
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 492

IJRITCC | September 2023, Available @ http://www.ijritcc.org

A New Improved Prediction of Software Defects

Using Machine Learning-based Boosting Techniques

with NASA Dataset

Jayanti Goyal1, Ripu Ranjan Sinha2
1Research Scholar, Computer Science Department

Rajasthan Technical University (RTU), Kota

goyal.jayanti@gmail.com
2Professor, Computer Science, S. S. Jain Subodh P.G. College

Rajasthan Technical University, Kota

drsinhacs@gmail.com

Abstract— Predicting when and where bugs will appear in software may assist improve quality and save on software testing expenses.

Predicting bugs in individual modules of software by utilizing machine learning methods. There are, however, two major problems with the

software defect prediction dataset: Social stratification (there are many fewer faulty modules than non-defective ones), and noisy characteristics

(a result of irrelevant features) that make accurate predictions difficult. The performance of the machine learning model will suffer greatly if

these two issues arise. Overfitting will occur, and biassed classification findings will be the end consequence. In this research, we suggest using

machine learning approaches to enhance the usefulness of the CatBoost and Gradient Boost classifiers while predicting software flaws. Both

the Random Over Sampler and Mutual info classification methods address the class imbalance and feature selection issues inherent in software

fault prediction. Eleven datasets from NASA's data repository, "Promise," were utilised in this study. Using 10-fold cross-validation, we

classified these 11 datasets and found that our suggested technique outperformed the baseline by a significant margin. The proposed methods

have been evaluated based on their abilities to anticipate software defects using the most important indices available: Accuracy, Precision,

Recall, F1 score, ROC values, RMSE, MSE, and MAE parameters. For all 11 datasets evaluated, the suggested methods outperform baseline

classifiers by a significant margin. We tested our model to other methods of flaw identification and found that it outperformed them all. The

computational detection rate of the suggested model is higher than that of conventional models, as shown by the experiments..

Keywords-oftware Defect Prediction, Machine Learning, Class Imbalance, Feature Selection, NASA Promise Dataset, Catboost, Gradient

Boost, Random Over Sampler, Cross Validation.

I. INTRODUCTION

The use of software has permeated every aspect of modern

life. Software systems have had a significant impact on the

economies of today's established and emerging nations, and

software products are used in almost every industry and

sector[1], from retail to transportation to banking to healthcare

to government. Algorithms, procedures, and active modules

make up the programme. Allocation of resources and planning

[2] including Time, human expertise, computer resources,

tools, and infrastructure are all necessities in the design and

development of a software system. As long as software plays

a significant role, developers will need to think about how

often bugs occur. Software failure rates are sometimes rising,

even at companies with extensive development

expertise.[3][4][5].

When the outcomes of a software programme or product

do not correspond to the needs of the end user, we have a

software fault. The failures[6][7], unpredictability, or

unexpected outcomes induced by these faults are the

consequence of either source code or requirement problems.

These issues negatively affect software quality and

programme reliability and can lead to unnecessary

expenditures of time, energy, and money. When problems

occur, it takes more time and money to do maintenance. This

makes early fault prediction in software a topic of interest for

study. Over the course of the past two decades, academics

have proposed several prediction models employing various

machine learning classifiers.[8][9]. Inappropriately[10][11],

Uneven data distribution presents a significant difficulty for

the SDP procedure, lowering the quality of the learning model

as a result. Due to the asymmetry of the situation, there are

fewer malfunctioning modules than there are functional ones.

The distribution of classes among them is not an issue if they

can be divided into the target classes utilising the available

characteristics. Problems arise only when this attribute hinders

the efficacy of the algorithms or the resulting models.

The number of successful and unsuccessful stages of a

project are used to compile a data set for defect prediction.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 493

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Numerous even and unbalanced data sets have been utilised to

anticipate the flaw by researchers. Software testing is

profoundly affected by the results on data used for training

defect prediction models symmetrical and asymmetrical data

sets. During the data collecting and processing processes, we

considered the wide range of metrics. There are data sets of

19, 40, 42, 63, and 209 metrics. [12],[13]. Public data sets for

software defect prediction are abundant and may be found in

the PROMISE repository [14], where they have been utilised

by several studies. Data for predicting defects have been

collected from the past. Many powerful There are now

machine learning approaches available and used to the

problem of software fault prediction throughout the

years.[15]. The defect prediction method splits the data into a

"train" and "test" section. The classifier is trained with sample

data and then used to make predictions about test-data

defects.[12]. The learning approaches, such as supervised

learning, have been included into a number of ML techniques

[16], [17], and imbalance learning [15], [18][13]. These

techniques have historically been the gold standard in software

fault prediction.

The primary objective of this study is to compare two

approaches to evaluating ML algorithms in the context of

improved NASA datasets provided from the open PROMISE

repository, with the hope of identifying the most effective

class for software fault prediction. When it comes to defect

prediction, the results from the two machine learning learners,

CatBoost and GredientBoost, are very comparable.

The purpose of this research was to use machine learning-

based best classification algorithms to improve the precision

of software default prediction on the NASA dataset. The

following is a brief overview of our contributions:

• The goal is to conduct a literature review on the

subject of Software defect prediction. We describe

current Software defect prediction detection

research tools, methodologies, and datasets by

addressing certain research issues.

• To solove the data imbalacing problem using the

Random Over Sampler balancing approach.

• To select the important feature of eleven NASA

datasets using Mutual_info_classif techniques.

• To proposes a machine learning approach using

CatBoost and Gradient Boost classifiers to predict

Software defect.

• Using machine learning approaches, we can

improve the precision with which we can forecast

Software defects and so lessen the likelihood that

we'll make a mistake.

• The goal is to simplify the training and testing

processes while improving the accuracy of fault

prediction and categorization in software.

• To evaluate the suggested models' efficacy in terms

of RMSE, MSE/MAE, ROC-AUC, f1-score, and

recall for SDP.

This section presents in-depth domain knowledge, and the

remainder of the article is organized as follows: Section 2 is

the literature review, Section 3 is the study methodology,

Section 4 is the results and analysis, and Section 5 is the

conclusion and future work.

