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Abstract— The software systems of modern computers are extremely complex and versatile. Therefore, it is essential to regularly detect and 

correct software design faults. In order to devote resources effectively towards the creation of trustworthy software, software companies are 

increasingly engaging in the practise of predicting fault-prone modules in advance of testing. These software fault prediction methods rely on the 

thoroughness with which prior software versions' fault as well as related code has been retrievedTime, energy, and money are all saved as a result. 

Increases the company's initial success and bottom line greatly by satisfying its clientele. Numerous academics have poured into this area 

throughout the years in an effort to raise the bar for all software. Nowadays, The most often used approaches in this field are those based on 

machine learning (ML). The field of ML seeks to perfect software capable of evolving as well as adapting in response to fresh data. This paper 

introduces a fresh approach for doing ML by bringing together a number of different expert systems. In order to reach agreement on which aspects 

of a software system need to be tested, the proposed multi-classifier model pools the strengths of the most effective classifiers. Several top-

performing classifiers for defect prediction are put through their paces in an experiential evaluation. We test our method on 16 publicly available 

datasets from the NASA Metric Data Programme (MDP) repository at the promise repository. Parameters of confusion, 

recall, precision, recognition accuracy, etc., are evaluated and contrasted with existing schemes in a software analysis performed with the help of 

the python simulation tool with findings. The experimental outcomes demonstrate that by combining LGBM, XGBoost, and Voting classifiers, 

using a multi classifier approach, we are capable to significantly improve software fault prediction performance. The results of the investigation 

show that the suggested method will lead to better practical outcomes in the prediction of device failures. 

Keywords- Software systems, Software defect, Software fault prediction, ML, Supervised ML, classification, LGBM, XGBoost , Voting, NASA 

dataset. 

 

I. INTRODUCTION 

The proliferation of software products is a side effect of 

software technology progress, and keeping up with them all has 

grown into a formidable challenge. Maintenance operations 

account for greater than 50% of the total cost of ownership of a 

software system. The likelihood of discovering flawed 

components in software systems grows in tandem with their 

increasing complexity[1]. It is crucial to anticipate and address 

problems before they is provided to users as-is since software 

quality assurance is time-consuming, and limited resources 

prevent thorough testing of the whole platform. Thus, finding a 

flawed piece of software can help us make better use of our 

timeand money. A software system flaw, or "bug," is another 

term for the same thing[2][3].  

A software or product failure occurs when its results are not 

what the customer wants, we have a software defect. Such 

defects are examples of programming mistakes that manifest as 

failures, unpredictability, or unexpected consequences and 

might originate in either the source code or the requirements. 

Such defects have a negative impact on software quality as well 

as programme reliability and can result in wasted money, effort, 

and resources. Repairing failures requires more time and money 

spent on maintenance. This makes early defect prediction in 

software an important field of study [4].It is the objective of 

Software Fault Prediction (SFP) methods to help developers 

more efficiently allocate their time and resources between (i) 

testing, due to the increased likelihood of testing failure-prone 

components, and (ii) refactoring, with the objective of enhancing 

the design for these parts, to reduce the likelihood of 

incorporating new bugs while working on them[5].  

SFP models [4] are typically built to determine fault severity, 

fault classification in binary terms, and the total amount of 
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defects. As can be seen in Fig. 1, the classification model is first 

trained using data amassed from earlier versions of similar 

software projects to identify patterns of software faults. In 

software fault datasets, the independent variables (like the 

amount of attributes, methods, and lines of code) are software 

metrics, as well as the dependent variables (either the module is 

defective or not with regards to providing a true or false value) 

are faulty or non-faulty. 

 

Figure 1.  Software Fault Prediction Process 

Since 1990, a lot of investigation has been conducted on 

metrics & efficient modelling strategies to improve 

SFP performance[6]. The creation of the PROMISE repository 

in 2005, nevertheless, caused a surge of activity in this sector. 

Investigators were capable of making their findings replicable 

and trustworthy because of the abundance of public datasets 

available in this repository. When describing the qualities of a 

software component, object-oriented metrics are frequently 

used. Amongst the various software defect prediction research 

that focus on ML and statistical approaches, random forest 

(RF) and naive Bayes (NB)have been shown to execute 

exceptionally well and consistently[7]. In addition to ML, 

ensemble learning also has a major effect on fault prediction 

outcomes. A broad range of evaluation metrics are utilised to 

examine the efficiency of classifiers, with the choice of a 

particular measure depending on the dataset and modelling 

method employed for prediction. 

Various ML methods have been applied to the task of fault 

prediction. However, there is no universally superior 

ML method [9]. Therefore, the greatest outcomes can only be 

achieved by the use of an efficient method, and integrating the 

most effective classifier is one such method. Multiple classifiers 

working together might be able to make a more accurate forecast 

than any one of them could on their own. Such findings 

prompted investigators to pool their students for a collective 

classification verdict.It has been shown empirically that certain 

classifier combination schemes regularly outperform than a 

single best classifier. Integrating classifiers improves both 

productivity and precision. Researchers frequently employ 

majority voting as a classifier combination approach[8]. In, we 

provide the findings of a deep dive into the attribute space and 

classifier input range[7][9]. Research into software defect 

prediction employing a variety of ML methods is widespread. 

Such methods showed potential on some data sets but 

underwhelmed on others. One way is to use an ensemble method 

to construct a model that is reliable and effective across all data 

sets. The purpose of this research is to determine ML & 

ensemble-based modelling approaches for predicting software 

faults. Investigators have been making extensive usage of 

ML methods in recent years; the production and combination of 

weak learners for the final output has boosted the use of 

ensemble-based learning in nowadays. As a result, the model's 

accuracy improves. 

The goal of this research is to improve software quality by 

employing supervised ML techniques for SFP and detection. 

