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 Abstract— Many researchers are now focusing on Human Action Recognition (HAR), which is based on various deep-learning features 

related to body joints and their trajectories from videos. Among many schemes, Joints and Trajectory-pooled 3D-Deep Geometric Positional 

Attention-based Hierarchical Bidirectional Recurrent convolutional Descriptors (JTDGPAHBRD) can provide a video descriptor by learning 

geometric features and trajectories of the body joints. But the spatial-temporal dynamics of the different geometric features of the skeleton 

structure were not explored deeper. To solve this problem, this article develops the Graph Convolutional Network (GCN) in addition to the 

JTDGPAHBRD to create a video descriptor for HAR. The GCN can obtain complementary information, such as higher-level spatial-temporal 

features, between consecutive frames for enhancing end-to-end learning. In addition, to improve feature representation ability, a search space 

with several adaptive graph components is created. Then, a sampling and computation-effective evolution scheme are applied to explore this 

space. Moreover, the resultant GCN provides the temporal dynamics of the skeleton pattern, which are fused with the geometric features of the 

skeleton body joints and trajectory coordinates from the JTDGPAHBRD to create a more effective video descriptor for HAR. Finally, extensive 

experiments show that the JTDGPAHBRD-GCN model outperforms the existing HAR models on the Penn Action Dataset (PAD). 

Keywords- Human action recognition, JTDGPAHBRD, Skeleton structure, Geometric relations, Graph convolutional network, Spatial-

temporal features, Temporal dynamics. 

 

I.  INTRODUCTION 

Human Action Recognition (HAR) which automatically 

recognize and categorizes individual activities in videos, is one 

of the foremost essential active fields in artificial intelligence [1-

3]. Typically, it holds great significance in the areas of audio-

visual analysis [4-5], virtual reality [6-8], smart person-machine 

interactions [9-10], and so on [11-12]. Human actions can be 

recognized in several modalities, like RGB and skeletons. The 

skeleton structures express compressed details regarding an 

individual motion that could offer a powerful and vigorous 

exemplification to describe individual activities. 

The skeleton information containing 3D coordinates of 

major joints in the individual body will be effortlessly captured 

thanks to advancements in depth sensors. So, skeleton-based 

HAR schemes are widely used nowadays [13]. Many 

conventional skeleton-based HAR schemes formulate the 

presence and the temporal dynamics of joints with handcrafted 

features like the relative positions between joints, the angles 

between limbs, and the surfaces covered by the human body. 

Skeleton-based features, on the other hand, are local 

characteristics containing coordinates of joints and their high-

level correlations. So, those schemes are not appropriate for 

model and differentiating activities with related poses, 

movements, and person-machine interfaces [14]. They also rely 

heavily on skeleton prediction, and improper body joint 

discovery was not avoided. To tackle these issues, Convolutional 

Neural Networks (CNNs) are deployed in video-based HAR, 

which captures local-to-global features from both RGB images 

and depth. 

From this perspective, a Joint and Trajectory-pooled 3D 

convolutional Descriptor (JTDD) scheme [15] was developed to 

extract and merge the body joint coordinates and their 

trajectories in the 2-stream Convolutional 3D (C3D) network for 

HAR. On the other hand, this scheme neglects the relevant 

spatial variations among various actions due to the use of max-

min pooling in the C3D network, which was very flexible to 

spatially smooth over the nearby kernels. Therefore, the 

JTDPABRD scheme [16] was designed to substitute the max-

min pooling by the Positional Attention-based Bidirectional 
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Recurrent Neural Network (PABRNN) for feature 

representation. But the BRNN has more parameters, which 

results in a vanishing gradient problem and a lack of learning 

long-range joint relations between actions. 

So, the JTDPAHBRD scheme was developed by applying 

the PAHBRNN, which divides the feature maps related to the 

human skeleton in every clip into different parts depending on 

the body structure [17]. Those part-based features were 

hierarchically learned by the separate PABRNNs to obtain and 

fuse the long-range spatiotemporal information related to the 

different body parts. In contrast, these variants of JTDD for HAR 

were based on the video descriptor, which was created by 

merging only the joint and trajectory coordinates of different 

body parts at each time step. It was essential to obtain the 

geometric correlation among body joints for generating more 

meaningful descriptors. Since the trajectories of the body's joints 

only express gesture information and do not define contour or 

geometrical relations. 

