
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 715

IJRITCC | September 2023, Available @ http://www.ijritcc.org

A Novel Developed Supervised Machine Learning

System For Classification And Prediction of Software

Faults Using NASA Dataset

Nikita Gupta1, Ripu Ranjan Sinha2
1Research Scholar, Computer Science Department

Rajasthan Technical University (RTU), Kota

nikitagupta.ssm@gmail.com
2Professor, Computer Science, S. S. Jain Subodh P.G. College

Rajasthan Technical University, Kota

drsinhacs@gmail.com

Abstract— The software systems of modern computers are extremely complex and versatile. Therefore, it is essential to regularly detect and

correct software design faults. In order to devote resources effectively towards the creation of trustworthy software, software companies are

increasingly engaging in the practise of predicting fault-prone modules in advance of testing. These software fault prediction methods rely on the

thoroughness with which prior software versions' fault as well as related code has been retrievedTime, energy, and money are all saved as a result.

Increases the company's initial success and bottom line greatly by satisfying its clientele. Numerous academics have poured into this area

throughout the years in an effort to raise the bar for all software. Nowadays, The most often used approaches in this field are those based on

machine learning (ML). The field of ML seeks to perfect software capable of evolving as well as adapting in response to fresh data. This paper

introduces a fresh approach for doing ML by bringing together a number of different expert systems. In order to reach agreement on which aspects

of a software system need to be tested, the proposed multi-classifier model pools the strengths of the most effective classifiers. Several top-

performing classifiers for defect prediction are put through their paces in an experiential evaluation. We test our method on 16 publicly available

datasets from the NASA Metric Data Programme (MDP) repository at the promise repository. Parameters of confusion,

recall, precision, recognition accuracy, etc., are evaluated and contrasted with existing schemes in a software analysis performed with the help of

the python simulation tool with findings. The experimental outcomes demonstrate that by combining LGBM, XGBoost, and Voting classifiers,

using a multi classifier approach, we are capable to significantly improve software fault prediction performance. The results of the investigation

show that the suggested method will lead to better practical outcomes in the prediction of device failures.

Keywords- Software systems, Software defect, Software fault prediction, ML, Supervised ML, classification, LGBM, XGBoost , Voting, NASA

dataset.

I. INTRODUCTION

The proliferation of software products is a side effect of

software technology progress, and keeping up with them all has

grown into a formidable challenge. Maintenance operations

account for greater than 50% of the total cost of ownership of a

software system. The likelihood of discovering flawed

components in software systems grows in tandem with their

increasing complexity[1]. It is crucial to anticipate and address

problems before they is provided to users as-is since software

quality assurance is time-consuming, and limited resources

prevent thorough testing of the whole platform. Thus, finding a

flawed piece of software can help us make better use of our

timeand money. A software system flaw, or "bug," is another

term for the same thing[2][3].

A software or product failure occurs when its results are not

what the customer wants, we have a software defect. Such

defects are examples of programming mistakes that manifest as

failures, unpredictability, or unexpected consequences and

might originate in either the source code or the requirements.

Such defects have a negative impact on software quality as well

as programme reliability and can result in wasted money, effort,

and resources. Repairing failures requires more time and money

spent on maintenance. This makes early defect prediction in

software an important field of study [4].It is the objective of

Software Fault Prediction (SFP) methods to help developers

more efficiently allocate their time and resources between (i)

testing, due to the increased likelihood of testing failure-prone

components, and (ii) refactoring, with the objective of enhancing

the design for these parts, to reduce the likelihood of

incorporating new bugs while working on them[5].

SFP models [4] are typically built to determine fault severity,

fault classification in binary terms, and the total amount of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 716

IJRITCC | September 2023, Available @ http://www.ijritcc.org

defects. As can be seen in Fig. 1, the classification model is first

trained using data amassed from earlier versions of similar

software projects to identify patterns of software faults. In

software fault datasets, the independent variables (like the

amount of attributes, methods, and lines of code) are software

metrics, as well as the dependent variables (either the module is

defective or not with regards to providing a true or false value)

are faulty or non-faulty.

Figure 1. Software Fault Prediction Process

Since 1990, a lot of investigation has been conducted on

metrics & efficient modelling strategies to improve

SFP performance[6]. The creation of the PROMISE repository

in 2005, nevertheless, caused a surge of activity in this sector.

Investigators were capable of making their findings replicable

and trustworthy because of the abundance of public datasets

available in this repository. When describing the qualities of a

software component, object-oriented metrics are frequently

used. Amongst the various software defect prediction research

that focus on ML and statistical approaches, random forest

(RF) and naive Bayes (NB)have been shown to execute

exceptionally well and consistently[7]. In addition to ML,

ensemble learning also has a major effect on fault prediction

outcomes. A broad range of evaluation metrics are utilised to

examine the efficiency of classifiers, with the choice of a

particular measure depending on the dataset and modelling

method employed for prediction.

Various ML methods have been applied to the task of fault

prediction. However, there is no universally superior

ML method [9]. Therefore, the greatest outcomes can only be

achieved by the use of an efficient method, and integrating the

most effective classifier is one such method. Multiple classifiers

working together might be able to make a more accurate forecast

than any one of them could on their own. Such findings

prompted investigators to pool their students for a collective

classification verdict.It has been shown empirically that certain

classifier combination schemes regularly outperform than a

single best classifier. Integrating classifiers improves both

productivity and precision. Researchers frequently employ

majority voting as a classifier combination approach[8]. In, we

provide the findings of a deep dive into the attribute space and

classifier input range[7][9]. Research into software defect

prediction employing a variety of ML methods is widespread.

Such methods showed potential on some data sets but

underwhelmed on others. One way is to use an ensemble method

to construct a model that is reliable and effective across all data

sets. The purpose of this research is to determine ML &

ensemble-based modelling approaches for predicting software

faults. Investigators have been making extensive usage of

ML methods in recent years; the production and combination of

weak learners for the final output has boosted the use of

ensemble-based learning in nowadays. As a result, the model's

accuracy improves.

The goal of this research is to improve software quality by

employing supervised ML techniques for SFP and detection.

Supervised learning refers to a subfield of ML in that systems

are taught to make predictions based on data that has been

explicitly tagged for use in training. We show off our algorithm

on 16 datasets from NASA's Promise repository for predicting

software bugs. The following are some of the major results of

this study:

• NASA Metric Data Programme (MDP) programmes&

Turkish software initiatives make up the 16 public

datasets obtained from the PROMISE repository.

• To improve the precision of software defect prediction,

supervised classifiers relying on ML will be

implemented.

• To enhance fault prediction and produce continuously

excellent outcomes across all datasets.

• We examine the recall, precision, accuracy, f1-score

and Area Under the Curve (AUC) of different

techniques to estimate fault prediction capabilities in

order to provide an explanation for this experimental

result.

