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Abstract— This paper presents a comprehensive review of the Global Navigation Satellite System (GNSS) with Internet of Things (IoT) 

applications and their use cases with special emphasis on Machine learning (ML) and Deep Learning (DL) models. Various factors like the 

availability of a huge amount of GNSS data due to the increasing number of interconnected devices having low-cost data storage and low-

power processing technologies - which is majorly due to the evolution of IoT - have accelerated the use of machine learning and deep learning 

based algorithms in the GNSS community. IoT and GNSS technology can track almost any item possible. Smart cities are being developed 

with the use of GNSS and IoT. This survey paper primarily reviews several machine learning and deep learning algorithms and solutions applied 

to various GNSS use cases that are especially helpful in providing accurate and seamless navigation solutions in urban areas. Multipath, signal 

outages with less satellite visibility, and lost communication links are major challenges that hinder the navigation process in crowded areas like 

cities and dense forests. The advantages and disadvantages of using machine learning techniques are also highlighted along with their potential 

applications with GNSS and IoT. 

Keywords- GNSS, GPS, IoT, RTK, machine learning, deep learning. 

I.  INTRODUCTION 

Global Navigation Satellite System (GNSS) is a satellite 

navigation system that provides autonomous geospatial 

position, navigation, and timing services with regional or global 

coverage [1]. It encompasses popular systems like Global 

Positioning System (GPS), GLObalnaya NAvigatsionnaya 

Sputnikovaya Sistema in Russian (GLONASS), Galileo, 

Beidou, Indian Regional Navigation Satellite System (IRNSS), 

and other regional and augmented navigation systems [2]. Over 

the past two decades, GNSS technology has rapidly advanced, 

becoming more user-friendly and intuitive, enabling wireless 

connectivity with low power consumption. Its integration with 

smartphones and other mass-market devices has made it one of 

the most widely used technologies today [3][4]. 

On the other hand, the rise of the Internet of Things (IoT) 

has brought an evolution in applications and devices, enhancing 

connectivity and interoperability. This has resulted in an 

exponential increase in the volume of data collected by these 

interconnected devices [5]. As per the facts, the production of 

global data is projected to grow from 33 zettabytes in 2018 to 

175 zettabytes by 2025. While data centers currently handle 

80% of data processing and analysis, the remaining 20% is 

managed by other computing facilities, smart connected 

objects, and IoT devices. 

Compared to GNSS, which provides specific hardware or 

object positions, IoT focuses on monitoring and providing real-

time information and statistics on device operations. The 

combination of GNSS and IoT enables the generation of 

comprehensive and usable interconnected data, paving the way 

for smarter cities, self-driving cars, tracking devices, and 

wearable health technologies [6]. Improvements in the position 

accuracy of IoT devices like smartphones and wearables will 

expand their usage in the mass market and unlock new 

consumer applications [7]. The integration of GNSS with IoT 
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has led to the deployment of numerous IoT GNSS receivers, 

including smartphones, and the establishment of permanent 

GNSS stations worldwide. This vast network of IoT GNSS 

devices generates a wealth of data, presenting a burgeoning 

field of scientific interest for applying Machine Learning (ML) 

and Deep Learning (DL) techniques [8]. 

