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Abstract— Predicting when and where bugs will appear in software may assist improve quality and save on software testing expenses. 

Predicting bugs in individual modules of software by utilizing machine learning methods. There are, however, two major problems with the 

software defect prediction dataset: Social stratification (there are many fewer faulty modules than non-defective ones), and noisy characteristics 

(a result of irrelevant features) that make accurate predictions difficult. The performance of the machine learning model will suffer greatly if 

these two issues arise. Overfitting will occur, and biassed classification findings will be the end consequence. In this research, we suggest using 

machine learning approaches to enhance the usefulness of the CatBoost and Gradient Boost classifiers while predicting software flaws. Both 

the Random Over Sampler and Mutual info classification methods address the class imbalance and feature selection issues inherent in software 

fault prediction. Eleven datasets from NASA's data repository, "Promise," were utilised in this study. Using 10-fold cross-validation, we 

classified these 11 datasets and found that our suggested technique outperformed the baseline by a significant margin. The proposed methods 

have been evaluated based on their abilities to anticipate software defects using the most important indices available: Accuracy, Precision, 

Recall, F1 score, ROC values, RMSE, MSE, and MAE parameters. For all 11 datasets evaluated, the suggested methods outperform baseline 

classifiers by a significant margin. We tested our model to other methods of flaw identification and found that it outperformed them all. The 

computational detection rate of the suggested model is higher than that of conventional models, as shown by the experiments.. 

Keywords-oftware Defect Prediction, Machine Learning, Class Imbalance, Feature Selection, NASA Promise Dataset, Catboost, Gradient 

Boost, Random Over Sampler, Cross Validation. 

 

I. INTRODUCTION 

The use of software has permeated every aspect of modern 

life. Software systems have had a significant impact on the 

economies of today's established and emerging nations, and 

software products are used in almost every industry and 

sector[1], from retail to transportation to banking to healthcare 

to government. Algorithms, procedures, and active modules 

make up the programme. Allocation of resources and planning 

[2] including Time, human expertise, computer resources, 

tools, and infrastructure are all necessities in the design and 

development of a software system. As long as software plays 

a significant role, developers will need to think about how 

often bugs occur. Software failure rates are sometimes rising, 

even at companies with extensive development 

expertise.[3][4][5]. 

When the outcomes of a software programme or product 

do not correspond to the needs of the end user, we have a 

software fault. The failures[6][7], unpredictability, or 

unexpected outcomes induced by these faults are the 

consequence of either source code or requirement problems. 

These issues negatively affect software quality and 

programme reliability and can lead to unnecessary 

expenditures of time, energy, and money. When problems 

occur, it takes more time and money to do maintenance. This 

makes early fault prediction in software a topic of interest for 

study. Over the course of the past two decades, academics 

have proposed several prediction models employing various 

machine learning classifiers.[8][9]. Inappropriately[10][11], 

Uneven data distribution presents a significant difficulty for 

the SDP procedure, lowering the quality of the learning model 

as a result. Due to the asymmetry of the situation, there are 

fewer malfunctioning modules than there are functional ones. 

The distribution of classes among them is not an issue if they 

can be divided into the target classes utilising the available 

characteristics. Problems arise only when this attribute hinders 

the efficacy of the algorithms or the resulting models. 

The number of successful and unsuccessful stages of a 

project are used to compile a data set for defect prediction. 
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Numerous even and unbalanced data sets have been utilised to 

anticipate the flaw by researchers. Software testing is 

profoundly affected by the results on data used for training 

defect prediction models symmetrical and asymmetrical data 

sets. During the data collecting and processing processes, we 

considered the wide range of metrics. There are data sets of 

19, 40, 42, 63, and 209 metrics. [12],[13]. Public data sets for 

software defect prediction are abundant and may be found in 

the PROMISE repository [14], where they have been utilised 

by several studies. Data for predicting defects have been 

collected from the past. Many powerful There are now 

machine learning approaches available and used to the 

problem of software fault prediction throughout the 

years.[15]. The defect prediction method splits the data into a 

"train" and "test" section. The classifier is trained with sample 

data and then used to make predictions about test-data 

defects.[12]. The learning approaches, such as supervised 

learning, have been included into a number of ML techniques 

[16], [17], and imbalance learning [15], [18][13]. These 

techniques have historically been the gold standard in software 

fault prediction. 

The primary objective of this study is to compare two 

approaches to evaluating ML algorithms in the context of 

improved NASA datasets provided from the open PROMISE 

repository, with the hope of identifying the most effective 

class for software fault prediction. When it comes to defect 

prediction, the results from the two machine learning learners, 

CatBoost and GredientBoost, are very comparable. 

The purpose of this research was to use machine learning-

based best classification algorithms to improve the precision 

of software default prediction on the NASA dataset. The 

following is a brief overview of our contributions: 

• The goal is to conduct a literature review on the 

subject of Software defect prediction. We describe 

current Software defect prediction detection 

research tools, methodologies, and datasets by 

addressing certain research issues. 

• To solove the data imbalacing problem using the 

Random Over Sampler balancing approach. 

• To select the important feature of eleven NASA 

datasets using Mutual_info_classif techniques. 