Accordingly, the skeleton graph was considered to determine 

the different types of geometries, like joints, edges, and surfaces, 

along with the trajectories of body joints [18]. This data was sent 

to the C3D network, which includes the novel View Conversion 

(VC) layer and the Temporal Dropout (TD) layer in the attention 

and feature streams, respectively, to learn the temporal dynamics 

of various geometries. Also, the PAHBRNN was used to obtain 

the final feature representation. After that, the outcomes of the 

two streams were multiplied by the bilinear pooling followed by 

the fully connected layer. The entire net was trained by using the 

softmax loss function to construct the video descriptor of a given 

frame, which was classified by the SVM classifier to classify 

human activities. In contrast, the spatial-temporal dynamics of 

the different geometric features of the skeleton structure were 

not explored deeper. 

Hence in this paper, the GCN is incorporated with the 

JTDGPAHBRD scheme for HAR. The GCN learns 

complementary information between consecutive frames, such 

as higher-level spatial-temporal features, to improve end-to-end 

learning and generate video descriptors for a specific video 

sequence. A search space with several adaptive graph 

components is created to improve feature representation ability. 

After that, a sampling and computation-effective evolution 

scheme are applied to explore this space. So, the resultant GCN 

provides the temporal dynamics of the skeleton pattern, which 

are fused with the geometric features of the skeleton body joints 

and trajectory coordinates from the JTDGPAHBRD to create a 

more effective video descriptor for HAR. Such obtained 

descriptors are later classified by the SVM algorithm to 

recognize a variety of human actions. Thus, this model increases 

the accuracy of recognizing different kinds of human actions 

effectively. 

The remaining sections are prepared as the following: 

Section II reviews the works associated with this study. Section 

III describes the JTDGPAHBRD-GCN and Section IV validates 

its recognition rate. Section V outlines the findings of this study 

and suggests future enhancement. 

II. LITEARTURE SURVEY 

Wan et al. [19] developed a 2-stream CNN for extracting 

long-short-term spatiotemporal characteristics, which were 

merged and classified by the linear SVM for HAR. However, 

accuracy was low on a few more similar action classes, and 

feature extraction was difficult for videos with complex 

backgrounds. Li et al. [20] developed a new Temporal Segment 

Connection Network (TSCN) for recognizing human actions. 

The forget-gate connection unit was used to extract and fuse 

deep features from multiple sampling groups, which provides a 

more global feature representation for actions. An adaptive 

weighting unit was used to learn multiple weights for various 

sampling groups. However, this model was inefficient because 

it required more memory and only benefited more heterogeneous 

databases. 

Ren et al. [21] developed a new Segment of Cooperative 

Convolutional Networks (SC-ConvNets). Initially, segmented 

rank pooling was used to map the whole RGB-D frames into 

photos, which were fed to the ConvNets to define the 

spatiotemporal data. Then, a mutual optimization error value 

was applied to train complementary characteristics for 

multimodal HAR. But it did not simultaneously train the 

discriminatory characteristics of 3D multimodal data. 

Hao et al. [22] presented a Hyper-Graph Neural network 

(Hyper-GNN) to extract spatiotemporal data and high-order 

correlations for HAR. First, the underlying skeleton graph was 

extended to define the high-level correlations by the hyperedge 

structure, and the convolution process was applied to the 

hypergraph. Then, the spatial co-occurrence trait was induced 

and the time-based correlation was added to the upgraded 

residual unit to capture wealthier characteristics. Moreover, a 

dynamic fusion of the 3-stream model was used to merge 

different features and recognize actions. But the accuracy was 

degraded while increasing the number of hyperedges, which 

may produce noise. 

Li et al. [23] designed a new Symbiotic GNN (Sybio-GNN) 

to utilize graph-based operations for learning action patterns that 

simultaneously handle HAR and motion prediction. It comprises 

a support, an activity detection head, and a movement estimation 

head. For the support, multi-branch, multi-scale GCN was 

applied to capture spatiotemporal characteristics based on joint-

scale and part-scale graphs. Also, twin bone-based graphs and 

nets were used to train complementary characteristics for HAR. 