Supervised learning refers to a subfield of ML in that systems 

are taught to make predictions based on data that has been 

explicitly tagged for use in training. We show off our algorithm 

on 16 datasets from NASA's Promise repository for predicting 

software bugs. The following are some of the major results of 

this study: 

• NASA Metric Data Programme (MDP) programmes& 

Turkish software initiatives make up the 16 public 

datasets obtained from the PROMISE repository.  

• To improve the precision of software defect prediction, 

supervised classifiers relying on ML will be 

implemented. 

• To enhance fault prediction and produce continuously 

excellent outcomes across all datasets. 

• We examine the recall, precision, accuracy, f1-score 

and Area Under the Curve (AUC) of different 

techniques to estimate fault prediction capabilities in 

order to provide an explanation for this experimental 

result. 

• By contrasting the suggested classifiers with those 

already on the market, we can see that they function 

admirably. 

The rest of this work is structured in four parts. Section 2 

discusses software fault prediction-related works. There have 

been a significant number of research articles published in our 

chosen field of study. Section 3 describes the phases and 

strategies used in the proposed software failure prediction 

system in detail. Section 4 summarises the various experiments 

and offers the results. also conducts a comparative analytical 

investigation of the suggested SFP and other modern methods. 

Finally, Section 5 summarises the effort and results and suggests 

future research areas. 
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II. RELATED WORK 

The majority of the existing research on software defect 

prediction does not thoroughly compare and contrast all of the 

available ML techniques. While some have presented an 

approach that utilises preexisting ML methods by expanding 

them, some have utilised only a few methods & provided 

comparisons to those that have been explored thus far. 

For this purpose[10], the NASA PROMISE repository's 

defective data set was used in conjunction with the K-Nearest 

Neighbour (KNN) and RF supervised ML algorithms to make 

predictions about the likelihood of future software defects. 

Multiple metrics, such as accuracy, precision, recall, and the f1 

measure, were used to evaluate the models' performance. 

Highest and lowest accuracy of 99% and 88% respectively on 

MC1 as well as KC1 are demonstrated in this work, 

demonstrating the superior efficiency of the RF model over the 

KNN model.  

In [11], use software metrics from the Promise repository 

dataset to carry out an experimental research comparing the 

efficacy of 7 well-known methods, such as Logistic Regression 

(LR), KNN, Support Vector Machine (SVM), DT, RF, NB, and 

Multilayer Perceptron (MLP). Both method-level as well as 

class-level datasets are used in our investigation. LR & 

MLP yield nearly identical AUCs (0.90 as well as 0.91, 

correspondingly). In addition, MLP and LR both yield 91% 

accuracy. MLP outperforms LR (0.45 F1), but just slightly. For 

datasets at the method level, MLP provides the most accurate 

error predictions. 

In [12],Examine the propensity prediction abilities of the 

MLP, SVM as well as DT 3 ML algorithms. The experimental 

findings demonstrated that the use of the additional data sets 

enhanced the accuracy of error-type prediction by ML models. 

In order to comprehend SFP, Improved defects[13], this 

research proposes a web-accessible healthcare defect diagnosis 

methodology. The effectiveness of the model is measured with 

the aid of ML technologies like RF, DT, and SVM, and 

particular metrics are built with feature extraction methods. 

Lastly, the relative merits of the various ML methods are 

reviewed and contrasted. 

Considering their widespread use in fault prediction 

context,5 classifiers were implemented in this study [14],  KNN, 

LR, multinomial NB, DT and NB. The model is evaluated using 

4 datasets that may be found in the PROMISE database. The F-

measure is employed to assess the efficacy of fault prediction 

models. The outcomes are cross validated employing k-fold 

(k=10) cross validation to remove the randomness as well as bias 

from the samples. As contrasted to other ensembles, the 

experimental findings favoured the model averaging strategy. 

In [15], introduces a method for detecting software defects 

that can help fix a few of the most fundamental issues with 

current systems. Using a combination of fundamental noise 

removal, imbalanced class distribution, and software metrics 

selection methodologies, this study aims to enhance SFP. 10 

SFP datasets were used to evaluate the method. The 

experimental findings demonstrate that the suggested approach 

improves fault prediction ability, with outcomes which are either 

greater than or comparable to a number of comparison models in 

terms of F-measure, recall, precision, accuracy, as well as ROC-

AUC values. This demonstrates that our model is correct. 

In [16], seeks to examine the amount of help SFP can get 

from inheritance metrics. The Chidamber&Kemerer (CK) 

metrics are chosen firstly because they are among the most 

widely used collection of indicators for forecasting software 

errors and inheritance. To assess the role of inheritance in SFP, 

we employ 65 freely available basis datasets including CK 

measurements and other inheritance metrics. For the purpose of 

making comparisons, we additionally divided every dataset into 

2 subsets: inheritance with CK as well as CK without 

inheritance. Models are constructed using an ANN, with results 

evaluated in terms of F1 measure, recall, accuracy, precision, 

and the true negative rate (TNR). When compared, the outcomes 

demonstrate that inheritance metrics contribute reasonably well 

to SFP. Using inheritance metrics for defect prediction in 

software testing is completely safe. Furthermore, high 

inheritance is undesirable since it can cause software defects. 

In [17] , In order to detect software defects, you need develop 

techniques to calculate Fourier coefficients and obtain the 

expected function. Also, we evaluate Fourier learning against 

standard ML techniques, like the RF method. Lastly, the 

experimental findings demonstrate that the Fourier learning 

method is superior to alternative methods in terms of both 

performance and stability. 