• By contrasting the suggested classifiers with those

already on the market, we can see that they function

admirably.

The rest of this work is structured in four parts. Section 2

discusses software fault prediction-related works. There have

been a significant number of research articles published in our

chosen field of study. Section 3 describes the phases and

strategies used in the proposed software failure prediction

system in detail. Section 4 summarises the various experiments

and offers the results. also conducts a comparative analytical

investigation of the suggested SFP and other modern methods.

Finally, Section 5 summarises the effort and results and suggests

future research areas.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 717

IJRITCC | September 2023, Available @ http://www.ijritcc.org

II. RELATED WORK

The majority of the existing research on software defect

prediction does not thoroughly compare and contrast all of the

available ML techniques. While some have presented an

approach that utilises preexisting ML methods by expanding

them, some have utilised only a few methods & provided

comparisons to those that have been explored thus far.

For this purpose[10], the NASA PROMISE repository's

defective data set was used in conjunction with the K-Nearest

Neighbour (KNN) and RF supervised ML algorithms to make

predictions about the likelihood of future software defects.

Multiple metrics, such as accuracy, precision, recall, and the f1

measure, were used to evaluate the models' performance.

Highest and lowest accuracy of 99% and 88% respectively on

MC1 as well as KC1 are demonstrated in this work,

demonstrating the superior efficiency of the RF model over the

KNN model.

In [11], use software metrics from the Promise repository

dataset to carry out an experimental research comparing the

efficacy of 7 well-known methods, such as Logistic Regression

(LR), KNN, Support Vector Machine (SVM), DT, RF, NB, and

Multilayer Perceptron (MLP). Both method-level as well as

class-level datasets are used in our investigation. LR &

MLP yield nearly identical AUCs (0.90 as well as 0.91,

correspondingly). In addition, MLP and LR both yield 91%

accuracy. MLP outperforms LR (0.45 F1), but just slightly. For

datasets at the method level, MLP provides the most accurate

error predictions.

In [12],Examine the propensity prediction abilities of the

MLP, SVM as well as DT 3 ML algorithms. The experimental

findings demonstrated that the use of the additional data sets

enhanced the accuracy of error-type prediction by ML models.

In order to comprehend SFP, Improved defects[13], this

research proposes a web-accessible healthcare defect diagnosis

methodology. The effectiveness of the model is measured with

the aid of ML technologies like RF, DT, and SVM, and

particular metrics are built with feature extraction methods.

Lastly, the relative merits of the various ML methods are

reviewed and contrasted.

Considering their widespread use in fault prediction

context,5 classifiers were implemented in this study [14], KNN,

LR, multinomial NB, DT and NB. The model is evaluated using

4 datasets that may be found in the PROMISE database. The F-

measure is employed to assess the efficacy of fault prediction

models. The outcomes are cross validated employing k-fold

(k=10) cross validation to remove the randomness as well as bias

from the samples. As contrasted to other ensembles, the

experimental findings favoured the model averaging strategy.

In [15], introduces a method for detecting software defects

that can help fix a few of the most fundamental issues with

current systems. Using a combination of fundamental noise

removal, imbalanced class distribution, and software metrics

selection methodologies, this study aims to enhance SFP. 10

SFP datasets were used to evaluate the method. The

experimental findings demonstrate that the suggested approach

improves fault prediction ability, with outcomes which are either

greater than or comparable to a number of comparison models in

terms of F-measure, recall, precision, accuracy, as well as ROC-

AUC values. This demonstrates that our model is correct.

In [16], seeks to examine the amount of help SFP can get

from inheritance metrics. The Chidamber&Kemerer (CK)

metrics are chosen firstly because they are among the most

widely used collection of indicators for forecasting software

errors and inheritance. To assess the role of inheritance in SFP,

we employ 65 freely available basis datasets including CK

measurements and other inheritance metrics. For the purpose of

making comparisons, we additionally divided every dataset into

2 subsets: inheritance with CK as well as CK without

inheritance. Models are constructed using an ANN, with results

evaluated in terms of F1 measure, recall, accuracy, precision,

and the true negative rate (TNR). When compared, the outcomes

demonstrate that inheritance metrics contribute reasonably well

to SFP. Using inheritance metrics for defect prediction in

software testing is completely safe. Furthermore, high

inheritance is undesirable since it can cause software defects.

In [17] , In order to detect software defects, you need develop

techniques to calculate Fourier coefficients and obtain the

expected function. Also, we evaluate Fourier learning against

standard ML techniques, like the RF method. Lastly, the

experimental findings demonstrate that the Fourier learning

method is superior to alternative methods in terms of both

performance and stability.

In Table 1 of the literature review, the pros and cons of prior

studies of the software failure prediction paradigm are outlined.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 718

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TABLE I. ADVANTAGES AND DISADVANTAGES OF VARIOUS EXISTING STUDIE

III. RESEARCH METHODOLOGY

Predicting defects and faults in software is what SFP is all

about. This is a fundamental part of the procedure of ensuring

the quality of software. Different kinds of software metrics are

used for different purposes in fault prediction. The most

common kinds of software metrics are code metrics and process

measurements. The technique of calculating software metrics

from a software then utilising them to anticipate software defects

is computationally and time-intensive. In order to complete the

fault prediction method effectively while utilising fewer

resources, it is helpful to reduce the number of software metrics

to utilise just to the essential metrics. Class imbalance is

infrequently employed, and previous research shows that

regression issues in SFP are not studied as thoroughly as

classification issues. Our research solves this problem byclass

imbalance and classification problems for prediction of number

of software faults. SMOTE oversamplingrelied ondata balancing

method is implemented on 16 public datasets that collected from

the NASA PROMISE repository. Then, supervised

ML classifiers like LGBM, XGBost, & Voting are applied to the

training and testing set to evaluate and predict the number of

software errors. These machine learning model enahcne the

performance of software fault prediction. All methodology

process discirbed below section with proposed flowchart.

Figure 2. Flow chart of suggested model

A flowchart of the suggested method is illustrated in Fig 2.

Initially, the 16 NASA PROMISE repository dataset is

uploaded. This dataset has already been prepared & can be

accessed online and through Kaggle. After the dataset has been

pre-processed and standardised, it must be divided into a training

set and a testing set. The results in regards to accuracy and AUC

are then analysed using ML-based classification approaches.

The all process of research methodology and Flow chart deeply

described below:

Authors Methods Dataset Benefits Limitations

[16] Artificial neural

networks (ANN)

Inheritance with CK

and CK without

inheritance

offered improved outcomes for each of

the four criteria, f1-measure, TNR,

precision, and accuracy.

Some important issues are not addressed, such

as the quantity, severity, and causes of faults.

[11] LR, KNN, DT, RF,

NB, SVM, as well

as MLP

Promise repository

dataset

The experiment was conducted on

class-level datasets as well as method-

level datasets.