II. RELATED WORK

The most popular ML methods used in SDP. Many SDP

models employing In-depth domain knowledge are presented

in this section, while the rest of the article is structured as

follows: The literature review is in Section 2, the study

methodology is in Section 3, the findings and analysis are in

Section 4, and the conclusion and next steps are in Section

5[19], used K-means clustering to organise the classes into

meaningful groups. In addition, they used classification

models on some of the characteristics. Optimizing ML models

using Particle Swarm Optimization. The models' efficacy was

evaluated using a variety of criteria, including measures of

performance errors and a confusion matrix; precision,

accuracy, recall, the f-measure. All of the ML models and their

optimised versions provide optimal outcomes, however, the

SVM models and their optimised versions show the greatest

performance with accuracy of 99.0% and 99.80%,

respectively. Ensemble techniques have an accuracy of 97.60

percent, whereas individual methods have accuracies of 93.7

percent, 93.8 percent, 98.5 percent, 99.50 percent, and 98.80

percent. Our ultimate goal was to increase the precision of

previous studies, and we believe that we have accomplished

this.

In Deep Singh and Chug, (2017), Due to their frequency

and significance in Machine Learning, ANN, PSO, DT, NB,

and Linear have all been investigated. KEEL employed k-fold

cross-validation to assess the validity of the five

methodologies it considered. Datasets were obtained from

NASA's openly accessible Promise dataset repository. In this

research on defect prediction, we analysed data from seven

distinct sources. The accuracy of our classifications utilising

10fold cross-validation on these 7 datasets. In terms of

accuracy in defect prediction, Linear Classifier was shown to

be the most effective technique [20].

Another, Assim, Obeidat and Hammad, (2020), A wide

variety of ML techniques are employed in studies, including

The terms "artificial neural networks," "random forest,"

"random tree," "decision table," "linear regression," and

"Gaussian processes" are all terms used in artificial

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 494

IJRITCC | September 2023, Available @ http://www.ijritcc.org

intelligence. sensitivity analysis using mean and variance

(SMOreg), and maximum entropy (M5P). A revolutionary

defect prediction model is created for the goal of seeing into

the future and predicting the likelihood of software bugs. The

projected flaws are based on historical data. Results confirmed

the practicality of combining multiple ML algorithms for

software fault prediction. The SMOreg classifier did better

than the ANN classifier in terms of performance [21].

Also, Tadapaneni et al., (2022) In the proposed study, two

Several machines learning algorithms, including Naive Bayes,

LSTM, and DNN, were presented. The PROMISE dataset is

taken into account because of its potential application in

binary prediction. It was decided to utilise a classification

model for this inquiry because of the binary nature of software

problem prediction. Because of this, we use the NB on ML

model to test out DNN and LSTM and see how well they do.

The DNN algorithm outperformed other approaches in a

randomized test aimed to detect software flaws [22].

However, Shen et al., (2022) While machine learning

techniques have become increasingly popular for constructing

defect prediction models, finding the optimal values for the

relevant parameters remains challenging. The problem is

addressed by proposing a random forest for software fault

prediction that is optimized using Bayesian theory. After the

data has been cleaned and organized, The hyperparameters of

the random forest model are optimised via a Bayesian

technique. Lastly, simulations are validated using the NASA

MDP datasets. The experimental findings validate the superior

performance of our approach in predicting software defects

[23].

According to the research done thus far, many ML

approaches have been used, but their accuracy varies between

datasets and is generally low. As a result, we aim to boost

precision by studying a wide range of ML methods, including

feature selection and data balance. The goal of study is to

enhance precision in literary analysis.

III. RESEARCH METHODOLOGY

This section provides the research methodology for

deepfakes detection. Also, the section first discusses the

problem statement and then solves the deepfakes problems.

A. Problem Statement

Improving software quality and dependability is difficult,

and one of the biggest obstacles is defect prediction. The

challenge in this field is pinpointing the faulty code with

precision. There have been several attempts to solve the

difficult challenge of fault prediction model development.

New developments in Because of developments in machine

learning technology, several issues have been resolved. Based

on the early failure prediction model, we can state that there is

an issue with the dataset's imbalanced class distribution, which

can be addressed by machine learning. This project aims to

employ machine learning techniques to increase the number

of datasets for the underrepresented group in the Promise Data

Repository (which is used as a reference for many studies of

software defect prediction models). The usage of the Promise

Data Repository provided by NASA allows for comparing the

results of different research in the same domain. The data thus

generated will be used for modeling the ML algorithm to

predict faults in the system and then compared.

B. Proposed Methodology

Eleven popular NASA datasets are used to provide

predictions about software problems using a variety of

machine-learning classification approaches. A Python

programme was used to examine ML algorithms. This

research used datasets found in NASA's open-access Promise

dataset repository. The input dataset is highly imbalance so

apply Random Over Sampler. Also, select the important

feature with the mutual_info_classif method. The train and

test sets of this dataset are evenly matched. The outcomes of

classifying eleven datasets were evaluated using 10-fold

cross-validation. Two examples of classification strategies are

Gradient Boost and CatBoost. The success of deployed

categorization techniques may be measured in a variety of

ways, including Precision, Recall, F-Measure, Accuracy, and

ROC Area. This comprehensive dataset allows for direct

comparison and evaluation of any claims made regarding the

superiority of a certain method, model, or framework for

making predictions. The all-proposed process described in

below subsections also shows the whole methodology process

in Figure 3.1.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 495

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 1. Flow Diagram of the Suggested Methodology

The suggested methodology contains five key phases for

the software defects predication including the primary

machine learning classification techniques, data collecting,

preprocessing, balancing, feature selection, data splitting, and

so on. These phases are described below:

1) Data Collection

As you can see in Table 2, we employ eleven datasets from

the PROMISE repository (created by Shirabad and Menzies

(2005)) to conduct our tests. Table 2 shows that the majority

of datasets are very skewed. Since this data is extremely

skewed, our goal is to make accurate predictions about the

flaws.

TABLE I. DATASETS DESCRIPTION AND LEVEL OF CLASS IMBALANCE

2) Data Preprocessing

The dataset was preprocessed after I had collected it. Data

preprocessing [24]is the process of getting ready to feed raw

data into a machine-learning model. One aspect of data

cleansing is getting the data ready for use. This is a crucial first

stage in the data mining process and has been recognised as

such for some time. the data was preprocessed in the following

manner: null values were checked; information data was

checked also applied label encoding was. In this, we applied

data preprocessing for the:

Check Null values: In a relational database, if the value of a

column is unknown or missing, it is given the null value.