But it used only the long-range joint relations, whereas the short-

range joint relations and temporal features were not learned. 
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Cha et al. [24] designed 3D interconnects of the individual 

bodies from RGB videos for HAR. The transformer structure 

was used to obtain a useful skeletal interpretation from the 

rebuilt 3D interconnects. However, due to inefficient memory, 

cooperatively training the bone and skeleton joint positions 

proved difficult. Yadav et al. [25] developed the Convolutional 

Long Short-Term Memory (ConvLSTM) system for HAR. 

Initially, individual recognition and posture prediction were 

applied to precompute skeleton coordinates from the picture and 

video sequences. Then, the actual skeleton coordinates were 

exploited with their geometric and kinematic traits to create the 

new reference traits by the learned ConvLSTM ensemble. 

Moreover, a categorizer head with a fully connected unit was 

employed for HAR. But it needs more geometric features and 

spatiotemporal information to enhance HAR efficiency. 

Wu et al. [26] demonstrated a multimodal 2-stream 3D 

network model for spatiotemporal multimodal training using 

depth and posture information. Initially, discriminative video 

representations were constructed to define the spatiotemporal 

dynamics of action in depth frames by gradually fusing the local 

movement data. Then, a multimodal 2-stream 3D CNN was 

applied to train such dynamics. Moreover, the results from each 

stream were merged for HAR. But its performance was degraded 

since it did not learn the local spatiotemporal traits of individual 

activities. Also, the computational cost was high. 

Cheng et al. [27] designed an efficient deep ConvNet model 

for HAR. First, rank pooling was used to extract the 

spatiotemporal features from the entire RGB-D frame. Then, a 

twin ConvNet with a cross-modality reward unit was applied to 

train the cross-modality complementary characteristics and the 

compensation features from the RGB-D modalities for 

improving recognition efficiency. But it did not train more 

comprehensive spatiotemporal traits from various sequences, 

and it was not effective at fusing the complementary features of 

multiple modalities. 

III. PROPOSED METHODOLOGY 

This section describes the GCN model with the 

JTDGPAHBRD for HAR in detail. Fig. 1 shows an entire 

pipeline of the study. 

 

 

  
Figure 1. Overall Pipeline of the Study 

 

A. Graph Convolutional Network for Spatial-Temporal 

Feature Learning 

Consider the skeleton information used in the GCN is 

represented as a spatial-temporal graph 𝐺 = (𝑉, 𝐸)  with 𝑛 

skeleton geometries and 𝑡 frames. So, the skeleton structure’s 

feature map is represented by 𝑋 ∈ ℝ𝑛×𝑡×𝑐 , with 𝑐  channels 

defining the joint coordinates.  

Normally, in spatial graph convolutions, an adjacency matrix 

𝐴 and an identity matrix 𝐼 are utilized to delineate the intra-body 

joint relations that may be split into 3 sets 𝑠 (about the group of 

adjacent ensuing from the spatial alignment), where 𝐴 + 𝐼 =

∑ 𝐴𝑠𝑠 . In a specific frame, the graph convolution is defined as 

follows: 

𝑌 = ∑ 𝛬
𝑖

−
1

2𝐴𝑖𝛬𝑖

−
1

2𝑋𝑊𝑖
𝑠
𝑖=1                                                        (1) 

In Eq. (1), the degree matrix 𝛬𝑠
𝑖𝑖 = ∑ (𝐴𝑠

𝑖𝑗
)𝑗  is the sum of 

edges linked to every joint node, to regularize 𝐴𝑠, and 𝑊𝑖 are the 

combined weight vectors for all 𝑠. 