Class imbalance issues are not addressed.

Ignore many faults in favor of the simpler

challenge of categorizing faults into two groups.

[17] Fourier coefficient

and Fourier

learning algorithm

NASA dataset The AUC of a model trained with

Fourier methods is higher.

It's more reliable than other SFP models

out there.

They may have evaluated skewed data because

they did not address data imbalance and noise

issues.

The number of errors ignored.

[14] DT, LR, NB,

multinomial NB

and KNN

PROMISE repository As contrasted to other ensembles, the

experimental findings favoured the

model averaging strategy.

All machine learning models are not achived

similar accuracy for SFP

[10] KNN and RF NASA's PROMISE

repository

99% and 88% accuracy that is highe

detection rate of software fault

The KNN model obtain only 88% accuracy.

Input Dataset

PROMISE Repository dataset

Data Pre-processing

Data Splitting into

Training Dataset (80%) Testing Dataset (20%)

ML algorithms for

Classification

XGBoost

LGBM

Classification Model Testing

Evaluate the

performance of model

in terms of Recall,

ACC, f1-score , ROC-

AUC and Precision

High prediction range

Data Balancing with SMOTE

Voting

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 719

IJRITCC | September 2023, Available @ http://www.ijritcc.org

I. Data Collection

In the initial phase of SFP, data collection is carried out. The

data used for the training in this study came from the tera -

Promise data source. In this research, there are 16 different

datasets has used for software fault prediction. The data has been

collected from the PROMISE repository.

II. Data Pre-Processing

Fault prediction accuracy in supervised ML approaches is

highly sensitive to data used for training and its quality.

Preprocessing the data before training the approaches improves

their precision. The goal of data preprocessing is to prepare raw

data for use in subsequent ML steps. It is the first rung of the

suggested study steps. Preprocessing entails activities like data

scalling and data balancing across all sources by checking for

missing data and null values.

1) Check Null Values

The process of deleting null values from the collection is an

essential part of data integration. Any ML technique suffers from

diminished precision and performance when dealing with such

missing data. Thus, prior to using an ML method, it is essential

to remove any missing or invalid values from the data. A null is

not zero for numeric data types or an empty string for character

or datetime data types.

2) Data scaling

When data is scaled, the range of its independent variables

or features is standardisedIn the realm of data processing, it goes

by various names, including "data normalisation" and "data

standardisation."Data scaling is often done during the pre-

processing phase of training models utilising ML approaches.

StandardScaler was utilised for the data scaling.

Standard Scaler:StandardScaler is often used as a stage of

preprocessing in a wide variety of ML models to normalise the

functional range of the input dataset. StandardScaler is useful

when the input dataset has features with widely varying ranges

or when the features are evaluated using various units of

measure. When analysing data, the standard deviation is used for

the mean. However, outliers have an impact on both the

empirical mean and the standard deviation, reducing the range

of characteristic values. To fix this, we must initially input the

regularly utilised data into the ML model after normalisation (μ=

0, σ= 1).The formula for Standardization is as follows:

𝑋 , =
𝑋 − μ

𝜎
… … . (1)

μ is the average of attribute values and

𝜎 is the average disparity among feature values.

3) Data Balancing (SMOTE)

The term "data balancing" refers to the process of modifying

a dataset's class distribution so that each class is displayed with

an equal or proportional amount of data. Real-world applications

like software fault prediction, fraud detection, medical

diagnostics, and customer churn prediction often work with

imbalanced datasets. In such cases, models are more likely to be

prejudiced or incorrect due to an imbalance in the quantity of

training data points used to represent each class. Data balancing

is a crucial issue in Promise data source prediction since the

dataset is frequently unbalanced, which means that the positive

class (not faulty modules) has far fewer samples than the

negative class (faulty modules).Unbalanced distribution of cases

across several classes can interfere with reliable prediction of

malfunctioning modules. In this case, we use SMOTE, an

oversampling technique [18].

Class Imbalance Handling:The graph of our dependent

variable's distribution shows the following. Our prediction

model is more likely to side with the majority over the minority

if our target variable is highly skewed. SMOTE, a synthetic

minority oversampling approach, was implemented to address

this issue.

The predictive power of the dataset for the underrepresented

group improves if it is more evenly distributed. The issue of class

disparity is addressed by employing the Synthetic Minority

Oversampling Technique (SMOTE). SMOTE operates in

feature space to produce synthetic samples from the

underrepresented group. Every minority class sample as well as

its KNN are presented as synthetic samples along the line that

connects them. Initially a random number among 0 and 1 is

multiplied by the difference in feature vectors among the

minority class instance under investigation and its nearest

neighbour. Multiplying the feature vector under examination by

its product of multiplication factors yields a synthetic instance

from the minority class (Chawla et al., 2002) [19]. For the

purpose of this discussion, let's assume that fi is the feature

vector of the minority class sample, and the vector 𝑓𝑛𝑒𝑎𝑟 is one

of 𝑓𝑖 KNN. The resulting synthetic sample fnew can be

expressed as the solution to Eq. (2).

𝑓𝑛𝑒𝑤 = 𝑓𝑖 + (𝑓𝑖 − 𝑓𝑛𝑒𝑎𝑟)…(2)

Here, 𝑅 is a random number between 0 and 1.

III. Data Spiiting

Unfortunately, we cannot use the dataset to train our model.

If we train our model with all of the available data points, it is

possible that it will produce an inaccurate prediction of a new

statement. We have opted to divide our dataset 80:20 so that we

may assess the performance and consistency of our model. Using

the remaining 20% of the data set, we compare the model's

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 720

IJRITCC | September 2023, Available @ http://www.ijritcc.org

predictions to the actual values to determine how well it

performs.

IV. Classification Models

Now, with the amount of data growing exponentially, the

rational use of big data has become the focus of enterprises to

serve the future and make better decisions. Using MLmethods

for predicting the commodities and sales of products has grown

a hotspot for investigators and companies in the past few

years.Predicting sales with the use of ML and AI is becoming

increasingly common. ML is a type of method that improves

software's prediction powers without requiring new instructions.

The goal of ML is to create methods that, given some input data,

can utilise that data to make predictions about a target output,

and then, as more data becomes available, update those

predictions. Supervised learning and unsupervised learning are

two distinct approaches to ML. The goal of unsupervised

learning is to find concise summaries of data, while the goal of

supervised learning is to make accurate predictions. Finding

learning strategies which perform effectively on novel data is a

goal in both supervised & unsupervised settings. The results of

supervised learning can be classified further into 2 types: If the

output is continuous, the issue is called a regression problem,

and if it is discrete, it is called a classification problem[20].

