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Abstract— Computer security requires malware detection. Recent research manually uncovers hazardous features using machine learning-based 

techniques. MalDet, a cutting-edge malware detection method, is recommended in this paper. MalDet classifies malware using a stacking 

ensemble and learns from grayscale images and opcode sequences using CNN and LSTM networks. According to the evaluation, MalDet's 

malware detection validation accuracy is 99.89%. MalDet outperforms other previous research with 99.36% detection accuracy and a significant 

detection speedup on the Microsoft malware dataset. We classified nine malware families for MalDet. 

 

I.  INTRODUCTION 

Malware detection is always a major topic of discussion in the 

computer security industry because many different types of software 

today offer users a plethora of resources but also pose some risks. A 

recent study found that the prevalence of fraudulent samples is rising. 

For example, in 2016 [1], 69,277,289 harmful items were found by 

Kaspersky Lab. McAfee Labs [2] reported 670 million malware 

samples in 2017, up 22% from the previous four quarters. Due to the 

overwhelming volume of instances, a highly efficient malware 

detection method is essential. 

Numerous researchers have looked into different ways to analyse and 

spot malware. Most signature-based commercial antivirus programs 

require a local signature database with malware patterns obtained by 

professionals. Malware can easily elude detection by encrypting, 

obfuscating, or packaging itself. This method is limited because little 

virus alterations can affect the signature. Thus, static analysis [3, 4] 

and dynamic behavior analysis [5, 6] have been proposed as machine 

learning methods for malware detection. It is challenging to arouse all 

malware behaviours by dynamic analysis because of the necessity to 

recreate the operation environment for malware, even though dynamic 

analysis does not involve extensive reverse engineering. Some 

malicious behaviours hide long before they attack, making malware 

behaviour monitoring a time-consuming process. Static analysis's 

speed in detecting even the most widespread malware is one of its 

greatest strengths. However, various forms of encryption and 

obfuscation pose the most significant challenge for static analysis. 

Because attackers can intentionally modify malware, static analysis 

struggles to capture the malware's traits accurately. Malware exploits 

packaging technologies to thwart reverse engineering, driving up the 

price of static analysis. 

Several machine-learning algorithms [5-7] have recently been applied 

to malware detection to overcome the challenges raised above. Many, 

however, rely significantly on domain knowledge to examine malware 

and extract fictitious traits. A classification machine learning model is 

then trained using these attributes to determine how to classify an 

unseen file sample. Malware, however, is a severe issue since it is 

continually being developed, updated, and altered.  

Our primary goals are to increase malware detection accuracy and 

efficiency while decreasing the time and money spent on artificial 

feature engineering. This will be performed by identifying and 

exploiting patterns in raw data and allowing the model to develop self-

learning abilities. 

In this paper, we introduce MalDet, a new approach to determining 

whether or not a Windows executable file is malicious. Regarding 

static analysis, MalDet goes above and beyond with two cutting-edge 

techniques that leverage deep neural networks. Convolutional neural 
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networks (CNNs) can learn from grayscale images. CNN can 

determine its structure by analysing the malware's local picture 

patterns. The raw binary file was used to create this grayscale image. 

Alternatively, opcode sequences can be used to train a Long-Short-

Term Memory (LSTM). Decompiler tools may extract opcode 

sequences, which can be used to train an LSTM on harmful code 

features. This study uses a subsequence-based truncated back 

propagation technique to address this issue and enhance training 

efficiency. The bad traits or behaviours only emerge in specific opcode 

subsequences, even though attackers can insert destructive codes into 

otherwise innocent files. We created a subsequence selection 

mechanism to prevent LSTM from being deceived by these benign 

subsequences. MalDet learns features from raw data using these two 

networks, then combines their discriminant output with a metadata 

feature using a stacking ensemble to get a binary classification result 

for malware detection. 

Compared to the N-gram baseline result, MalDet's detection accuracy 

was 98.89% based on our validation dataset consisting of 1/10 

samples. 

We contribute the following in this paper: 

a) Our technology utilises deep neural networks for the identification 

of malware. By analysing raw data this way, CNN and LSTM 

networks can identify potentially dangerous file structures and code 

sequence patterns. 

b) We design and implement MalDet, a malware detection approach. 

The gradient vanishing problem for LSTM, grayscale picture 

production, and extended sequence learning are handled. We solve 

noisy data processing and LSTM parallel computation. To maximise 

MalDet detection accuracy, we stack the networks' results. 

c) MalDet undergoes various tests, including malware identification 

and family classification.  

Below is the structure of the remaining work. In Section 2, we'll 

discuss similar work. Section 3 covers the dataset and MalDet 

detection process. The analysis and experiment results are in Section 

4. Section 5 has the conclusion. 

II.  LITERATURE REVIEW 

Many pattern-based picture analyses can be grouped into either the 

first (projectional) or second (semantic) categories [8]. Advances in 

visualization tools for computer security have made it easier to process 

massive data sets. It is usual practice to consider similarity measures 

between entities in terms of a two-dimensional similarity matrix 

[9,10]. After the similarity space is established, clusters of equal 

relevance are formed, and connected groups are placed next to each 

other for visualization, the high dimensionality of the data is irrelevant 

[8]. Both two- and three-dimensional documents take the form of 

points on maps. The proximity of every pair of indicators indicates the 

degree of similarity between the two papers. The more closely the 

details match the documents [11,12], the closer the resemblance. 