When dealing with character and DateTime data types, null is

not equivalent to zero or an empty string.

Data scaling: Data scaling[25] is often done before training

models using machine learning techniques, during the data

pre-processing step. Here we applied Robust Scaler for given

data scaling:

• Robust Scaler: We may preprocess the data with

either RobustScaler() or StandardScaler by removing

the outliers. Scikit-learn, a Python machine learning

package, provides the RobustScaler class, which

implements the robust scaler transform.

3) Feature Selection

After completing the preprocessing phase, I applied

feature selection techniques[26]. ML algorithms perform

better when their input data is simplified. The most popular

method for achieving this goal is to use a feature selection

algorithm, which evaluates each feature's quality and ranks

them appropriately. The feature selection procedure relies

heavily on a feature selection algorithm, which eliminates

attributes that are unlikely to improve classification accuracy.

One technique to calculate the complexity between dataset

features is applying Mutual_info_classif. This technique is an

approximation of values to compute the importance of each

software feature.

Data Pre-Processing

(Check null values, check information of data, data

scaling and data labelling)

Input the Nasa software defect prediction dataset

Start

CatBoost and Gradient Boost

(like- Accuracy, Precision, Recall and F1

score ROC, RMSE, MSE and MAE etc.)

Feature Selection

Training Data

(80%)

Testing Data
(20%)

Data Split Into two part

Mutual_info_classif

Output

Data Balancing

(Random Over Sampler)

Machine Learning Models for

classification

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 496

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Mutual_info_classif: The mutual information-based feature

selection approach is used to identify the most important

aspects of a dataset while eliminating those that aren't

necessary. The mutual information feature selection algorithm

is a filtering technique. mutual info classify. Calculate the

mutual information measure between a set of discrete

variables. Mutual information (MI) is a positive number that

may be used to measure the degree of reliance between two

random variables.

4) Data Balancing

The pre-processing stage in the sampling strategy was

implemented to achieve data set parity. Using a classifier

constructed from previously observed data, Classification is a

supervised machine learning technique used to infer an

unknown data set's category. In most cases, while developing

a classifier, it is assumed that the training data is uniformly

distributed. But many data sets are very unbalanced.[27][28].

Datasets with an unbalanced number of samples in one class

compared to others are a typical issue in machine learning

classification. In the case of supervised ML, when two or more

classes are involved, this issue becomes very important. The

dataset is skewed since there is an uneven number of samples

from each identified class. For the imbalanced software defect

dataset applied oversampling techniques[29]. Here we used

Random over sampler technique:

Random Over Sampler: The simplest kind of

oversampling is creating a duplicate set of training data

examples from the minority class at random. Using a random

number to enhance the proportion of underrepresented cases

in a training set is the purpose of random oversampling.

5) Data Splitting

In this experiment, the dataset was divided randomly such

that 80% of the photos and just 20% were used for actual

testing. In order to do the sorting task efficiently. we guarantee

that the data used for testing are never utilised in training.

6) Classification using the ML model:

The suggested methodology makes use of boosting

algorithms grounded on machine learning techniques like

CatBoost and Gradient Boost. In this part, we take a quick

look at these algorithms.

a) CatBoost Classifier

CatBoost is a training algorithm with fast speed and good

classification accuracy. It was the newest classification system

that could learn a lot. CatBoost additionally provides a method

for converting input attributes to numeric values. However,

tiny sample sets of experts, especially samples with multiple

inputs' attributes, are not a good fit for the CatBoost discussion

approach. Although the combined CatBoost method shows

promise as a learning technique for the expert categorization

problem, it has to be reshaped for the input function dialogue.

[30]. The predictive time for CatBoost, a decision tree gradient

boosting method, is negligible. Weather forecasting,

autonomous vehicles, digital assistants, and recommendation

engines are just some of the many uses for this technology.

One-hot encoding is used by default in most configurations of

CatBoost for categorical features with a small number of

possible values. The term "symmetric tree" is used in

CatBoost to denote trees in which the splitting requirement is

satisfied by all nodes on the same level of the tree. Instead of

catBoost, these trees rely on decision tree categorization,

which makes advantage of the scaling feature.

IV. GRADIENT BOOST CLASSIFIER

When it comes to prediction and classification, GB is the

most powerful ensemble method. It takes several rather feeble

learners and combines them into one powerful predictive

model. A decision tree structure is put into effect. It's a tried

and true method of filing away all sorts of information. The

GB model becomes more and more effective as iterations go.

[31]. The GB model uses a stack of relatively weak

forecasters, decision trees in this case, to arrive at a final

prediction. After the original tree has been fitted to the data, a

new version of the data is created that places more weight on

predicting observations that were poorly predicted by the tree.

In the deployed version, least squares regression was used as

the loss function and as the function to be optimized using

gradient descent. In order to get a more precise forecast, it is

thought that a large number of these rather weak trees should

be combined. There are as many estimators as there are trees

(number of boosting stages completed) [32].

Algorithm GBM:

• Put a P next to some of the target numbers.

• Find the margin of error for the set targets.

• Error M may be reduced if the weights are revised

and updated.

• P(x) = P(x) + Alpha M[x]

• Model learners are analysed and calculated using the

loss function F.

• Maintain till you reach the goal of P.

C. Proposed Algorithm

Input: Nasa software defect prediction Dataset

Output: High prediction accuracy.

Start:

Install Python simulation tool and Jupyter Notebook as a

simulation platform

Import Python Libraries (NumPy, Pandas, Scikit-Learn,

Matplotlib, Scrapy, Keras, Seaborn, and sklearn, etc.):

Step 1 Upload the Nasa software defect prediction

Dataset from the Kaggle

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 497

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Step 2 Apply Data Pre-Processing

• Check null values

• Check information of data

• Label Encoder

Step 3 Data Balancing

• Random Over Sampler

Step 4 Feature Selection

• Mutual_info_classif

Step 5 Dataset Split

• The data will then be split into training

sets (80 percent) & testing sets (20

percent).

Step 6 Classification Models (Machine learning

classifiers)

• CatBoost classifier and

• Gradient Boost classifiers focus on

high precision of outcomes.