Classification is a method for grouping things into groups

that are the greatest fit for the way they are constructed. The

training set consists of the qualities and the class labels

associated with them, and this is what the classifier is initially

trained on[21]. This is the stage that entails training or

learning[22][23]. The second stage, "classification," involves

evaluating the classifier's efficacy using a testing dataset. Once

the rules' efficacy has been evaluated, they are used to make

predictions about the classes of tuples of data about which more

information is needed[24]. Classification's purpose is to place an

unlabeled material into one of several predetermined categories.

Classification can be represented mathematically as a function,

as seen below [25]:

𝐶 = 𝑓(𝑋, 𝜃), 𝐶 ∈ 𝐿 … . . (3)

Class label of the new sample is denoted by C, features are

represented by X, L is the set of class labels, f(.) is the

classification function, and is the set of parameters for f(.).

In this research work, we used three classification techniques

that are LGBM, XGBoost, and voting classifier. All classifiers

are described below:

1) LGBM Classifier

The Light Gradient Boosting Method (abbreviated as "Light

GBM") is a fast and effective tree-based gradient enhancement

method. The name "light" comes from the fact that the classifier

employs a tree-based method with vertical tree growth, making

it more efficient than horizontal tree-based methods. The Light

gradient boosting approach is advantageous for processing large

datasets since it is both time- and resource-efficient[26].Light

GBM differs from other methods in that it develops trees

vertically, or leaf-wise, rather than horizontally, as is the case

with most other methods. For agricultural purposes, the leaf with

the highest delta loss will be selected. When cultivating the same

leaf, a leaf-wise strategy can be more effective at minimising

waste than a level-based one[27].

Figure 3. Level-wise tree growth in XGBOOST.

Figure 4. Leaf wise tree growth in Light GBM.

In order to prevent overfitting and the complexity explosion

that results from leaf-wise splits, an additional parameter, max-

depth, is specified.

2) Xgboost Classifier

The ML method XGBoost is quite effective. It's a brand new

feature. Classified as Supervised Study. Gradient boosting

serves as its conceptual backbone. XG Boost is based on a

technique called parallel tree boosting, that produces accurate

predictions by averaging the outputs of several relatively weak

models[28].

To achieve a model with great computational speed and

efficiency, we have employed XGBoost, also known as Extreme

Gradient Boosting. The formula optimises its final predictions

through the use of an ensemble approach which mimics the

expected mistakes of some DT. The model output also includes

a report on the relative importance of every feature's influence

on the final performance score forecast for the building. Every

characteristic's absolute value reflects the impact it has on

predicting academic success.

Parallelization is supported in XGBoost through the use of a

decentralised DT generator. This method's ability to analyse any

huge and complex model using distributed computing is another

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 721

IJRITCC | September 2023, Available @ http://www.ijritcc.org

one of its most notable features. Because it processes massive

datasets with varying structures, it is performed outside of the

typical computing core. This calculative model handles resource

utilisation admirably. To lower the error, an additional model

must be used at every stage.

XGBoost objective function at iteration t is[29]:

……..(4)

where y_out is a known real value from the training data and

the summing up part is f(x + dx) if and only if x = y_out1i (t-1).

The Taylor approximation is what we'll need to use. Let us

approximate f(x) linearly by setting:

𝑓(𝑥) = 𝑓(𝑏) + 𝑓`(𝑏)(𝑥 − 𝑏) 𝑑𝑥 = 𝑓𝑡(𝑥𝑖)….(5)

If L is the loss function, f(x) is the prediction at step t-1, b is

the new learner we must absorb at step t, and dx is the x at which

the prediction was made.

The Taylor approximation of the second order is:

𝑓(𝑥) = 𝑓(𝑏) + 𝑓`(𝑏)(𝑥 − 𝑏) + 0.5𝑓``(𝑏)(𝑥 − 𝑏)^2…..(6)

……(7)

Taking out the constant terms, we are left with the following

goal to minimise at time step t,

….(8)

3) Voting Classifier

Classification models can also make use of the voting

ensemble technique. Here, we take into account both the votes

of the majority and the probabilities involved. There are two

distinct voting systems:

• In hard voting, the outcomes of each technique are

averaged based on a vote tally to improve prediction

accuracy.

• Soft voting: Soft voting can be used in situations when

different methods each produce a plausible outcome

probability. This method optimises outcomes by

averaging the odds of several different approaches. Soft

voting is being used in this case. The voting system's

architecture is depicted in Fig. 5.

1 http://promise.site.uottawa.ca/SERepository/datasets-page.htm

Figure 5. Architecture of voting method

The ultimate prediction of a new instance's class label is

made using voting, which is based on the combined output of

multiple ML classifiers. Voting could be strict or relaxed. Voting

by simple majority is utilised in cases where there is a lot of

opposition. In this instance, the most popular category will be

chosen (guessed). When using soft voting, a forecast is formed

by taking the mean of the class probabilities generated by the

various classifiers. Predictions are made about the group with the

highest mean likelihood. Soft voting was used in this study.

Additionally, the VC's foundational estimators are tree-based

ensemble classifiers[30].

IV. RESULTS AND DISCUSSION

Here, show the simulation results of predicting software

faults with ML methods. For this application, we utilised the

python simulation tool and a high-end HP computer equipped

with an Intel Core i7 processor, 32GB of RAM, Windows 10,

24GB of Nvidia graphics memory, a 1TB hard drive, & so on.

The effectiveness of an SFP ML classifier can be determined

using the performance matrix. Using data from the NASA

PROMISE Repository, the authors of this research suggest three

ML classifiers: XGBOost, LGBM, as well as a voting classifier.

Dataset description, simulation results, evaluation metrics, and

the next section offers a discussion of the findings.

A. Dataset Discription

Open access to this dataset from the PROMISE Software

Engineering Repository promotes reproducible, refutable,

and/or upgradeable software engineering prediction models. We

have employed CM1, KC1, KC2, KC3, PC1, PC2, PC3, PC4,

MC2, MW1, JM1, AR1, AR3, AR4, AR5, and AR6 datasets

obtained from PROMISE software engineering repository1[31],

other data sets obtained from tera-PROMISE Repository2[32].

Figure 6 shows the correlation matrix of CM1 dataset. Similary

other dataset features are strongly correlated, however these

features were expected to be strongly correlated when they were

chosen as features. Data sets contain collections of software

components, every one of which has either been labelled as fp

(fault prone) or nfp (not fault prone) to indicate whether or not it

2 http://openscience.us/repo/defect/mccabehalsted

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 722

IJRITCC | September 2023, Available @ http://www.ijritcc.org

is prone to errors. Table 2 details the fundamentals of each

project.