• To proposes a machine learning approach using 

CatBoost and Gradient Boost classifiers to predict 

Software defect. 

• Using machine learning approaches, we can 

improve the precision with which we can forecast 

Software defects and so lessen the likelihood that 

we'll make a mistake. 

• The goal is to simplify the training and testing 

processes while improving the accuracy of fault 

prediction and categorization in software. 

• To evaluate the suggested models' efficacy in terms 

of RMSE, MSE/MAE, ROC-AUC, f1-score, and 

recall for SDP. 

This section presents in-depth domain knowledge, and the 

remainder of the article is organized as follows: Section 2 is 

the literature review, Section 3 is the study methodology, 

Section 4 is the results and analysis, and Section 5 is the 

conclusion and future work. 

II. RELATED WORK 

The most popular ML methods used in SDP. Many SDP 

models employing In-depth domain knowledge are presented 

in this section, while the rest of the article is structured as 

follows: The literature review is in Section 2, the study 

methodology is in Section 3, the findings and analysis are in 

Section 4, and the conclusion and next steps are in Section 

5[19], used K-means clustering to organise the classes into 

meaningful groups. In addition, they used classification 

models on some of the characteristics. Optimizing ML models 

using Particle Swarm Optimization. The models' efficacy was 

evaluated using a variety of criteria, including measures of 

performance errors and a confusion matrix; precision, 

accuracy, recall, the f-measure. All of the ML models and their 

optimised versions provide optimal outcomes, however, the 

SVM models and their optimised versions show the greatest 

performance with accuracy of 99.0% and 99.80%, 

respectively. Ensemble techniques have an accuracy of 97.60 

percent, whereas individual methods have accuracies of 93.7 

percent, 93.8 percent, 98.5 percent, 99.50 percent, and 98.80 

percent. Our ultimate goal was to increase the precision of 

previous studies, and we believe that we have accomplished 

this. 

In Deep Singh and Chug, (2017), Due to their frequency 

and significance in Machine Learning, ANN, PSO, DT, NB, 

and Linear have all been investigated. KEEL employed k-fold 

cross-validation to assess the validity of the five 

methodologies it considered. Datasets were obtained from 

NASA's openly accessible Promise dataset repository. In this 

research on defect prediction, we analysed data from seven 

distinct sources. The accuracy of our classifications utilising 

10fold cross-validation on these 7 datasets. In terms of 

accuracy in defect prediction, Linear Classifier was shown to 

be the most effective technique [20]. 

Another, Assim, Obeidat and Hammad, (2020), A wide 

variety of ML techniques are employed in studies, including 

The terms "artificial neural networks," "random forest," 

"random tree," "decision table," "linear regression," and 

"Gaussian processes" are all terms used in artificial 
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intelligence. sensitivity analysis using mean and variance 

(SMOreg), and maximum entropy (M5P). A revolutionary 

defect prediction model is created for the goal of seeing into 

the future and predicting the likelihood of software bugs. The 

projected flaws are based on historical data. Results confirmed 

the practicality of combining multiple ML algorithms for 

software fault prediction. The SMOreg classifier did better 

than the ANN classifier in terms of performance [21]. 

Also, Tadapaneni et al., (2022) In the proposed study, two 

Several machines learning algorithms, including Naive Bayes, 

LSTM, and DNN, were presented. The PROMISE dataset is 

taken into account because of its potential application in 

binary prediction. It was decided to utilise a classification 

model for this inquiry because of the binary nature of software 

problem prediction. Because of this, we use the NB on ML 

model to test out DNN and LSTM and see how well they do. 

The DNN algorithm outperformed other approaches in a 

randomized test aimed to detect software flaws [22]. 

However, Shen et al., (2022) While machine learning 

techniques have become increasingly popular for constructing 

defect prediction models, finding the optimal values for the 

relevant parameters remains challenging. The problem is 

addressed by proposing a random forest for software fault 

prediction that is optimized using Bayesian theory. After the 

data has been cleaned and organized, The hyperparameters of 

the random forest model are optimised via a Bayesian 

technique. Lastly, simulations are validated using the NASA 

MDP datasets. The experimental findings validate the superior 

performance of our approach in predicting software defects 

[23]. 

According to the research done thus far, many ML 

approaches have been used, but their accuracy varies between 

datasets and is generally low. As a result, we aim to boost 

precision by studying a wide range of ML methods, including 

feature selection and data balance. The goal of study is to 

enhance precision in literary analysis. 

III. RESEARCH METHODOLOGY  

This section provides the research methodology for 

deepfakes detection. Also, the section first discusses the 

problem statement and then solves the deepfakes problems.  

A. Problem Statement 

Improving software quality and dependability is difficult, 

and one of the biggest obstacles is defect prediction. The 

challenge in this field is pinpointing the faulty code with 

precision. There have been several attempts to solve the 

difficult challenge of fault prediction model development. 

New developments in Because of developments in machine 

learning technology, several issues have been resolved. Based 

on the early failure prediction model, we can state that there is 

an issue with the dataset's imbalanced class distribution, which 

can be addressed by machine learning. This project aims to 

employ machine learning techniques to increase the number 

of datasets for the underrepresented group in the Promise Data 

Repository (which is used as a reference for many studies of 

software defect prediction models). The usage of the Promise 

Data Repository provided by NASA allows for comparing the 

results of different research in the same domain. The data thus 

generated will be used for modeling the ML algorithm to 

predict faults in the system and then compared. 

