], 

authors proposed Distributed GWO to schedule to optimize 

computation time and computation cost. The results showed that 

DGWO outperformed other meta-heuristic algorithms in terms 

of makespan and cost. 

In [8] they proposed GWO with modification to fitness that 

considers makespan and cost. The algorithm is not tested on 

workflows with dependent tasks. 

Junlong Zhou et. al. [9] proposed algorithm that considers 

the characteristics of different tasks and dynamically assigns 

them to appropriate cloud resources, resulting in improved 

performance and cost efficiency on hybrid cloud. There is a 

significant improvement in makespan and cost but load balance 

is not considered. 

Jafar [10] proposed a hybrid optimization technique using 

GWO and Whale Optimization algorithms to schedule 

independent tasks to optimize cost, energy consumption and 

makespan. The makespan improvement is compared against 

GWO and WO. The algorithm is not compared against PSO and 

not tested on workflows. 

HWACOA scheduler [11] applied Ant colony optimization 

with the concept of weight is employed to map the VMs with 

tasks to improve makespan and cost.  The  

A Adaptive PSO was proposed by [12] by considering 

heterogeneity in Cloud to schedule workflows to reduce the cost  

and makespan of execution of tasks. The authors employed 

adapative intertia weight to improve the global search.  

Clustering based technique was employed by [13] to choose 

based on the execution time and availability of the resource to 

improve the cost of the workflow. 

Kalka et. Al. (2021) [14] proposed multi-objective variant of 

particle swarm optimization (PSO) called Constriction 

Coefficient-based Multi-objective PSO (CCMOPSO) to solve 

the task scheduling problem. Constriction coefficient to control 

the velocity of the particles was used to improve the makespan 

and resource utilization. 

Shahin et al. (2019) [15] proposed a workflow scheduling 

algorithm that uses a cuckoo search (CS) algorithm to optimize 

cost and load balance in cloud computing. They showed that the 

algorithm outperformed other algorithms in terms of makespan 

and load balance but did not consider cost. 

Prerit chawda and Partha Sarathi [16] proposed a load 

balancing technique to increase resource utilization and 

minimize makespan using Min-Min algorithm for the 

independent task scheduling problem. The authors have not 

considered cost of the tasks and not implemented for workflow 

tasks. 

The proposed study aims to contribute to this field by 

proposing a workflow scheduling algorithm that minimizes 

makespan, cost, and improves load balance on resources using 

PSO and GWO algorithms in cloud computing. 

III. PROPOSED METHODOLOGY 

A. Problem Formulation 

The workflow scheduling problem can be represented 

mathematically as a mapping function [17]. 
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Mf (Resource, T):  T → Resource 

where Resource refers to set of virtual machines, and T is a 

set of tasks, each with its unique characteristics. Scheduling 

algorithms are designed using these characteristics to generate 

mappings that optimize the targeted objectives. The objectives 

considered are Makespan, Cost and Load balance. 

Makespan refers to the total execution time to complete all 

the tasks from the start task to last task in a workflow given by 

eq. (1). Makespan helps to ensure timely completion of the entire 

workflow. 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚{𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒(𝑡1, 𝑡2… 𝑡𝑛)}      (1) 

Cost of workflow execution given in eq. (c) is computed 

based on execution time of tasks run on VMs times the price of 

a VM and data transfer cost. Data transfer time is dependent on 

the bandwidth of the channel. Execution time of tasks is given in 

eq. (2). 

𝑒𝑡𝑖 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑀𝐼𝑃𝑆

𝑉𝑀 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑀𝐼𝑃𝑆
                                             (2) 

𝐶𝑜𝑠𝑡 =   ∑ ((𝑒𝑡𝑖  × 𝑃𝑣𝑚𝑗) + (
𝑑𝑡𝑖

𝐵𝑊
× 𝑃𝐵𝑊))𝑛

𝑖=1                   (3) 

 

Where  

𝑒𝑡𝑖 refers to the execution time of task i 

𝑃𝑣𝑚𝑗  refers to the Price of a VM j ; 1 ≤ 𝑗 ≤ 𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝑉𝑀𝑠 

𝑑𝑡𝑖 refers to the size of the input data to task i, it is zero if input 

data is available on the VM on which ti is running. 

