
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7629

Article Received: 02 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 286

IJRITCC | September 2023, Available @ http://www.ijritcc.org

MalDet-Malware Detection Using Deep Learning

and LSTM based Approach to Classify Malware

Gaurav Mehta1, Prof. (Dr.) Shaily Jain2, Dr. Prasenjit Das3, Dr. Vikas Tripathi4
1Computer Science and Engineering

Chitkara University, Himachal Pradesh

Baddi, India

gaurav.mehta@chitkarauniversity.edu.in
2Computer Science and Engineering

Chitkara University, Himachal Pradesh

Baddi, India

shaily.jain@chitkarauniversity.edu.in
3Computer Science and Engineering

Chandigarh university

Chandigarh, India

Prasenjit.e14134@cumail.in
4Computer Science and Engineering

Graphic Era

DehraDoon, India

vikas.tripathi@gmail.com

Abstract— Computer security requires malware detection. Recent research manually uncovers hazardous features using machine learning-based

techniques. MalDet, a cutting-edge malware detection method, is recommended in this paper. MalDet classifies malware using a stacking

ensemble and learns from grayscale images and opcode sequences using CNN and LSTM networks. According to the evaluation, MalDet's

malware detection validation accuracy is 99.89%. MalDet outperforms other previous research with 99.36% detection accuracy and a significant

detection speedup on the Microsoft malware dataset. We classified nine malware families for MalDet.

I. INTRODUCTION

Malware detection is always a major topic of discussion in the

computer security industry because many different types of software

today offer users a plethora of resources but also pose some risks. A

recent study found that the prevalence of fraudulent samples is rising.

For example, in 2016 [1], 69,277,289 harmful items were found by

Kaspersky Lab. McAfee Labs [2] reported 670 million malware

samples in 2017, up 22% from the previous four quarters. Due to the

overwhelming volume of instances, a highly efficient malware

detection method is essential.

Numerous researchers have looked into different ways to analyse and

spot malware. Most signature-based commercial antivirus programs

require a local signature database with malware patterns obtained by

professionals. Malware can easily elude detection by encrypting,

obfuscating, or packaging itself. This method is limited because little

virus alterations can affect the signature. Thus, static analysis [3, 4]

and dynamic behavior analysis [5, 6] have been proposed as machine

learning methods for malware detection. It is challenging to arouse all

malware behaviours by dynamic analysis because of the necessity to

recreate the operation environment for malware, even though dynamic

analysis does not involve extensive reverse engineering. Some

malicious behaviours hide long before they attack, making malware

behaviour monitoring a time-consuming process. Static analysis's

speed in detecting even the most widespread malware is one of its

greatest strengths. However, various forms of encryption and

obfuscation pose the most significant challenge for static analysis.

Because attackers can intentionally modify malware, static analysis

struggles to capture the malware's traits accurately. Malware exploits

packaging technologies to thwart reverse engineering, driving up the

price of static analysis.

Several machine-learning algorithms [5-7] have recently been applied

to malware detection to overcome the challenges raised above. Many,

however, rely significantly on domain knowledge to examine malware

and extract fictitious traits. A classification machine learning model is

then trained using these attributes to determine how to classify an

unseen file sample. Malware, however, is a severe issue since it is

continually being developed, updated, and altered.

Our primary goals are to increase malware detection accuracy and

efficiency while decreasing the time and money spent on artificial

feature engineering. This will be performed by identifying and

exploiting patterns in raw data and allowing the model to develop self-

learning abilities.

In this paper, we introduce MalDet, a new approach to determining

whether or not a Windows executable file is malicious. Regarding

static analysis, MalDet goes above and beyond with two cutting-edge

techniques that leverage deep neural networks. Convolutional neural

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7629

Article Received: 02 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 287

IJRITCC | September 2023, Available @ http://www.ijritcc.org

networks (CNNs) can learn from grayscale images. CNN can

determine its structure by analysing the malware's local picture

patterns. The raw binary file was used to create this grayscale image.

Alternatively, opcode sequences can be used to train a Long-Short-

Term Memory (LSTM). Decompiler tools may extract opcode

sequences, which can be used to train an LSTM on harmful code

features. This study uses a subsequence-based truncated back

propagation technique to address this issue and enhance training

efficiency. The bad traits or behaviours only emerge in specific opcode

subsequences, even though attackers can insert destructive codes into

otherwise innocent files. We created a subsequence selection

mechanism to prevent LSTM from being deceived by these benign

subsequences. MalDet learns features from raw data using these two

networks, then combines their discriminant output with a metadata

feature using a stacking ensemble to get a binary classification result

for malware detection.

