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Abstract— Managing a city efficiently and effectively is more important than ever as growing population and economic strain put a strain on 

infrastructure like transportation and public services like keeping urban green areas clean and maintained. For effective administration, 

knowledge of the urban setting is essential. Both portable and stationary laser scanners generate 3D point clouds that accurately depict the 

environment. These data points may be used to infer the state of the roads, buildings, trees, and other important elements involved in this 

decision-making process. Perhaps they would support "smart" or "smarter" cities in general. Unfortunately, the point clouds do not immediately 

supply this sort of data. It must be eliminated. This extraction is done either by human specialists or by sophisticated computer programmes that 

can identify objects. Because the point clouds might represent such large locations, relying on specialists to identify the things may be an 

unproductive use of time (streets or even whole cities). Automatic or nearly automatic discovery and recognition of essential objects is now 

possible with the help of object identification software. In this research, In this paper, we describe a unique approach to semantic segmentation 

of point clouds, based on the usage of contextual point representations to take use of both local and global features within the point cloud. We 

improve the accuracy of the point's representation by performing a single innovative gated fusion on the point and its neighbours, which 

incorporates the knowledge from both sets of data and enhances the representation of the point. Following this, we offer a new graph point net 

module that further develops the improved representation by composing and updating each point's representation inside the local point cloud 

structure using the graph attention block in real time. Finally, we make advantage of the global structure of the point cloud by using spatial- and 

channel-wise attention techniques to construct the ensuing semantic label for each point. 

Keywords- point clouds, 3D data, Voxel-based Approach, Deep learning, Inference time. 

 

I. INTRODUCTION 

Researchers are starting to pay greater attention to the point 

clouds generated by 3D scanners, in particular for challenges 

requiring point cloud interpretation, such as 3D item 

classification [13, 14], 3D object identification [21, 27], and 

Segmenting 3D data semantically [25, 13, 14, 23, 10]. The 

task of giving labels of the same class to each point in a 3D 

environment is known as 3D semantic segmentation and is 

both difficult and common. The first difficulty is that 3D 

scanners only collect a small number of points at a time, 

making it hard to train a single, robust deep model for 

semantic segmentation. Second, the arguments aren't always 

presented in the proper sequence and are often disorganised. 

It's very hard to put into words and show the link between the 

places. 

 

As developments in 3D acquisition technology continue, 

devices like 3D scanners, LiDARs, and RGB-D cameras (such 

the Kinect, RealSense, and Apple depth cameras) are 

becoming more widely accessible and cheap [1]. The 3D data 

gathered by these sensors may provide insight into the object's 

geometry, shape, and size [2, 3]. When 3D data is combined 

with 2D photos, robots may get a greater awareness of their 

immediate surroundings. Autonomous cars, robotics, remote 

sensing, and medicine are just a few of the many areas that 

employ 3D data [4]. There are several methods in which three-

dimensional data may be represented. depth pictures, point 

clouds, meshes, and volumetric grids are just a few of the most 

prevalent types. Point clouds, a popular file format, save the 

original, non-discretized 3D geometric data. This 

representation is used by many applications, such as robots 
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and autonomous vehicles, that need to understand their 

surroundings. Current cutting-edge research in fields as 

diverse as computer vision, voice recognition, and natural 

language processing often relies on deep learning methods. 

Due to their high dimensionality, which is compounded by 

their intrinsic lack of organisation and the small amount of 

accessible datasets, deep learning on 3D point clouds still has 

a long way to go [5]. As a result, the major goal of this 

research is to investigate deep learning techniques currently 

being used to the processing of 3D point clouds. 

 

Fig 1. 3D representations of Point Cloud 

To accomplish the necessary semantic segmentation, several 

current approaches first convert point clouds into conventional 

3D voxel grids or collections of pictures [25, 5, 22]. Such a 

transformation method might make advantage of the structural 

data conveyed by the interspot links. When dealing with 3D 

volumetric data, in particular, the memory and processing 

power needed by such systems is enormous. For effective and 

efficient point management, many modern deep learning 

architectures on point clouds have been suggested, such as 

PointNet [13] and PointNet++ [14]. PointNet accurately learns 

a spatial encoding for each point before combining their 

attributes into a global representation. 

HD Map processing and sensor-based autonomous driving rely 

heavily on target object recognition from point cloud data.  