To enhance the intelligence and capabilities of IoT 

applications, ML and DL techniques can be employed to 

uncover hidden patterns within vast amounts of data. In the case 

of time-series data like GNSS data, ML and DL models prove 

to be powerful tools for detecting time-dependent trends and 

making meaningful correlations to improve the accuracy, 

continuity, and robustness of the system. ML/DL algorithms 

have been extensively studied in areas such as classification, 

prediction, and optimization. These algorithms are trained on 

specific input data along with their expected output, allowing 

them to estimate various mathematical parameters. The learned 

parameters are then applied to new, unexplored data to achieve 

desired objectives [9]. The choice of ML or DL technique 

depends on the computational intensity of the problem and the 

required speed of analysis. Real-time applications, for example, 

require methods that can track changes in input data and 

produce results promptly [10]. ML and DL models are 

revolutionizing the navigation challenges encountered in 

GNSS, playing a vital role in the advancement of PNT 

technologies [11][12]. Like any other system, GNSS signals get 

influenced by many phenomena which may degrade the overall 

performance of the system. GNSS signals are L band signals 

travelling long distances with very low power hence are prone 

to several sources of noise as shown in Fig. 1 [13]. There are 

two main GNSS observables used for positioning algorithm as 

input: i) Code phase measurement and ii) Carrier phase 

measurement [14]. The mathematical equations representing 

code phase and carrier phase measurements are as follows:  

𝜌 =  𝑟 + 𝑐[𝛿𝑡𝑢 −  𝛿𝑡𝑠] +  𝐼𝜌 + 𝑇𝜌 + 휀𝑚 + 휀𝜌 (1) 

ρ: Pseudorange/code phase measurement, r: the true range, 

c: speed of light, δtu: receiver clock offset from GPS time, δts: 

satellite clock offset from GPS time, Iρ: ionospheric delay, Tρ: 

tropospheric delay, εm: multipath and ερ: receiver noise. 

∅ =  𝜆−1[𝑟 − 𝐼∅ + 𝑇∅] + 𝑐
𝜆⁄ [𝛿𝑡𝑢 −  𝛿𝑡𝑠] +  𝑁

+ 휀∅ 

(2) 

∅: carrier phase measurement, λ: wavelength of the carrier 

signal, r: the true range, c: speed of light, δtu: receiver clock 

offset from GPS time, δts: satellite clock offset from GPS time, 

I∅: ionospheric delay, T∅: tropospheric delay, N: integer 

ambiguity and ε∅: receiver noise. 

 

 

Figure 1.  Error Sources in satellite-based navigation system 

The effect of these error sources can be reduced significantly by 

improving the algorithm and integrating the hardware with 

more sensors to provide accurate inputs [15]. One such 

technique is known as Differential GPS[16], where the 

performance of a standalone GNSS receiver is enhanced by an 

additional receiver which helps in eliminating common errors 

like satellite clock error and atmospheric delays between the 

two (identical) receivers, depending upon their relative 

distances or baseline positioning [17]. An alternate solution is 

Real-time Kinematics (RTK) which is an extension of DGPS 

technology that uses carrier phase measurements that are 

generally more precise in terms of orders of magnitude than the 

code-phase measurements [18]. This technique may offer 

centimeter or decimeter-level positioning [19]. However, 

carrier phase measurements are ambiguous and require initial 

integer ambiguity to be resolved before being considered as 

input for the positioning [20]. Nonetheless, these techniques are 

expensive solutions and come up with their own set of issues 

like baseline limitations, communication link failure between 

the two receivers, etc. [21]. 

IoT devices equipped with GNSS capabilities are not optimized 

as dedicated GNSS receivers. They are designed to offer 

services such as Wi-Fi, Bluetooth, and other sensors, with 

GNSS being just one of their functionalities. Consequently, 

these devices are not built with high-quality hardware due to 

cost considerations. For instance, smartphones provide GNSS-

based positioning services, but it is not their primary focus. 

These devices typically feature low-cost chipsets and antennas 
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that are linearly polarized, resulting in higher signal loss 

compared to standard survey-grade GNSS receivers [22]. 

Furthermore, the quality of signals generated by these devices 

varies due to differences in their design, sophistication, 

complexity, and processing methods. As a result, they are more 

susceptible to interference and multipath issues. In urban areas, 

the accuracy of GNSS devices is significantly affected by three 

main factors: multipath effects, signal outages, and 

communication link failures caused by obstructions such as 

high-rise buildings, tunnels, trees, and poles [23] as shown in 

Fig. 2. 