In this study, a dynamic and learnable GCN with a search 

strategy is applied to create dynamic graphs depending on the 

node correlations. This mainstreams the temporal dynamics over 

the respected time-based receptive areas from the temporal 

graph convolutions, which may be represented as a trainable 

temporal 𝐴. According to this, the correlation matrix 𝑆 defines 

the temporal variance for all frames regarding each other. But, 

because several GCNs are stacked to extract high-level spatial-

temporal features, different layers have multi-level semantic 

data, and the raw integration of 𝑆 would result in inflexible and 

fixed temporal configuration to all layers. To avoid this, it is 

considered necessary to get the geometric traits to various 

semantic levels. As a result, the convolutional layer is used over 
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the correlation descriptor to train the optimal temporal alignment 

that best fits the hierarchical GCNs. So, the main contribution is 

described by 

𝑅𝑘 = ((𝚂𝑘𝑊)⊤𝙹𝑘)⊤                                         (2) 

In Eq. (2), 𝚂𝑘 is the corresponding temporal dynamics of the 

similarity matrix with respect to the temporal indices of the 

kernel patch 𝑘, and 𝙹𝑘 is an all-ones vector of dimension 𝑐. As 

a result, the geometric descriptor is dynamically optimized and 

the temporal descriptor is acquired for each feature channel in 

the graph convolution by adding (2) to (1), using the Hadamard 

product: 

𝑌 = ∑ 𝛬
𝑖

−
1

2𝐴𝑖𝛬𝑖

−
1

2(𝑋 ⊙ 𝑅)𝑊𝑖
𝑠
𝑖=1             (3) 

Search Strategy for Dynamic Graph Generation in GCN 

Consider a series of 𝐺 = {𝐺1, … , 𝐺𝑇}, where all 𝐺s define a 

skeleton at a spedified interval. The nodes and edges in 𝐺 define 

the skeleton joints and their edges, correspondingly. To 

automatically generate graphs for different layers at different 

semantic levels, the proposed GCN is integrated with the graph 

structure search strategy. Initially, the GCN search space 

constructed with several 𝐺s is defined. After that, a sampling and 

computation-effective exploration policy is discussed. 

GCN search space: A graph search space in the graph 

structure search strategy defines what and how graph functions 

an exploring policy might use to construct the GCN. Here, the 

space assembled with many GCNs is searched to find the best 

GCN for an adaptive 𝐺 at various interpretation levels. Types of 

correlations determined to generate the adaptive 𝐺  are the 

following: 

1. Topology interpretation relationship: The topology 

relationship is used to design graph structure according to the 

current node relations. To define how robust the relationship is 

between 2 nodes, a standardized Gaussian function is utilized on 

the graph nodes, and the relationship score acts as a similarity, 

i.e., 

∀𝑖, 𝑗 ∈ 𝑉, 𝐴𝐷(𝑖, 𝑗) =
𝑒

𝛷(ℎ(𝑥𝑖))⨂𝜓(ℎ(𝑥𝑗))

∑ 𝑒
𝛷(ℎ(𝑥𝑖))⨂𝜓(ℎ(𝑥𝑗))𝑛

𝑗=1

                         (4) 

This element is called spatial 𝑚. Here, the relationship score 

𝐴𝐷(𝑖, 𝑗) between node 𝑖  and 𝑗 is calculated according to their 

interpretations ℎ(𝑥𝑖)  and ℎ(𝑥𝑗) . Also, ⨂  is the matrix 

multiplication, 𝛷(∙)  and 𝜓(∙)  are 2 estimation parameters, 

which are applied by the channel-wise convolution filters. 

According to this, the correlation among nodes is obtained to 

create the adaptive 𝐺. 

2. Temporal interpretation relationship: The temporal data of 

each node is extracted by applying two temporal convolutions 

before calculating node relationships with Eq. (4). In this 

manner, the node interfaces among adjacent frames are engaged 

while computing the node relations. Additionally, a Gaussian 

function is adopted, as in Eq. (4), to calculate the node 

relationship. This element is called temporal 𝑚, wherein 𝛷(∙) 

and 𝜓(∙) are applied by the temporal convolutions. 

Using both 𝑚 , an adaptive 𝐺  is constructed to learn the 

spatiotemporal features. 