To assess potential threats to a network, researchers have recently 

turned to image analysis [13]. In addition to the UserIDs and IP 

addresses, some semi-automated approaches involved analyzing 

secure shell (SSH) brute force attempts, which were colour-coded for 

the other vulnerabilities detected [14]. Visualization methods were 

also employed to simultaneously offer a holistic picture of numerous 

containers. These visuals demonstrate the communication between 

network packets, facilitating in-depth analysis by security 

professionals [15,31]. Another study [16] employed color codes to 

symbolize different forms of successful system links and trace the 

evolution of a virus attack like spear phishing using image-based 

analysis. Distances to other domains can be roughly estimated using 

their IP addresses, which are depicted in Figure 1 together with the 

"what," "where," and "when" of these connections. Different alerts 

appear as segmented concentric rings on the screen at regular intervals. 

Various coloured links represent attacks that could be launched against 

the same host. Most of these graphical approaches used text analysis 

of network data and logs to produce colourful visualizations that could 

be used to evaluate and detect malware attacks qualitatively. These 

limited probes centre on data analysis and network penetration within 

confined networks [19,20,32]. Moreover, in the age of Big Data, these 

processes are time-consuming, and many other strategies for 

representing and analyzing image textures are being explored [21]. 

 Dataset and Methodology 

This section consists of two parts Dataset and Methodology. 

a) Dataset 

We ran tests on a vast dataset that included 21,736 malicious samples 

provided by Microsoft and 20,650 benign samples we collected 

ourselves [30] to see how well MalDet performed. As a validation 

dataset, we selected 10% of the total samples.
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Figure 1. Proposed Mal Det malware detection process 

b) Proposed Methodology 

A. This section describes MalDet, a proposed approach for 

detecting malware based on CNN and LSTM networks. MalDet 

detects malware through binary categorization. It takes raw file data 

and generates a malware likelihood. MalDet's method of finding 

objects can be divided into two parts (see Figure 1).  

Step 1 It begins with a binary Windows executable file, converts it to a 

grayscale image, and then decompiles it to obtain the opcode sequence 

and metadata feature.  

Step 2: CNN/LSTM grayscale picture and opcode sequence training. 

To improve detection, we use a stacking ensemble to merge the 

outputs and metadata of two networks to get the final forecast. MalDet 

creates two feature sets from raw data.  

First, using CNN, MalDet retains the structure of malicious files from 

the grayscale image. Second, it employs LSTM to learn the pattern of 

harmful code from the opcode sequence. 

Further MalDet  is explained into four major steps as below. 

1. Grayscale Images through CNN: Nataraj et al. [17] use 

grayscale graphics to show how malware files are constructed. 

2. Generation of Grayscale Images: Raw data must be processed 

and transformed into an image file to create a grayscale virus 

image. Only then can it be used? As receiving data, we use 

executable files and handle them like raw byte or binary stream 

files. If you take the binary stream file and convert each of its 

bits into a hexadecimal number, then you can conceive of the 

file as a hexadecimal stream file. When we add up every pair of 

hexadecimal digits, we get the exact grey value of a 256-level 

picture pixel. Hexadecimal numbers range from 0 to 16 and 

contain 0 to 16. This simple mapping change turns raw data into 

a grayscale image. The entire sequence of binary bits is divided 

into eight parts at regular intervals, corresponding to the degree 

of grey present in each pixel. These bits are then reassembled 

appropriately to produce the grayscale image.  

3. Generation of Opcode Sequence using LSTM: A crucial 

component of MalDet that employs LSTM and opcode 

sequences to learn the characteristics and patterns of malicious 

configurations. Decompiled files yield opcodes. These steps 

demonstrate code logic and program operation. Thus, LSTM 

may identify harmful code sequences associated with high-level 

negative behaviour. 

4. Extraction of Opcode Sequence: The opcode sequence must be 

extracted from the original executive files before it can be used 

for training. When we decode an executable with IDA Pro, we 

end up with an assembly file. Prevalent malware is decompiled 

into Intel x86 assembly instructions with the help of IDA Pro, a 

debugger and a decompiler. Then, we iterate through the. Asm 

file's lines, separating the sentences with the space character. 

This allows us to map each phrase to one of the typical Intel x86 

assembly instructions in our specified opcode set. If the 

comparison succeeds, the opcode is kept; otherwise, the word is 

removed. 

During this procedure, we discover that many decompiled files contain 

similar opcode subsequences. And hence, we need some new rules to 

filter out these redundant subsequences. Method 1 demonstrates how 

we parse the pseudocode into an opcode sequence. The average length 

of extracted opcode sequences is proportional to the size of the opcode 

collection. A wider variety of opcodes is available for use. Due to 

noisy data, LSTM will struggle to learn from a lengthy opcode set. 