𝑃𝐵𝑊 refers to Price for bandwidth 

Load balance is one of the important parameters that ensures 

all the resources or VMs are utilized to the same extent and avoid 

overloading on a particular resource. We have applied the load 

balance rate as mentioned in eq. (d) as the measure to determine 

the load balance. The load balance rate refers to the measure of 

how evenly the workload is distributed across the available 

resources. A value of 1 (ideal scenario) indicates perfect load 

balance, meaning that all resources are being utilized equally. A 

value greater than 1 indicates extent of imbalance, with some 

resources being utilized more than others. Value nearer to 1 

indicates a good balance. 

  𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =  (
𝑀𝑅𝑈

𝐴𝑅𝑈
)            (4) 

MRU = Max. resource usage across all the resources used in 

executing the workflow 

ARU = Average resource usage across all the resources used 

in executing the workflow. 

B. Proposed Algorithm 

The proposed approach employs GWO and proposed 

Constriction factor based PSO algorithm each for n/2 iterations 

respectively, where n is the total number of iterations.  

Grey Wolf Optimization (GWO) is an optimization 

algorithm (Algorithm.1) that is inspired by the hunting behavior 

of grey wolves in the forest or nature. GWO algorithm was 

proposed by Mirjalili et al. in 2014. In GWO, a population of 

candidate solutions is represented by a pack of grey wolves. The 

algorithm imitates the social hierarchy and hunting behavior of 

the wolves to update the candidate solutions and find the optimal 

solution for a given optimization problem. 

The process followed by the GWO algorithm are as follows: 

1. Initialization: A population of candidate solutions (wolves) 

is randomly generated. 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = (𝑋1
⃗⃗⃗⃗ , 𝑋2

⃗⃗⃗⃗  , 𝑋3
⃗⃗⃗⃗ ……𝑋𝑁

⃗⃗⃗⃗  ⃗) 

2. Hunting behavior: The alpha, beta, and delta wolves the 

primary wolves that help or direct the other wolves in the 

pack. They are identified based on their fitness values, 

which are used to update the position of the other wolves. 

The alpha wolf has the highest fitness value, followed by 

the beta wolf and then the delta wolf. Once the alpha, beta, 

and delta wolves are identified, they are used to update the 

position of the other wolves in the pack. The position 

update equation for each wolf is given by eq. (5), (6) and 

(7). The new position is computed using the eq. (8). All the 

position, distance and coefficients represent a vector. 

𝐷∝
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ ∗ 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 | 

𝑋1
⃗⃗⃗⃗ =  𝑋∝

⃗⃗ ⃗⃗  −  𝐴1
⃗⃗⃗⃗  . ( 𝐷∝

⃗⃗⃗⃗  ⃗)         (5) 

 

𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ ∗ 𝑋𝛽
⃗⃗ ⃗⃗  − 𝑋 | 

𝑋2
⃗⃗⃗⃗ =  𝑋𝛽

⃗⃗ ⃗⃗  −  𝐴2
⃗⃗ ⃗⃗  . ( 𝐷𝛽

⃗⃗ ⃗⃗  )            (6) 

 

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ ∗ 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 | 

𝑋3
⃗⃗⃗⃗ =  𝑋𝛿

⃗⃗ ⃗⃗  −  𝐴3
⃗⃗ ⃗⃗  . ( 𝐷𝛿

⃗⃗ ⃗⃗  )                                         (7) 

 

𝑋𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  

𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
                                 (8) 

where X is the current position of the wolf, X_new is the 

updated position, A_alpha, A_beta, and A_delta are the 

positions of the alpha, beta, and delta wolves, respectively, and 

C1 and C2 are constants that control the exploration and 

exploitation capabilities of the algorithm. 