In Table 1 of the literature review, the pros and cons of prior 

studies of the software failure prediction paradigm are outlined.
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TABLE I.  ADVANTAGES AND DISADVANTAGES OF VARIOUS EXISTING STUDIE 

 

III. RESEARCH METHODOLOGY 

Predicting defects and faults in software is what SFP is all 

about. This is a fundamental part of the procedure of ensuring 

the quality of software. Different kinds of software metrics are 

used for different purposes in fault prediction. The most 

common kinds of software metrics are code metrics and process 

measurements. The technique of calculating software metrics 

from a software then utilising them to anticipate software defects 

is computationally and time-intensive. In order to complete the 

fault prediction method effectively while utilising fewer 

resources, it is helpful to reduce the number of software metrics 

to utilise just to the essential metrics. Class imbalance is 

infrequently employed, and previous research shows that 

regression issues in SFP are not studied as thoroughly as 

classification issues. Our research solves this problem byclass 

imbalance and classification problems for prediction of number 

of software faults. SMOTE oversamplingrelied ondata balancing 

method is implemented on 16 public datasets that collected from 

the NASA PROMISE repository. Then, supervised 

ML classifiers like LGBM, XGBost, & Voting are applied to the 

training and testing set to evaluate and predict the number of 

software errors. These machine learning model enahcne the 

performance of software fault prediction. All methodology 

process discirbed below section with proposed flowchart.   

Figure 2.  Flow chart of suggested model 

A flowchart of the suggested method is illustrated in Fig 2. 

Initially, the 16 NASA PROMISE repository dataset is 

uploaded. This dataset has already been prepared & can be 

accessed online and through Kaggle. After the dataset has been 

pre-processed and standardised, it must be divided into a training 

set and a testing set. The results in regards to accuracy and AUC 

are then analysed using ML-based classification approaches. 

The all process of research methodology and Flow chart deeply 

described below: 

Authors Methods Dataset Benefits Limitations 

[16] Artificial neural 

networks (ANN) 

Inheritance with CK 

and CK without 

inheritance 

offered improved outcomes for each of 

the four criteria, f1-measure, TNR, 

precision, and accuracy. 

Some important issues are not addressed, such 

as the quantity, severity, and causes of faults. 

[11] LR, KNN, DT, RF, 

NB, SVM, as well 

as MLP 

Promise repository 

dataset 

The experiment was conducted on 

class-level datasets as well as method-

level datasets. 

Class imbalance issues are not addressed. 

Ignore many faults in favor of the simpler 

challenge of categorizing faults into two groups. 

[17] Fourier coefficient 

and Fourier 

learning algorithm 

NASA dataset The AUC of a model trained with 

Fourier methods is higher.  

It's more reliable than other SFP models 

out there. 

They may have evaluated skewed data because 

they did not address data imbalance and noise 

issues. 

The number of errors ignored. 

[14] DT, LR, NB, 

multinomial NB 

and KNN 

PROMISE repository As contrasted to other ensembles, the 

experimental findings favoured the 

model averaging strategy. 

All machine learning models are not achived 

similar accuracy for SFP 

[10] KNN and RF NASA's PROMISE 

repository 

99% and 88% accuracy that is highe 

detection rate of software fault 

The KNN model obtain only 88% accuracy. 

Input Dataset 

PROMISE Repository dataset 

Data Pre-processing 

Data Splitting into 

Training Dataset (80%) Testing Dataset (20%) 

ML algorithms for 

Classification  
 

 

 
 

 

 

 

XGBoost 

LGBM 

Classification Model Testing 

Evaluate the 

performance of model 

in terms of Recall, 

ACC, f1-score , ROC-

AUC and Precision  

High prediction range 

Data Balancing with SMOTE 

Voting 
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I. Data Collection 

In the initial phase of SFP, data collection is carried out. The 

data used for the training in this study came from the tera - 

Promise data source. In this research, there are 16 different 

datasets has used for software fault prediction. The data has been 

collected from the PROMISE repository.  

II. Data Pre-Processing 

Fault prediction accuracy in supervised ML approaches is 

highly sensitive to data used for training and its quality. 

Preprocessing the data before training the approaches improves 

their precision. The goal of data preprocessing is to prepare raw 

data for use in subsequent ML steps. It is the first rung of the 

suggested study steps. Preprocessing entails activities like data 

scalling and data balancing across all sources by checking for 

missing data and null values. 

1) Check Null Values 

The process of deleting null values from the collection is an 

essential part of data integration. Any ML technique suffers from 

diminished precision and performance when dealing with such 

missing data. Thus, prior to using an ML method, it is essential 

to remove any missing or invalid values from the data. A null is 

not zero for numeric data types or an empty string for character 

or datetime data types. 

2) Data scaling 

When data is scaled, the range of its independent variables 

or features is standardisedIn the realm of data processing, it goes 

by various names, including "data normalisation" and "data 

standardisation."Data scaling is often done during the pre-

processing phase of training models utilising ML approaches. 

StandardScaler was utilised for the data scaling. 

Standard Scaler:StandardScaler is often used as a stage of 

preprocessing in a wide variety of ML models to normalise the 

functional range of the input dataset. StandardScaler is useful 

when the input dataset has features with widely varying ranges 

or when the features are evaluated using various units of 

measure. When analysing data, the standard deviation is used for 

the mean. However, outliers have an impact on both the 

empirical mean and the standard deviation, reducing the range 

of characteristic values. To fix this, we must initially input the 

regularly utilised data into the ML model after normalisation (μ= 

0, σ= 1).The formula for Standardization is as follows: 

𝑋 , =
𝑋 − μ

𝜎
… … . (1) 

μ is the average of attribute values and 

𝜎 is the average disparity among feature values.  

 

3) Data Balancing (SMOTE) 

The term "data balancing" refers to the process of modifying 

a dataset's class distribution so that each class is displayed with 

an equal or proportional amount of data. Real-world applications 

like software fault prediction, fraud detection, medical 

diagnostics, and customer churn prediction often work with 

imbalanced datasets. In such cases, models are more likely to be 

prejudiced or incorrect due to an imbalance in the quantity of 

training data points used to represent each class. Data balancing 

is a crucial issue in Promise data source prediction since the 

dataset is frequently unbalanced, which means that the positive 

class (not faulty modules) has far fewer samples than the 

negative class (faulty modules).Unbalanced distribution of cases 

across several classes can interfere with reliable prediction of 

malfunctioning modules. In this case, we use SMOTE, an 

oversampling technique [18]. 