Compared to the N-gram baseline result, MalDet's detection accuracy

was 98.89% based on our validation dataset consisting of 1/10

samples.

We contribute the following in this paper:

a) Our technology utilises deep neural networks for the identification

of malware. By analysing raw data this way, CNN and LSTM

networks can identify potentially dangerous file structures and code

sequence patterns.

b) We design and implement MalDet, a malware detection approach.

The gradient vanishing problem for LSTM, grayscale picture

production, and extended sequence learning are handled. We solve

noisy data processing and LSTM parallel computation. To maximise

MalDet detection accuracy, we stack the networks' results.

c) MalDet undergoes various tests, including malware identification

and family classification.

Below is the structure of the remaining work. In Section 2, we'll

discuss similar work. Section 3 covers the dataset and MalDet

detection process. The analysis and experiment results are in Section

4. Section 5 has the conclusion.

II. LITERATURE REVIEW

Many pattern-based picture analyses can be grouped into either the

first (projectional) or second (semantic) categories [8]. Advances in

visualization tools for computer security have made it easier to process

massive data sets. It is usual practice to consider similarity measures

between entities in terms of a two-dimensional similarity matrix

[9,10]. After the similarity space is established, clusters of equal

relevance are formed, and connected groups are placed next to each

other for visualization, the high dimensionality of the data is irrelevant

[8]. Both two- and three-dimensional documents take the form of

points on maps. The proximity of every pair of indicators indicates the

degree of similarity between the two papers. The more closely the

details match the documents [11,12], the closer the resemblance.

To assess potential threats to a network, researchers have recently

turned to image analysis [13]. In addition to the UserIDs and IP

addresses, some semi-automated approaches involved analyzing

secure shell (SSH) brute force attempts, which were colour-coded for

the other vulnerabilities detected [14]. Visualization methods were

also employed to simultaneously offer a holistic picture of numerous

containers. These visuals demonstrate the communication between

network packets, facilitating in-depth analysis by security

professionals [15,31]. Another study [16] employed color codes to

symbolize different forms of successful system links and trace the

evolution of a virus attack like spear phishing using image-based

analysis. Distances to other domains can be roughly estimated using

their IP addresses, which are depicted in Figure 1 together with the

"what," "where," and "when" of these connections. Different alerts

appear as segmented concentric rings on the screen at regular intervals.

Various coloured links represent attacks that could be launched against

the same host. Most of these graphical approaches used text analysis

of network data and logs to produce colourful visualizations that could

be used to evaluate and detect malware attacks qualitatively. These

limited probes centre on data analysis and network penetration within

confined networks [19,20,32]. Moreover, in the age of Big Data, these

processes are time-consuming, and many other strategies for

representing and analyzing image textures are being explored [21].

 Dataset and Methodology

This section consists of two parts Dataset and Methodology.

a) Dataset

We ran tests on a vast dataset that included 21,736 malicious samples

provided by Microsoft and 20,650 benign samples we collected

ourselves [30] to see how well MalDet performed. As a validation

dataset, we selected 10% of the total samples.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7629

Article Received: 02 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 288

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 1. Proposed Mal Det malware detection process

b) Proposed Methodology

A. This section describes MalDet, a proposed approach for

detecting malware based on CNN and LSTM networks. MalDet

detects malware through binary categorization. It takes raw file data

and generates a malware likelihood. MalDet's method of finding

objects can be divided into two parts (see Figure 1).

Step 1 It begins with a binary Windows executable file, converts it to a

grayscale image, and then decompiles it to obtain the opcode sequence

and metadata feature.

Step 2: CNN/LSTM grayscale picture and opcode sequence training.

To improve detection, we use a stacking ensemble to merge the

outputs and metadata of two networks to get the final forecast. MalDet

creates two feature sets from raw data.

First, using CNN, MalDet retains the structure of malicious files from

the grayscale image. Second, it employs LSTM to learn the pattern of

harmful code from the opcode sequence.

Further MalDet is explained into four major steps as below.

1. Grayscale Images through CNN: Nataraj et al. [17] use

grayscale graphics to show how malware files are constructed.

2. Generation of Grayscale Images: Raw data must be processed

and transformed into an image file to create a grayscale virus

image. Only then can it be used? As receiving data, we use

executable files and handle them like raw byte or binary stream

files. If you take the binary stream file and convert each of its

bits into a hexadecimal number, then you can conceive of the

file as a hexadecimal stream file. When we add up every pair of

hexadecimal digits, we get the exact grey value of a 256-level

picture pixel. Hexadecimal numbers range from 0 to 16 and

contain 0 to 16. This simple mapping change turns raw data into

a grayscale image. The entire sequence of binary bits is divided

into eight parts at regular intervals, corresponding to the degree

of grey present in each pixel. These bits are then reassembled

appropriately to produce the grayscale image.