3. Encircling behavior: The wolves try to encircle the prey 

(optimal solution) by updating their positions as shown in eq. 

(5). 

4. Attacking behavior: The wolves try to attack the prey by 

updating their positions towards the optimal solution using 

eq. (9) and eq. (10) 

 

𝐴 = (2 × 𝑎 × 𝑟1⃗⃗⃗  ) − 𝑎                                                         (9)  

𝐶 = (2 × 𝑟2⃗⃗  ⃗)                                                                    (10) 

 

Where 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗  are random vectors with values ranging 

between 0 and 1. 
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5. Updating the population: The updated positions of the 

wolves are used to generate a new population of candidate 

solutions. The wolves with the best fitness values are kept as 

the new alpha, beta, and delta wolves, and the other wolves 

are randomly generated within the search space. 

6. Termination: The algorithm terminates when the loop 

reaches the maximum number of iterations. The best solution 

found i.e. alpha wolf by the pack is returned as the final 

solution. 

 

Algorithm1. Grey Wolf Optimization 

Input: Workflow Objective function to optimize, population 

size (N), total or maximum number of iterations (max_iter), search 

space (bounds), and initial alpha, beta, and delta values 

Output: Best solution found by the algorithm 

 

// Initialize the population with random solutions 

for i = 1 to N do 

  solution_i (X  ) = generate_random_solution(bounds) 

  fitness_i = evaluate_fitness(solution_i) 

  update_alpha_beta_delta(solution_i) 

end for 

 

for iter = 1 to max_iter/2 do 

  // Update the positions of the wolves based on the alpha, beta, 

and delta values 

  for i = 1 to N do 

    a = 2 - 2 * iter / max_iter    

    r1 = random_number(0, 1) 

    r2 = random_number(0, 1) 

     

    A = 2 * a * r1 - a    // Calculate the coefficient A 

    C = 2 * r2            // Calculate the coefficient C 

     

    X_alpha = alpha.position 

    D_alpha = C * (X_alpha - solution_i.position) 

     

    X_beta = beta.position 

    D_beta = C * (X_beta - solution_i.position) 

     

    X_delta = delta.position 

    D_delta = C * (X_delta - solution_i.position) 

     

 new_position = ((X_alpha - A * D_alpha) +  

(X_beta - A * D_beta) + (X_delta - A * D_delta))/3 

    new_position = clip(new_position, bounds)     

     

    new_fitness = evaluate_fitness(new_position) 

    if new_fitness < fitness_i then 

      solution_i.position = new_position 

      fitness_i = new_fitness 

      update_alpha_beta_delta(solution_i) 

    end if 

  end for 

end for 

 

// Return the best solution or alpha wolf position 

return alpha 

 

Particle Swarm Optimization (PSO) is a popular 

optimization algorithm that is inspired by the social behavior of 

swarms of birds or fish. The algorithm finds the optimal solution 

by iterating through the candidate solutions called particles of an 

optimization problem. At the start of the algorithm, the 

population of particles are initialized randomly within the search 

space of the optimization problem. Each particle represents a 

candidate solution, and its position in the search space is 

determined by a vector of decision variables. Each particle also 

has a velocity vector as mentioned in eq. (11) that determines its 

direction and speed of movement within the search space. 

 

𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑖) − 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖)) 

 

𝑠𝑜𝑐𝑖𝑎𝑙_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖)) 

 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑖 + 1) = 𝜔 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖) + 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+ 𝑠𝑜𝑐𝑖𝑎𝑙_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

                                                                                                                   (11) 

 

In each iteration of the algorithm, the particles move through 

the search space according to two rules: personal best and global 

best. The personal best rule allows each particle to remember the 

best solution it has found so far, while the global best rule allows 

the particles to learn from the best solution found by the entire 

swarm. In the proposed algorithm for calculating the velocity 

vector a constriction factor-based inertia weight as mentioned in 

eq. (12) is introduced to improve exploratory capability of the 

algorithm. 