Common types of things on the road include the road itself, 

lane markers, pavement areas, support structures (such as 

railing and curb), signs, light poles, and other unrelated 

elements like trees, people, and buildings.  

This research aimed to automate the process of lane detection 

using point cloud information, which is crucial for the 

decision-making processes of autonomous cars. 

II. LITERATURE REVIEW 

Recently, deep models have shown their ability to learn 

features on computer vision tasks utilising traditional data 

structures. However, there are still many obstacles to 

overcome because of the constraints of the data representation 

technique when working with a 3D point cloud, which 

contains asymmetrical data structures. Based on their 

respective 3D data representation methodologies, the currently 

available strategies may be roughly classified as either 3D 

voxel-based [5, 25, 22, 7, 9], multiview-based [18, 12], or set-

based [13, 14] methods. 

 

Fig 2. Point cloud 3D appearance 

3D Voxel-based Approach:Point clouds may be converted 

into standard 3D voxel grids utilising 3D voxel-based 

techniques, enabling 3D CNN to be used directly in the same 

way as an image or video. When dealing with spatial data, Wu 

et al. [25] suggest using a 3D ShapeNets network based on 

complete voxels. Some information is lost during the 

discretization process because of the bounds of any 

representation. While a higher resolution voxel requires more 

memory and computing power, higher resolution voxels are 

not always possible. There has been a recent suggestion to stop 

processing voxels that are completely empty in order to save 

money on computer power. There were contributions from 

Oct-Net [16], Kd-Net [7], and O-CNN [22]. 

Multiview-based Approach:The target point cloud must be 

photographed from a variety of angles, and the multiview-

based methods must provide several images for each 

viewpoint. In the next step, regular 2D CNN processes [18] 

may be applied to each individual image. Recent work has 

employed the multiview image CNN [12] to successfully 

segment 3D forms. The multiview-based solutions aid in 

minimising the operational memory and computational 

expenses. However, there is some data loss throughout the 

process of creating pictures from the 3D point cloud. 

However, there is still no clear solution for the difficult open 

issue of deciding how many views to collect and how to 

arrange them to adequately display the 3D structure. 

Set-based Approach:To directly learn the representation, 

Point Net [13] is the first set-based technique. 

fromunorganized point clouds. Using a hierarchical learning 

method, Point Net++ [14] expands Point Net to gather data 

about nearby structures. When trying to extract local context 

data, PointCNN [10] suggests using the canonical arrangement 

of points. 

Deep learning on regular domain: To learn the 

representation from disorganised point clouds, PointNet [13] is 

the first set-based technique. PointNet++ [14] builds on 

PointNet using a hierarchical learning approach to collect 

information about adjacent buildings. The canonical 

arrangement of points is recommended by PointCNN [10] 

when attempting to extract local context data. 
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Deep learning on irregular domains:A number of state-of-

the-art systems that directly analyse point clouds using 

complex networks to extract attributes have been inspired by 

the pioneering work on PointNet [12, 13]. Techniques like this 

may be broken down into four broad classes: nearby feature 

pooling [13, 15, 18, 21, 22], graph message passing [16, 23, 

24], kernel-based convolution [14, 25-28], and transformer-

based learning [29, 30]. Straightforward point clouds may be 

employed with these techniques. Point clouds are limited in 

their capacity for inductive learning because of their 

incoherence over space. 

III. METHODOLOGY 

Semantic segmentation of 3D point clouds works to identify 

each point with a single semantic class.  

 

Fig 3. Semantic cloud point cloud segmentation model proposed 

Point Enrichment. Accurate class predictions require 

considering not just the information of the target point but also 

the information of any surrounding or contextual points inside 

the complicated point cloud structure. 

Feature Representation. We use the typical encoder-decoder 

architecture with lateral connections to learn the feature 

representation for each point using the enhanced point 

representation. 

Prediction. We leverage channel-wise and spatial-wise 

attentions based on the acquired semantic representations to 

make better use of the point cloud's overall structure. This 

makes it possible to infer the semantic label for each node in 

the graph. 

As a whole, the lane's characteristics are summed up as 

follows for the purpose of detection: 

1. If you look at the point cloud data for a road, you'll 

see that the lane is contained inside the road surface, 

which is a thin, flat region.  

2. Some areas along the road, called lane points, are 

more reflective than others.  