Class Imbalance Handling:The graph of our dependent 

variable's distribution shows the following. Our prediction 

model is more likely to side with the majority over the minority 

if our target variable is highly skewed. SMOTE, a synthetic 

minority oversampling approach, was implemented to address 

this issue. 

The predictive power of the dataset for the underrepresented 

group improves if it is more evenly distributed. The issue of class 

disparity is addressed by employing the Synthetic Minority 

Oversampling Technique (SMOTE). SMOTE operates in 

feature space to produce synthetic samples from the 

underrepresented group. Every minority class sample as well as 

its KNN are presented as synthetic samples along the line that 

connects them. Initially a random number among 0 and 1 is 

multiplied by the difference in feature vectors among the 

minority class instance under investigation and its nearest 

neighbour. Multiplying the feature vector under examination by 

its product of multiplication factors yields a synthetic instance 

from the minority class (Chawla et al., 2002) [19]. For the 

purpose of this discussion, let's assume that fi is the feature 

vector of the minority class sample, and the vector 𝑓𝑛𝑒𝑎𝑟 is one 

of 𝑓𝑖 KNN. The resulting synthetic sample fnew can be 

expressed as the solution to Eq. (2). 

𝑓𝑛𝑒𝑤 = 𝑓𝑖 + (𝑓𝑖 − 𝑓𝑛𝑒𝑎𝑟)…(2) 

Here, 𝑅 is a random number between 0 and 1. 

III. Data Spiiting  

Unfortunately, we cannot use the dataset to train our model. 

If we train our model with all of the available data points, it is 

possible that it will produce an inaccurate prediction of a new 

statement. We have opted to divide our dataset 80:20 so that we 

may assess the performance and consistency of our model. Using 

the remaining 20% of the data set, we compare the model's 

http://www.ijritcc.org/
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predictions to the actual values to determine how well it 

performs. 

IV. Classification Models 

Now, with the amount of data growing exponentially, the 

rational use of big data has become the focus of enterprises to 

serve the future and make better decisions. Using MLmethods 

for predicting the commodities and sales of products has grown 

a hotspot for investigators and companies in the past few 

years.Predicting sales with the use of ML and AI is becoming 

increasingly common. ML is a type of method that improves 

software's prediction powers without requiring new instructions. 

The goal of ML is to create methods that, given some input data, 

can utilise that data to make predictions about a target output, 

and then, as more data becomes available, update those 

predictions. Supervised learning and unsupervised learning are 

two distinct approaches to ML. The goal of unsupervised 

learning is to find concise summaries of data, while the goal of 

supervised learning is to make accurate predictions. Finding 

learning strategies which perform effectively on novel data is a 

goal in both supervised & unsupervised settings. The results of 

supervised learning can be classified further into 2 types: If the 

output is continuous, the issue is called a regression problem, 

and if it is discrete, it is called a classification problem[20]. 

Classification is a method for grouping things into groups 

that are the greatest fit for the way they are constructed. The 

training set consists of the qualities and the class labels 

associated with them, and this is what the classifier is initially 

trained on[21]. This is the stage that entails training or 

learning[22][23]. The second stage, "classification," involves 

evaluating the classifier's efficacy using a testing dataset. Once 

the rules' efficacy has been evaluated, they are used to make 

predictions about the classes of tuples of data about which more 

information is needed[24]. Classification's purpose is to place an 

unlabeled material into one of several predetermined categories. 

Classification can be represented mathematically as a function, 

as seen below [25]: 

𝐶 =  𝑓(𝑋, 𝜃), 𝐶 ∈  𝐿 … . . (3) 

Class label of the new sample is denoted by C, features are 

represented by X, L is the set of class labels, f(.) is the 

classification function, and is the set of parameters for f(.). 

In this research work, we used three classification techniques 

that are LGBM, XGBoost, and voting classifier. All classifiers 

are described below: 

1) LGBM Classifier 

The Light Gradient Boosting Method (abbreviated as "Light 

GBM") is a fast and effective tree-based gradient enhancement 

method. The name "light" comes from the fact that the classifier 

employs a tree-based method with vertical tree growth, making 

it more efficient than horizontal tree-based methods. The Light 

gradient boosting approach is advantageous for processing large 

datasets since it is both time- and resource-efficient[26].Light 

GBM differs from other methods in that it develops trees 

vertically, or leaf-wise, rather than horizontally, as is the case 

with most other methods. For agricultural purposes, the leaf with 

the highest delta loss will be selected. When cultivating the same 

leaf, a leaf-wise strategy can be more effective at minimising 

waste than a level-based one[27]. 

 
Figure 3.  Level-wise tree growth in XGBOOST. 

 

Figure 4.  Leaf wise tree growth in Light GBM. 

In order to prevent overfitting and the complexity explosion 

that results from leaf-wise splits, an additional parameter, max-

depth, is specified. 

2) Xgboost Classifier 

The ML method XGBoost is quite effective. It's a brand new 

feature. Classified as Supervised Study. Gradient boosting 

serves as its conceptual backbone. XG Boost is based on a 

technique called parallel tree boosting, that produces accurate 

predictions by averaging the outputs of several relatively weak 

models[28]. 

To achieve a model with great computational speed and 

efficiency, we have employed XGBoost, also known as Extreme 

Gradient Boosting. The formula optimises its final predictions 

through the use of an ensemble approach which mimics the 

expected mistakes of some DT. The model output also includes 

a report on the relative importance of every feature's influence 

on the final performance score forecast for the building. Every 

characteristic's absolute value reflects the impact it has on 

predicting academic success.  