 

𝜔 =
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝜑
+ (𝜑 (𝜔𝑛−1 − 𝜔𝑚𝑎𝑥) + 𝜔𝑚𝑎𝑥)           (12) 

 

ωmax  = Max. Inertia Weight Wight 

ωmin    = Minimum Inertia Weight 

ωn-1    = Previous Inertia Weight 

φ      = Constriction factor 

 

The proposed constriction factor based PSO algorithm employs 

the constriction factor (φ) to update the inertia weight (ω). It is 

used to maintain the balance between exploration and 

exploitation in the algorithm. Clerc [18] in 1999 introduced 

Constriction factor in his study on convergence and stability of 

PSO. φ shown in eq. (13) is a parameter that restricts the 

velocity of particles during the PSO optimization process. The 

motive behind the constriction factor is to ensure that the 

particles converge to the global optimum in a stable and 

efficient manner, while also preventing them from overshooting 

the optimal solution. 

http://www.ijritcc.org/
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φ =
2

|2−𝑐1−𝑐2−√𝑐1
2+𝑐2

2+2𝑐1𝑐2−2𝑐1−2𝑐2+4|
                               (13) 

 

where c_1and c_2 are the acceleration coefficients used in the 

velocity update equation and ensures the values is in the range 

[0,1]. 

 

 

Algorithm2. Proposed Constriction Factor based Particle Swarm 

Optimization 

Input: Objective function to optimize, population size (N), maximum 

number of iterations (max_iter), search space (bounds), and 

constriction factor based inertia weight (w), cognitive parameter (c1), 

and social parameter (c2)  

 

Output: Best solution found by the algorithm 

 

1. Initialize the gbest with the alpha wolf returned by Algorithm1 

2. Initialize the population with random solutions and velocities 

   - For each particle i from 1 to N do the following: 

     - Generate a random solution within the search space (bounds) 

     - Generate a random velocity within the search space (bounds) 

     - Evaluate the fitness of the particle's solution 

     - Set pbest_i to the particle's solution 

     - Set pbest_fitness_i to the particle's fitness 

     - If pbest_fitness_i is less than gbest_fitness,  

    set gbest to pbest_i and gbest_fitness to pbest_fitness_i 

3. For iter from 1 to max_iter/2 do the following: 

   - For each particle i from 1 to N do the following: 

     - Generate two random numbers r1, r2 between 0 and 1 

     - Compute cognitive and social components 

     - Compute the new velocity of the particle 

     - Compute the new position of the particle: 

    - Clip the new_position_i to be within the search  

       space (bounds) 

     - Evaluate the fitness of the new solution 

       - If the new fitness is better than pbest_fitness_i,  

         update pbest_i and pbest_fitness_i 

       - If pbest_fitness_i is less than gbest_fitness,  

          set gbest to pbest_i and gbest_fitness  

          to pbest_fitness_i 

     - Update the particle's velocity and solution with  

        the new values 

 

4. Return the best solution found by the algorithm (gbest) 

 

The proposed Hybrid GWO-CPSO Optimization algorithm 

(HGWOCPSO) is designed to schedule the workflows on cloud 

to minimize makespan, cost and maximize load balance. Firstly, 

the GWO algorithm is applied to promote exploration and later 

PSO algorithm to promote exploitation. GWO is initialized with 

random particles (the population). Particles represent the 

workflow solutions generated randomly. These solutions are 

run through GWO algorithm for 50% of the maximum iterations 

considered and then PSO is run for the remaining 50% of 

iterations. 