3. Generation of Opcode Sequence using LSTM: A crucial

component of MalDet that employs LSTM and opcode

sequences to learn the characteristics and patterns of malicious

configurations. Decompiled files yield opcodes. These steps

demonstrate code logic and program operation. Thus, LSTM

may identify harmful code sequences associated with high-level

negative behaviour.

4. Extraction of Opcode Sequence: The opcode sequence must be

extracted from the original executive files before it can be used

for training. When we decode an executable with IDA Pro, we

end up with an assembly file. Prevalent malware is decompiled

into Intel x86 assembly instructions with the help of IDA Pro, a

debugger and a decompiler. Then, we iterate through the. Asm

file's lines, separating the sentences with the space character.

This allows us to map each phrase to one of the typical Intel x86

assembly instructions in our specified opcode set. If the

comparison succeeds, the opcode is kept; otherwise, the word is

removed.

During this procedure, we discover that many decompiled files contain

similar opcode subsequences. And hence, we need some new rules to

filter out these redundant subsequences. Method 1 demonstrates how

we parse the pseudocode into an opcode sequence. The average length

of extracted opcode sequences is proportional to the size of the opcode

collection. A wider variety of opcodes is available for use. Due to

noisy data, LSTM will struggle to learn from a lengthy opcode set.

Therefore, we consider all decompiled.asm files to be regular text

files, and all instructions to be vocabularies. Then we generate

frequency data and eliminate infrequently used words. Then, we

employ a random forests model to categorise the words by using their

frequencies as features. Each feature's importance can be ranked using

a random forest. We prioritise languages that place a high value on the

best quality. We use the 185-piece opcode set we obtain to derive

opcode sequences. These opcode sequences must be converted to

digital form before being fed into a neural network. In one-hot

encoding, each of the N binary status bits represents N states with

precisely one nonzero element, and a simple mapping change is

needed to obtain a sparse vector like [0, 0, 0, 1, 0,..., 0]. Each opcode

also has its one-hot variant.LSTM is used to learn very long

sequences.

III. EXPERIMENTS AND EVALUATIONS

The main metrics to evaluate performance of proposed Method are

defined as follows:

MalDet

CNN
Malware
database

LSTM
selection Malware

Dataset Stacking

ensemble

Classification
result

Feature extraction

Subsequence
classification

Opcode sequence

Gray scale image

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7629

Article Received: 02 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 289

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TPR is the probability of detecting the present malicious sample: (1)

FPR is the chance that a sample that is harmless will be mistakenly

labelled as malware: (2)

Where,

(T+)x: It predicts the state when the state is already there.

(F-)y: False negative means that it doesn't predict the state when the

state is present.

(T-)x: A true negative state doesn't predict the state when it's not there.

(F+)y: A false positive is when the state is predicted when it is not

there.

Tables 1 and 2 show the proposed algorithm's CNN and LSTM tuning

parameters. Figure 2,3 displays the ROC curves for Inception and

VGG networks, while Figure 4 compares the proposed technique to

previous literature.

TABLE 1. : Parameters list of CNN network

Type of CNN Network layer's Name Dimension Size

Inception V3

In [Input] [1, 1, 64, 64] *

Convo[Convolutional] [1, 32, 64, 64] 32 5 × 5 Convolution kernel

MP[Max Pooling] [1, 32, 32, 32] 2 × 2, stride 1

Drop[Dropout] [1, 32, 32, 32] *

Convo[Convolutional] [1, 64, 32, 32] 64 5 × 5 Convolution kernel

MP[Max Pooling] [1, 64, 16, 16] 2 × 2, stride 1

Drop[Dropout] [1, 64, 16, 16] *

FC[Fully Connected] [1024, 1] LR[Logistic Regression]

Drop[Dropout [1024, 1] *

Out[Output] [1] *

VGG

In [Input] [1, 1, 64, 64] *

Convo[Convolutional] [1, 32, 64, 64] 32 3 × 3 Convolution kernel

Convo[Convolutional] [1, 16, 64, 64] 16 3 × 3 Convolution kernel

MP[Max Pooling] [1, 16, 32, 32] 2 × 2, stride 1

Drop[Dropout] [1, 16, 32, 32] *

Convo[Convolutional] [1, 32, 32, 32] 32 3 × 3 Convolution kernel

MP[Max Pooling] [1, 32, 16, 16] 2 × 2, stride 1

Drop[Dropout] [1, 32, 16, 16] *

FC[Fully Connected] [32, 512] 512

Drop[Dropout] [32, 512] *

FC[Fully Connected] [32, 1] LR[Logistic Regression]