GCN Search Strategy: To reduce the computational 

complexity of many graphs, the best graph structure must be 

explored. On the other hand, it is said that various feature layers 

comprise multiple levels of semantic information, and so a layer-

definite strategy is used to create a graph. Therefore, an entire 

GCN network is searched using this highly computationally 

efficient search strategy. It finds an optimal structure by 

estimating the structure distribution. Also, memory efficiency is 

improved through triggering one function element at all search 

steps. This exploration policy incorporates a cross-entropy 

scheme with significance-mixing, where structure variables 𝛼 is 

considered as a population and the structure distribution is 

designed by the Gaussian distribution. After that, this scheme 

samples a set of structures and using their efficiencies, essential 

examples are chosen to modify structure distribution. So, the 

best structure is sampled from the structure distribution. 

Initially, the structure distribution is modeled with a 

Gaussian distribution 𝜋~𝒩(𝜇, 𝛴)  and 𝑁  structure examples 

𝑆𝑛𝑒𝑤 = {𝛼𝑛
𝑖 }𝑖=1

𝑁  are sampled as the populations for this scheme. 

After that, combining 𝑆𝑛𝑒𝑤  with the past chosen populations 

𝑆𝑜𝑙𝑑 = {𝛼𝑜
𝑖 }𝑖=1

𝑁 , an importance-mixing scheme is applied to each 

population to select structure examples. At last, the freshly 

chosen examples are utilized to modify the structure distribution 

𝜋. 

During the population selection process, for every population 

in 𝑆𝑜𝑙𝑑 and 𝑆𝑛𝑒𝑤 , its probability density in both 𝜋𝑛𝑒𝑤  and 𝜋𝑜𝑙𝑑  

probability density functions (pdf) are compared. So, for the old 

population 𝛼𝑜
𝑖 , 

min (1,
𝑝(𝛼𝑜

𝑖 ;𝜋𝑛𝑒𝑤)

𝑝(𝛼𝑜
𝑖 ;𝜋𝑜𝑙𝑑)

) > 𝑟1                       (5) 

In Eq. (5), 𝑟1 is the threshold randomly selected between 0 

and 1, and 𝑝(∙; 𝜋) is a pdf with a particular 𝜋. Similarly, for fresh 

example 𝛼𝑛
𝑖  from the present distribution, 

max (0,1,
𝑝(𝛼𝑜

𝑖 ;𝜋𝑜𝑙𝑑)

𝑝(𝛼𝑜
𝑖 ;𝜋𝑛𝑒𝑤)

) > 𝑟2                              (6) 

In Eq. (6), 𝑟2  is the other threshold in [0,1] . For the 

modification process, the examples chosen in the past step are 

utilized to modify mean 𝜇  and covariance 𝛴 . Beforehand, the 

model parameters are modified with the current structure 𝛼 = 𝜇. 

After that, the network parameter is predetermined and each 

chosen example is allocated to the present structure. Using their 

performances, each chosen example is sorted. According to the 

efficiency rank, a significance weight 𝜆𝑖 is allocated to the 𝑖𝑡ℎ 

example, i.e. 

http://www.ijritcc.org/
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𝜆𝑖 =
log

(1+𝑁)
𝑖⁄

∑ log
(1+𝑁)

𝑖⁄𝑁
𝑖=1

             (7) 

Accordingly, the example having good efficiency can be 

provided with a larger weight, which contributes more 

modification to the distribution. At last, the weighted examples 

are used to modify the structure distribution, i.e., 

𝜇𝑛𝑒𝑤 = ∑ 𝜆𝑖𝛼
𝑖𝑁

𝑖=1                             (8) 

𝛴𝑛𝑒𝑤 = ∑ 𝜆𝑖(𝛼𝑖 − 𝜇)2 + 𝜖ℐ𝑁
𝑖=1             (9) 

In Eq. (9), 𝜖ℐ  is a noise term to better search the graph 

structure. Because 𝛴 is highly large to determine and modify, it 

is limited to a diagonal one. Observe that in Eq. (9), the mean of 

the final iteration is used to modify 𝛴 because the covariance 

matrix adaption evolution strategy exhibits it is highly effective. 

The structure of the JTDGPAHBRD-GCN model for video 

descriptor generation is depicted in Fig. 2. Thus, this GCN using 

dynamic graphs can capture spatial-temporal features from the 

skeleton geometries. 