 

Algorithm 3. Proposed Hybrid GWO-CPSO Optimization 

Input: Workflow tasks, cloud resources, number of iterations (n), 

population size (p), and other parameters of GWO and CPSO 

Output: Solution that has best makespan, cost, and load rate values 

obtained by the hybrid algorithm 

 

// Initialization 

Initialize the GWO and PSO populations randomly 

Evaluate the fitness of each wolf and particle in the population 

Set the global best position and fitness for PSO 

 

// Main loop 

for i = 1 to n/2 do 

  if i <= n/2 then 

    // GWO iterations 

    for j = 1 to p do 

      Update the positions of the wolves using  

      GWO operators 

      Evaluate the fitness of each wolf in the population 

      Update the alpha, beta, and delta wolves 

    end for 

  for i = n/2 to n do 

    // PSO iterations 

    for j = 1 to p do 

      Update the positions and velocities of the particles  

       for PSO  

      Evaluate the fitness of each particle in the population 

      Update the local and global best positions and fitness 

    end for 

  end if 

    

  // Update the best position and fitness values 

  Update the global best position and fitness for PSO 

  Update the best makespan, cost, and resource utilization values 

obtained so far 

   

end for 

 

return the solution that has optimized makespan, cost, and load balance 

values 

 

IV. PERFORMANCE EVALUATION 

This section presents evaluation of proposed HGWOCPSO 

algorithm by performing extensive simulation experiments with 

three types of scientific workflows. 

A. Experimental Setup 

The proposed Hybrid GWO-PSO Optimization algorithm 

(HGWOCPSO) The proposed algorithm is implemented on 

Workflowsim [19] based on cloudsim and run on four types of 

scientific workflows Montage, Epigenomics, and                   Sipht 
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[20–23]. These workflows are available with 30, 50, 100 and 

1000 tasks. Experiments were conducted with Workflowsim on 

Intel i5 10th gen CPU, 8GB RAM, Windows 10 64-bit OS. The 

experimentation utilizes heterogenous VMs and variable costs 

for VM instances.  

 

The Fitness function shown in eq. (14) is adopted to optimize 

the three parameters makespan, cost and load balance is 

represented in eq. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼 × (
1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
) +  𝛽 × (

1

𝐶𝑜𝑠𝑡
) − 𝛾 ×

(
1

𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒
)                                                                 (14) 

α, β, γ represent the weights assigned to each parameter. Here 

α=0.4, β=0.3 and γ=0.3 are considered 

The parameters considered for simulation of the algorithms are 

represented in Table 1. 

TABLE I.  PARAMETERS CONSIDERED FOR ALGORITHM 

Parameters Values 

Number of Tasks 25-1000 

Number of particles 100 

Number of iterations 

(Max_iter) 
500 

r1, r2 random(0,1) 

c1,c2 2 

w 
constriction 

factor 

Number of VMs 
5 

(heterogenous) 

Bandwidth 100 

 

B. Performance Analysis 

The results of the proposed algorithm HGWOCPSO are 

compared with Particle Swarm Optimization (PSO), Grey Wolf 

Optimization (GWO), Chaotic PSO (CPSO), hybrid GWO-PSO 

algorithm (GWOPSO). The comparison is made in terms of 

Makespan, Cost and Load rate for the three scientific workflows 

of different sizes and are presented in Table 2 and Table 3. 

TABLE II.  MAKESPAN FOR WORKFLOWS 

Datase

t 
GWO PSO CPSO GWOPSO 

HGWOC

PSO 

Montag

e 25 

182.7 159.88 158.5 156.16 146.97 

Montag

e 50 

407.7 245.92 284.79 279.37 277.5 

Montag

e 100 

864.9 623.5 484.41 494 491.12 

Montag

e 1000 

9117.0 5679.97 5663.61 5642.9 5415.04 

Datase

t 
GWO PSO CPSO GWOPSO 

HGWOC

PSO 

Epigen

omics_

24 

14235.2 15147.16 9882.78 8835.23 7339.48 

Epigen

omics_

46 

33184.2 28551.56 22125.68 23912.97 17638.59 

Epigen

omics_

100 

322937.0 154742 153158.3 160209.2 154308 

Epigen

omics_

997 

2084102.8 1513756 1500285 1472362 1344813 

Sipht_3

0 

6664.4 6130.58 6065.01 4464.64 4213 

Sipht_6

0 

9341.1 10259.01 7408.61 10468.14 9005.57 

Sipht_1

00 

13910.1 10967.75 10237.62 10503.37 9266.29 

Sipht_1

000 

104213.1 65610.42 68068.19 64319.2 50756.48 

 