B. Proposed Methodology  

Eleven popular NASA datasets are used to provide 

predictions about software problems using a variety of 

machine-learning classification approaches. A Python 

programme was used to examine ML algorithms. This 

research used datasets found in NASA's open-access Promise 

dataset repository. The input dataset is highly imbalance so 

apply Random Over Sampler. Also, select the important 

feature with the mutual_info_classif method. The train and 

test sets of this dataset are evenly matched. The outcomes of 

classifying eleven datasets were evaluated using 10-fold 

cross-validation. Two examples of classification strategies are 

Gradient Boost and CatBoost. The success of deployed 

categorization techniques may be measured in a variety of 

ways, including Precision, Recall, F-Measure, Accuracy, and 

ROC Area. This comprehensive dataset allows for direct 

comparison and evaluation of any claims made regarding the 

superiority of a certain method, model, or framework for 

making predictions. The all-proposed process described in 

below subsections also shows the whole methodology process 

in Figure 3.1. 

http://www.ijritcc.org/
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Figure 1.  Flow Diagram of the Suggested Methodology 

The suggested methodology contains five key phases for 

the software defects predication including the primary 

machine learning classification techniques, data collecting, 

preprocessing, balancing, feature selection, data splitting, and 

so on. These phases are described below: 

1) Data Collection 

As you can see in Table 2, we employ eleven datasets from 

the PROMISE repository (created by Shirabad and Menzies 

(2005)) to conduct our tests. Table 2 shows that the majority 

of datasets are very skewed. Since this data is extremely 

skewed, our goal is to make accurate predictions about the 

flaws.  

 

 

TABLE I.  DATASETS DESCRIPTION AND LEVEL OF CLASS IMBALANCE 

 

 

2) Data Preprocessing 

The dataset was preprocessed after I had collected it. Data 

preprocessing [24]is the process of getting ready to feed raw 

data into a machine-learning model. One aspect of data 

cleansing is getting the data ready for use. This is a crucial first 

stage in the data mining process and has been recognised as 

such for some time. the data was preprocessed in the following 

manner: null values were checked; information data was 

checked also applied label encoding was. In this, we applied 

data preprocessing for the: 

Check Null values:  In a relational database, if the value of a 

column is unknown or missing, it is given the null value. 

When dealing with character and DateTime data types, null is 

not equivalent to zero or an empty string. 

Data scaling: Data scaling[25] is often done before training 

models using machine learning techniques, during the data 

pre-processing step. Here we applied Robust Scaler for given 

data scaling: 

• Robust Scaler: We may preprocess the data with 

either RobustScaler() or StandardScaler by removing 

the outliers. Scikit-learn, a Python machine learning 

package, provides the RobustScaler class, which 

implements the robust scaler transform. 

3) Feature Selection 

After completing the preprocessing phase, I applied 

feature selection techniques[26]. ML algorithms perform 

better when their input data is simplified. The most popular 

method for achieving this goal is to use a feature selection 

algorithm, which evaluates each feature's quality and ranks 

them appropriately. The feature selection procedure relies 

heavily on a feature selection algorithm, which eliminates 

attributes that are unlikely to improve classification accuracy. 

One technique to calculate the complexity between dataset 

features is applying Mutual_info_classif. This technique is an 

approximation of values to compute the importance of each 

software feature. 

 

 

Data Pre-Processing 

(Check null values, check information of data, data 

scaling and data labelling) 

 

Input the Nasa software defect prediction dataset 

Start 

 

CatBoost and Gradient Boost 

 

 
(like- Accuracy, Precision, Recall and F1 

score ROC, RMSE, MSE and MAE etc.) 

Feature Selection 

 
 

 

Training Data 

(80%) 

Testing Data 
(20%) 

Data Split Into two part 

Mutual_info_classif 

Output 

Data Balancing 

(Random Over Sampler) 

 

Machine Learning Models for 

classification 
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Mutual_info_classif:  The mutual information-based feature 

selection approach is used to identify the most important 

aspects of a dataset while eliminating those that aren't 

necessary. The mutual information feature selection algorithm 

is a filtering technique. mutual info classify. Calculate the 

mutual information measure between a set of discrete 

variables. Mutual information (MI) is a positive number that 

may be used to measure the degree of reliance between two 

random variables. 

4) Data Balancing 

The pre-processing stage in the sampling strategy was 

implemented to achieve data set parity. Using a classifier 

constructed from previously observed data, Classification is a 

supervised machine learning technique used to infer an 

unknown data set's category. In most cases, while developing 

a classifier, it is assumed that the training data is uniformly 

distributed. But many data sets are very unbalanced.[27][28]. 