Drop[Dropout] [32, 1] *

Out[Output] [1] *

Table2. Parameters list of LSTM network

Parameter’s Name Value

Max Value of Iterations 6.40𝐸 + 004

Truncated BPTT length 120

Weights initialization [−0.04, +0.04]

Sample Batch Size 30

Rate of learning 2.00𝐸- 03

Activation function Tanh

Drop Rate 0.50

Gradient regularization factor 10

Hidden Points 185

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7629

Article Received: 02 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 290

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Table 3. MalDet Results.

Models TPR (%) FPR (%) EER (%) AUC Accuracy (%)

𝑁-gram 89.22 0.1 3.94 0.9864 93.21

LSTM 98.69 0.1 0.54 0.9999 99.13

CNN 96.92 0.1 1.55 0.9989 98.14

LSTM+ CNN+ MF

(MalDet)
99.14 0.1 0.37 0.9999 99.89

Figure 4. The comparison with other works.

IV. CONCLUSION

The presented method, MalDet, uses a stacking ensemble method on

CNN and LSTM; the network is trained separately using grayscale

images and opcode sequences from raw binary executive files.

MalDet detected malware with a 99.89% level of accuracy, 99.14%

TPR, and 0.1% FPR. We also classify malware families to compare

our work to others.

REFRENCES

[1] “Kaspersky Security Bulletin 2016. Overall statistics for

2016,” https://securelist.com/kaspersky-security-bulletin-2016-

execu-tive-summary/76858/.

[2] “McAfeeLabsThreatsReportinJune2017,”https://www.mcafee.

com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf.

[3] Gopinath, M., and Sibi Chakkaravarthy Sethuraman. "A

comprehensive survey on deep learning based malware

detection techniques." Computer Science Review 47 (2023):

100529.

[4] Mishra, Anupama, and Ammar Almomani. "Malware

Detection Techniques: A Comprehensive Study." Insights: An

International Interdisciplinary Journal 1.1 (2023): 1-5.

[5] G. Willems, T. Holz, and F. Freiling, “Toward automated

dynamic malware analysis using CWSandbox,” IEEE Security

and Privacy, vol. 5, no. 2, pp. 32–39, 2007.

[6] K.Rieck,P.Trinius,C.Willems,andT.Holz,“Automaticanal- ysis

of malware behavior using machine learning,” Technical

Report, University of Mannheim, 2009.

[7] M.Zakeri,F.FarajiDaneshgar,andM.Abbaspour,“Astatic

heuristic approach to detecting malware targets,” Security and

CommunicationNetworks,vol.8,no.17,pp.3015–3027,2015.

[8] Cao N, Cui W. Introduction to text visualisation. Atlantis

Press; 2016.

[9] Keim D. Information visualisation and visual data mining.

IEEE Trans Vis Com- put Graph 2002;8(1):1–8.

[10] Few S. Information dashboard design - the effective visual

communication of data. Sebastopol, CA: O’Reilly; 2006.

[11] Diakopoulos N, Elgesem D, Salway A, Zhang A, Hofland K.

Compare clouds: vi- sualizing text corpora to compare media

frames. In: Proceedings of IUI Work- shop on Visual Text

Analytics; 2015.

[12] Diakopoulos N, Elgesem D, Salway A, Zhang A, Hofland K.

Compare clouds: vi- sualizing text corpora to compare media

frames. In: Proceedings of IUI Work- shop on Visual Text

Analytics; 2015.

[13] Shiravi H, Shiravi A, Ghorbani A. A survey of visualisation

systems for network security. IEEE Trans Vis Comput Graph

2012;18(8):1313–29.

[14] Balakrishnan WB. Security data visualisation. SANS Institute

Inc; 2014.

[15] Zhang TY, Wang XM, Li ZZ, Guo F, Ma Y, Chen W. A

survey of network anomaly visualisation. Sci China Inform Sci

2017;60(12):121101.

[16] Shanks W. Enhancing intrusion analysis through data

visualisation. SANS Insti- tute,Inc; 2015.

http://www.ijritcc.org/
https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/76858/
https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/76858/
https://securelist.com/kaspersky-security-bulletin-2016-executive-summary/76858/
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0032

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7629

Article Received: 02 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 291

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[17] Foresti S, Agutter J, Livnat Y, et al. Visual correlation of

network alerts. IEEE Comput Graph 2006;26:48–59.