 

Figure 2.  Types of signals during transmission 

While using IoT with GNSS, several issues can arise. These 

issues can impact the performance, reliability, and security of 

IoT-GNSS applications. Here are some of the key issues to 

consider: 

i. Signal Interference and Multipath Effects: GNSS 

signals can be affected by various sources of 

interference and multipath reflections, leading to 

degraded signal quality and accuracy. Signal 

interference occurs when unwanted signals disrupt the 

reception and processing of GNSS signals. Multipath 

effects, on the other hand, occur when GNSS signals 

are reflected or refracted by obstacles, resulting in 

multiple signal paths and positional inaccuracies.  

Most commercially available systems for detecting 

and mitigating multipath effects rely on advanced data 

processing methods, stochastic modeling, spatial 

geometry modeling, and specialized hardware designs 

[24]. These models aim to accurately differentiate 

between line-of-sight (LOS), multipath, and non-line-

of-sight (NLOS) signals, and they are expected to be 

precise and reliable. However, these solutions face 

limitations when confronted with the real world. 

Traditional low-grade smartphone receivers cannot 

effectively address multipath issues, while high-grade 

receiver designs that can mitigate multipath effects 

exist but come at a high cost  [25]. This poses a 

challenge for widespread adoption, as cost-effective 

solutions are necessary to ensure the availability of 

reliable and accurate positioning for a broader range of 

applications. 

In recent years, ML and DL methods have emerged as 

effective tools for addressing these challenges. These 

techniques empower the development of robust 

algorithms that enhance the accuracy and reliability of 

positioning systems. ML techniques leverage 

historical data to learn patterns and make informed 

decisions to improve the accuracy of GNSS 

positioning. For instance, support vector machines 

(SVM) have been used to classify multipath signals in 

[26][27][28] [29] [30] [31] [32] while gradient-based 

decision tree (GBDT) have been applied in [33][34] 

[35] [36] [37][38] [39] [26]. Studies like [40] [41] [42] 

[43] [44] demonstrate the usage of k-means clustering 

to classify multipath signals and [45] illustrates a naïve 

Bayesian-based technique to do the same. Neural 

network-based multipath classification and mitigation 

are shown in [46] [47] [48] [49] [50] [51] [52] [53]. 

Certain studies even combine multiple techniques to 

resolve this issue like in [54] [55] [56], the authors 

have used SVM and NN in combination. 

On the contrary, DL models, particularly deep neural 

networks, excel at handling complex interference and 

multipath challenges in GNSS with IoT. DL models 

automatically learn intricate features from GNSS 

measurements, enabling robust interference and 

multipath mitigation. Convolutional neural networks 

(CNNs) can capture spatial correlations in GNSS 

signals as demonstrated in [57] [58][59][60] [61] 

[62][63] [64]. 

ii. Limited Power and Computational Resources: IoT 

devices, including GNSS-enabled sensors, often have 

limited power and computational capabilities [65]. 

This poses a challenge for implementing resource-

intensive ML and DL algorithms, which are essential 

for tasks such as data processing, signal analysis, and 

positioning. Addressing these challenges is crucial for 

efficient and real-time operation of GNSS with IoT 

systems. Researchers have explored techniques such 

as model compression, quantization, and scarcity to 

reduce memory footprint and computational 

requirements of ML models. The paper [66] discusses 

the challenges and potential solutions for executing 

machine learning algorithms on resource-constrained 

IoT devices.  

DL models, with their complex architectures, often 

demand significant computational power and memory 

[67]. However, advancements in DL research have led 

to the development of lightweight models suitable for 

limited-resource environments. Techniques such as 

model pruning, knowledge distillation, and low-rank 
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approximation have been employed to reduce the 

complexity of DL models [68].  

Furthermore, edge computing, efficient hardware 

acceleration, and model offloading techniques offer 

opportunities to offload computation to more powerful 

resources, enabling efficient processing of ML and DL 

algorithms [69]. However, it is important to note that 

while ML and DL techniques provide solutions for 

handling limited resources, there are trade-offs to 

consider. The compression and optimization of models 

may result in a slight decrease in accuracy or 

performance. Additionally, offloading computation to 

edge servers or cloud infrastructure introduces latency 

and dependency on network connectivity. 

iii. Privacy and Security: GNSS with IoT involves 

collection and transmission of the location data, 

raising concerns about privacy and security. This data 

can potentially be intercepted, tampered with, or 

misused, posing privacy and security risks [70]. 

Additionally, ML and DL algorithms can themselves 

be vulnerable to attacks, such as adversarial 

perturbations or data poisoning, compromising the 

integrity of the system [71]. Ensuring the privacy of 

user location information and protecting against 

malicious attacks is crucial. The paper [72] presents 

various privacy-preserving techniques for secure 

location-based services in IoT. Reference 

[73]proposed an ML-based privacy protection scheme 

for GNSS-based location services. Their approach 

utilized ML algorithms to obfuscate the actual location 

information while maintaining the required level of 

utility for location-based services. 

Privacy-preserving techniques, secure computation, 

and encryption methods enable the protection of 

sensitive location data while maintaining the utility of 

models [74]. Anomaly detection and intrusion 

detection systems enhance the security of GNSS with 

IoT applications. Additionally, defending against 

adversarial attacks ensures the integrity and reliability 

of ML and DL models [75]. As the field of ML and DL 

continues to advance, it is crucial to focus on 

developing robust privacy and security mechanisms 

specific to GNSS with IoT applications. Additionally, 

the development of standardized frameworks and 

guidelines for privacy-preserving ML and DL in 

GNSS with IoT would be beneficial. 

iv. Signal Degradation in Urban and Indoor 

Environments: Urban environments with tall 

buildings, narrow streets, and multipath effects, as 

well as indoor settings with limited satellite visibility, 

can significantly degrade GNSS signals [76]. The 

presence of signal reflections, diffractions, and 

obstructions lead to inaccuracies and multipath effects, 

impacting positioning accuracy. Overcoming these 

challenges is crucial for reliable and accurate 

positioning in urban and indoor environments [77]. 

The paper [78] provides an overview of various 

positioning technologies, including GNSS, and 

discusses the challenges of indoor positioning in IoT 

applications. 

ML and DL methods hold great potential in handling 

signal degradation in urban and indoor environments 

in GNSS with IoT applications. Signal quality 

estimation, map matching, crowd-sourced data 

utilization, RNNs, CNNs, and transfer learning 

techniques offer promising avenues for improving 

positioning accuracy [79]. However, addressing 

challenges related to data availability, computational 

resources, model generalization, and sensor fusion is 

crucial for successful implementation. By advancing 

research in this field, we can pave the way for reliable 

and accurate positioning in urban and indoor GNSS 

with IoT applications.  

v. Localization in Non-Line-of-Sight (NLOS) Scenarios: 

The ideal operating environment for GNSS is line-of-

sight (LOS), but for a variety of obvious reasons, the 

signal undergoes reflection or refraction [37]. LOS 

signals are the direct signals from the satellite to the 

receiver while the signal reflection received by the 

receiver is referred to as Non-Line-of-Sight (NLOS) 

reception [80]. Non-line-of-sight (NLOS) scenarios, 

such as urban canyons or dense foliage, pose 

challenges to accurate localization with GNSS. 

Traditional GNSS techniques struggle to provide 

accurate positioning in such situations due to signal 

blockages, multipath effects, and signal reflections. 

The paper [81] reviews different ML approaches and 

algorithms for localization in GNSS NLOS 

environments.  

Map-based localization, radio signal fingerprinting, 

CNNs, RNNs, and GANs are effective techniques to 

addressing the challenges posed by NLOS conditions. 