Step 7 By utilizing multiple performance metrics,

including precision, accuracy, f1-score, and recall,

ROC of the model's performance was assessed.

Step 8 Comparative analysis was done utilizing

different machine-learning techniques.

Step 9 Get high accuracy for SDF

Step 10 Finish!!!

V. RESULTS ANALYSIS

In this part, we show the results of our simulation

experiments on predicting software artefacts using machine

learning. We ran the simulation using a Windows 10 machine

equipped with an Intel Core i7-9750H CPU running at 2.6

GHz and 16 GB of RAM. Also used Python [33], was the

programming language for software development

technologies. This module was once responsible for data

analysis and implementation of machine learning models. The

Jupyter Notebook [34] included a simulation system as well

as several Python libraries[35], such as NumPy, Pandas,

Matplotlib, Keras, TensorFlow, and Seaborn, among others.

Various specialised performance matrices were employed

(described further below). A variety of graphs, metrics, and

tables are used to summarise the experiment's outcomes.

D. Dataset Description

As can be seen in Table 2, we use eleven datasets from the

PROMISE repository (created by Shirabad and Menzies

(2005)) to conduct our tests. The feature selection procedure

aims to pick an appropriate feature subset for precise defect

prediction by removing redundant and unnecessary

characteristics from the dataset. As was previously shown, the

most significant or best qualities can have a disproportionate

impact on performance, allowing for improvements to be

made with less training data. Our findings show that in certain

situations, we may minimise the feature set by as much as

60%. (In the pc3 dataset, for instance, there are a total of 37

characteristics, but only 15 make it into the reduced set). To

make the classifier more scalable and to lower its processing

cost, the features are cut by around 50% on average across all

11 datasets.

Visulisation results of feature impotence-based

mutual_info_classif Method: Visualization is the use of

computer-supported, visual representation of data. Here

provide the visulisation results of feature impotence based

mutual_info_classif Method using the 11 Nasa SDP dataset.

Below figure 4 shows each dataset feature importance graph

using mutual_info_classif method.

Although the mutual info classify function is used to

describe and mock-up the feature selection process only on

one dataset (pc3), the same procedure is carried out for all the

datasets. The steps involved in selecting the most effective

discriminatory features from the pc3 dataset are outlined

below.

Figure 2. Feature impotence of PC3 Dataset Drop those column which

have zero value and lower value by mutual_info_classif()

The above figure 2 shows the feature importance to get by the

mutual_info_classif() method by the PC3 Dataset that contain

almost 37 attributes. We can see that the graph LOC_BLANK

feature shows highest importance in comparison to other

attributes. Mutual information gain is largest between the

LOC BLANK, as seen by the graph (0.07). In this scenario,

LOC BLANK provides 70% of the data necessary to

understand the wine variable of interest. We utilise a function

from the mutual info classif() python package to find the best

K features. The most popular features might be selected as an

alternative. Only the top ten characteristics are included in this

list.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 498

IJRITCC | September 2023, Available @ http://www.ijritcc.org

E. Performance Measures

Standard metrics obtained from the resulting confusion

matrices were used to assess the performance of applying ML

algorithms to software defact prediction [36]. The confusion

matrix and its accompanying assessment metrics are discussed

below.

Confusion Matrix: One table used to evaluate ML

algorithms' efficacy is called a confusion matrix. The rows of

the matrix reflect the examples that belong to a certain actual

class, while the columns represent the instances that belong to

a given anticipated class, or vice versa. In the summary

confusion matrix (FN), the testing algorithm reports the

number of True Positives (TP), False Positives (FP), True

Negatives (TN), and False Negatives (FN).

• 𝑻𝒑 = represents true positive cases number

• 𝑭𝒑 = represents false-negative cases number

• 𝑭𝑵 = represents false-positive cases number

• 𝑻𝑵 = represents true negative cases number

Accuracy, precision, recall, ROC, and F1 score were the

primary metrics we utilised to assess the performance of our

model.

• The accuracy

True findings (TP and TN) as a percentage of all evaluated

cases are accuracy (ACC). The highest possible accuracy is 1,

while the lowest is 0. The following formula may be used to

determine ACC:

Accuracy =
𝑇𝑃+𝑇𝑁

N
… (1)

• The Precision

Number of accurate positive forecasts as a percentage of total

positive predictions represents precision. Maximum accuracy

is 1, minimum is 0, and both extremes may be determined

using the following formulas.

Precision =
TP

TP+FP
…. (2)

• Recall

The percentage of correct predictions made is what is used to

determine recall. A recall of 1 is the best and a recall of 0 is

the worst. The formula for determining Recall is as follows.

Recall =
TP

TP+FP
… (3)

• The F1 score

 The F-measure equals the arithmetic mean of the recall and

precision values. When comparing several ML algorithms, it

is common practice. to use a single metric that includes both

Recall and Precision. The formula for the F-measure is:

F1score =
2×(Precision−Recall)

(Precision+Recall)
…. (4)

• Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) is a common measure of

effectiveness in regression analysis. Averaging the absolute

differences between observed and predicted values of the

dependent variable over all observations yields the average

absolute difference. Here's the formula:

… . . (5)

where y represents the observed value, n is the sum of

observations and y' the foreseen value. The MAE value

decreases as performance improves.

• Mean Squared Error (MSE)

The average squared deviation from the predicted value of a

target variable is known as the mean squared error (MSE), and

it is used to measure the precision of a forecasting method.

The formula is as follows:

… . . (6)

Number of observations (n), value (y), and anticipated value

(y') are defined as follows. When measuring performance, a

lower MSE is preferable.

• Root-Mean-Square Error (RMSE)

Using the root-mean-square error (RMSE), scientists may

assess how well a prediction model does its job. Here, we

propose a method for quantifying the deviation between

expected and observed results. To determine RMSE, we

compare the actual value X to the anticipated value XP.

…. (7)

F. Simulation Results of proposed methods

Here, we present the simulation results of the suggested

model, a machine learning-based CatBoost, and a Gradient

Boost, all applied to a NASA dataset for software defact

prediction. This experimental result shows in form of

confusion matrix, classification repost, and ROC curve also

calculate the accuracy, precision, recall AUC and f1-score or

MSE, RMSE, and MAE performance parameters also using

10 K fold cross-validation. Here we provide the results of only

one datasets out of eleven because the same results are

repeated for other datasets. Below the experimented results are

explained to the PC3 dataset. The following bar graph shows

results of proposed CatBoost, and Gradient Boost machine

learning models for software default predication.

Results of CatBoost and GradientBoost Classifiers with

PC3 Dataset

Here in this section provide the experimented results of

suggested CatBoost and GradientBoost classifier using PC3

datasets. Following figure 5 to 14 shows the results of these

techniques.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 499

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 3. Classification report of CatBoost classifier using PC3 Dataset

The results of the suggested CatBoost classifier on the PC3

Dataset are displayed in Figure 3 above. In machine learning,

one way to measure success is using a categorization report. It

demonstrates the test classification model's accuracy, recall,

F1 Score, and support. The input PC3 dataset has two classes,

for class 0 precision is 100%, recall 88% and f1-score is 94%

whereas for class 1 90%, recall 100% and f1-score is 95% with

support 272 and 290. The proposed model CatBoost classifier

precision, recall, f1-score, and accuracy is 94% with support

562 respectively.

Figure 4. Parameter performance of CatBoost classifier using PC3 Dataset

The above figure 4 shows the Parameter performance of

proposed CatBoost classifier using PC3 Dataset. The model

gets 94% classification accuracy, precision 90%, recall 100%

and f1-score 94% while MAE and MSE are 0.05 or RMSE

0.23 respectively.

Figure 5. Confusion matrix of CatBoost classifier using PC3 Dataset

The above figure 5 shows the Confusion matrix of proposed

CatBoost classifier using PC3 Dataset. The model gets 94%

classification accuracy. The false positive rate is 0 and false

negative value is 32 while true positive predicated data is 240

and true negative predicated data is 290 respectively.

Figure 6. Parameter performance of CatBoost classifier with 10K-fold

Cross Validation technique using PC3 Dataset

The above figure 6 shows the Parameter performance of

proposed CatBoost classifier with 10K-fold Cross Validation

technique using PC3 Dataset. The model gets 84% average

accuracy with CV, average precision 80%, and average f1-

score is 85%, average AUC is 91%, while average MAE 15.65

and average RMSE 39.43 respectively.

Figure 7. ROC-AUC curve of CatBoost classifier with 10K-fold Cross

Validation technique using PC3 Dataset

The above figure 7 shows the ROC-AUC curve of CatBoost

classifier with 10K-fold Cross Validation technique using PC3

Dataset. On the ROC fold 1 (AUC=98%), ROC fold 2

(AUC=95%), ROC fold 3 (AUC=97%), ROC fold 4

(AUC=94%), ROC fold 5 (AUC=95%), ROC fold 6

(AUC=96%), ROC fold 7 (AUC=96%), ROC fold 8

(AUC=97%), ROC fold 9 (AUC=96%) and ROC fold 10

(AUC=95%) respectively. The proposed model shows the

96% Mean AUC performance on PC3 dataset.

Figure 8. Classification report of GradientBoost classifier using PC3

Dataset

The results of the proposed Gradient Boost classifier on the

PC3 Dataset are displayed in Figure 8 above. A classification

report is a performance evaluation metric. The input PC3

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 500

IJRITCC | September 2023, Available @ http://www.ijritcc.org

dataset has two classes, for class 1 precision 94%, recall 100%

and f1-score is 97% whereas for class 0 90%, recall 100% and

f1-score is 97% with support 272 and 290. The proposed

model GradientBoost classifier precision, recall, f1-score, and

accuracy is 97% with support 562 respectively.

Figure 9. Parameter performance of GradientBoost classifier using PC3

Dataset

The above figure 9 shows the Parameter performance of

proposed GradientBoost classifier using PC3 Dataset. The

model gets 96% classification accuracy, precision 94%, recall

100% and f1-score is 96% while MAE and MSE are 0.032 or

RMSE 0.17 respectively.

Figure 10. Confusion matrix of GradientBoost classifier using PC3 Dataset

The above figure 10 shows the Confusion matrix of proposed

GradientBoost classifier using PC3 Dataset. The model gets

97% classification accuracy. The false positive rate is 0 and

false negative value is 18 while true positive predicated data

is 254 and true negative predicated data is 290 respectively.

Figure 11. Parameter performance of GradientBoost classifier with 10K-

fold Cross Validation technique using PC3 Dataset

The above figure 11 shows the Parameter performance of

proposed GradientBoost classifier with 10K-fold Cross

Validation technique using PC3 Dataset. The model gets 85%

average accuracy with CV, average precision 83%, and

average f1-score is 86%, average AUC is 93%, while average

MAE 14.23 and average RMSE 37.39 respectively.

Figure 12. ROC-AUC curve of GradientBoost classifier with 10K-fold

Cross Validation technique using PC3 Dataset

The above figure 12 shows the ROC-AUC curve of

GradientBoost classifier with 10K-fold Cross Validation

technique using PC3 Dataset. On the ROC fold 1

(AUC=99%), ROC fold 2 (AUC=97%), ROC fold 3

(AUC=98%), ROC fold 4 (AUC=96%), ROC fold 5

(AUC=98%), ROC fold 6 (AUC=98%), ROC fold 7

(AUC=97%), ROC fold 8 (AUC=98%), ROC fold 9

(AUC=98%) and ROC fold 10 (AUC=99%) respectively. The

proposed model shows the 98% Mean AUC performance on

PC3 dataset.

G. Comparative analysis and Discussion

Eleven datasets are used to evaluate several metrics,

including mean absolute error, mean square error, root mean

square error, and f1-score. In this study, we examine and

compare the various ML methods used for defect prediction.

Here, we examine the PC4, PC3, CM1, and MC1 datasets and

compare the most discriminating experimental outcomes. The

following graph is a comparison of many machine learning

models used for predicting software failure. Tables 2–6

compare a variety of ML methods utilised in past research.

Logistic Regression (LR) and Decision Tree (DT) with 10-

dold cross validation were two of the ML methods we looked

at since they have been used as cutting-edge approaches in

previous studies. using 10-fold cross-validation on the PC4,

PC3, CM1, and MC1datasets we chose, as well as our

proposed CatBoost and Gradient Boost machine learning

models.

TABLE II. ACCURACY PARAMETER COMPARISON OF BASED AND

PROPOSE CLASSIFIERS

Datasets Base

Classifiers

Propose Classifiers

LR DT CatBoost GradientBoost

PC4 71 87 89 91

PC3 73 84 84 85

CM1 90 88 73 75

MC1 73 85 89 99

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 501

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 13. Bar graph of accuracy comparison between base and propose

classifier

The above figure 13, shows the machine learning classifiers

performance for software default prediction using PC4, PC3,

CM1, and MC1 datasets. In bar graph shows the comparison

between base and propose classifiers in terms of accuracy. For

the PC4 dataset, 71% accuracy of base logistic regression and

87% accuracy of decision tree, PC3 dataset obtain 73%

accuracy of base logistic regression and 84% accuracy of

decision tree, CM1 got 90% and 88% accuracy for both base

classifiers and MCI dataset achieved 73% and 85% accuracy

of logistics regression and decision tree, While propose

CatBoost 89% accuracy, and GradientBoost 91% accuracy on

PC4 dataset, PC3 dataset obtain 84% and 85% accuracy, 73%

and 75% accuracy on CM1 and 98% and 99% accuracy on

MC1 dataset. We can the proposed CatBoost, and

GradientBoost classifiers achieved high accuracy with 99% in

comparison to base classifiers for the software default

prediction

TABLE III. PRECISION PARAMETER COMPARISON OF BASED AND

PROPOSE CLASSIFIERS

Datasets

Base Classifiers Propose Classifiers

LR DT CatBoost GradientBoost

PC4 32 62 83 87

PC3 50 24 80 83

CM1 13 20 68 72

MC1 50 58 83 98

Figure 14. Bar graph of precision comparison between base and propose

classifier

The above figure 14 shows the comparison between base and

propose classifiers in terms of precision. For the PC4 dataset,

32% precision of base logistic regression and 62% precision

of decision tree, PC3 dataset obtain 50% precision of base

logistic regression and 24% precision of decision tree, CM1

get 13% and 20% precision for both base classifiers and MCI

dataset achieved 50% and 58% precision of logistics

regression and decision tree, While propose obtain CatBoost

83%, and GradientBoost 87% on PC4 dataset, PC3 dataset

obtain precision 80%, and 83%, precision of proposed

CatBoost and GradientBoost classifiers. On the CM1 dataset

CatBoost precision 68%, and GradientBoost precision 72%.

At last 83% and 98% precision obtain by the proposed

classifier on the MC1 dataset respectively. We can the

proposed achieved high precision with 98% in comparison to

base classifiers for the software default prediction.

TABLE IV. F1-SCORE PARAMETER COMPARISON OF BASED AND

PROPOSE CLASSIFIERS

Datasets

Base

Classifiers

Propose Classifiers

LR DT CatBoost GradientBoost

PC4 45 52 83 91

PC3 66 27 85 85

CM1 18 20 73 75

MC1 66 57 99 90

71 73
90

73
87 84 88 8589 84

73
8991 85

75

99

0

20

40

60

80

100

120

PC4 PC3 CM1 MC1

in
 %

Datasets

Accuracy comparison between base and

propose models

Base Classifiers LR Base Classifiers DT

Propose Classifiers CatBoost Propose Classifiers GradientBoost

32

50

13

50

62

24 20

58

83 80

68

8387 83
72

98

0

20

40

60

80

100

120

PC4 PC3 CM1 MC1

in
 %

Datasets

Precision comparison between base and

propose models

Base Classifiers LR Base Classifiers DT

Propose Classifiers CatBoost Propose Classifiers GradientBoost

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 502

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 15. Bar graph of f1-score comparison between base and propose

classifier

The above figure 15 shows the comparison between base and

propose classifiers in terms of f1-score. For the PC4 dataset,

45% f1-score of base logistic regression and 52% f1-score of

decision tree, PC3 dataset obtain 66% f1-score of base logistic

regression and 27% f1-score of decision tree, CM1 get 18%

and 20% f1-score for both base classifiers and MCI dataset

achieved 66% and 57% f1-score of logistics regression and

decision tree, While propose CatBoost 83%, and

GradientBoost get 91% f1-score on PC4 dataset, PC3 dataset

obtain 84%, and 85% f1-score of proposed classifiers. On the

CM1 dataset CatBoost f1-score 73%, GradientBoost f1-score

75%. At last 90% and 99%, f1-score obtain by the proposed

classifiers on the MC1 dataset respectively. We can the

proposed classifiers achieved high f1-score with 99% in

comparison to base classifiers for the software default

prediction.

TABLE V. RMSE PARAMETER COMPARISON OF BASED AND PROPOSE

CLASSIFIERS

Datasets

Base

Classifiers

Propose Classifiers

LR DT CatBoost GradientBoost

PC4 52.53 33.45 32.42 29.34

PC3 31.11 37.27 39.43 37.39

CM1 24.24 22.33 50.42 48.93

MC1 31.11 21.35 32.42 8.20

Figure 16. Bar graph of RMSE comparison between base and propose

classifier

The above figure 16 shows the comparison between base and

propose classifiers in terms of RMSE. For the PC4 dataset,

52.53% RMSE of base logistic regression and 33.45% RMSE

of decision tree, PC3 dataset obtain 31.11% RMSE of base

logistic regression and 37.27% RMSE of decision tree, CM1

get 24.24% and 22.33% RMSE for both base classifiers and

MCI dataset decrease 31.11% and 21.35% RMSE of logistics

regression and decision tree, While propose CatBoost 32%,

and GradientBoost 29% RMSE on PC4 dataset, PC3 dataset

obtain 39%, and 34% RMSE of proposed classifiers. On the

CM1 dataset CatBoost RMSE 50%, and GradientBoost

RMSE 48%. At last 32% and 8%, RMSE obtain by the

proposed classifiers on the MC1 dataset respectively. We can

the proposed CatBoost, and GradientBoost classifiers

decrease high RMSE with 8% in comparison to base

classifiers for the software default prediction.

TABLE VI. MAE PARAMETER COMPARISON OF BASED AND PROPOSE

CLASSIFIERS

Datasets

Base Classifiers Propose Classifiers

LR DT CatBoost GradientBoost

PC4 28.15 11.26 10.74 8.98

PC3 9.68 15.93 15.65 14.23

CM1 10 10.24 26.21 24.46

MC1 9.68 15.93 10.74 0.79

45

66

18

66
52

27 20

57

83 85
73

99
91 85

75
90

0

20

40

60

80

100

120

PC4 PC3 CM1 MC1

in
 %

Datasets

F1-Score comparison between base and

propose models

Base Classifiers LR Base Classifiers DT

Propose Classifiers CatBoost Propose Classifiers GradientBoost

0

10

20

30

40

50

60

PC4 PC3 CM1 MC1

IN
 %

DATASETS

RMSE compariso n betw een base and

propose models

Base Classifiers LR Base Classifiers DT

Propose Classifiers CatBoost Propose Classifiers GradientBoost

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 503

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 17. Bar graph of MAE comparison between base and propose

classifier

The above figure 17 shows the comparison between base and

propose classifiers in terms of MAE. For the PC4 dataset,

28.15% MAE of base logistic regression and 11.26% MAE

of decision tree, PC3 dataset obtain 9.68% MAE of base

logistic regression and 15.93% MAE of decision tree, CM1

get 10% and 10.24% MAE for both base classifiers and MCI

dataset decrease 9.68% and 15.93% MAE of logistics

regression and decision tree, While propose CatBoost 10%,

and GradientBoost 8.98%, MAE on PC4 dataset, PC3 dataset

obtain 15.65%, and 14.23%, MAE of proposed CatBoost, and

GradientBoost. On the CM1 dataset CatBoost MAE 26.21%,

and GradientBoost MAE 24.46%. At last 10.74 and 0.79MAE

obtain by the proposed classifiers on the MC1 dataset

respectively. We can the proposed classifiers decrease high

MAE with 10.74 % in comparison to base classifiers for the

software default prediction.

VI. CONCLUSION AND FUTURE SCOPE

Today, machine learning research is prevalent across the

whole IT and software landscape. The subfield of machine

learning known as software defect prediction is making

significant strides in recent years. One step in that direction is

employing ML methods for fault prediction in software. When

used early in the development process, this method enhances

programme performance while decreasing software

maintenance costs. In this paper, we provide a system for

predicting software flaws that are both effective and

trustworthy. Our work using NASA's JM1, CM1, PC1, PC3,

PC4, MC1, KC1, MOZILLA4, and JEDIT defect prediction

data sets utilising the PYTHON programming language and

recommended machine learning classification approaches like

CatBoost and GredientBoost classifiers is available in the

PROMISE repository. Algorithms are evaluated based on

metrics like MSE, MAE, and RMSE, all of which are

calculated using data. Measurements of the efficacy of

machine learning algorithms reveal that they fare admirably

on each of the eleven datasets considered. The data obtained

overwhelmingly supported the superior performance of the

ML method. The proposed CatBoost and GredientBoost

classifiers obtain highest 90% to 99% accuracy, recall,

precision, and f1-score on MC1 dataset or better MAE and

RMSE with 8.20 and 0.79 obtained by the MC1 dataset. This

dataset reduces the error of the software default prediction.

In a possible follow-up, we want to include more ML

techniques and compare them extensively. Adding more

software measurements throughout the learning process may

also increase the prediction model's accuracy.

REFERENCES

[1] N. Babu, Himagiri, V. Vamshi Krishna, A. Anil Kumar,

and M. Ravi, “Software defect prediction analysis by using

machine learning algorithms.,” Int. J. Recent Technol.

Eng., 2019, doi: 10.35940/ijrte.B1438.0982S1119.

[2] M. C. M. Prasad, L. F. Florence, and A. Arya3, “A Study

on Software Metrics based Software Defect Prediction

using Data Mining and Machine Learning Techniques,”

Int. J. Database Theory Appl., 2015, doi:

10.14257/ijdta.2015.8.3.15.

[3] S. Huda et al., “A Framework for Software Defect

Prediction and Metric Selection,” IEEE Access, 2017, doi:

10.1109/ACCESS.2017.2785445.

[4] P. Paramshetti and D. A. Phalke, “Software Defect

Prediction for Quality Improvement Using Hybrid

Approach,” Int. J. Appl. or Innov. Eng. Manag., 2015.

[5] M. W. Thant and N. T. T. Aung, “Software Defect

Prediction using Hybrid Approach,” in 2019 International

Conference on Advanced Information Technologies

(ICAIT), 2019, pp. 262–267. doi:

10.1109/AITC.2019.8921374.

[6] K. Tanaka, A. Monden, and Z. Yucel, “Prediction of

Software Defects Using Automated Machine Learning,”

2019. doi: 10.1109/SNPD.2019.8935839.

[7] Meiliana, S. Karim, H. L. H. S. Warnars, F. L. Gaol, E.

Abdurachman, and B. Soewito, “Software metrics for fault

prediction using machine learning approaches: A literature

review with PROMISE repository dataset,” in 2017 IEEE

International Conference on Cybernetics and

Computational Intelligence (CyberneticsCom), 2017, pp.

19–23. doi:

10.1109/CYBERNETICSCOM.2017.8311708.

[8] A. Alsaeedi and M. Z. Khan, “Software Defect Prediction

Using Supervised Machine Learning and Ensemble

Techniques: A Comparative Study,” J. Softw. Eng. Appl.,

2019, doi: 10.4236/jsea.2019.125007.

[9] P. Paramshetti and D. A. Phalke, “Survey on Software

Defect Prediction Using Machine Learning Techniques,”

Int. J. Sci. Res., 2014.

[10] M. F. Sohan, M. A. Kabir, M. I. Jabiullah, and S. S. M. M.

Rahman, “Revisiting the Class Imbalance Issue in Software

Defect Prediction,” 2019. doi:

0

5

10

15

20

25

30

PC4 PC3 CM1 MC1

IN
 %

DATASETS

MAE comparison betw een base and

propose models

Base Classifiers LR Base Classifiers DT

Propose Classifiers CatBoost Propose Classifiers GradientBoost

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7659

Article Received: 05 June 2023 Revised: 30 July 2023 Accepted: 15 August 2023

 504

IJRITCC | September 2023, Available @ http://www.ijritcc.org

10.1109/ECACE.2019.8679382.