 

 
Figure 2. Structure of proposed JTDGPAHBRD-GCN Model Video Descriptor Generation 

B. Effective Video Descriptor Generation and Human 

Action Recognition 

After obtaining the complementary high-level spatial-

temporal features from the GCN, these features are fused with 

the body joints, and their trajectory coordinates, which are 

extracted by the JTDGPAHBRD using a bilinear product. Then, 

the fused feature vectors are given to the fully connected layer 

to generate effective video descriptors for particular video 

sequences. Finally, the generated video descriptors are 

classified by the SVM classifier into different classes of human 

actions. 

IV. EXPERIMENTAL RESULT 

The performance of the JTDGPAHBRD-GCN model is 

measured in the MATLAB 2017b using the PAD that 

encompasses 2326 video sequences, each has 15 action classes. 

All clips are assembled from several web video libraries and 

involve 50–100 blocks, each of which has 13 body joints 

annotated. With this dataset, 1861 video sequences are utilized 

for learning, while 465 video sequences are utilized for testing. 

Sources include C3D features, coordinates of primitive 

geometries, trajectory coordinates, and spatial-temporal 

correlations. To measure the recognition accuracy of 

JTDGPAHBRD-GCN using these characteristics, several fusion 

configurations are applied. 

The ratio of the number of individual's action classes, which 

are properly classified is called recognition accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
× 100%         (10) 

The example input video frame and its corresponding 

skeleton image for extracting geometric features and spatial-

temporal features are displayed in Fig. 3. 

The recognition accuracy results of the JTDGPAHBRD-

GCN on the PAD are presented in Table 1. 
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(a) (b) 

Figure 3. (a) Input frame, and (b) corresponding skeleton image 

 

Table 1. Recognition Accuracy (%) of Sources and JTDGPAHBRD-GCN with Different Alignments on PAD 

 

 

Aggregate 

all the 

features 

JTDGPAHBRD-

GCN Ratio 

Scaling (1×1×1) 

JTDGPAHBRD-

GCN Coordinate 

Mapping 

(1×1×1) 

JTDGPAHBRD-

GCN Ratio 

Scaling (3×3×3) 

JTDGPAHBRD-

GCN Coordinate 

Mapping 

(3×3×3) 

Geometry 

features + 

trajectory 

coordinates 

+ spatial-

temporal 

features 

74.65 - - - - 

𝑓𝑐7  83.96 - - - - 

𝑓𝑐6  85.74 - - - - 

𝑐𝑜𝑛𝑣5𝑏  82.41 90.11 94.86 89.96 93.08 

𝑐𝑜𝑛𝑣5𝑎  73.68 85.35 88.78 84.15 85.44 

𝑐𝑜𝑛𝑣4𝑏  65.31 87.19 85.97 88.66 89.23 

𝑐𝑜𝑛𝑣3𝑏  54.02 80.54 79.08 80.73 79.67 

 

In Table 1, the first column denotes the accuracy of 

recognizing human actions using different features such as 

geometries of the body joints, trajectory coordinates, and spatial-

temporal information. It notices that the accuracy of recognizing 

human actions from the simple aggregation of different features 

is not satisfactory. Thus, to increase accuracy, each feature from 

the different layers must be aggregated. 𝑓𝑐7 's accuracy is 

slightly lower than 𝑓𝑐6's accuracy. It is encouraging since the 

real C3D-GCN can’t alter 𝑓𝑐7, which is essential to generate an 

effective video descriptor. Because the geometries and trajectory 

coordinates of the body joints are used, the results of the 

PAHBRNN-based pooling at each 3D 𝑐𝑜𝑛𝑣  units in 

JTDGPAHBRD-GCN are examined.  

It is observed that when aggregating geometries and 

trajectory coordinates of the body joints along with the spatial-

temporal features in video patterns according to separate parts of 

the human body (e.g., right leg, right arm, trunk, left leg, and left 

arm), the JTDGPAHBRD-GCN outperformed the other HAR 

systems. 