TABLE II. DATASETS USED IN THIS STUDY.

s Not

Faulty

Module

Faulty

Module

Total no of

Modules in

Software

Features

CM1 449 49 498 21

KC1 1783 326 2109 21

KC2 415 107 522 21

KC3 415 43 458 39

PC1 1032 77 1109 21

PC2 5566 23 5589 36

PC3 1403 160 1563 37

PC4 1280 178 1458 37

MC2 109 52 161 39

MW1 372 31 403 37

JM1 8779 2106 10885 21

AR1 112 9 121 29

AR3 55 8 63 29

AR4 87 20 107 29

AR5 28 8 36 29

AR6 86 15 101 29

Figure 6. Correlation heatmap of dataset CM1

Our CM1 dataset feature correlation matrix is displayed in

Fig. 6. A correlation heatmap is a visualisation technique that

uses a color-coded matrix to show the degree to which different

variables are linked to one another. A colour wheel, if you will.

It reveals the degree of association between the variables. A

correlation coefficient heat map that visualises the strength of

associations among features.

B. Evaluation Measures for Software Fault Prediction

We will discuss the SFP sensitivity, specificity, positive

predictive value, and false positive as well as negative predictive

values. In software, TP indicates the sum of every situations that

were correctly detected as flawed, while TN is the sum of all

instances that were correctly identified as intact. One might think

of FP as the number of good software instances that were

wrongly identified as bad, and FN as the no. of bad software

instances that were incorrectly labelled as good.

Classification accuracy, commonly known as the right

classification rate, is one of the major simple measures used to

evaluate the efficacy of predictive models. It's used to put a

number on how many cases were correctly categorised out of the

whole. To be more specific, precision is defined as the number

of correctly identified defective events relative to the number of

false positives. More specifically, recall measures how many

instances were accurately tagged as defective (TP) relative to the

overall number of defective (TP + FN) instances. F-scores,

which are a harmonic mean of precision and recall, have been

widely used in the academic literature. Target positive and false

positive rates (TPR and FPR) are balanced to yield a ROC

curve's area under the curve [4].

Accuracy =
𝑇𝑃 + 𝑇𝑁

N
… . . (7)

Precision =
TP

TP + FP
… … . (8)

Recall =
TP

TP + FP
… … (9)

F1score =
2 × (Precision − Recall)

(Precision + Recall)
… . (10)

Confusion Matrix:A classifier's propensity to favour

specific classes can be revealed by examining its confusion

matrix, which displays the quantity (or percentage, for

normalised confusion matrices) of accurate and wrongly

predicted labels for each class.

Figure 7. Confusion matrix

Many different metrics have been offered for two-class

situations, and figure 7 shows that there are 4 distinct scenarios

that can be expressed in the confusion matrix.

C. Simulation results of proposedModela

We provide the simulation results of three different machine

learning boosting classifiers i.e., LGBM, XGBoost, and Voting

classifier. Here we provide only CM1 datasset results

visulisation, because similar kind of results obtain by the other

15 datasets. The CM1 dataset results provided below with using

LGBM, XGBoost, and voting classifier. After implementation,

the simulated results of these classifiers are given below as

follows:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 723

IJRITCC | September 2023, Available @ http://www.ijritcc.org

1) Results of LGBM Classifier on CM1 Dataset

Here provide the simulation results of proposed LGBM

classifier on CM1 dataset. Below provide the results in

visualized with classification report, confusion matrix, ROC-

AUC with Parameter performance.

Figure 8. Classification report of LGBM Classifier on CM1 Dataset

Classification results for the suggested LGBM classifier on

the CM1 Dataset are displayed in Figure 8. In the field of ML, a

classification report serves as an evaluation statistic. Our test

classification model's accuracy, reliability, F1 Score, and

acceptance rate can all be displayed here. Precision 96%, recall

85%, and f1-score 90% for class 0 in the input CM1 dataset;

precision 86%, recall 97%, and f1-score 91% with support 92

and 88 for class 1. Classification accuracy for the suggested

model LGBM classifier is 92% with 180 relevant supports.

Figure 9. Confusion Matric of LGBM Classifier on CM1 Dataset

LGBM classifier's confusion matrix on CM1 dataset is

depicted in figure 9. The performance of a classifier can be

measured via a "confusion matrix," which is essentially a data

table. Confusion matrices are useful for visualising and

summarising a classification method's performance. The TP, FP,

FN, and TN for the four possible examples may be found in the

confusion matrix; these metrics have all been proposed for two-

class problems. The modules that were appropriately recognised

as defective (TP) and functional (TN) are indicated. When the

outcome is projected to be yes when it is not, this is called a FP.

Whenever the actual result turns out to be positive, but the

forecaster wrongly assumes it will be negative, they have made

a FN prediction. The matrix has the following values: false

negative 3, false positive 14, true negative 78, and true positive

85.

Figure 10. ROC Graph of LGBM Classifier on CM1 Dataset

Figure 10 illustrates a receiver operating characteristic

(ROC) curve for the LGBM classifier on the CM1 dataset at k-

fold. The ROC chart depicted above shows how the TPR and

FPR change with respect to one another across a range of

categorization cutoffs. The FPR is plotted along the x-axis and

the TPR along the y-axis in this diagram. The True Positive Rate

(TPR) measures how often the model correctly identifies

positive events. It is also known as sensitivity or recall. FPR

measures how often real-world negative examples are wrongly

classified as positive by the model. The diagonal line on the

ROC graph represents a random classifier or a model with no

discrimination ability. This figure obtained the highest AUC

values i.e., 0.93 on fold 1, 0.95 on fold 2, 0.98 on fold 3 and fold

4, 1.00 on fold 5, 99% AUC of fold 6 99%, fold 8 and fold 7

AUC is 98%, fold 9 and fold 10 is 100% AUC, and the mean

ROC value is 0.98, respectively.

2) Results of XGBoost Classifier on CM1 Dataset

Here provide the simulation results of proposed XGBoost

classifier on CM1 dataset. Below provide the results in

visualized with classification report, confusion matrix, ROC-

AUC with Parameter performance.

Figure 11. Classification report of XGBOOST Classifier on CM1 Dataset

Figure 11 displays the results of the suggested XGBOOST

classifier's application on the CM1 dataset. The input CM1

dataset have two classes, for class 0 precision 96%, recall 87%

and f1-score is 91% whereas for class 1 precision 88%, recall

95% and f1-score is 91% with support 92 and 88. The proposed

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 724

IJRITCC | September 2023, Available @ http://www.ijritcc.org

model XGBOOST classifier classification accuracy is 92% with

support 180 respectively.

Figure 12. Confusion Matric of XGBoost Classifier on CM1 Dataset

The following figure 12 shows the confusion matrix of

XGBOOST classifier on CM1 dataset. In this case, the matrix

has true negative and positive values of 80 and 84, respectively,

with false negative and false positive values of 4 and 12,

correspondingly.