[11] S. K. Pandey and A. K. Tripathi, “Class Imbalance Issue in

Software Defect Prediction Models by various Machine

Learning Techniques: An Empirical Study,” 2021. doi:

10.1109/ICSCC51209.2021.9528170.

[12] Z. W. Zhang, X. Y. Jing, and T. J. Wang, “Label

propagation based semi-supervised learning for software

defect prediction,” Autom. Softw. Eng., 2017, doi:

10.1007/s10515-016-0194-x.

[13] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “A

comparative study of ensemble feature selection techniques

for software defect prediction,” 2010. doi:

10.1109/ICMLA.2010.27.

[14] R. S. Wahono, “A Systematic Literature Review of

Software Defect Prediction: Research Trends, Datasets,

Methods and Frameworks,” J. Softw. Eng., 2015.

[15] Q. Song, Y. Guo, and M. Shepperd, “A Comprehensive

Investigation of the Role of Imbalanced Learning for

Software Defect Prediction,” IEEE Trans. Softw. Eng.,

2019, doi: 10.1109/TSE.2018.2836442.

[16] K. Bashir, T. Li, C. W. Yohannese, and Y. Mahama,

“Enhancing software defect prediction using supervised-

learning based framework,” 2017. doi:

10.1109/ISKE.2017.8258790.

[17] J. Ge, J. Liu, and W. Liu, “Comparative study on defect

prediction algorithms of supervised learning software

based on imbalanced classification data sets,” 2018. doi:

10.1109/SNPD.2018.8441143.

[18] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and

S. Mensah, “MAHAKIL: Diversity Based Oversampling

Approach to Alleviate the Class Imbalance Issue in

Software Defect Prediction,” IEEE Trans. Softw. Eng.,

2018, doi: 10.1109/TSE.2017.2731766.

[19] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M.

Ghouse, “Software Defect Prediction Analysis Using

Machine Learning Techniques,” Sustainability, vol. 15, no.

6, 2023, doi: 10.3390/su15065517.

[20] P. Deep Singh and A. Chug, “Software defect prediction

analysis using machine learning algorithms,” 2017. doi:

10.1109/CONFLUENCE.2017.7943255.

[21] M. Assim, Q. Obeidat, and M. Hammad, “Software Defects

Prediction using Machine Learning Algorithms,” 2020 Int.

Conf. Data Anal. Bus. Ind. W. Towar. a Sustain. Econ.

ICDABI 2020, 2020, doi:

10.1109/ICDABI51230.2020.9325677.

[22] P. Tadapaneni, N. C. Nadella, M. Divyanjali, and Y.

Sangeetha, “Software Defect Prediction based on Machine

Learning and Deep Learning,” in 2022 International

Conference on Inventive Computation Technologies

(ICICT), 2022, pp. 116–122. doi:

10.1109/ICICT54344.2022.9850643.

[23] Y. Shen, S. Hu, S. Cai, and M. Chen, “Software Defect

Prediction based on Bayesian Optimization Random

Forest,” 2022. doi: 10.1109/DSA56465.2022.00149.

[24] S. A. Alasadi and W. S. Bhaya, “Review of data

preprocessing techniques in data mining,” J. Eng. Appl.

Sci., 2017, doi: 10.3923/jeasci.2017.4102.4107.

[25] M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta,

and Z. Siddique, “Effect of Data Scaling Methods on

Machine Learning Algorithms and Model Performance,”

Technologies, 2021, doi: 10.3390/technologies9030052.

[26] J. Li et al., “Feature selection: A data perspective,” ACM

Computing Surveys. 2017. doi: 10.1145/3136625.

[27] A. Jadhav, S. M. Mostafa, H. Elmannai, and F. K. Karim,

“An Empirical Assessment of Performance of Data

Balancing Techniques in Classification Task,” Appl. Sci.,

vol. 12, no. 8, 2022, doi: 10.3390/app12083928.

[28] S. A. Alsaif and A. Hidri, “Impact of data balancing during

training for best predictions,” Inform., 2021, doi:

10.31449/inf.v45i2.3479.

[29] R. Ghorbani and R. Ghousi, “Comparing Different

Resampling Methods in Predicting Students’ Performance

Using Machine Learning Techniques,” IEEE Access, 2020,

doi: 10.1109/ACCESS.2020.2986809.

[30] X. Y. Wang, Y. Yang, Y. T. Bai, J. Bin Yu, Z. Y. Zhao, and

X. B. Jin, “Fuzzy Boost Classifier of Decision Experts for

Multicriteria Group Decision-Making,” Complexity, 2020,

doi: 10.1155/2020/8147617.

[31] A. K. Jaggi, A. Sharma, N. Sharma, R. Singh, and P. S.

Chakraborty, “Diabetes Prediction Using

Machine Learning,” Lect. Notes Networks Syst., vol. 185

LNNS, no. 09, pp. 383–392, 2021, doi: 10.1007/978-981-

33-6081-5_34.

[32] J. H. Friedman, “Stochastic gradient boosting,” Comput.

Stat. Data Anal., 2002, doi: 10.1016/S0167-

9473(01)00065-2.

[33] S. Nagar, Introduction to Python for Engineers and

Scientists. 2018. doi: 10.1007/978-1-4842-3204-0.

[34] M. Källén, “Jupyter Notebooks on GitHub: Characteristics

and Code Clones,” Uppsala University, 2020.

[35] S. Gupta, “Best Python Libraries for Machine and Deep

Learning,” 2022.

[36] M. Gong, “A Novel Performance Measure for Machine

Learning Classification,” Int. J. Manag. Inf. Technol., vol.

13, no. 1, pp. 11–19, 2021, doi: 10.5121/ijmit.2021.13101.

[37] Bhawana Verma, S. K.A. (2019). Design & Analysis

of Cost Estimation for New Mobile-COCOMO Tool for

Mobile Application. International Journal on Recent and

Innovation Trends in Computing and

Communication, 7(1), 27–34.

https://doi.org/10.17762/ijritcc.v7i1.5222

[38] S. K.A., Raj, A. ., Sharma, V., & Kumar, V. (2022).

Simulation and Analysis of Hand Gesture Recognition

for Indian Sign Language using CNN. International

Journal on Recent and Innovation Trends in Computing

and Communication, 10(4), 10–14.

https://doi.org/10.17762/ijritcc.v10i4.5556.

http://www.ijritcc.org/