Parallelization is supported in XGBoost through the use of a 

decentralised DT generator. This method's ability to analyse any 

huge and complex model using distributed computing is another 
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one of its most notable features. Because it processes massive 

datasets with varying structures, it is performed outside of the 

typical computing core. This calculative model handles resource 

utilisation admirably. To lower the error, an additional model 

must be used at every stage. 

XGBoost objective function at iteration t is[29]: 

……..(4) 

where y_out is a known real value from the training data and 

the summing up part is f(x + dx) if and only if x = y_out1i (t-1). 

The Taylor approximation is what we'll need to use. Let us 

approximate f(x) linearly by setting: 

𝑓(𝑥) =  𝑓(𝑏)  +  𝑓`(𝑏)(𝑥 − 𝑏) 𝑑𝑥 =  𝑓𝑡(𝑥𝑖)….(5) 

If L is the loss function, f(x) is the prediction at step t-1, b is 

the new learner we must absorb at step t, and dx is the x at which 

the prediction was made. 

The Taylor approximation of the second order is: 

𝑓(𝑥) =  𝑓(𝑏)  +  𝑓`(𝑏)(𝑥 − 𝑏)  +  0.5𝑓``(𝑏)(𝑥 − 𝑏)^2…..(6) 

……(7) 

Taking out the constant terms, we are left with the following 

goal to minimise at time step t, 

….(8) 

3) Voting Classifier  

Classification models can also make use of the voting 

ensemble technique. Here, we take into account both the votes 

of the majority and the probabilities involved. There are two 

distinct voting systems: 

• In hard voting, the outcomes of each technique are 

averaged based on a vote tally to improve prediction 

accuracy. 

• Soft voting: Soft voting can be used in situations when 

different methods each produce a plausible outcome 

probability. This method optimises outcomes by 

averaging the odds of several different approaches. Soft 

voting is being used in this case. The voting system's 

architecture is depicted in Fig. 5. 

 
1 http://promise.site.uottawa.ca/SERepository/datasets-page.htm 

 

Figure 5.  Architecture of voting method 

The ultimate prediction of a new instance's class label is 

made using voting, which is based on the combined output of 

multiple ML classifiers. Voting could be strict or relaxed. Voting 

by simple majority is utilised in cases where there is a lot of 

opposition. In this instance, the most popular category will be 

chosen (guessed). When using soft voting, a forecast is formed 

by taking the mean of the class probabilities generated by the 

various classifiers. Predictions are made about the group with the 

highest mean likelihood. Soft voting was used in this study. 

Additionally, the VC's foundational estimators are tree-based 

ensemble classifiers[30]. 

IV. RESULTS AND DISCUSSION 

Here, show the simulation results of predicting software 

faults with ML methods. For this application, we utilised the 

python simulation tool and a high-end HP computer equipped 

with an Intel Core i7 processor, 32GB of RAM, Windows 10, 

24GB of Nvidia graphics memory, a 1TB hard drive, & so on.  

The effectiveness of an SFP ML classifier can be determined 

using the performance matrix. Using data from the NASA 

PROMISE Repository, the authors of this research suggest three 

ML classifiers: XGBOost, LGBM, as well as a voting classifier. 

Dataset description, simulation results, evaluation metrics, and 

the next section offers a discussion of the findings. 

A. Dataset Discription 

Open access to this dataset from the PROMISE Software 

Engineering Repository promotes reproducible, refutable, 

and/or upgradeable software engineering prediction models. We 

have employed CM1, KC1, KC2, KC3, PC1, PC2, PC3, PC4, 

MC2, MW1, JM1, AR1, AR3, AR4, AR5, and AR6 datasets 

obtained from PROMISE software engineering repository1[31], 

other data sets obtained from tera-PROMISE Repository2[32]. 

Figure 6 shows the correlation matrix of CM1 dataset. Similary 

other dataset features are strongly correlated, however these 

features were expected to be strongly correlated when they were 

chosen as features. Data sets contain collections of software 

components, every one of which has either been labelled as fp 

(fault prone) or nfp (not fault prone) to indicate whether or not it 

2 http://openscience.us/repo/defect/mccabehalsted 
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is prone to errors. Table 2 details the fundamentals of each 

project. 

TABLE II.  DATASETS USED IN THIS STUDY. 

s Not 

Faulty 

Module 

Faulty 

Module 

Total no of 

Modules in 

Software 

Features 

CM1 449 49 498 21 

KC1 1783 326 2109 21 

KC2 415 107 522 21 

KC3 415 43 458 39 

PC1 1032 77 1109 21 

PC2 5566 23 5589 36 

PC3 1403 160 1563 37 

PC4 1280 178 1458 37 

MC2 109 52 161 39 

MW1 372 31 403 37 

JM1 8779 2106 10885 21 

AR1 112 9 121 29 

AR3 55 8 63 29 

AR4 87 20 107 29 

AR5 28 8 36 29 

AR6 86 15 101 29 

 

Figure 6.  Correlation heatmap of dataset CM1 

Our CM1 dataset feature correlation matrix is displayed in 

Fig. 6. A correlation heatmap is a visualisation technique that 

uses a color-coded matrix to show the degree to which different 

variables are linked to one another. A colour wheel, if you will. 

It reveals the degree of association between the variables. A 

correlation coefficient heat map that visualises the strength of 

associations among features. 

B. Evaluation Measures for Software Fault Prediction  

We will discuss the SFP sensitivity, specificity, positive 

predictive value, and false positive as well as negative predictive 

values. In software, TP indicates the sum of every situations that 

were correctly detected as flawed, while TN is the sum of all 

instances that were correctly identified as intact. One might think 

of FP as the number of good software instances that were 

wrongly identified as bad, and FN as the no. of bad software 

instances that were incorrectly labelled as good. 