Therefore, we consider all decompiled.asm files to be regular text 

files, and all instructions to be vocabularies. Then we generate 

frequency data and eliminate infrequently used words. Then, we 

employ a random forests model to categorise the words by using their 

frequencies as features. Each feature's importance can be ranked using 

a random forest. We prioritise languages that place a high value on the 

best quality. We use the 185-piece opcode set we obtain to derive 

opcode sequences. These opcode sequences must be converted to 

digital form before being fed into a neural network. In one-hot 

encoding, each of the N binary status bits represents N states with 

precisely one nonzero element, and a simple mapping change is 

needed to obtain a sparse vector like [0, 0, 0, 1, 0,..., 0]. Each opcode 

also has its one-hot variant.LSTM is used to learn very long 

sequences. 

III. EXPERIMENTS AND EVALUATIONS 

The main metrics to evaluate performance of proposed Method are 

defined as follows: 

MalDet 

CNN 
Malware 
database 

LSTM 
selection Malware

 
Dataset Stacking 

ensemble 

Classification 
result 

Feature extraction 

Subsequence 
classification 

Opcode sequence  

Gray scale image 
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TPR is the probability of detecting the present malicious sample: (1) 

FPR is the chance that a sample that is harmless will be mistakenly 

labelled as malware: (2) 

Where, 

(T+)x: It predicts the state when the state is already there. 

(F-)y: False negative means that it doesn't predict the state when the 

state is present. 

(T-)x: A true negative state doesn't predict the state when it's not there.  

(F+)y: A false positive is when the state is predicted when it is not 

there. 

Tables 1 and 2 show the proposed algorithm's CNN and LSTM tuning 

parameters. Figure 2,3 displays the ROC curves for Inception and 

VGG networks, while Figure 4 compares the proposed technique to 

previous literature. 

TABLE 1. : Parameters list of CNN network 

Type of CNN Network   layer's Name Dimension Size 

Inception V3 

In [Input] [1, 1, 64, 64] * 

Convo[Convolutional] [1, 32, 64, 64] 32 5 × 5 Convolution kernel 

MP[Max Pooling] [1, 32, 32, 32] 2 × 2, stride 1 

Drop[Dropout] [1, 32, 32, 32] * 

Convo[Convolutional]  [1, 64, 32, 32] 64 5 × 5 Convolution kernel 

MP[Max Pooling] [1, 64, 16, 16] 2 × 2, stride 1 

Drop[Dropout]  [1, 64, 16, 16] * 

FC[Fully Connected] [1024, 1] LR[Logistic Regression] 

Drop[Dropout [1024, 1] * 

Out[Output] [1] * 

VGG 

In [Input]  [1, 1, 64, 64] * 

Convo[Convolutional]  [1, 32, 64, 64] 32 3 × 3 Convolution kernel 

Convo[Convolutional] [1, 16, 64, 64] 16 3 × 3 Convolution kernel 

MP[Max Pooling] [1, 16, 32, 32] 2 × 2, stride 1 

Drop[Dropout] [1, 16, 32, 32] * 

Convo[Convolutional] [1, 32, 32, 32] 32 3 × 3 Convolution kernel 

MP[Max Pooling] [1, 32, 16, 16] 2 × 2, stride 1 

Drop[Dropout] [1, 32, 16, 16] * 

FC[Fully Connected] [32, 512] 512  

Drop[Dropout] [32, 512] * 

FC[Fully Connected] [32, 1] LR[Logistic Regression] 

Drop[Dropout] [32, 1] * 

Out[Output] [1] * 

 

Table2. Parameters list of LSTM network 

Parameter’s Name Value 

Max Value of Iterations 6.40𝐸 + 004 

Truncated BPTT length 120 

Weights initialization [−0.04, +0.04] 

Sample Batch Size 30 

Rate of learning 2.00𝐸- 03 

Activation function Tanh 

Drop Rate  0.50 

Gradient regularization factor 10 

Hidden Points 185 
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Table 3.  MalDet Results. 

Models TPR (%) FPR (%) EER (%) AUC Accuracy (%) 

𝑁-gram 89.22 0.1 3.94 0.9864 93.21 

LSTM 98.69 0.1 0.54 0.9999 99.13 

CNN 96.92 0.1 1.55 0.9989 98.14 

LSTM+ CNN+ MF 

(MalDet) 
99.14 0.1 0.37 0.9999 99.89 

 

 

Figure 4. The comparison with other works. 

IV. CONCLUSION 

The presented method, MalDet, uses a stacking ensemble method on 

CNN and LSTM; the network is trained separately using grayscale 

images and opcode sequences from raw binary executive files. 

MalDet detected malware with a 99.89% level of accuracy, 99.14% 

TPR, and 0.1% FPR. We also classify malware families to compare 

our work to others. 
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