Datasets with an unbalanced number of samples in one class 

compared to others are a typical issue in machine learning 

classification. In the case of supervised ML, when two or more 

classes are involved, this issue becomes very important. The 

dataset is skewed since there is an uneven number of samples 

from each identified class. For the imbalanced software defect 

dataset applied oversampling techniques[29]. Here we used 

Random over sampler technique: 

Random Over Sampler:  The simplest kind of 

oversampling is creating a duplicate set of training data 

examples from the minority class at random. Using a random 

number to enhance the proportion of underrepresented cases 

in a training set is the purpose of random oversampling. 

5) Data Splitting 

In this experiment, the dataset was divided randomly such 

that 80% of the photos and just 20% were used for actual 

testing. In order to do the sorting task efficiently. we guarantee 

that the data used for testing are never utilised in training. 

6) Classification using the ML model: 

The suggested methodology makes use of boosting 

algorithms grounded on machine learning techniques like 

CatBoost and Gradient Boost. In this part, we take a quick 

look at these algorithms. 

a) CatBoost Classifier 

CatBoost is a training algorithm with fast speed and good 

classification accuracy. It was the newest classification system 

that could learn a lot. CatBoost additionally provides a method 

for converting input attributes to numeric values. However, 

tiny sample sets of experts, especially samples with multiple 

inputs' attributes, are not a good fit for the CatBoost discussion 

approach. Although the combined CatBoost method shows 

promise as a learning technique for the expert categorization 

problem, it has to be reshaped for the input function dialogue. 

[30]. The predictive time for CatBoost, a decision tree gradient 

boosting method, is negligible. Weather forecasting, 

autonomous vehicles, digital assistants, and recommendation 

engines are just some of the many uses for this technology. 

One-hot encoding is used by default in most configurations of 

CatBoost for categorical features with a small number of 

possible values. The term "symmetric tree" is used in 

CatBoost to denote trees in which the splitting requirement is 

satisfied by all nodes on the same level of the tree. Instead of 

catBoost, these trees rely on decision tree categorization, 

which makes advantage of the scaling feature. 

IV. GRADIENT BOOST CLASSIFIER 

When it comes to prediction and classification, GB is the 

most powerful ensemble method. It takes several rather feeble 

learners and combines them into one powerful predictive 

model. A decision tree structure is put into effect. It's a tried 

and true method of filing away all sorts of information. The 

GB model becomes more and more effective as iterations go. 

[31]. The GB model uses a stack of relatively weak 

forecasters, decision trees in this case, to arrive at a final 

prediction. After the original tree has been fitted to the data, a 

new version of the data is created that places more weight on 

predicting observations that were poorly predicted by the tree. 

In the deployed version, least squares regression was used as 

the loss function and as the function to be optimized using 

gradient descent. In order to get a more precise forecast, it is 

thought that a large number of these rather weak trees should 

be combined. There are as many estimators as there are trees 

(number of boosting stages completed) [32].  

Algorithm GBM: 

• Put a P next to some of the target numbers. 

• Find the margin of error for the set targets. 

• Error M may be reduced if the weights are revised 

and updated. 

• P(x) = P(x) + Alpha M[x] 

• Model learners are analysed and calculated using the 

loss function F. 

• Maintain till you reach the goal of P. 

C. Proposed Algorithm 

Input: Nasa software defect prediction Dataset  

Output: High prediction accuracy. 

Start: 

Install Python simulation tool and Jupyter Notebook as a 

simulation platform 

Import Python Libraries (NumPy, Pandas, Scikit-Learn, 

Matplotlib, Scrapy, Keras, Seaborn, and sklearn, etc.): 

Step 1  Upload the Nasa software defect prediction 

Dataset from the Kaggle 

http://www.ijritcc.org/
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Step 2  Apply Data Pre-Processing 

• Check null values 

• Check information of data  

• Label Encoder 

Step 3  Data Balancing 

• Random Over Sampler 

Step 4  Feature Selection 

• Mutual_info_classif 

Step 5  Dataset Split 

• The data will then be split into training 

sets (80 percent) & testing sets (20 

percent). 

Step 6  Classification Models (Machine learning 

classifiers) 

• CatBoost classifier and  

• Gradient Boost classifiers focus on 

high precision of outcomes. 

Step 7  By utilizing multiple performance metrics, 

including precision, accuracy, f1-score, and recall, 

ROC of the model's performance was assessed.  

Step 8  Comparative analysis was done utilizing 

different machine-learning techniques.  

Step 9  Get high accuracy for SDF 

Step 10  Finish!!! 

V. RESULTS ANALYSIS 

In this part, we show the results of our simulation 

experiments on predicting software artefacts using machine 

learning. We ran the simulation using a Windows 10 machine 

equipped with an Intel Core i7-9750H CPU running at 2.6 

GHz and 16 GB of RAM. Also used Python [33], was the 

programming language for software development 

technologies. This module was once responsible for data 

analysis and implementation of machine learning models. The 

Jupyter Notebook [34] included a simulation system as well 

as several Python libraries[35], such as NumPy, Pandas, 

Matplotlib, Keras, TensorFlow, and Seaborn, among others. 

Various specialised performance matrices were employed 

(described further below). A variety of graphs, metrics, and 

tables are used to summarise the experiment's outcomes. 