Also, JTDGPAHBRD-GCNs from several 𝑐𝑜𝑛𝑣  units are 

combined to determine whether they can balance one another. 

The outcomes of various configurations applying late merging 

and the SVM grades on the PAD are shown in Table 2. It 

compares the accuracy of the JTDPAHBRD-GCN model with 

the existing models: JTDGPAHBRD [18], TSCN [20], Hyper-

GNN [22], and Sybio-GNN [23]. 

 

Table 2. Recognition Accuracy (%) of JTDGPAHBRD-GCN by Fusing Different Layers for PAD 

Concatenation 

Layers + GCN 

TSCN [20] Hyper-GNN [22] Sybio-GNN [23] JTDGPAHBRD [18] JTDGPAHBRD-GCN 

𝑐𝑜𝑛𝑣5𝑏 + 𝑓𝑐6 84.36 86.91 88.25 90.60 93.14 

𝑐𝑜𝑛𝑣5𝑏

+ 𝑐𝑜𝑛𝑣4𝑏 

94.10 95.39 97.05 99.70 99.82 

𝑐𝑜𝑛𝑣5𝑏

+ 𝑐𝑜𝑛𝑣3𝑏 

83.64 85.26 87.48 90.40 92.51 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10s 

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7700 

Article Received: 09 June 2023 Revised: 28 July 2023 Accepted: 13 August 2023 

___________________________________________________________________________________________________________________ 

 

    618 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

 
Figure 4. Recognition Accuracy of JTDGPAHBRD-GCN on PAD 

 

Fig. 4 displays that concatenating 𝑐𝑜𝑛𝑣5𝑏 + 𝑐𝑜𝑛𝑣4𝑏 

features in the JTDGPAHBRD with the GCN features has a 

maximum recognition accuracy compared to the other 

combinations for feature aggregation. Therefore, it is determined 

that the JTDGPAHBRD-GCN model can precisely classify 

human actions in specific video sequences compared to the other 

existing models. For various HAR models on the PAD, Table 3 

provides the performance outcomes of the extracted 

Geometries+Trajectories+Spatial-Temporal (GTST) features vs. 

ground-truth GTST features. 

The JTDGPAHBRD-GCN achieves a minimum difference 

between the extracted GTST and ground-truth GTST, as 

displayed in Fig. 5. From these analyses, it is noticed that the 

proposed JTDGPAHBRD-GCN model achieved the greatest 

recognition performance compared to the other HAR models 

tested by the PAD.

 

Table 3. Effect of Extracted GTST vs. Ground-truth GTST for Different HAR Models on PAD 

Models Ground-truth Extracted Difference 

TSCN [20] 0.826 0.801 0.025 

Hyper-GNN [22] 0.849 0.833 0.016 

Sybio-GNN [23] 0.865 0.851 0.014 

JTDGPAHBRD (𝑐𝑜𝑛𝑣5𝑏) [18] 0.893 0.886 0.007 

JTDGPAHBRD (𝑐𝑜𝑛𝑣5𝑏)-GCN 0.927 0.922 0.005 

 

 
Figure 5. Effect of Extracted GTST vs. Ground-truth GTST for Different HAR Models on PAD 

V. CONCLUSION 

In this paper, the GCN model was incorporated with the 

JTDGPAHBRD for achieving spatial-temporal information 

learning from the skeleton graph. The GCN was used to capture 

high-level spatial-temporal features between consecutive 

frames. The search space with multiple dynamic graph structures 

of the GCN model was created and optimized based on the 

computation-efficient evolution scheme to learn the temporal 

dynamics of the skeleton pattern. These newly created spatial-

temporal features were aggregated with the geometric features 

of the body joints and their trajectory coordinates learned by the 

JTDGPAHBRD for generating video descriptors. Moreover, the 

obtained video descriptor was classified by the SVM classifier 
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for HAR. Finally, the extensive analysis demonstrated that the 

JTDGPAHBRD-GCN model on the PAD has a recognition rate 

of 99.82% by aggregating features of the 𝑐𝑜𝑛𝑣5𝑏 and 𝑐𝑜𝑛𝑣4𝑏 

layers with the GCN features when compared to the other HAR 

models.  
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