Classification accuracy, commonly known as the right 

classification rate, is one of the major simple measures used to 

evaluate the efficacy of predictive models. It's used to put a 

number on how many cases were correctly categorised out of the 

whole. To be more specific, precision is defined as the number 

of correctly identified defective events relative to the number of 

false positives. More specifically, recall measures how many 

instances were accurately tagged as defective (TP) relative to the 

overall number of defective (TP + FN) instances. F-scores, 

which are a harmonic mean of precision and recall, have been 

widely used in the academic literature. Target positive and false 

positive rates (TPR and FPR) are balanced to yield a ROC 

curve's area under the curve [4]. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

N
… . . (7) 

Precision =
TP

TP + FP
… … . (8) 

Recall =
TP

TP + FP
… … (9) 

F1score =
2 × (Precision − Recall)

(Precision + Recall)
… . (10) 

Confusion Matrix:A classifier's propensity to favour 

specific classes can be revealed by examining its confusion 

matrix, which displays the quantity (or percentage, for 

normalised confusion matrices) of accurate and wrongly 

predicted labels for each class. 

 

Figure 7.  Confusion matrix 

Many different metrics have been offered for two-class 

situations, and figure 7 shows that there are 4 distinct scenarios 

that can be expressed in the confusion matrix. 

C. Simulation results of proposedModela 

We provide the simulation results of three different machine 

learning boosting classifiers i.e., LGBM, XGBoost, and Voting 

classifier. Here we provide only CM1 datasset results 

visulisation, because similar kind of results obtain by the other 

15 datasets. The CM1 dataset results provided below with using 

LGBM, XGBoost, and voting classifier. After implementation, 

the simulated results of these classifiers are given below as 

follows: 
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1) Results of LGBM Classifier on CM1 Dataset 

Here provide the simulation results of proposed LGBM 

classifier on CM1 dataset. Below provide the results in 

visualized with classification report, confusion matrix, ROC-

AUC with Parameter performance. 

 

Figure 8.  Classification report of LGBM Classifier on CM1 Dataset 

Classification results for the suggested LGBM classifier on 

the CM1 Dataset are displayed in Figure 8. In the field of ML, a 

classification report serves as an evaluation statistic. Our test 

classification model's accuracy, reliability, F1 Score, and 

acceptance rate can all be displayed here. Precision 96%, recall 

85%, and f1-score 90% for class 0 in the input CM1 dataset; 

precision 86%, recall 97%, and f1-score 91% with support 92 

and 88 for class 1. Classification accuracy for the suggested 

model LGBM classifier is 92% with 180 relevant supports. 

 

Figure 9.  Confusion Matric of LGBM Classifier on CM1 Dataset 

LGBM classifier's confusion matrix on CM1 dataset is 

depicted in figure 9. The performance of a classifier can be 

measured via a "confusion matrix," which is essentially a data 

table. Confusion matrices are useful for visualising and 

summarising a classification method's performance. The TP, FP, 

FN, and TN for the four possible examples may be found in the 

confusion matrix; these metrics have all been proposed for two-

class problems. The modules that were appropriately recognised 

as defective (TP) and functional (TN) are indicated. When the 

outcome is projected to be yes when it is not, this is called a FP. 

Whenever the actual result turns out to be positive, but the 

forecaster wrongly assumes it will be negative, they have made 

a FN prediction. The matrix has the following values: false 

negative 3, false positive 14, true negative 78, and true positive 

85. 

 

Figure 10.  ROC Graph of LGBM Classifier on CM1 Dataset 

Figure 10 illustrates a receiver operating characteristic 

(ROC) curve for the LGBM classifier on the CM1 dataset at k-

fold. The ROC chart depicted above shows how the TPR and 

FPR change with respect to one another across a range of 

categorization cutoffs. The FPR is plotted along the x-axis and 

the TPR along the y-axis in this diagram. The True Positive Rate 

(TPR) measures how often the model correctly identifies 

positive events. It is also known as sensitivity or recall. FPR 

measures how often real-world negative examples are wrongly 

classified as positive by the model. The diagonal line on the 

ROC graph represents a random classifier or a model with no 

discrimination ability. This figure obtained the highest AUC 

values i.e., 0.93 on fold 1, 0.95 on fold 2, 0.98 on fold 3 and fold 

4, 1.00 on fold 5, 99% AUC of fold 6 99%, fold 8 and fold 7 

AUC is 98%, fold 9 and fold 10 is 100% AUC, and the mean 

ROC value is 0.98, respectively.  

2) Results of XGBoost Classifier on CM1 Dataset 

Here provide the simulation results of proposed XGBoost 

classifier on CM1 dataset. Below provide the results in 

visualized with classification report, confusion matrix, ROC-

AUC with Parameter performance. 

 

Figure 11.  Classification report of XGBOOST Classifier on CM1 Dataset 

Figure 11 displays the results of the suggested XGBOOST 

classifier's application on the CM1 dataset. The input CM1 

dataset have two classes, for class 0 precision 96%, recall 87% 

and f1-score is 91% whereas for class 1 precision 88%, recall 

95% and f1-score is 91% with support 92 and 88. The proposed 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10s 

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710 

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023 

___________________________________________________________________________________________________________________ 

 

    724 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 
 

model XGBOOST classifier classification accuracy is 92% with 

support 180 respectively. 

 

Figure 12.  Confusion Matric of XGBoost Classifier on CM1 Dataset 

The following figure 12 shows the confusion matrix of 

XGBOOST classifier on CM1 dataset. In this case, the matrix 

has true negative and positive values of 80 and 84, respectively, 

with false negative and false positive values of 4 and 12, 

correspondingly. 

 

Figure 13.  ROC Graph of XGBOOST Classifier on CM1 Dataset 

The above figure 13 shows a ROC graph of XGBOOST 

classifier on CM1 dataset with k-fold (10). This figure obtained 

the highest AUC values i.e., 0.93 on fold 1, 0.92 on fold 2 AUC, 

0.96 and 98% on fold 3 and fold 4, 1.00 on fold 5 and 6, 99% 

AUC of fold 7 and 8,  fold 9 and fold 10 is 100% AUC, and the 

mean ROC value is 0.98, respectively.  