D. Dataset Description  

As can be seen in Table 2, we use eleven datasets from the 

PROMISE repository (created by Shirabad and Menzies 

(2005)) to conduct our tests. The feature selection procedure 

aims to pick an appropriate feature subset for precise defect 

prediction by removing redundant and unnecessary 

characteristics from the dataset. As was previously shown, the 

most significant or best qualities can have a disproportionate 

impact on performance, allowing for improvements to be 

made with less training data. Our findings show that in certain 

situations, we may minimise the feature set by as much as 

60%. (In the pc3 dataset, for instance, there are a total of 37 

characteristics, but only 15 make it into the reduced set). To 

make the classifier more scalable and to lower its processing 

cost, the features are cut by around 50% on average across all 

11 datasets. 

Visulisation results of feature impotence-based 

mutual_info_classif Method: Visualization is the use of 

computer-supported, visual representation of data. Here 

provide the visulisation results of feature impotence based 

mutual_info_classif Method using the 11 Nasa SDP dataset. 

Below figure 4 shows each dataset feature importance graph 

using mutual_info_classif method. 

Although the mutual info classify function is used to 

describe and mock-up the feature selection process only on 

one dataset (pc3), the same procedure is carried out for all the 

datasets. The steps involved in selecting the most effective 

discriminatory features from the pc3 dataset are outlined 

below. 

 

Figure 2.  Feature impotence of PC3 Dataset Drop those column which 

have zero value and lower value by mutual_info_classif() 

The above figure 2 shows the feature importance to get by the 

mutual_info_classif() method by  the PC3 Dataset that contain 

almost 37 attributes. We can see that the graph LOC_BLANK 

feature shows highest importance in comparison to other 

attributes. Mutual information gain is largest between the 

LOC BLANK, as seen by the graph (0.07). In this scenario, 

LOC BLANK provides 70% of the data necessary to 

understand the wine variable of interest. We utilise a function 

from the mutual info classif() python package to find the best 

K features. The most popular features might be selected as an 

alternative. Only the top ten characteristics are included in this 

list. 
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E. Performance Measures 

Standard metrics obtained from the resulting confusion 

matrices were used to assess the performance of applying ML 

algorithms to software defact prediction [36]. The confusion 

matrix and its accompanying assessment metrics are discussed 

below. 

Confusion Matrix: One table used to evaluate ML 

algorithms' efficacy is called a confusion matrix. The rows of 

the matrix reflect the examples that belong to a certain actual 

class, while the columns represent the instances that belong to 

a given anticipated class, or vice versa. In the summary 

confusion matrix (FN), the testing algorithm reports the 

number of True Positives (TP), False Positives (FP), True 

Negatives (TN), and False Negatives (FN). 

• 𝑻𝒑 = represents true positive cases number 

• 𝑭𝒑 = represents false-negative cases number 

• 𝑭𝑵 = represents false-positive cases number 

• 𝑻𝑵 = represents true negative cases number 

Accuracy, precision, recall, ROC, and F1 score were the 

primary metrics we utilised to assess the performance of our 

model. 

• The accuracy 

True findings (TP and TN) as a percentage of all evaluated 

cases are accuracy (ACC). The highest possible accuracy is 1, 

while the lowest is 0. The following formula may be used to 

determine ACC: 

Accuracy =
𝑇𝑃+𝑇𝑁

N
… (1) 

• The Precision 

Number of accurate positive forecasts as a percentage of total 

positive predictions represents precision. Maximum accuracy 

is 1, minimum is 0, and both extremes may be determined 

using the following formulas. 

Precision =
TP

TP+FP
…. (2) 

• Recall 

The percentage of correct predictions made is what is used to 

determine recall. A recall of 1 is the best and a recall of 0 is 

the worst. The formula for determining Recall is as follows. 

Recall =
TP

TP+FP
… (3) 

• The F1 score 

 The F-measure equals the arithmetic mean of the recall and 

precision values. When comparing several ML algorithms, it 

is common practice. to use a single metric that includes both 

Recall and Precision. The formula for the F-measure is: 

F1score =
2×(Precision−Recall)

(Precision+Recall)
…. (4) 

• Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) is a common measure of 

effectiveness in regression analysis. Averaging the absolute 

differences between observed and predicted values of the 

dependent variable over all observations yields the average 

absolute difference. Here's the formula: 

… . . (5) 

where y represents the observed value, n is the sum of 

observations and y' the foreseen value. The MAE value 

decreases as performance improves. 

• Mean Squared Error (MSE)  

The average squared deviation from the predicted value of a 

target variable is known as the mean squared error (MSE), and 

it is used to measure the precision of a forecasting method. 

The formula is as follows: 

… . . (6) 

Number of observations (n), value (y), and anticipated value 

(y') are defined as follows. When measuring performance, a 

lower MSE is preferable. 

• Root-Mean-Square Error (RMSE)  

Using the root-mean-square error (RMSE), scientists may 

assess how well a prediction model does its job. Here, we 

propose a method for quantifying the deviation between 

expected and observed results. To determine RMSE, we 

compare the actual value X to the anticipated value XP. 