Incorporating contextual information, analyzing 

spatial and temporal features in GNSS measurements, 

and generating synthetic data can significantly 

improve localization accuracy and robustness in 

NLOS scenarios. 
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vi. Integration of Multiple Sensors: IoT devices often 

integrate multiple sensors, such as accelerometers, 

magnetometers, and gyroscopes along with GNSS 

receivers. Integrating data from these sensors and 

fusing them with GNSS measurements can enhance 

positioning accuracy and robustness along with 

enabling context-aware applications, including 

activity recognition, context-aware navigation, and 

environmental monitoring, contributing to smarter and 

more efficient IoT systems.  

To ensure uninterrupted navigation, GPS is often 

combined with an Inertial Navigation System (INS) 

that utilizes accelerometers and gyroscopes to estimate 

a vehicle's acceleration and improve the overall 

performance of the navigation system [82]. However, 

the performance of the system can be compromised in 

situations where GPS signals are unavailable. GPS 

signals are vulnerable to environmental factors that 

can weaken or disrupt their transmissions, such as 

reduced signal power or signal loss in tunnels, rural 

areas, interiors, or forested regions [83]. 

During short periods of GPS outage, the INS can still 

provide position estimations, mitigating the impact on 

navigation accuracy. However, as the outage duration 

increases, the error in the motion sensors accumulates, 

leading to a significant decrease in location estimate 

accuracy [84]. To address this issue, ML/DL models 

are employed to analyze the error patterns of the INS 

under various conditions. These models help rectify 

the location error caused by the INS during GPS signal 

blockages, thereby enhancing navigation accuracy. A 

Neural network is used to provide seamless navigation 

in case of GNSS signal outage in [85][86][87] 

[88][89][90][91] [92][93] [94]. Another method is 

demonstrated in [31] [95] which uses SVM whereas 

[96] uses RNN to provide continuous positioning. 

Robustness in signal-challenged environments is also achieved 

by leveraging complementary information from multiple 

sensors, allowing for accurate positioning even in non-line-of-

sight scenarios affected by multipath and interference. Several 

studies have explored the application of ML and DL models for 

sensor fusion in GNSS with IoT. The paper [97] discusses 

sensor fusion techniques and their integration with GNSS in IoT 

applications. Reference [98]proposed a deep neural network-

based sensor fusion framework for GNSS/INS integration. 

Their model effectively integrated the information from GNSS 

and inertial sensors to achieve accurate positioning even in 

challenging environments.  

 

In this section, we have listed and discussed various GNSS 

combined with IoT applications where ML and DL methods can 

contribute to improving the performance and meeting the 

desired results:  

i. Disaster management: IoT devices equipped with 

GNSS capabilities are instrumental in environmental 

monitoring applications [99]. ML algorithms can 

combine GNSS data with weather measurements to 

accurately predict weather conditions, improving 

forecasting capabilities. DL models can process 

satellite imagery and identify environmental changes, 

aiding in monitoring deforestation, urban growth, and 

natural disasters like flood monitoring systems [100], 

earthquake warning systems [101], and healthcare 

disaster prediction [6]. 

ii. Smart healthcare and wearable devices: Wearable 

devices with integrated GNSS capabilities can enable 

location-based healthcare applications, such as remote 

patient monitoring and emergency response systems 

[102][103]. ML and DL methods can analyze sensor 

data to detect patterns, monitor health conditions, and 

provide personalized healthcare services 

[104][105][6]. 

iii. Smart cities: ML and DL models are crucial in smart 

city applications [106], where GNSS and IoT 

technologies are integrated to enhance urban services 

and infrastructure. By analyzing GNSS data, sensor 

readings, and IoT-generated data, these models enable 

optimized transportation systems, efficient energy 

management, smart parking, intelligent traffic 

management [107][108]  and accident detection and 

classification [109]. ML models can predict traffic 

congestion patterns based on GNSS data, while DL 

models can analyze surveillance camera feeds for 

detecting unusual activities and enhancing security 

[110] [106]. 

iv. Accurate tracking and asset monitoring systems: By 

leveraging ML and DL algorithms, organizations can 

track and monitor their assets in real-time, reducing 

theft, optimizing operational efficiency, improving 

route planning and optimizing supply chain 

management. For example, ML models can predict 

equipment failures based on GNSS data, enabling 

proactive maintenance and minimizing downtime [78] 

[111][112] [113] [114][103]. 

v. Precision agriculture: GNSS technology combined 

with IoT enables precision agriculture, where farmers 

can optimize crop management, irrigation, and 

fertilization based on real-time data[69] [115][110]. 
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ML and DL methods can analyze the collected data to 

provide insights for improved decision-making, such 

as detecting crop diseases, predicting yield, and 

optimizing resource allocation [116][117][118]. 

II. CHALLENGES OF INTEGRATING ML/DL WITH 

GNSS AND IOT 

Integrating ML and DL with GNSS and IoT poses several 

challenges that need to be addressed for successful 

implementation. These challenges can range from data 

availability and quality to computational constraints and 

security considerations. Here, we delve into the key challenges 

of integrating ML/DL with GNSS and IoT: 

i. Lack of literature: The limited availability of research 

on ML/DL modelling for IoT GNSS applications is a 

common observation. Many studies rely on simulated 

data or collect real data for short durations, casting 

doubts on the credibility of the models. Moreover, the 

experimental data collected in controlled 

environments often overlooks real-time challenges 

such as signal loss and poor Dilution of Precision 

(DOP). As a result, ML/DL solutions developed using 

such data may not deliver accurate and reliable 

performance in practical situations. 

ii. Satellite visibility: The visibility of satellites is a 

critical factor in global navigation systems like GPS, 

Galileo, and GLONASS, which depends on the 

location and time of measurement [119]. This leads to 

variable sets of GNSS signals in observations due to 

the Earth's motion and satellite positions. To estimate 

a position solution, a minimum of four observations is 

required, and GPS can receive up to 12 signals from its 

constellation spread. Ensuring ML/DL-based 

positioning algorithms generate output independent of 

the measurement order within the observation set is 

challenging due to the varying numbers and orders of 

data. 

iii. Data Availability and Quality: ML/DL algorithms 

heavily depend on large volumes of high-quality 

training data, posing challenges in the context of 

GNSS and IoT [120]. Acquiring diverse and 

representative datasets that encompass interferences 

and environmental conditions is complex. Ensuring 

the quality and accuracy of collected data is crucial for 

training reliable ML/DL models. Processing noisy and 

erratic GNSS data from low-cost sensors in IoT 

devices presents additional difficulties, requiring 

accurate data preprocessing. Outlier removal, 

organization, missing value filtering, and refinement 

GNSS receivers like smartphones capture input signals 

with approximately 10 dB loss, necessitating extensive 

preprocessing before ML/DL modelling. Variations 

between multiple devices in similar conditions make it 

impractical to capture all potential scenarios during 

training data collection. Lastly, validating the proper 

application of a specific ML/DL model in real-world 

scenarios is also challenging. 

iv. Data labelling and feature selection: Another difficult 

aspect is data labeling and feature selection, such as 

identifying the affected features in the presence of 

multipath for classifying multipath, LOS, and NLOS 

signals [37]. This challenge arises from determining 

the number and selection of prominent features that 

effectively represent the entire dataset. 

v. Computational Complexity: ML/DL algorithms, 

particularly deep neural networks, can be 

computationally intensive, requiring significant 

processing power and memory resources. This poses 

challenges for resource-constrained IoT devices that 

often have limited computational capabilities and 

energy constraints. Optimizing ML/DL models for 

efficient execution on IoT devices is crucial to 

overcome these computational limitations and striking 

a balance between accuracy and resource utilization. 

vi. Real-Time Processing: Many IoT-GNSS applications 

require real-time processing and decision-making. 

However, the latency introduced by ML/DL 

algorithms can be a challenge. Traditional ML/DL 

models may not meet the real-time requirements of 

IoT-GNSS systems. Therefore, developing 

lightweight and efficient ML/DL models, as well as 

exploring hardware accelerators and distributed 

processing techniques becomes important for 

achieving real-time capabilities. 

vii. Generalization and Adaptability: ML/DL models 

trained on specific datasets may struggle to generalize 

to new and diverse scenarios encountered in real-world 

IoT-GNSS deployments. Environmental variations, 

changing signal conditions, and evolving user 

requirements can pose challenges to the adaptability 

and generalization of ML/DL models. Continual 

model updating, transfer learning, and domain 

adaptation techniques are essential to ensure the 

models' effectiveness across different environments 

and applications. 

viii. Security and Privacy: Integrating ML/DL with GNSS 

and IoT brings security and privacy concerns. ML/DL 

models can be vulnerable to adversarial attacks, where 

malicious actors manipulate the input signals or inject 

malicious data to deceive the system. Moreover, 

protecting the privacy of sensitive location data 

collected by IoT-GNSS systems is crucial. Robust 
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security mechanisms, such as secure communication 

protocols, data encryption, and anomaly detection 

algorithms, should be implemented to mitigate these 

risks. 

ix. Interpretability and Trust: ML/DL models often 

exhibit black-box behavior, making it challenging to 

interpret their decision-making processes. This lack of 

interpretability can undermine the trust and acceptance 

of IoT-GNSS systems. Ensuring explain ability and 

transparency of ML/DL models, such as using model 

visualization techniques or providing confidence 

measures, can help build trust and facilitate the 

adoption of ML/DL in IoT-GNSS applications. 

x. Regulatory Compliance: IoT-GNSS applications need 

to comply with various regulatory frameworks, such as 

privacy regulations and spectrum management rules. 

Integrating ML/DL into these systems requires 

adherence to legal and ethical guidelines. It is essential 

to consider the implications of regulatory compliance 

and ensure that ML/DL algorithms and data processing 

techniques align with the applicable regulations. 

Addressing these challenges requires interdisciplinary 

collaboration among GNSS experts, data scientists, IoT 

engineers, and domain-specific stakeholders. Research and 

development efforts should focus on data collection and 

curation, model optimization for resource-constrained devices, 

real-time processing techniques, security and privacy 

enhancements, interpretability methods, and compliance with 

regulations. By overcoming these challenges, ML/DL 

integration with GNSS and IoT can unlock the full potential of 

intelligent and reliable positioning and navigation systems. 

III. CONCLUSION 

Overall, ML and DL methods have emerged as powerful tools 

for addressing various challenges in GNSS with IoT. They have 

shown great potential in mitigating signal interference and 

multipath effects, integrating multiple sensors, ensuring privacy 

and security, handling signal degradation in urban and indoor 

environments, and providing localization in non-line-of-sight 

scenarios. These techniques enable improved positioning 

accuracy, robustness, and efficiency in GNSS-based 

applications within the IoT ecosystem. 

The benefits of applying ML and AI to GNSS in IoT are 

significant. These methods enable improved positioning 

accuracy in challenging environments, such as urban canyons 

or indoor locations, where GNSS signals may be weak or 

obstructed. ML algorithms can effectively learn and adapt to 

complex signal conditions leading to enhanced robustness and 

reliability of GNSS-based systems. Moreover, AI techniques 

can facilitate intelligent decision-making and optimization in 

real time, allowing for dynamic adjustments and optimizations 

of positioning algorithms. 

However, there are some limitations associated with applying 

ML and AI methods to GNSS in IoT. First, ML models often 

require a substantial amount of training data, which may be 

difficult to obtain for certain GNSS scenarios or signal 

conditions. Additionally, the computational complexity of ML 

algorithms can be high leading to increased power consumption 

and latency, which may not be suitable for resource-constrained 

IoT devices. Furthermore, ML models are susceptible to 

adversarial attacks, where malicious actors intentionally 

manipulate the input signals to mislead the GNSS positioning 

system. 
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