3) Results of Voting Classifier on CM1 Dataset 

Here provide the simulation results of proposed voting 

classifier on CM1 dataset. Below provide the results in 

visualized with classification report, confusion matrix, ROC-

AUC with Parameter performance. 

 

Figure 14.  Classification report of Voting Classifier on CM1 Dataset 

Classification results for the suggested vote classifier on the 

CM1 dataset are displayed in Figure 14 above. The input CM1 

dataset have two classes, for class 0 precision 98%, recall 86% 

and f1-score is 91% whereas for class 1 precision 87%, recall 

98% and f1-score is 91% with support 92 and 88. The proposed 

model voting classifier precision, recall, f1-score and accuracy 

is 92% with support 180 respectively. 

 

Figure 15.  Confusion Matric of Voting Classifier on CM1 Dataset 

The following figure 15 shows the confusion matrix of 

voting classifier on CM1 dataset. The matrix has the following 

values: 79 for true negative, 86 for true positive, 2 for false 

negative, and 13 for false positive. 

 

Figure 16.  ROC Graph of Voting Classifier on CM1 Dataset 

The above figure 16 shows a ROC graph of voting classifier 

on CM1 dataset with k-fold. This figure obtained the highest 

AUC values i.e., 0.90 on fold 1, 0.93 on fold 2, 0.98 on fold 3, 

and fold 4, 1.00 on fold 5, fold 6, fold 8, fold 9, and fold 10, 0.97 

on fold 7 and the mean ROC value is 0.97, respectively.  
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D. Parameter performance of ML proposed classifier with 

CM1 datasets 

The following table 2 shows parameter performance of 

voting classifier using four datasets with five performance 

measure. This proposed models obtains 92% accuracy and 98% 

AUC with CM1 Dataset for SFD. 

TABLE III.  PARAMETER PERFORMANCE OF PROPOSED CLASSIFIERS WITH 

CM1 DATASET 

Parameters Voting LGBM XGBoost 

Accuracy 92 91 91 

Precision 92 91 91 

Recall 92 90 91 

F1-Score 92 90 91 

AUC 98 98 98 

 

Figure 17.  Bar graph of parameter comparison between threeproposed 

classifiers using CM1dataset 

The above figure 17 shows the comparison between 

accuracy, precision, recal, f1-score and ROC parameter 

performance for SFP using XGBoost, LGBM and voting 

classifiers. The proposed XGBoost obtain 91%, 90% and 98% 

of accuracy, precision, recall, f1-score and AUC, while propose 

LGBM and voting classifier get 91% and 92% accuracy, 

precision, recall, and f1-score or 98% AUC respectively. 

V. Compariosn between base and proposed classifiers using 

16 NASA datasets 

In this section gives the comparison between various 

machine learning datasets using 16 NASA software fault 

datasets. This work proposed three machine learning classifier 

that is LGBM, XGBoost and voting classifier. Here provide the 

implementation results comparison in terms of Accuracy and 

AUC parameters using python tool, also provide the comparison 

between base and purpose ML models for software fault 

prediction using PROMISE Software Engineering Repository 

datasets. The below table 4 and 5 provide the accuracy and AUC 

performance of each dataset with base (Base Voting, Naïve 

Bayes, SVM, and RF) and propose classifiers classifiers(LGBM, 

XGBoost,  and propose Voting). 

 

 

 

 

TABLE IV.  ACCURACY (%) COMPARISON BETWEEN BASE AND PROPOSED MACHINE LEARNING CLASSIFIERS ON 16 DATASETS 

Datasets Base Classifiers Proposed clasifier 

Voting NB SVM RF LGBM XGBoost Voting 

AR1 88 88 84 84 98 97 97 

AR3 84 90 84 84 98 98 98 

AR4 81 81 81 81 94 93 94 

AR5 87 85 75 62 93 100 97 

AR6 90 85 90 87 97 97 98 

PC1 93 91 90 92 99 98 99 

PC2 99 97 99 99 100 100 100 

PC3 88 21 89 89 99 96 98 

PC4 89 88 88 90 99 99 99 

KC1 84 80 85 85 94 91 94 

KC2 84 83 84 86 92 90 90 

KC3 86 79 90 89 99 98 98 

MW1 91 82 92 91 99 98 99 

MC2 71 72 69 72 90 90 91 

JM1 82 79 80 81 92 88 91 

CM1 88 84 89 88 98 96 97 

92 92 92 92

98

91 91
90 90

98

91 91 91 91

98

85

90

95

100

Accuracy Precision Recall F1-Score AUC

in
 %

Parameter comparison between proposed 

machine learning classifiers using CM1 

Dataset

Voting LGBM XGBoost
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Figure 18.  Bar graph of Accuracy comparison between base and propose machine learning classifiers using 16 datasets 

In figure 18 shows the accuracy comparioson between base 

and propose classifiers with 16 datasets. The x-axis of the graph 

depicts the ML classifiers together with the dataset, while the y-

axis depicts the corresponding accuracy percentage (%). For the 

MW1 dataset 93% and 90% accuracy, 89% and 83% accuracy 

of JM1 dataset, 91% and 92% accuracy given by the LGBM and 

Voting classifier with CM1 dataset, AR1 dataset get 91% and 

93% accuracy, 86% and 88% with MC2 dataset, accuracy of 

95% and 92% with PC1 dataset, PC3 obtain 93% and 94%, PC4 

get 94% and 95%, PC2 achieved 98% and 99%, KC1 accuracy 

with 88% and 87%, AR6 get 94% and 98% accuracy, AR5 

dataset 99% and 100% accuracy, KC2 accuracy 90% and 91%, 

KC3 dataset obtain 94% accuracy of voting classifier, 95% 

accuracy of LGBM classifier but XGBoost get only 93% 

accuracy, AR3 91%, 93% and 95% accuracy with three 

classifiers, and AR4 data get 82% and 85% accuracy with Voting 

, LGBM and XGBoost classifiers. The proposed methodology 

gets 100% accuracy with AR5 dataset using XGBoost dataset. 