…. (7) 

F. Simulation Results of proposed methods  

Here, we present the simulation results of the suggested 

model, a machine learning-based CatBoost, and a Gradient 

Boost, all applied to a NASA dataset for software defact 

prediction. This experimental result shows in form of 

confusion matrix, classification repost, and ROC curve also 

calculate the accuracy, precision, recall AUC and f1-score or 

MSE, RMSE, and MAE performance parameters also using 

10 K fold cross-validation. Here we provide the results of only 

one datasets out of eleven because the same results are 

repeated for other datasets. Below the experimented results are 

explained to the PC3 dataset. The following bar graph shows 

results of proposed CatBoost, and Gradient Boost machine 

learning models for software default predication. 

Results of CatBoost and GradientBoost Classifiers with 

PC3 Dataset 

Here in this section provide the experimented results of 

suggested CatBoost and GradientBoost classifier using PC3 

datasets. Following figure 5 to 14 shows the results of these 

techniques. 
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Figure 3.  Classification report of CatBoost classifier using PC3 Dataset 

The results of the suggested CatBoost classifier on the PC3 

Dataset are displayed in Figure 3 above. In machine learning, 

one way to measure success is using a categorization report. It 

demonstrates the test classification model's accuracy, recall, 

F1 Score, and support. The input PC3 dataset has two classes, 

for class 0 precision is 100%, recall 88% and f1-score is 94% 

whereas for class 1 90%, recall 100% and f1-score is 95% with 

support 272 and 290. The proposed model CatBoost classifier 

precision, recall, f1-score, and accuracy is 94% with support 

562 respectively. 

 

Figure 4.  Parameter performance of CatBoost classifier using PC3 Dataset 

The above figure 4 shows the Parameter performance of 

proposed CatBoost classifier using PC3 Dataset. The model 

gets 94% classification accuracy, precision 90%, recall 100% 

and f1-score 94% while MAE and MSE are 0.05 or RMSE 

0.23 respectively. 

 

Figure 5.  Confusion matrix of CatBoost classifier using PC3 Dataset 

The above figure 5 shows the Confusion matrix of proposed 

CatBoost classifier using PC3 Dataset. The model gets 94% 

classification accuracy. The false positive rate is 0 and false 

negative value is 32 while true positive predicated data is 240 

and true negative predicated data is 290 respectively. 

 

Figure 6.  Parameter performance of CatBoost classifier with 10K-fold 

Cross Validation technique using PC3 Dataset 

The above figure 6 shows the Parameter performance of 

proposed CatBoost classifier with 10K-fold Cross Validation 

technique using PC3 Dataset. The model gets 84% average 

accuracy with CV, average precision 80%, and average f1-

score is 85%, average AUC is 91%, while average MAE 15.65 

and average RMSE 39.43 respectively. 

 

Figure 7.  ROC-AUC curve of CatBoost classifier with 10K-fold Cross 

Validation technique using PC3 Dataset 

The above figure 7 shows the ROC-AUC curve of CatBoost 

classifier with 10K-fold Cross Validation technique using PC3 

Dataset. On the ROC fold 1 (AUC=98%), ROC fold 2 

(AUC=95%), ROC fold 3 (AUC=97%), ROC fold 4 

(AUC=94%), ROC fold 5 (AUC=95%), ROC fold 6 

(AUC=96%), ROC fold 7 (AUC=96%),  ROC fold 8 

(AUC=97%), ROC fold 9 (AUC=96%) and ROC fold 10 

(AUC=95%) respectively. The proposed model shows the 

96% Mean AUC performance on PC3 dataset. 

 

Figure 8.  Classification report of GradientBoost classifier using PC3 

Dataset 

The results of the proposed Gradient Boost classifier on the 

PC3 Dataset are displayed in Figure 8 above. A classification 

report is a performance evaluation metric. The input PC3 
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dataset has two classes, for class 1 precision 94%, recall 100% 

and f1-score is 97% whereas for class 0 90%, recall 100% and 

f1-score is 97% with support 272 and 290. The proposed 

model GradientBoost classifier precision, recall, f1-score, and 

accuracy is 97% with support 562 respectively. 

 

Figure 9.  Parameter performance of GradientBoost classifier using PC3 

Dataset 

The above figure 9 shows the Parameter performance of 

proposed GradientBoost classifier using PC3 Dataset. The 

model gets 96% classification accuracy, precision 94%, recall 

100% and f1-score is 96% while MAE and MSE are 0.032 or 

RMSE 0.17 respectively. 

 

Figure 10.  Confusion matrix of GradientBoost classifier using PC3 Dataset 

The above figure 10 shows the Confusion matrix of proposed 

GradientBoost classifier using PC3 Dataset. The model gets 

97% classification accuracy. The false positive rate is 0 and 

false negative value is 18 while true positive predicated data 

is 254 and true negative predicated data is 290 respectively. 

 

Figure 11.  Parameter performance of GradientBoost classifier with 10K-

fold Cross Validation technique using PC3 Dataset 

The above figure 11 shows the Parameter performance of 

proposed GradientBoost classifier with 10K-fold Cross 

Validation technique using PC3 Dataset. The model gets 85% 

average accuracy with CV, average precision 83%, and 

average f1-score is 86%, average AUC is 93%, while average 

MAE 14.23 and average RMSE 37.39 respectively. 

 

Figure 12.  ROC-AUC curve of GradientBoost classifier with 10K-fold 

Cross Validation technique using PC3 Dataset 

The above figure 12 shows the ROC-AUC curve of 

GradientBoost classifier with 10K-fold Cross Validation 

technique using PC3 Dataset. On the ROC fold 1 

(AUC=99%), ROC fold 2 (AUC=97%), ROC fold 3 

(AUC=98%), ROC fold 4 (AUC=96%), ROC fold 5 

(AUC=98%), ROC fold 6 (AUC=98%), ROC fold 7 

(AUC=97%),  ROC fold 8 (AUC=98%), ROC fold 9 

(AUC=98%) and ROC fold 10 (AUC=99%) respectively. The 

proposed model shows the 98% Mean AUC performance on 

PC3 dataset. 

G. Comparative analysis and Discussion 

Eleven datasets are used to evaluate several metrics, 

including mean absolute error, mean square error, root mean 

square error, and f1-score. In this study, we examine and 

compare the various ML methods used for defect prediction. 

Here, we examine the PC4, PC3, CM1, and MC1 datasets and 

compare the most discriminating experimental outcomes. The 

following graph is a comparison of many machine learning 

models used for predicting software failure. Tables 2–6 

compare a variety of ML methods utilised in past research. 

Logistic Regression (LR) and Decision Tree (DT) with 10-

dold cross validation were two of the ML methods we looked 

at since they have been used as cutting-edge approaches in 

previous studies. using 10-fold cross-validation on the PC4, 

PC3, CM1, and MC1datasets we chose, as well as our 

proposed CatBoost and Gradient Boost machine learning 

models. 

TABLE II.  ACCURACY PARAMETER COMPARISON OF BASED AND 

PROPOSE CLASSIFIERS 

Datasets Base 

Classifiers 

Propose Classifiers 

LR DT CatBoost GradientBoost 

PC4 71 87 89 91 

PC3 73 84 84 85 

CM1 90 88 73 75 

MC1 73 85 89 99 
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Figure 13.  Bar graph of accuracy comparison between base and propose 

classifier 

The above figure 13, shows the machine learning classifiers 

performance for software default prediction using PC4, PC3, 

CM1, and MC1 datasets. In bar graph shows the comparison 

between base and propose classifiers in terms of accuracy. For 

the PC4 dataset, 71% accuracy of base logistic regression and 

87% accuracy of decision tree, PC3 dataset obtain 73% 

accuracy of base logistic regression and 84% accuracy of 

decision tree, CM1 got 90% and 88% accuracy for both base 

classifiers and MCI dataset achieved 73% and 85% accuracy 

of logistics regression and decision tree, While propose 

CatBoost 89% accuracy, and GradientBoost 91% accuracy on 

PC4 dataset, PC3 dataset obtain 84% and 85% accuracy, 73% 

and 75% accuracy on CM1 and 98% and 99% accuracy on 

MC1 dataset. We can the proposed CatBoost, and 

GradientBoost classifiers achieved high accuracy with 99% in 

comparison to base classifiers for the software default 

prediction 

TABLE III.  PRECISION PARAMETER COMPARISON OF BASED AND 

PROPOSE CLASSIFIERS 

Datasets 

Base Classifiers Propose Classifiers 

LR DT CatBoost GradientBoost 

PC4 32 62 83 87 

PC3 50 24 80 83 

CM1 13 20 68 72 

MC1 50 58 83 98 

 

Figure 14.  Bar graph of precision comparison between base and propose 

classifier 

The above figure 14 shows the comparison between base and 

propose classifiers in terms of precision. For the PC4 dataset, 

32% precision of base logistic regression and 62% precision 

of decision tree, PC3 dataset obtain 50% precision of base 

logistic regression and 24% precision of decision tree, CM1 

get 13% and 20% precision for both base classifiers and MCI 

dataset achieved 50% and 58% precision of logistics 

regression and decision tree, While propose obtain CatBoost 

83%, and GradientBoost 87% on PC4 dataset, PC3 dataset 

obtain precision 80%, and 83%, precision of proposed 

CatBoost and GradientBoost classifiers. On the CM1 dataset 

CatBoost precision 68%, and GradientBoost precision 72%. 

At last 83% and 98% precision obtain by the proposed 

classifier on the MC1 dataset respectively. We can the 

proposed achieved high precision with 98% in comparison to 

base classifiers for the software default prediction. 

TABLE IV.  F1-SCORE PARAMETER COMPARISON OF BASED AND 

PROPOSE CLASSIFIERS 

Datasets 

Base 

Classifiers 

Propose Classifiers 

LR DT CatBoost GradientBoost 

PC4 45 52 83 91 

PC3 66 27 85 85 

CM1 18 20 73 75 

MC1 66 57 99 90 
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Figure 15.  Bar graph of f1-score comparison between base and propose 

classifier 

The above figure 15 shows the comparison between base and 

propose classifiers in terms of f1-score. For the PC4 dataset, 

45% f1-score of base logistic regression and 52% f1-score of 

decision tree, PC3 dataset obtain 66% f1-score of base logistic 

regression and 27% f1-score of decision tree, CM1 get 18% 

and 20% f1-score for both base classifiers and MCI dataset 

achieved 66% and 57% f1-score of logistics regression and 

decision tree,  While propose CatBoost 83%, and 

GradientBoost get 91% f1-score on PC4 dataset, PC3 dataset 

obtain 84%, and 85% f1-score of proposed classifiers. On the 

CM1 dataset CatBoost f1-score 73%, GradientBoost f1-score 

75%. At last 90% and 99%, f1-score obtain by the proposed 

classifiers on the MC1 dataset respectively. We can the 

proposed classifiers achieved high f1-score with 99% in 

comparison to base classifiers for the software default 

prediction. 