3. A lane's profile is segmented in a straight line.  

4. Each lane runs perpendicular to the others. 

Based on these observations, we developed the following 

methods for detecting lanes in point cloud data: 

1. Find the road surface once all the bumps have been 

taken off.  

2. points of possible lane intensity over which they are 

deemed too weak to be used.  

3. Try to guess the lane's orientation.  

4. Using cluster analysis, calculate the line equations for 

each lane. 

Preprocessing  

Starting with the following, we preprocess the point cloud 

data: 

1. Change points’ coordinate from (latitude, longitude) 

to (x, y)  

2. Down sample  

3. Filter noise 

The raw point cloud data for each row is stored as follows: 

1. latitude (degree)  

2. longitude (degree)  

3. altitude (meter)  

4. point reflecion intensity (0~100) 

For simpler presentation and processing, we converted the 

points' (latitude, longitude) values to a local Cartesian 

coordinate (x, y) based on the average position of all cloud 

points. 

 

Fig 4. Coordinates on a Sphere Angle of Approach Location in Polar Space 

Global coord is {O} 

Local coord is {er} 

 

Fig 5. Left: Point cloud projected on x-y plane. Right: 3D point cloud. Points 

with higher intensity (i.e. more reflective) are more red. 
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After resampling the coordinates to capture the highest point 

intensities, we obtained a point cloud with a lower resolution. 

Steps:  

For each voxel of size 0.1m in the world:  

Find all points {Pi} inside the voxel. Replace them 

with a single point Q. 

Q is placed at the center of the voxel.  

Intensity of Q is set as the max of intensities of {Pi}.  

Reasons of down sampling:  

1. Trim the amount of points to speed up the calculation.  

2. Densifying the point cloud will make it easier to 

determine algorithm parameters.  

3. It would be easier to distinguish lanes if the lane 

markers were larger. 

The data points representing the road surface are clustered 

together, whereas the noise data points are spread out. So, we 

employed a method called "radius outlier removal" to get rid 

of the noisy areas. 

 

Fig 6. Planar regions Point Cloud 

The previous limit of 430k cloud points has been lowered to 

84k. The noisy spots have also been removed. 

IV. RESULT ANALYSIS 

Threshold on point intensity  

A point's reflection intensity may be anything between 0 and 

1, inclusive. After completing an experiment, we determined 

that the lane points were more intense than 0.5. We thus 

created a criteria of 0.5 to choose possible lane places. The 

result may be seen in the table below: 

 

Fig 7. Point intensity of all points in plane 

Here, in red, are the eight lanes that were counted. We 

eliminated the non-planar segments so that we could 

concentrate on the most probable spots for the road's surface 

and lanes. 

 

Fig 8. Red markers on the Detected lanes 

The graph below shows the model complexity comparison  

 

Fig 9. Comparison of the model complexity 

The inference time of a machine learning model is the time it 

takes to make predictions on new, untested data after it has 

been trained. 

 

Fig 10. Inference time of the models 

In the ensemble learning method known as bagging without 

replacement, several models are trained on different random 
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subsets of the training data. The goal is to improve the 

generalisation performance of the ensemble and reduce its 

variance by training each model on a separate subset of the 

data. 

 

Fig 11. Class accuracy Vs Nubmer of Ensembled models 

V. CONCLUSION 

The point cloud data supplied in this research allowed us to 

successfully locate all eight lanes. As a foundation for our 

method, we have found that 

1. The road's surface stands out as a distinct, somewhat 

flat region in the point cloud.  

2. There are lanes in the road, and they reflect more 

light than the rest of the pavement. Also, the lanes are 

perfectly straight and parallel to one another. 

We developed the following lane detecting algorithm based on 

these results. 

1. First, find the road surface, and then remove the 

irregular parts.  

2. Limit of reflected light intensity at which lane 

inflections are useless.  

3. Find out which way the lane goes. Cluster analysis 

might help you tell the lanes apart.  

4. As a further step, we make an approximation of the 

line equation for each lane. 

The point cloud data presented shows that this framework is 

effective in lane detection, validating the validity and precision 

of the proposed method.  

The proposed method was tested on a single point cloud and 

may not be applicable to other real-world scenarios. A bigger 

dataset is needed to develop a more stable and general method 

for lane identification.  

The lanes may either be straight or curved. A quadratic 

function, as opposed to a linear model, might be used to fit the 

curvature of each lane, with feature reduction then being 

performed on the associated manifold in future studies. 
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