TABLE III.  AVERAGE MAKESPAN FOR WORKFLOWS (WF) 

Workfl

ows 
GWO PSO CPSO GWOPSO 

HGWOC

PSO 

Montag

e  

2643.1 1677.3175 1647.8275 1643.1075 1582.6575 

Epigen

omics 

613614.8 428049.18 421362.94 416329.85 378524.76 

Sipht 

33532.158

5 
23241.94 

22944.857

5 
22438.83 18310.335 

 

The Average Makespan of the proposed HGWOCPSO 

algorithm shows 4% increase over CPSO & GWOPSO, 6% 

increase over PSO and 67% over GWO for Montage workflows. 

It shows 10%, 11%, 13%, 62% increase over GWOPSO, CPSO, 

PSO and GWO for Epigenomics workflows respectively. Also 

it shows 22%, 25%,27% and 83%   improvement over 

GWOPSO, CPSO, PSO and GWO for Sipht workflows 

respectively. 

Makespan improvement is higher for Sipht and Epigenomics 

workflows. Figure 2, Figure 3 & Figure 4 shown below indicate 

the significant performance improvement by proposed 

HGWOCPSO algorithm for makespan. 

 

 
Figure 2. Makespan improvement for Montage Workflow 
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Figure 3. Makespan improvement for Epigenomics Workflow 

 

 
Figure 4. Makespan improvement for Sipht Workflow 

 

The improvement in terms of cost parameter is shown in Table 

4 and Table 5 respectively for the workflows.  

TABLE IV.  COST OF WORKFLOWS 

Datase

t 
GWO PSO CPSO GWOPSO 

HGWOC

PSO 

Montag

e 25 

2107.66 870.15 926.27 900.29 831.1 

Montag

e 50 

4686.31 1938.31 1842.33 1786.56 1742.1 

Montag

e 100 

9917.37 4114.23 3996.3 3955.94 4105.8 

Montag

e 1000 

104410.97 44694.06 44575.9 44355.76 42050.7 

Epigen

omics_

24 

161447.05 57887.29 50400.24 48811.84 45185.1 

Epigen

omics_

46 

375392.55 144491.48 146306.36 140673.2 122315.5 

Epigen

omics_

100 

3647501.6

9 

1384239.8

4 
1436833.7 1306006 1200988.6 

Epigen

omics_

997 

34829492.

34 

13737618.

67 
13833360 13202032 

13165323.

8 

Sipht_3

0 

50008.91 18496.56 18336.11 15168.42 18281.8 

Sipht_6

0 

105132.18 43675.8 43151.55 43829.66 30970.7 

Sipht_1

00 

156557.46 56230.03 58303.69 55079.54 56697.5 

Sipht_1

000 

1563797.0

3 
606803.62 598374.4 587908.4 585141 

 

 

 

TABLE V.  AVERAGE COST OF WORKFLOWS (WF) 

Workfl

ows 
GWO PSO CPSO GWOPSO 

HGWOC

PSO 

Montag

e  

30280.6 12904.19 12835.2 12749.64 12182.41 

Epigen

omics 

9753458.4 3831059 3866725 3674381 3633453 

Sipht 

33532.158

5 
23241.94 

22944.857

5 

22438.837

5 
18310.335 

 

The Average Cost of the proposed HGWOCPSO algorithm 

shows 5%, 2%, 2% increase over GWOPSO , CPSO & GWO 

for Montage, Epigenomics and Sipht  workflows. There is a 

significant cost improvement for Montage and Sipht 

workflows.  

The cost of executing all the three workflows on HGWOCPSO 

algorithm indicates improvement over other algorithms. The 

percentage improvement is though minimal the load rate and 

makespan show significant improvement. Figure 5, Figure 6 

and Figure 7 show the Cost of execution of three workflow 

types. 

 
Figure 5: Cost improvement for Montage Workflows 

 

Figure 6: Cost improvement for Epigenomics Workflows 

 

Figure 7: Cost improvement for Sipht Workflows 
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The minimum load rate value indicates a good balance of 

resources, ideally the load rate should be equal to 1. The average 

load rate by proposed algorithm shows 6%, 2% and 3% increase 

over the existing algorithms for Montage, Epigenomics and 

Sipht workflows. Figure 8 represent the improvement in load 

rate which is an indicator of load balance on resources. 

TABLE VI.  LOADBALANCE OF WORKFLOWS 

Datase

t 
GWO PSO CPSO GWOPSO 

HGWOC

PSO 

Montag

e 25 

1.86 1.22 1.25 1.23 1.12 

Montag

e 50 

1.78 1.16 1.15 1.14 1.08 

Montag

e 100 

1.78 1.16 1.15 1.14 1.12 

Montag

e 1000 

1.78 1.16 1.15 1.14 1.08 

Epigen

omics_

24 

1.57 1.14 1.15 1.11 1.12 

Epigen

omics_

46 

1.57 1.15 1.14 1.11 1.09 

Epigen

omics_

100 

1.57 1.14 1.13 1.12 1.09 

Epigen

omics_

997 

1.57 1.11 1.11 1.11 1.09 

Sipht_3

0 

1.4 1.11 1.13 1.14 1.08 

Sipht_6

0 

1.4 1.11 1.13 1.14 1.09 

Sipht_1

00 

1.4 1.11 1.13 1.09 1.08 

Sipht_1

000 

1.4 1.11 1.13 1.09 1.09 

TABLE VII.  AVERAGE LOADBALANCE OF WORKFLOWS (WF) 

Workfl

ows 
GWO PSO CPSO GWOPSO 

HGWOC

PSO 

Montag

e  

1.8 1.17 1.17 1.16 1.1 

Epigen

omics 

1.6 1.13 1.13 1.11 1.09 

Sipht 1.4 1.11 1.13 1.11 1.08 

 

The result analysis shows that the overall trend of makespan and 

load balance is higher for workflows with large number of tasks 

and there is an improvement in cost of execution of workflows.  

 

 
Figure 8: Load balance on resources for workflow execution on existing and 

proposed algorithms 

V. CONCLUSION AND FUTURE WORK 

In conclusion, we proposed a constriction factor inertia weight-

based Particle Swarm optimization (CPSO) and hybrid 

algorithm that employs both GWO and CPSO to optimize 

makespan, cost, and maximize load balance in scheduling 

workflows. The hybrid algorithm leverages the strengths of 

both algorithms and balances exploration and exploitation of 

the solution space to find near-optimal solutions. 

The simulation results show that the proposed hybrid algorithm 

achieves better performance compared to GWO, PSO & 

Chaotic PSO algorithms alone and hybrid GWO-PSO 

algorithms in optimizing makespan, cost, and load balance. The 

algorithm also demonstrates good convergence and stability in 

the experiments, indicating its robustness and effectiveness in 

providing effective solution to the workflow scheduling 

problem in cloud computing. 

In future research the work can be extended towards further 

improving the algorithm's performance by incorporating other 

optimization algorithms, considering more complex constraints, 

apply machine learning techniques along with hybrid 

optimization methods. Overall, the proposed hybrid GWOCPSO 

algorithm provides a promising approach to optimize workflow 

scheduling in cloud computing while considering multiple 

objectives.  
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