TABLE V.  RMSE PARAMETER COMPARISON OF BASED AND PROPOSE 

CLASSIFIERS 

Datasets 

Base 

Classifiers 

Propose Classifiers 

LR DT CatBoost GradientBoost 

PC4 52.53 33.45 32.42 29.34 

PC3 31.11 37.27 39.43 37.39 

CM1 24.24 22.33 50.42 48.93 

MC1 31.11 21.35 32.42 8.20 

 

Figure 16.  Bar graph of RMSE comparison between base and propose 

classifier 

The above figure 16 shows the comparison between base and 

propose classifiers in terms of RMSE. For the PC4 dataset, 

52.53% RMSE of base logistic regression and 33.45% RMSE 

of decision tree, PC3 dataset obtain 31.11% RMSE of base 

logistic regression and 37.27% RMSE of decision tree, CM1 

get 24.24% and 22.33% RMSE for both base classifiers and 

MCI dataset decrease 31.11% and 21.35% RMSE of logistics 

regression and decision tree,  While propose CatBoost 32%, 

and GradientBoost 29% RMSE on PC4 dataset, PC3 dataset 

obtain 39%,  and 34% RMSE of proposed classifiers. On the 

CM1 dataset CatBoost RMSE 50%, and GradientBoost 

RMSE 48%. At last 32% and 8%,  RMSE obtain by the 

proposed classifiers on the MC1 dataset respectively. We can 

the proposed CatBoost, and GradientBoost classifiers 

decrease high RMSE with 8% in comparison to base 

classifiers for the software default prediction. 

TABLE VI.  MAE PARAMETER COMPARISON OF BASED AND PROPOSE 

CLASSIFIERS 

Datasets 

Base Classifiers Propose Classifiers 

LR DT CatBoost GradientBoost 

PC4 28.15 11.26 10.74 8.98 

PC3 9.68 15.93 15.65 14.23 

CM1 10 10.24 26.21 24.46 

MC1 9.68 15.93 10.74 0.79 
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Figure 17.  Bar graph of MAE comparison between base and propose 

classifier 

The above figure 17 shows the comparison between base and 

propose classifiers in terms of MAE. For the PC4 dataset, 

28.15% MAE  of base logistic regression and 11.26% MAE  

of decision tree, PC3 dataset obtain 9.68% MAE  of base 

logistic regression and 15.93% MAE  of decision tree, CM1 

get 10% and 10.24% MAE  for both base classifiers and MCI 

dataset decrease 9.68% and 15.93% MAE  of logistics 

regression and decision tree,  While propose CatBoost 10%, 

and GradientBoost 8.98%, MAE  on PC4 dataset, PC3 dataset 

obtain 15.65%, and 14.23%, MAE  of proposed CatBoost, and 

GradientBoost. On the CM1 dataset CatBoost MAE 26.21%, 

and GradientBoost MAE 24.46%. At last 10.74 and 0.79MAE 

obtain by the proposed classifiers on the MC1 dataset 

respectively. We can the proposed classifiers decrease high 

MAE with 10.74 % in comparison to base classifiers for the 

software default prediction. 

VI. CONCLUSION AND FUTURE SCOPE 

Today, machine learning research is prevalent across the 

whole IT and software landscape. The subfield of machine 

learning known as software defect prediction is making 

significant strides in recent years. One step in that direction is 

employing ML methods for fault prediction in software. When 

used early in the development process, this method enhances 

programme performance while decreasing software 

maintenance costs. In this paper, we provide a system for 

predicting software flaws that are both effective and 

trustworthy. Our work using NASA's JM1, CM1, PC1, PC3, 

PC4, MC1, KC1, MOZILLA4, and JEDIT defect prediction 

data sets utilising the PYTHON programming language and 

recommended machine learning classification approaches like 

CatBoost and GredientBoost classifiers is available in the 

PROMISE repository. Algorithms are evaluated based on 

metrics like MSE, MAE, and RMSE, all of which are 

calculated using data. Measurements of the efficacy of 

machine learning algorithms reveal that they fare admirably 

on each of the eleven datasets considered. The data obtained 

overwhelmingly supported the superior performance of the 

ML method. The proposed CatBoost and GredientBoost 

classifiers obtain highest 90% to 99% accuracy, recall, 

precision, and f1-score on MC1 dataset or better MAE and 

RMSE with 8.20 and 0.79 obtained by the MC1 dataset. This 

dataset reduces the error of the software default prediction. 

In a possible follow-up, we want to include more ML 

techniques and compare them extensively. Adding more 

software measurements throughout the learning process may 

also increase the prediction model's accuracy. 
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