Figure 13. ROC Graph of XGBOOST Classifier on CM1 Dataset

The above figure 13 shows a ROC graph of XGBOOST

classifier on CM1 dataset with k-fold (10). This figure obtained

the highest AUC values i.e., 0.93 on fold 1, 0.92 on fold 2 AUC,

0.96 and 98% on fold 3 and fold 4, 1.00 on fold 5 and 6, 99%

AUC of fold 7 and 8, fold 9 and fold 10 is 100% AUC, and the

mean ROC value is 0.98, respectively.

3) Results of Voting Classifier on CM1 Dataset

Here provide the simulation results of proposed voting

classifier on CM1 dataset. Below provide the results in

visualized with classification report, confusion matrix, ROC-

AUC with Parameter performance.

Figure 14. Classification report of Voting Classifier on CM1 Dataset

Classification results for the suggested vote classifier on the

CM1 dataset are displayed in Figure 14 above. The input CM1

dataset have two classes, for class 0 precision 98%, recall 86%

and f1-score is 91% whereas for class 1 precision 87%, recall

98% and f1-score is 91% with support 92 and 88. The proposed

model voting classifier precision, recall, f1-score and accuracy

is 92% with support 180 respectively.

Figure 15. Confusion Matric of Voting Classifier on CM1 Dataset

The following figure 15 shows the confusion matrix of

voting classifier on CM1 dataset. The matrix has the following

values: 79 for true negative, 86 for true positive, 2 for false

negative, and 13 for false positive.

Figure 16. ROC Graph of Voting Classifier on CM1 Dataset

The above figure 16 shows a ROC graph of voting classifier

on CM1 dataset with k-fold. This figure obtained the highest

AUC values i.e., 0.90 on fold 1, 0.93 on fold 2, 0.98 on fold 3,

and fold 4, 1.00 on fold 5, fold 6, fold 8, fold 9, and fold 10, 0.97

on fold 7 and the mean ROC value is 0.97, respectively.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 725

IJRITCC | September 2023, Available @ http://www.ijritcc.org

D. Parameter performance of ML proposed classifier with

CM1 datasets

The following table 2 shows parameter performance of

voting classifier using four datasets with five performance

measure. This proposed models obtains 92% accuracy and 98%

AUC with CM1 Dataset for SFD.

TABLE III. PARAMETER PERFORMANCE OF PROPOSED CLASSIFIERS WITH

CM1 DATASET

Parameters Voting LGBM XGBoost

Accuracy 92 91 91

Precision 92 91 91

Recall 92 90 91

F1-Score 92 90 91

AUC 98 98 98

Figure 17. Bar graph of parameter comparison between threeproposed

classifiers using CM1dataset

The above figure 17 shows the comparison between

accuracy, precision, recal, f1-score and ROC parameter

performance for SFP using XGBoost, LGBM and voting

classifiers. The proposed XGBoost obtain 91%, 90% and 98%

of accuracy, precision, recall, f1-score and AUC, while propose

LGBM and voting classifier get 91% and 92% accuracy,

precision, recall, and f1-score or 98% AUC respectively.

V. Compariosn between base and proposed classifiers using

16 NASA datasets

In this section gives the comparison between various

machine learning datasets using 16 NASA software fault

datasets. This work proposed three machine learning classifier

that is LGBM, XGBoost and voting classifier. Here provide the

implementation results comparison in terms of Accuracy and

AUC parameters using python tool, also provide the comparison

between base and purpose ML models for software fault

prediction using PROMISE Software Engineering Repository

datasets. The below table 4 and 5 provide the accuracy and AUC

performance of each dataset with base (Base Voting, Naïve

Bayes, SVM, and RF) and propose classifiers classifiers(LGBM,

XGBoost, and propose Voting).

TABLE IV. ACCURACY (%) COMPARISON BETWEEN BASE AND PROPOSED MACHINE LEARNING CLASSIFIERS ON 16 DATASETS

Datasets Base Classifiers Proposed clasifier

Voting NB SVM RF LGBM XGBoost Voting

AR1 88 88 84 84 98 97 97

AR3 84 90 84 84 98 98 98

AR4 81 81 81 81 94 93 94

AR5 87 85 75 62 93 100 97

AR6 90 85 90 87 97 97 98

PC1 93 91 90 92 99 98 99

PC2 99 97 99 99 100 100 100

PC3 88 21 89 89 99 96 98

PC4 89 88 88 90 99 99 99

KC1 84 80 85 85 94 91 94

KC2 84 83 84 86 92 90 90

KC3 86 79 90 89 99 98 98

MW1 91 82 92 91 99 98 99

MC2 71 72 69 72 90 90 91

JM1 82 79 80 81 92 88 91

CM1 88 84 89 88 98 96 97

92 92 92 92

98

91 91
90 90

98

91 91 91 91

98

85

90

95

100

Accuracy Precision Recall F1-Score AUC

in
 %

Parameter comparison between proposed

machine learning classifiers using CM1

Dataset

Voting LGBM XGBoost

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 726

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 18. Bar graph of Accuracy comparison between base and propose machine learning classifiers using 16 datasets

In figure 18 shows the accuracy comparioson between base

and propose classifiers with 16 datasets. The x-axis of the graph

depicts the ML classifiers together with the dataset, while the y-

axis depicts the corresponding accuracy percentage (%). For the

MW1 dataset 93% and 90% accuracy, 89% and 83% accuracy

of JM1 dataset, 91% and 92% accuracy given by the LGBM and

Voting classifier with CM1 dataset, AR1 dataset get 91% and

93% accuracy, 86% and 88% with MC2 dataset, accuracy of

95% and 92% with PC1 dataset, PC3 obtain 93% and 94%, PC4

get 94% and 95%, PC2 achieved 98% and 99%, KC1 accuracy

with 88% and 87%, AR6 get 94% and 98% accuracy, AR5

dataset 99% and 100% accuracy, KC2 accuracy 90% and 91%,

KC3 dataset obtain 94% accuracy of voting classifier, 95%

accuracy of LGBM classifier but XGBoost get only 93%

accuracy, AR3 91%, 93% and 95% accuracy with three

classifiers, and AR4 data get 82% and 85% accuracy with Voting

, LGBM and XGBoost classifiers. The proposed methodology

gets 100% accuracy with AR5 dataset using XGBoost dataset.

While base base random forest only achieved 62% accuracy on

AR5 dataset, base naïve Bayes only achieved 21% accuracy on

PC3 dataset, base voting only achieved 79% accuracy on KC3

dataset, ans base SVM only achieved 69% accuracy on MC2

dataset, all base classifier shows very lower performance in

comparison to propose classifiers on 16 datasets.

0

20

40

60

80

100

120

AR1 AR3 AR4 AR5 AR6 PC1 PC2 PC3 PC4 KC1 KC2 KC3 MW1 MC2 JM1 CM1

in
 %

Datasets

Accuracy comparison between base and proposed ML classifiers with 16 datasets

Base Classifiers Voting Base Classifiers NB Base Classifiers SVM Base Classifiers RF

Proposed clasifier LGBM Proposed clasifier XGBoost Proposed clasifier Voting

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 727

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TABLE V. AUC (%) COMPARISON BETWEEN BASE AND PROPOSED MACHINE LEARNING CLASSIFIERS ON 16 DATASETS

Datasets Base Classifiers Proposed classifier

Voting NB SVM RF LGBM XGBoost Voting

AR1 71 53 30 74 98 97 97

AR3 92 84 85 94 98 98 98

AR4 78 83 57 81 94 93 94

AR5 90 87 90 87 93 100 97

AR6 71 79 40 62 97 97 98

PC1 80 71 47 81 99 98 99

PC2 76 86 53 79 100 100 100

PC3 82 70 31 85 99 96 98

PC4 92 82 50 94 99 99 99

KC1 78 79 55 76 94 91 94

KC2 79 83 82 79 92 90 90

KC3 84 81 50 84 99 98 98

MW1 76 75 44 77 99 98 99

MC2 71 68 54 75 90 90 91

JM1 79 66 64 68 92 88 91

CM1 73 75 41 70 98 96 97

Figure 19. Bar graph of AUC comparison between base and propose machine learning classifiers using 16 datasets

The abovefigure19 provide the AUC performance of each

dataset with proposed and base classifiers. Also, tabular

representation provide table5. For the MW1 dataset 99% and

98% AUC, 91% and 92% AUC of JM1 dataset, 97% and 98%

AUC given by the LGBM and Voting classifier with CM1

dataset, AR1 dataset get 97% and 98% AUC, 91% and 90% with

MC2 dataset, similarly other dataset get highest AUC with

proposed Voting, LGBM and XGBoost classifiers. The

proposed methodology gets 100% AUC with PC2 dataset using

all three methods datasets. Proposed LGBM classifier get 99%

AUC on KC3 dataset that is higher than the other machine

learning classifier while base SVM only achieved 50% AUC on

KC3 dataset, proposed LGBM and Voting classifier obtain 99%

accuracy on this dataset while base models only 76%, 75%, 45%

0

20

40

60

80

100

120

Voting NB SVM RF LGBM XGBoost Voting

Base Classifiers Proposed clasifier

in
 %

AUC comparison between base and proposed ML classifiers with 16 datasets

AR1 AR3 AR4 AR5 AR6 PC1 PC2 PC3 PC4 KC1 KC2 KC3 MW1 MC2 JM1 CM1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 728

IJRITCC | September 2023, Available @ http://www.ijritcc.org

and 77% accuracy that is very lower in our propose models.

MW1 dataset obtain accuracy of LGBM 99%, XGBoost 98%,

and Voting 99%, JM1 dataset obtain AUC of LGBM 92%,

XGBoost 88%, and Voting 91%,and base models only 79%,

66%, 64% and 68% AUC that is very lower in our propose

models. proposed LGBM classifier obtain 98% accuracy on this

dataset while base models only 73%, 75%, 41% and 70% AUC

that is very lower in our propose models. CM1 dataset obtain

AUC of LGBM 98%, XGBoost 96%, Voting 97%, Stacking

98%, Gradient 97%, AdaBoost 93% and CatBoost 94%

respectively. Show we can see that our proposed models AUC

show very good performance in comparison to base classifiers

using 16 datasets.

V. CONCLUSION AND FUTURE WORK

ML methods make use of example data or past algorithms to

solve a given problem. In our study, we want to use ML to

predict whether a specific module will be faulty or not based on

the previous fault data collected and the metrics collected from

the project. The goal of this research was to compare and contrast

several well-known ML techniques for finding defects in

computer programmes. In this thesis, we propose a novel

approach utilizing ML for software defect prediction. The goal

of the approach is to make use of label information for improving

the performance of classification algorithms such as LGBM,

XGBoost, and Voting classifiers. The performances of different

algorithms were evaluated using classification accuracy, recall,

precision, F-measure, and AUC metrics. The suggested ML

classifiers on all 16 NASA datasets. ML models have reached

100% accuracy and AUC almost all datasets. In terms of area

under the curve (AUC) and accuracy, the suggested technique

performs exceptionally well across the board for fault data sets.

Therefore, in the context of software failure prediction across a

wide range of software projects, the suggested strategy is

efficient, reliable, and consistent. Our evaluation on a widely

used data set shows that our method significantly improves the

performance of ML classifier. We provide research into many

ML methods which have been shown to be effective in the

prediction of software faults, and we analyse an examination of

the different performance indicators utilised to make such

predictions.

Interesting future extensions could include studying the

impact of various metaheuristic feature selection approaches to

select the optimal set of features for SFP. As data imbalance is

still an issue that adversely impacts the performance of the

existing SFP approaches, future research should look into

DL methods and ensemble classifiers and contrast their results

to those of other resampling methods. More research is needed

to see if one of the software defect prediction models might be

useful for quality assurance purposes in the setting of a software

engineering organisation.

REFERENCES

[1] J. Xu, D. Ho, and L. F. Capretz, “An Empirical Study on the

Procedure to Derive Software Quality Estimation Models,”

Int. J. Comput. Sci. Inf. Technol., 2010, doi:

10.5121/ijcsit.2010.2401.

[2] S. Aleem, L. F. Capretz, and F. Ahmed, “Benchmarking

Machine Learning Techniques for Software Defect

Detection,” Int. J. Softw. Eng. Appl., 2015, doi:

10.5121/ijsea.2015.6302.

[3] M. W. Thant and N. T. T. Aung, “Software Defect Prediction

using Hybrid Approach,” in 2019 International Conference on

Advanced Information Technologies (ICAIT), 2019, pp. 262–

267. doi: 10.1109/AITC.2019.8921374.

[4] A. Alsaeedi and M. Z. Khan, “Software Defect Prediction

Using Supervised Machine Learning and Ensemble

Techniques: A Comparative Study,” J. Softw. Eng. Appl.,

2019, doi: 10.4236/jsea.2019.125007.

[5] M. Caulo and G. Scanniello, “A Taxonomy of Metrics for

Software Fault Prediction,” in 2020 46th Euromicro

Conference on Software Engineering and Advanced

Applications (SEAA), 2020, pp. 429–436. doi:

10.1109/SEAA51224.2020.00075.

[6] C. Catal, “Software fault prediction: A literature review and

current trends,” Expert Systems with Applications. 2011. doi:

10.1016/j.eswa.2010.10.024.

[7] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A

systematic literature review on fault prediction performance

in software engineering,” IEEE Transactions on Software

Engineering. 2012. doi: 10.1109/TSE.2011.103.

[8] K. Tumer and J. Ghosh, “Analysis of decision boundaries in

linearly combined neural classifiers,” Pattern Recognit., vol.

29, no. 2, pp. 341–348, 1996, doi:

https://doi.org/10.1016/0031-3203(95)00085-2.

[9] P. Singh and S. Verma, “Multi-classifier model for software

fault prediction,” Int. Arab J. Inf. Technol., 2018.

[10] M. Z. Mohammed and I. A. Saleh, “Predicted of Software

Fault Based on Random Forest and K-Nearest Neighbor,” in

2022 4th International Conference on Advanced Science and

Engineering (ICOASE), 2022, pp. 43–48. doi:

10.1109/ICOASE56293.2022.10075596.

[11] T. M. Phuong Ha, D. Hung Tran, L. E. T. My Hanh, and N.

Thanh Binh, “Experimental Study on Software Fault

Prediction Using Machine Learning Model,” in 2019 11th

International Conference on Knowledge and Systems

Engineering (KSE), 2019, pp. 1–5. doi:

10.1109/KSE.2019.8919429.

[12] K. Phung, E. Ogunshile, and M. Aydin, “A Novel Software

Fault Prediction Approach To Predict Error-type Proneness in

the Java Programs Using Stream X-Machine and Machine

Learning,” in 2021 9th International Conference in Software

Engineering Research and Innovation (CONISOFT), 2021,

pp. 168–179. doi: 10.1109/CONISOFT52520.2021.00032.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7710

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023

 729

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[13] C. Anjali, J. P. M. Dhas, and J. A. P. Singh, “A Study on

Predicting Software Defects with Machine Learning

Algorithms,” in 2022 International Conference on Intelligent

Innovations in Engineering and Technology (ICIIET), 2022,

pp. 195–198. doi: 10.1109/ICIIET55458.2022.9967593.

[14] E. Elahi, S. Kanwal, and A. N. Asif, “A new Ensemble

approach for Software Fault Prediction,” in 2020 17th

International Bhurban Conference on Applied Sciences and

Technology (IBCAST), 2020, pp. 407–412. doi:

10.1109/IBCAST47879.2020.9044596.

[15] A. Joon, R. Kumar Tyagi, and K. Kumar, “Noise Filtering and

Imbalance Class Distribution Removal for Optimizing

Software Fault Prediction using Best Software Metrics Suite,”

in 2020 5th International Conference on Communication and

Electronics Systems (ICCES), 2020, pp. 1381–1389. doi:

10.1109/ICCES48766.2020.9137899.

[16] S. R. Aziz, T. Khan, and A. Nadeem, “Experimental

validation of inheritance metrics’ impact on software fault

prediction,” IEEE Access, 2019, doi:

10.1109/ACCESS.2019.2924040.

[17] K. Yang, H. Yu, G. Fan, X. Yang, S. Zheng, and C. Leng,

“Software Defect Prediction Based on Fourier Learning,”

2018. doi: 10.1109/PIC.2018.8706304.

[18] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive

synthetic sampling approach for imbalanced learning,” 2008.

doi: 10.1109/IJCNN.2008.4633969.

[19] M. S. Zulfiker, N. Kabir, A. A. Biswas, T. Nazneen, and M.

S. Uddin, “An in-depth analysis of machine learning

approaches to predict depression,” Curr. Res. Behav. Sci.,

2021, doi: 10.1016/j.crbeha.2021.100044.

[20] D. Barber, Bayesian Reasoning and Machine Learning. 2012.

doi: 10.1017/cbo9780511804779.

[21] S. Geva and J. Sitte, “Adaptive Nearest Neighbor Pattern

Classification,” IEEE Trans. Neural Networks, 1991, doi:

10.1109/72.80344.

[22] S. J. Hong, “R-MINI: An iterative approach for generating

minimal rules from examples,” IEEE Trans. Knowl. Data

Eng., 1997, doi: 10.1109/69.634750.

[23] E. W. T. Ngai, L. Xiu, and D. C. K. Chau, “Application of

data mining techniques in customer relationship management:

A literature review and classification,” Expert Syst. Appl.,

vol. 36, no. 2, Part 2, pp. 2592–2602, 2009, doi:

https://doi.org/10.1016/j.eswa.2008.02.021.

[24] J. R. Quinlan, “Generating production rules from decision

trees,” Proc. Tenth Int. Jt. Conf. Artif. Intell., 1987.

[25] Y. Ren, L. Zhang, and P. N. Suganthan, “Ensemble

Classification and Regression-Recent Developments,

Applications and Future Directions [Review Article],” IEEE

Computational Intelligence Magazine. 2016. doi:

10.1109/MCI.2015.2471235.

[26] A. M. S. Sathya Bama, “Identification of Default Payments of

Credit Card Clients using Boosting Techniques,” Int. J.

Recent Technol. Eng., 2020, doi:

10.35940/ijrte.f8897.038620.

[27] M. Fatima and M. Pasha, “Survey of Machine Learning

Algorithms for Disease Diagnostic,” J. Intell. Learn. Syst.

Appl., 2017, doi: 10.4236/jilsa.2017.91001.

[28] A. Gupta, S. Sharma, S. Goyal, and M. Rashid, “Novel

XGBoost Tuned Machine Learning Model for Software Bug

Prediction,” 2020. doi: 10.1109/ICIEM48762.2020.9160152.

[29] and R. R. Purvika Bajaj, “SALES PREDICTION USING

MACHINE LEARNING ALGORITHMS,” Int. Res. J. Eng.

Technol., vol. 07, no. 06, pp. 1–7, 2020.

[30] E. K. Ampomah, Z. Qin, and G. Nyame, “Evaluation of tree-

based ensemble machine learning models in predicting stock

price direction of movement,” Inf., 2020, doi:

10.3390/info11060332.

[31] S. Tong, Haonan; Liu, Bin; Wang, “Benchmark data sets,”

Mendeley Data, vol. V1, 2017, doi:

10.17632/923xvkk5mm.1.

[32] T. J. Sayyad Shirabad, J. and Menzies, “The PROMISE

Repository of Software Engineering Databases,” University

of Ottawa, 2005.

[33] Bhawana Verma, S. K.A. (2019). Design & Analysis of

Cost Estimation for New Mobile-COCOMO Tool for Mobile

Application. International Journal on Recent and Innovation

Trends in Computing and Communication, 7(1), 27–34.

https://doi.org/10.17762/ijritcc.v7i1.5222

[34] S. K.A., Raj, A. ., Sharma, V., & Kumar, V. (2022). Simulation

and Analysis of Hand Gesture Recognition for Indian Sign

Language using CNN. International Journal on Recent and

Innovation Trends in Computing and Communication, 10(4),

10–14. https://doi.org/10.17762/ijritcc.v10i4.5556

http://www.ijritcc.org/
https://doi.org/10.17762/ijritcc.v7i1.5222