While base base random forest only achieved 62% accuracy on 

AR5 dataset, base naïve Bayes only achieved 21% accuracy on 

PC3 dataset, base voting only achieved 79% accuracy on KC3 

dataset, ans base SVM only achieved 69% accuracy on MC2 

dataset, all base classifier shows very lower performance in 

comparison to propose classifiers on 16 datasets.

 

0

20

40

60

80

100

120

AR1 AR3 AR4 AR5 AR6 PC1 PC2 PC3 PC4 KC1 KC2 KC3 MW1 MC2 JM1 CM1

in
 %

Datasets

Accuracy comparison between base and proposed ML classifiers with 16 datasets

Base Classifiers Voting Base Classifiers NB Base Classifiers SVM Base Classifiers RF

Proposed clasifier LGBM Proposed clasifier XGBoost Proposed clasifier Voting
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TABLE V.  AUC (%) COMPARISON BETWEEN BASE AND PROPOSED MACHINE LEARNING CLASSIFIERS ON 16 DATASETS 

Datasets Base Classifiers Proposed classifier 

Voting NB SVM RF LGBM XGBoost Voting 

AR1 71 53 30 74 98 97 97 

AR3 92 84 85 94 98 98 98 

AR4 78 83 57 81 94 93 94 

AR5 90 87 90 87 93 100 97 

AR6 71 79 40 62 97 97 98 

PC1 80 71 47 81 99 98 99 

PC2 76 86 53 79 100 100 100 

PC3 82 70 31 85 99 96 98 

PC4 92 82 50 94 99 99 99 

KC1 78 79 55 76 94 91 94 

KC2 79 83 82 79 92 90 90 

KC3 84 81 50 84 99 98 98 

MW1 76 75 44 77 99 98 99 

MC2 71 68 54 75 90 90 91 

JM1 79 66 64 68 92 88 91 

CM1 73 75 41 70 98 96 97 

 

Figure 19.  Bar graph of AUC comparison between base and propose machine learning classifiers using 16 datasets 

The abovefigure19 provide the AUC performance of each 

dataset with proposed and base classifiers. Also, tabular 

representation provide table5. For the MW1 dataset 99% and 

98% AUC, 91% and 92% AUC of JM1 dataset, 97% and 98% 

AUC given by the LGBM and Voting classifier with CM1 

dataset, AR1 dataset get 97% and 98% AUC, 91% and 90% with 

MC2 dataset, similarly other dataset get highest AUC with 

proposed Voting, LGBM and XGBoost classifiers. The 

proposed methodology gets 100% AUC with PC2 dataset using 

all three methods datasets. Proposed LGBM classifier get 99% 

AUC on KC3 dataset that is higher than the other machine 

learning classifier while base SVM only achieved 50% AUC on 

KC3 dataset, proposed LGBM and Voting classifier obtain 99% 

accuracy on this dataset while base models only 76%, 75%, 45% 

0

20

40

60

80

100

120

Voting NB SVM RF LGBM XGBoost Voting

Base Classifiers Proposed clasifier

in
 %

AUC comparison between base and proposed ML classifiers with 16 datasets
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and 77% accuracy that is very lower in our propose models. 

MW1 dataset obtain accuracy of LGBM 99%, XGBoost 98%, 

and Voting 99%, JM1 dataset obtain AUC of LGBM 92%, 

XGBoost 88%, and Voting 91%,and  base models only 79%, 

66%, 64% and 68% AUC that is very lower in our propose 

models. proposed LGBM classifier obtain 98% accuracy on this 

dataset while base models only 73%, 75%, 41% and 70% AUC 

that is very lower in our propose models. CM1 dataset obtain 

AUC of LGBM 98%, XGBoost 96%, Voting 97%, Stacking 

98%, Gradient 97%, AdaBoost 93% and CatBoost 94% 

respectively. Show we can see that our proposed models AUC 

show very good performance in comparison to base classifiers 

using 16 datasets. 

V. CONCLUSION AND FUTURE WORK 

ML methods make use of example data or past algorithms to 

solve a given problem. In our study, we want to use ML to 

predict whether a specific module will be faulty or not based on 

the previous fault data collected and the metrics collected from 

the project. The goal of this research was to compare and contrast 

several well-known ML techniques for finding defects in 

computer programmes. In this thesis, we propose a novel 

approach utilizing ML for software defect prediction. The goal 

of the approach is to make use of label information for improving 

the performance of classification algorithms such as LGBM, 

XGBoost, and Voting classifiers. The performances of different 

algorithms were evaluated using classification accuracy, recall, 

precision, F-measure, and AUC metrics. The suggested ML 

classifiers on all 16 NASA datasets. ML models have reached 

100% accuracy and AUC almost all datasets. In terms of area 

under the curve (AUC) and accuracy, the suggested technique 

performs exceptionally well across the board for fault data sets. 

Therefore, in the context of software failure prediction across a 

wide range of software projects, the suggested strategy is 

efficient, reliable, and consistent. Our evaluation on a widely 

used data set shows that our method significantly improves the 

performance of ML classifier. We provide research into many 

ML methods which have been shown to be effective in the 

prediction of software faults, and we analyse an examination of 

the different performance indicators utilised to make such 

predictions. 

Interesting future extensions could include studying the 

impact of various metaheuristic feature selection approaches to 

select the optimal set of features for SFP. As data imbalance is 

still an issue that adversely impacts the performance of the 

existing SFP approaches, future research should look into 

DL methods and ensemble classifiers and contrast their results 

to those of other resampling methods. More research is needed 

to see if one of the software defect prediction models might be 

useful for quality assurance purposes in the setting of a software 

engineering organisation. 
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