[18] Wagner M, Sacha D, Rind A, Fischer F, Luh R, Schrittwieser

S, Keim DA, Aigner W. Visual Analytics: foundations and

experiences in malware analysis. In: Othmane Lotfi ben,

Jaatun Martin Gilje, Weippl Edgar, editors. CRC/Taylor and

francis in book: empirical research for software Security:

foundations and experience. Publisher: CRC/Taylor and

Francis; 2017. p. 139–71.

[19] Thu Thi Minh Nguyen, Ngan Truong Nguyen, Du Xuan

Nguyen, Cong Thanh Tran, Doan Quang Tri. (2023). Mapping

of Top-Soil Salinity Zoning in the Coastal Area of Ben Tre

Province, Vietnam. International Journal of Intelligent Systems

and Applications in Engineering, 11(4s), 473–490. Retrieved

from https://ijisae.org/index.php/IJISAE/article/view/2705

[20] Conti G. Security data visualisation - graphical techniques for

network analysis. San Francisco: No Starch Press; 2007.

[21] Marty R. Applied security visualisation. Upper saddle river.

NJ: AddisonWesley; 2009.

[22] Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. Malware

images: visualisation and automatic classification. In:

Proceedings of the 8th international sympo- sium on

visualisation for cyber security. ACM; 2011. p. 4.

[23] L. Wang, “Microsoft Malware Classification Challenge (BIG

2015) First Place Team: Say No To Overfitting,”

https://github.com/xiaozhouwang/kaggle Microsoft

Malware/blob/master/Saynotooverfitting.pdf.

[24] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G.

Giacinto, “Novel feature extraction, selection and fusion for

effective malware family classification,” in Proceedings of the

6th ACM Conference on Data and Application Security and

Privacy, (CODASPY ’16), pp. 183–194, USA, March 2016.

[25] Robert Roberts, Daniel Taylor, Juan Herrera, Juan Castro,

Mette Christensen. Leveraging Machine Learning for

Educational Data Mining. Kuwait Journal of Machine

Learning, 2(1). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/176

[26] B. N. Narayanan, O. Djaneye-Boundjou, and T. M. Kebede,

“Performance analysis of machine learning and pattern recog-

nition algorithms for Malware classification,” in Proceedings

of the 2016 IEEE National Aerospace and Electronics

Conference and Ohio Innovation Summit, (NAECON-OIS

’16), pp. 338–342, USA, July 2016.

[27] F. C. Garcia and F. P. Muga, “Random forest for malware

classification,” https://arxiv.org/abs/1609.07770.

[28] E. Burnaev and D. Smolyakov, “One-class SVM with privi-

leged information and its application to malware detection,”

https://arxiv.org/abs/1609.08039.

[29] J. Kim, S. Bu, and S. Cho, “Malware detection using deep

transferred generative adversarial networks,” in Proceedings of

the International Conference on Neural Information Processing

(ICONIP), 2017.

[30] Pallathadka, D. H. . (2021). Mining Restaurant Data to Assess

Contributions and Margins Data . International Journal of New

Practices in Management and Engineering, 10(03), 06–11.

https://doi.org/10.17762/ijnpme.v10i03.128

[31] J. Drew, M. Hahsler, and T. Moore, “Polymorphic malware

detection using sequence classification methods and

ensembles: BioSTAR 2016 Recommended Submission -

EURASIP Journal on Information Security,” EURASIP

Journal on Information Security, vol. 2017, no. 1, article no. 2,

2017.

[32] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P.

McDaniel, “Adversarial perturbations against deep neu- ral

networks for malware classification,”

https://arxiv.org/abs/1606.04435.

[33] Microsoft Malware, https://www.kaggle.com/c/malware-

classification.

[34] Bajaj, K., Jain, S. and Singh, R., 2023. Context-Aware

Offloading for IoT Application using Fog-Cloud Computing.

International Journal of Electrical and Electronics Research,

11(1), pp.69-83.

[35] Bajaj, K., Sharma, B., Singh, R., Kumar, M. and Chowdhury,

S., 2022, December. A comparative analysis of cloud based

services platform. In 6th Smart Cities Symposium (SCS 2022)

(Vol. 2022, pp. 243-247). IET.

http://www.ijritcc.org/
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30456-3/sbref0037
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf
https://arxiv.org/abs/1609.07770
https://arxiv.org/abs/1609.08039
https://arxiv.org/abs/1606.04435
https://arxiv.org/abs/1606.04435
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification

