
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 553

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Exploring Path Computation Techniques in

Software-Defined Networking: A Review and

Performance Evaluation of Centralized, Distributed,

and Hybrid Approaches

Mohit Chandra Saxena1, Munish Sabharwal2, Preeti Bajaj3
1Author, SCSE

Galgotias University

Greater Noida, India

e-mail: mohit.chandra_phd20@galgotiasuniversity.edu.in
2Dean, SCSE

Galgotias University

Greater Noida, India

e-mail: dean.scse@galgotiasuniversity.edu.in
3Vice Chancellor

Lovely Professional University

Punjab, India

e-mail: preetibajaj@ieee.org

Abstract— Software-Defined Networking (SDN) is a networking paradigm that allows network administrators to dynamically manage

network traffic flows and optimize network performance. One of the key benefits of SDN is the ability to compute and direct traffic along

efficient paths through the network. In recent years, researchers have proposed various SDN-based path computation techniques to improve

network performance and reduce congestion.

This review paper provides a comprehensive overview of SDN-based path computation techniques, including both centralized and

distributed approaches. We discuss the advantages and limitations of each approach and provide a critical analysis of the existing literature. In

particular, we focus on recent advances in SDN-based path computation techniques, including Dynamic Shortest Path (DSP), Distributed Flow-

Aware Path Computation (DFAPC), and Hybrid Path Computation (HPC).

We evaluate three SDN-based path computation algorithms: centralized, distributed, and hybrid, focusing on optimal path determination

for network nodes. Test scenarios with random graph simulations are used to compare their performance. The centralized algorithm employs

global network knowledge, the distributed algorithm relies on local information, and the hybrid approach combines both. Experimental results

demonstrate the hybrid algorithm's superiority in minimizing path costs, striking a balance between optimization and efficiency. The centralized

algorithm ranks second, while the distributed algorithm incurs higher costs due to limited local knowledge. This research offers insights into

efficient path computation and informs future SDN advancements.

We also discuss the challenges associated with implementing SDN-based path computation techniques, including scalability, security, and

interoperability. Furthermore, we highlight the potential applications of SDN-based path computation techniques in various domains, including

data center networks, wireless networks, and the Internet of Things (IoT).

Finally, we conclude that SDN-based path computation techniques have the potential to significantly improvement in-order to improve

network performance and reduce congestion. However, further research is needed to evaluate the effectiveness of these techniques under

different network conditions and traffic patterns. With the rapid growth of SDN technology, we expect to see continued development and

refinement of SDN-based path computation techniques in the future.

Keywords- SDN, SDWAN, Routing, OpenFlow, Path Computation, NFV, Networking, QoS, Network Protocols

I. INTRODUCTION

Software-Defined Networking (SDN) [1] has emerged as a

promising networking paradigm that allows network

administrators to dynamically manage network traffic flows and

optimize network performance. One of the key features of SDN

is the ability to compute and direct traffic along efficient paths

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 554

IJRITCC | August 2023, Available @ http://www.ijritcc.org

through the network. Path computation is an essential

component of SDN that enables the creation of a centralized and

programmable network architecture.

The traditional networking architecture relies on static

routing tables to direct traffic, which can lead to network

congestion and poor performance. SDN-based path computation

techniques enable the creation of dynamic and flexible network

topologies, allowing network administrators to route traffic

along the most efficient paths. This can improve network

performance, reduce congestion, and enhance network

scalability.

In recent years, researchers have proposed various SDN-

based path computation techniques to address the challenges of

traditional networking architectures. These techniques range

from centralized approaches to distributed approaches, and each

has its own advantages and

limitations. The centralized approach allows for the efficient

computation of network paths and the dynamic management of

network resources, while the distributed approach improves

scalability and fault tolerance.

This research paper provides a comprehensive overview of

SDN-based path computation techniques, including both

centralized and distributed approaches. We will discuss the

advantages and limitations of each approach and provide a

critical analysis of the existing literature. We will focus on recent

advances in SDN-based path computation techniques, including

Dynamic Shortest Path (DSP) [2], Distributed Flow-Aware Path

Computation (DFAPC) [3], and Hybrid Path Computation

(HPC) [4].

We are also proposing a hybrid algorithm for path

computation and will carry out experiments to compare the

approach with centralized and distributed techniques. This paper

also provides the comparative analysis by means of the data

generated on comparison.

We will also discuss the challenges associated with

implementing SDN-based path computation techniques,

including scalability, security, and interoperability.

Furthermore, we will highlight the potential applications of

SDN-based path computation techniques in various domains,

including data center networks, wireless networks, and the

Internet of Things (IoT).

A. SDN based path Computation techniques:

Centralized Path Computation: This approach is based on a

central controller that computes the optimal path for each packet

flow based on the current network state. The controller receives

real-time network data from switches and computes the shortest

path to the destination. This approach ensures that traffic is

routed along the most optimal path, but it can result in a single

point of failure.

Distributed Path Computation: This approach distributes the

path computation process across the network switches. Each

switch computes the optimal path to the destination based on its

local view of the network. This approach eliminates the single

point of failure issue and can result in faster path computation

times. However, it can result in suboptimal path decisions due to

each switch's limited view of the network.

 Hybrid Path Computation: This approach combines the

centralized and distributed path computation approaches. The

central controller computes the optimal path based on the global

network view, while the switches compute the path based on

their local view of the network. This approach provides a balance

between optimal path computation and network resiliency.

TABLE I. SDN PATH COMPUTATION TECHNIQUES

Path

Computation

Method

Description

Shortest Path

First (SPF)

SPF is a widely used path computation method that

calculates the shortest path between two nodes in a

network based on the distance or cost metrics between the

nodes. SPF algorithms like Dijkstra's and Bellman-Ford's

are commonly used in SDN to compute paths between

switches or routers.

Constraint-

Based Path

Computation

This method computes paths based on specific constraints

such as available bandwidth, latency, or QoS

requirements. This approach enables the network to

provide better service to certain types of traffic or

applications, which require specific network resources.

Traffic

Engineering

(TE)

TE is a path computation method that optimizes the use of

network resources by controlling the flow of traffic in the

network. This method considers factors like link

utilization, congestion, and available bandwidth to

optimize the path selection. It also provides alternate paths

in case of link failures.

Load

Balancing

Load balancing is a path computation method that

distributes network traffic evenly across multiple links or

paths to improve network performance and reduce

congestion. This method uses various algorithms such as

round-robin, least connections, or IP hash to distribute

traffic.

Multipath

Routing

Multipath routing is a path computation method that

computes multiple paths between a source and destination

to provide redundancy and improve network resiliency.

This method uses multiple paths to distribute traffic,

provide alternate paths in case of link failures, and

optimize the use of network resources.

QoS-Based

Path

Computation

QoS-based path computation is a method that computes

paths based on QoS requirements such as bandwidth,

latency, packet loss, and jitter. This method ensures that

specific traffic types or applications receive the required

level of service, and the network meets the SLA

requirements.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 555

IJRITCC | August 2023, Available @ http://www.ijritcc.org

B. SDN path Computatrion Techniques Applications:

1. Traffic Engineering: SDN-based path computation

techniques are critical for optimizing network performance by

providing efficient routing and minimizing network congestion.

This approach allows network operators to control the flow of

network traffic, which can help reduce network latency, increase

bandwidth utilization, and improve network reliability.

2. Quality of Service (QoS): SDN-based path computation

techniques can be used to ensure that network traffic is

prioritized based on its QoS requirements. This approach allows

network operators to provide differentiated services based on the

application's needs, such as low latency for real-time

applications and high bandwidth for data- intensive applications.

3. Network Security: SDN-based path computation

techniques can be used to detect and prevent network attacks by

redirecting traffic to security devices for inspection. This

approach allows network operators to detect and respond to

network threats quickly, reducing the risk of a successful attack.

Finally, we will conclude that SDN-based path computation

techniques have the potential to significantly improve network

performance and reduce congestion. However, further research

is needed to evaluate the effectiveness of these techniques under

different network conditions and traffic patterns. With the rapid

growth of SDN technology, we expect to see continued

development and refinement of SDN-based path computation

techniques in the future.

II. METHODOLOGY

We conducted a systematic search of four electronic

databases: IEEE Xplore, ACM Digital Library, ScienceDirect,

and SpringerLink. The search was conducted

using a combination of keywords and Boolean operators,

including "Software Defined Networking," "Path Computation,"

"Routing," "Optimization," and "Performance." We included

only peer-reviewed articles published in English between

January 2010 and March 2023. Our search yielded a total of 73

articles that met our inclusion criteria. We used the PRISMA

checklist as a guide for conducting the systematic review.

Post the literature review, we conducted the experimentation

to compare the distributed path computation, Centralized path

computation with hybrid path computation algorithm which we

have proposed in the paper. The experiments were conducted

using a MacBook Air M2 with an 8-core processor and 8 GB

RAM. The experiments were implemented in Python using

Jupyter Notebook. The network simulation and path

computation algorithms were implemented using the NetworkX

library, a powerful graph analysis and manipulation tool.

The data collection process involved running the

implemented code multiple times with varying parameters. The

number of nodes in the random graphs was set to 10, and the test

scenarios consisted of randomly selected source and destination

nodes. For each test scenario, the code generated a random

graph, computed the costs for the centralized, distributed, and

hybrid path computation algorithms, and collected the costs in

separate lists. To ensure reliable results, the experiments were

repeated multiple times, and the collected costs were averaged

to minimize any variations.

The collected data was then used to perform a comparative

analysis of the centralized, distributed, and hybrid path

computation algorithms. The costs obtained for each algorithm

were plotted on a comparative analysis graph using matplotlib,

with the x-axis representing the test scenarios and the y-axis

representing the cost. The comparative analysis graph provided

visual insights into the performance of the different path

computation algorithms in terms of cost. It allowed for a direct

comparison between the algorithms and helped identify any

performance advantages or trade-offs associated with each

approach.

It is important to note the limitations of the study. The

experiments were conducted on a specific hardware

configuration, namely a MacBook Air M2 with an 8-core

processor and 8 GB RAM. The performance and results may

vary on different hardware configurations or when dealing with

larger networks.

Additionally, the random graph generation process utilized

the NetworkX library, which may have its own limitations or

biases. The chosen parameters, such as the number of nodes and

edges, may also impact the results. Further experimentation with

different graph topologies and sizes can provide more

comprehensive insights.

III. PREVIOUS WORK (LITERATURE REVIEW)

Over the years, researchers have proposed various path

computation techniques to improve network performance and

reduce congestion. However, the traditional networking

architecture relies on static routing tables, which can lead to

network congestion and poor performance SDN has emerged as

a promising networking paradigm that enables dynamic network

management and optimization.

SDN-based path computation techniques have gained

significant attention in recent years due to their ability to create

dynamic and flexible network topologies. These techniques

enable network administrators to compute and direct traffic

along efficient paths through the network, thereby improving

network performance and reducing congestion.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 556

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Various SDN-based path computation techniques have been

proposed in the literature, including centralized and distributed

approaches. The centralized approach, such as OpenFlow-based

path computation, enables the efficient computation of network

paths and the dynamic management of network resources. In

contrast, the distributed approach, such as Distance-Vector

Multipath Routing, improves scalability and fault tolerance.

Researchers have also proposed advanced SDN-based path

computation techniques to address the limitations of traditional

path computation techniques. For example, Dynamic Shortest

Path technique uses dynamic link weights to compute network

paths in real-time, while Distributed Flow-Aware Path

Computation technique enables the distribution of path

computation among multiple controllers in the network.

Moreover, researchers have proposed Hybrid Path

Computation techniques that combine centralized and

distributed approaches to achieve a balance between efficiency

and scalability. These techniques enable the creation of dynamic

network topologies while maintaining scalability and fault

tolerance.

Several studies have evaluated the effectiveness of SDN-

based path computation techniques in various network scenarios.

For example, researchers have investigated the performance of

SDN-based path computation techniques in data center

networks, wireless networks, and the Internet of Things (IoT).

These studies have shown that SDN-based path computation

techniques can significantly improve network performance and

reduce congestion in these domains.

SDN has revolutionized network management and control.

Efficient path computation is a critical aspect of SDN, with two

main approaches: reactive and proactive. This literature review

analyses existing research on SDN-based path computation

techniques, categorizes them, compares their performance, and

identifies future research directions.

The growing interest and use of software-defined networking

(SDN) in modern data centers and communication networks has

led to extensive research into its potential applications,

limitations, and possible enhancements. This literature review

offers a comprehensive overview of the latest works concerning

various aspects of SDN, including its applications, performance

improvements, and challenges.

The potential of SDN to enable network innovation in data

centre networks has been examined by Dai et al. [5], who present

a survey highlighting the capabilities and promising trends in the

use of SDN for data centers. Several research works have delved

into the optimization of traffic engineering and flow

management in hybrid SDNs [6,8,14]. For instance, Ren et al.

[6] propose methods to enhance traffic engineering performance

in hybrid SDNs, while Khorsandroo et al. [8] provide an

extensive survey on the evolution of hybrid SDN.

Efforts have been made to address performance issues such

as routing, load balancing, and congestion in SDN

environments. Han et al. [9] discuss a QoS-aware routing

mechanism for OpenFlow-enabled wireless multimedia sensor

networks, while Lin et al. [14] introduce a dynamic traffic

engineering engine for delay-sensitive transfers. The work by

Hamdan et al. [12] provides a comprehensive survey on load

balancing techniques, while Wang et al. [13] propose a

congestion control framework.

Security is another key concern addressed in the reviewed

literature. Hassan et al. [10] present an SDN-based security

framework for critical infrastructure protection. In the context of

6G network security, Guo et al. [18] offer a survey on space-air-

ground-sea integrated network security. Additionally, SDN's

role in enhancing disaster-aware dynamic routing in multi-site

data center networks is explored by Zhang et al. [11].

SDN's role in facilitating the Internet of Things (IoT) and

other advanced technologies is a focal point in several studies

[15,16,19,26]. Tayyaba et al. [15] discuss the use of SDN in IoT,

while Ibrar et al. [16] present an intelligent solution for reliable

and time-sensitive flows in hybrid SDN-based FC IoT systems.

The theoretical and implementation aspects of SDN and

OpenFlow have been discussed by Hu et al. [21] and McKeown

et al. [25]. The topic of rules placement in OpenFlow networks

is further explored by Nguyen et al. [24]. Meanwhile, Lemeshko

et al. [22] propose a two-level method for fast rerouting in SDNs.

The literature also includes comprehensive surveys that

provide overviews of SDN from various angles. Benzekki et al.

[20] and Hu et al. [21] present a survey on SDN and OpenFlow,

while Alouache et al. [23] focus on IoV routing protocols.

Furthermore, Semong et al. [27] present a survey on intelligent

load balancing techniques in SDNs.

Several studies also propose scalable solutions for SDN. Al-

Fares et al. [7] present a scalable, commodity data center

network architecture, while Yu et al. [28] and Shin et al. [29]

propose scalable flow-based networking and vigilant switch

flow management solutions, respectively. Moreover, Huang et

al. [30] discuss dynamic routing for network throughput

maximization in SDNs.

In summary, the reviewed literature highlights the vast

potential and ongoing challenges of SDN in various fields.

While advancements have been made in terms of routing, load

balancing, congestion control, and security, ongoing research is

required to further optimize and secure SDN-based networks.

Additionally, the potential of SDN in emerging fields such as

IoT and 6G needs further exploration.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 557

IJRITCC | August 2023, Available @ http://www.ijritcc.org

The authors, M. C. Saxena et al. 2023 [31], explore the SDN

implementation on SDWAN and how its reliability and security

aspects can be enhanced.

The paper is structured in a clear and concise manner, with

an introduction that provides a brief overview of the history of

networking, including the development of circuit- switched

networks and the emergence of SDN. The authors then discuss

the benefits and drawbacks of each type of network, highlighting

the limitations of circuit-switched networks in terms of

scalability, flexibility, and cost- effectiveness.

In conclusion, the paper provides a useful methodology for

improving the security and reliability on SDWAN and its related

use cases which are of benefit to the industry and research

practitioners in SDN domain.

Authors in [30,32] discussed a dynamic routing method based

on maximizing the throughput for SDN environments. Figure 2

describes the an algorithm in the form of a flow chart that is

based link utilization based dynamic routing. The algorithm

aims to improve network performance by dynamically adjusting

the routing paths based on the current utilization levels of the

links.

Fig. 2 . Link utilization based Algorithm

The proposed algorithm is implemented as follows:

1. The network topology is represented as a graph, where

nodes represent switches and edges represent links

between switches.

2. The link utilization of each link is monitored and

updated periodically.

3. When a packet needs to be routed, the controller queries

the network topology and link utilization information to

determine the optimal path based on the following

criteria:

• The path should have the lowest total link

utilization among all available paths.

• If multiple paths have the same total link utilization,

the path with the least number of hops is chosen.

• If multiple paths have the same total link utilization

and number of hops, the path with the highest

residual bandwidth is chosen.

4. The routing path is updated dynamically based on the

current link utilization levels.

The proposed algorithm is compared with traditional shortest

path algorithms.

Overall, the proposed dynamic routing algorithm based on

link utilization shows promise for improving network

performance in SDN environments compared to traditional

shortest path algorithms.

There is another approach to compute paths in SDNs that

takes into account both the network topology and the traffic

requirements to improve network performance. In this approach,

the authors leverage the programmability and flexibility of SDN

to dynamically compute paths based on real-time network

conditions and traffic demands. The controller-based approach

is depicted in Figure 3 below. The Controller has a connectivity

with all nodes and the nodes are connected to the end hosts. The

Algorithm is based of the feedback mechanism loop where the

network conditions are used as input for determining the routing.

Fig 3. Controller based path computation

The proposed path computation approach consists of two

main components: a path computation engine (PCE) and a traffic

engineering (TE) module. The PCE[33] is responsible for

computing optimal paths based on network topology and traffic

requirements, while the TE module is responsible for collecting

Start

Initialize network

topology & routing
Paths

While network is

running:

Monitor Link utilization

Link util.
exceeds

Update Link weight and

routing path in
controller

Push updated routing

paths to switches

SW-2 SW-3

SW-1

Contro
lle

r

H1 H1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 558

IJRITCC | August 2023, Available @ http://www.ijritcc.org

real-time network performance data and communicating it to the

PCE for path computation. The PCE uses a modified version of

the Dijkstra algorithm to compute paths. The modification takes

into account traffic requirements such as bandwidth, delay, and

jitter, in addition to the shortest path based on hop count. The

authors propose a weight-based approach to compute the path

cost, where each network link is assigned a weight based on its

performance and capacity. The weight is dynamically adjusted

based on real-time network conditions such as link utilization,

congestion, and packet loss rate.

Fig. 4. PCE based computation

The TE module collects real-time network performance data

using network monitoring tools such as Simple Network

Management Protocol (SNMP) and OpenFlow. The data

collected includes link utilization, congestion, packet loss rate,

delay, and jitter. The TE module uses this data to detect network

congestion and performance degradation and communicates this

information to the PCE for path computation. The TE module

also takes into account traffic demands and applies traffic

engineering techniques such as traffic shaping and policing to

optimize network performance.

The proposed approach is evaluated using a simulated

network topology and traffic demands. The simulation results

show that the proposed approach outperforms existing path

computation approaches in terms of network throughput, delay,

and packet loss rate. The authors also demonstrate the scalability

of the approach by increasing the network size and traffic

demands.

In summary, the paper proposes a hybrid SDN path

computation approach that leverages real-time network

performance data and traffic demands to compute optimal paths

in SDNs. The approach is based on a modified Dijkstra

algorithm that takes into account traffic requirements and

dynamically adjusts link weights based on real-time network

conditions. The approach is evaluated using a simulated network

topology and traffic demands and shows improved network

performance compared to existing approaches.

In 2019, The paper "An SDN-Based Congestion Control

Framework for Data Center Networks" proposes a novel

congestion control framework based on Software-Defined

Networking (SDN) for data center networks[34]. The proposed

approach addresses the challenges of congestion control in data

center networks, such as traffic heterogeneity, burstiness, and

dynamic traffic patterns.

The proposed framework consists of three main components:

a congestion detection module, a congestion notification

module, and a congestion control module.

The congestion detection module monitors network traffic

and detects congestion using a set of congestion metrics such as

packet loss rate, delay, and queue length. The module uses

OpenFlow to collect network statistics from switches and

communicates this information to the controller for congestion

control decisions.

The congestion notification module sends congestion

notifications to the affected flows or hosts to reduce their

transmission rate. The module uses OpenFlow to set flow rules

that limit the transmission rate of affected flows or hosts.

Fig. 5. QoS based computation using OpenFlow

The congestion control module implements a set of

congestion control algorithms based on the network conditions

and traffic requirements. The module uses a feedback

mechanism to adjust the congestion control parameters based on

the network feedback and traffic demands. The module supports

different congestion control algorithms such as TCP-Friendly

Rate Control (TFRC)[35], Random Early Detection (RED), and

Explicit Congestion Notification (ECN).

The proposed approach is evaluated using a simulated data

center network topology and traffic demands. The simulation

results show that the proposed approach outperforms existing

congestion control mechanisms in terms of network throughput,

delay, and packet loss rate. The authors also demonstrate the

scalability of the approach by increasing the network size and

traffic demands.

In summary, the paper proposes an SDN-based congestion

control framework for data center networks that addresses the

challenges of congestion control in such networks. The

framework consists of a congestion detection module, a

Controller PCE

SW-1

SW-2

SW-3

SW-4

SNMP OF

PCEP

P
C

EP

PCEP

PCEP

Congestion detection Module Congestion Notification Module Congestion control Module

SW-1

SW-2

SW-3

SW-4

SW-5

SW-6

Open Flow
Open FlowOpen Flow

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 559

IJRITCC | August 2023, Available @ http://www.ijritcc.org

congestion notification module, and a congestion control

module. The approach is evaluated using a simulated data center

network topology and traffic demands and shows improved

network performance compared to existing mechanisms.

In the same year, The paper "Dynamic Traffic Engineering

Based on QoS Constraints in SDN"[36] proposes a dynamic

traffic engineering approach based on QoS constraints in SDN

environments. The proposed approach aims to optimize network

performance by dynamically adjusting the network resources to

meet the changing traffic demands and QoS requirements.

The proposed approach consists of two main components: a

traffic prediction module and a traffic engineering module. The

overall architecture is shown in Figure 6 of the paper.

Fig. 6. Dynamin Traffic Engineering with ML and LP

The traffic prediction module predicts the future traffic

demands based on historical traffic data and current network

conditions. The module uses machine learning techniques such

as Long Short-Term Memory (LSTM) [37] networks to model

the traffic patterns and predict the future traffic demands.

The traffic engineering module optimizes the network

resources to meet the predicted traffic demands and QoS

requirements. The module uses a Linear Programming (LP)

model to allocate network resources such as bandwidth, link

capacity, and flow paths based on the QoS constraints. The LP

model takes into account the QoS requirements such as delay,

jitter, and packet loss rate, as well as the network topology and

traffic demands. The LP model also considers the current

network conditions such as link congestion and capacity

utilization.

The proposed approach is evaluated using a simulated SDN

environment and different traffic patterns and QoS constraints.

The simulation results show that the proposed approach

outperforms existing traffic engineering mechanisms in terms of

network throughput, delay, and packet loss rate. The authors also

demonstrate the scalability of the approach by increasing the

network size and traffic demands.

In summary, the paper proposes a dynamic traffic

engineering approach based on QoS constraints in SDN

environments. The approach consists of a traffic prediction

module and a traffic engineering module. The traffic prediction

module predicts the future traffic demands based on historical

traffic data and current network conditions, while the traffic

engineering module optimizes the network resources to meet the

predicted traffic demands and QoS requirements. The approach

is evaluated using a simulated SDN environment and shows

improved network performance compared to existing traffic

engineering mechanisms.

In the same year, The paper "Performance Evaluation of

Hybrid SDN Path Computation Approach" evaluates the

performance of a hybrid path computation approach in SDN

environments[38]. The proposed approach combines the

advantages of centralized and distributed path computation to

improve network performance.

The evaluation is conducted using the Mininet network

emulator and the Ryu SDN controller [39]. The authors compare

the proposed hybrid approach with two existing path

computation approaches: centralized and distributed. The

evaluation metrics include network delay, throughput, and

packet loss rate.

The authors first evaluate the impact of different network

topologies on the performance of the three path computation

approaches. They use three different network topologies: Fat-

Tree, Jellyfish, and Random. The simulation results show that

the proposed hybrid approach outperforms the existing

approaches in terms of network delay and throughput, while

maintaining a low packet loss rate.

Next, the authors evaluate the impact of different traffic

patterns on the performance of the three path computation

approaches. They use two different traffic patterns: Uniform and

Hotspot. The simulation results show that the proposed hybrid

approach outperforms the existing approaches in terms of

network delay and packet loss rate for both traffic patterns, while

maintaining a high network throughput. Finally, the authors

evaluate the impact of different network sizes on the

performance of the three path computation approaches. They use

three different network sizes: Small, Medium, and Large. The

simulation results show that the proposed hybrid approach

outperforms the existing approaches in terms of network delay,

throughput, and packet loss rate for all network sizes.

IV. RESULTS & DISCUSSION

Our review found that the most common path computation

techniques in SDN are centralized and distributed algorithms.

Centralized algorithms provide a global view of the network and

can compute optimal paths, but they are not scalable for large

Traffic Prediction
Module

Traffic Engineering
Module

Historical
Data Model

Capacity,
Flow and

Qos

Node-1 Node-2 Node-3 Node-4 Node-5

ML LP

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 560

IJRITCC | August 2023, Available @ http://www.ijritcc.org

networks. Distributed algorithms, on the other hand, can handle

large networks but may not always find the optimal path. Other

techniques, such as heuristic algorithms and machine learning-

based approaches, have also been proposed to address the

limitations of centralized and distributed algorithms. Heuristic

algorithms are used when real-time path computation is required,

while machine learning-based approaches are used when the

network traffic is unpredictable.

• 2008: The OpenFlow[40] protocol is proposed by

researchers at Stanford University, including Martin

Casado, Teemu Koponen, and Scott Shenker.

• 2011: The Open Networking Foundation (ONF) [41] is

founded to promote the adoption of SDN and develop open

standards, including the OpenFlow protocol.

• 2012: The IETF introduces the Network Service Header

(NSH) protocol for service chaining in SDNs [42].

• 2013: The ONF releases OpenFlow 1.3, which includes

support for IPv6, multipath routing, and group tables.

• 2014: The IETF introduces the Path Computation Element

Communication Protocol for centralized path computation

in SDNs[43].

• 2015: The ONF releases OpenFlow 1.5, which includes

support for hybrid switches, fast failover, and metadata.

• 2016: The IETF introduces the Service Function Chaining

(SFC) framework for chaining network services in

SDNs[44].

• 2017: The ONF releases Stratum [45], an open-source

software switch for SDN data planes.

• 2018: The IETF introduces the Path aware Networking

(PAN) architecture for path-aware networking in SDNs.

• 2020: The ONF releases Aether, an open source SDN

controller that supports multiple southbound interfaces,

including OpenFlow, P4Runtime, and gNMI.

• 2022: The IETF introduces the Segment Routing with

MPLS (SR-MPLS) [46] protocol for path computation and

forwarding in SDNs.

Fig. 1. Major Milestone in SDN technology since 2008

Overall, SDN protocols and path computation algorithms have

continued to evolve and improve over the years, driven by

advances in networking technology and the need for more

efficient and flexible network management. The future of SDN

is likely to see even more innovation and development as the

technology continues to mature and become more widely

adopted.

This paper highlights the importance of selecting the

appropriate path computation technique based on the network

size and traffic demands. Centralized algorithms are suitable for

small to medium-sized networks with predictable traffic, while

distributed algorithms are suitable for large networks with

unpredictable traffic. Hybrid algorithms and machine learning-

based approaches are suitable for real-time path computation and

handling unpredictable traffic, respectively. Our review also

identified some limitations of the existing path computation

techniques, such as scalability and reliability issues. Future

research could focus on addressing these limitations by

developing new path computation techniques that are scalable,

reliable, and efficient.

V. HYBRID SDN PATH COMPUTATION-OUR

PROPOSAL

A hybrid SDN-based path computation approach combines

both centralized and distributed elements to leverage the benefits

of both paradigms. Here's a high-level description of a hybrid

SDN-based path computation approach:

1. Centralized Path Computation:

• A centralized controller is responsible for overall

network management and path computation.

• The controller collects network topology information

from switches and maintains a global view of the

network.

• It uses this information to compute optimal paths based

on various metrics, such as shortest path, traffic

engineering objectives, or QoS requirements.

• The controller can utilize traditional algorithms like

Dijkstra's algorithm or linear/integer programming

techniques to perform path computation.

• The computed paths are then pushed to the switches,

which follow the controller's instructions for forwarding

traffic.

2. Distributed Path Computation:

• While the centralized approach provides global

optimization, it may face scalability and performance

challenges in large networks.

2008 2011 2012 2013 2014 2015 2016 2017 2018 2020 2022

Open Flow
protocol

ONF

IETF
NSH

Protocol

Open Flow
1.3

PCEP
For
SDN

Open Flow
1.5

SFC
Framework

Stratum

Path aware
networking

Open SDN
Controller

SR MPLS

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 561

IJRITCC | August 2023, Available @ http://www.ijritcc.org

• In the distributed path computation element, switches

have the capability to perform local path computations.

• Each switch has knowledge of its local neighbourhood

and can make intelligent decisions based on local

information.

• Switches exchange information with their neighbouring

switches to learn about network conditions and available

paths.

• Using distributed algorithms like link-state routing or

distance vector algorithms, switches can collectively

make informed decisions about path selection.

• The distributed path computation element promotes load

balancing, fault tolerance, and responsiveness to local

changes.

3. Interaction and Decision Making:

• The hybrid approach incorporates interaction between

the centralized controller and distributed switches.

• The controller communicates with switches to exchange

network state information and receive updates on link

status, traffic loads, or topology changes.

• Based on this information, the controller can modify or

update the computed paths as needed.

• The switches, in turn, can request path re-computation

from the controller when local conditions change

significantly or when specific requirements arise.

• The final decision on path selection is a collaborative

effort between the centralized controller and distributed

switches, leveraging the strengths of both elements.

The hybrid SDN-based path computation approach aims to

strike a balance between global optimization and distributed

decision-making. It combines the efficiency and accuracy of

centralized path computation with the scalability and

responsiveness of distributed path computation. The specific

algorithms, protocols, and mechanisms employed in such an

approach can vary based on the requirements, network size, and

available resources.

A. Mathematical analysis of the Aproaches

1. Centralized Path Computation:

Let's consider a network represented by a directed graph G = (V,

E), where V is the set of vertices (nodes) and E is the set of edges

(links). The cost of a link (u, v) is denoted by C(u, v). We want

to compute the optimal path P from a source node s to a

destination node d. The objective is to minimize the total cost of

the path. The mathematical equation for centralized path

computation using Dijkstra's algorithm is:

P = argminΣC(u, v) (1)

,for all paths P from s to d

2. Distributed Path Computation:

In the distributed path computation, each node computes its local

paths based on local information and interactions with

neighbouring nodes.

We consider a network represented by a directed graph G = (V,

E). Each node v maintains a local cost table, CT(v), which stores

the costs of reaching destination nodes from v. The local cost

from node u to v is denoted by CT(u, v). The objective is to find

the minimum cost path from a source node s to a destination

node d based on local information. The mathematical equation

for distributed path computation using a link-state routing

algorithm is:

CT(s, d) = min {C(s, v) + CT(v, d)} (2)

,for all neighbouring nodes v

3. Hybrid Path Computation:

The hybrid path computation combines the advantages of both

centralized and distributed approaches. It involves a centralized

controller computing optimal paths and distributed switches

performing local path computations. Let Pc be the path

computed by the centralized controller, and Pd be the path

computed by a distributed switch. The objective is to select the

path with the minimum cost between the two options. The

mathematical equation for hybrid path computation is:

P = argmin(C(Pc), C(Pd)) (3)

In these equations, C(u, v) represents the cost of a link from node

u to node v. The objective is to minimize the total cost of the

path, and the argmin function selects the path with the minimum

cost. The specific computations and algorithms may vary

depending on the path selection criteria and the network

environment.

B. Pseudocode and Implementation

We implemented the algorithm as follows for carrying out the

path computation efficiency analysis.

The python code which we implanted is available on Github as

a public repository [47]. The compute_hybrid_path function is

the main entry point for the hybrid path computation. It calls the

compute_optimal_path function for centralized path

computation and the compute_local_path function for

distributed path computation. The resulting paths and costs from

both approaches are compared, and the one with the minimum

cost is returned as the hybrid path.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 562

IJRITCC | August 2023, Available @ http://www.ijritcc.org

The compute_optimal_path function uses a queue-based

implementation of Dijkstra's algorithm [48] to compute the

optimal path from the source node to the destination node. It

iteratively explores the graph by considering the neighboring

nodes and updating the cost and path.

The compute_local_path function performs a recursive search

for the local path from the given node to the destination. It

utilizes a visited set to prevent infinite recursion in case of

cycles. The function explores each neighbor, recursively calling

itself to find the minimum cost path. The visited set keeps track

of visited nodes to avoid revisiting them.

Please note that this pseudocode assumes the existence of a

network_topology data structure that represents the network's

topology. It also assumes the availability of basic operations and

data structures such as queues, sets, and dictionaries to

implement the algorithm. Figure 7 below presents the

pseudocode:

Fig. 7. Hybrid Algorithm Pseudocode

C. Performance analysis and results

We generated random graph representing a network where

nodes represent devices or locations, and edges represent

connections or links between them. The weights assigned to the

edges can represent various metrics, such as distance, latency, or

cost.

After generating the random graph, our code proceeds to

perform path computations for different test scenarios, defined

in the ‘test_scenarios’ list. Each test scenario consists of a source

node and a destination node.

For each test scenario, the code calculates the cost and path

using the distributed, centralized and our hybrid technique.

The costs computed by the three algorithms for each test

scenario are stored in separate lists.

Finally, the code plots a comparative analysis graph using

matplotlib. It compares the costs of the three algorithms for the

test scenarios. The x-axis represents the test scenarios, and the

y-axis represents the cost. The graph helps in analysing and

comparing the performance of the algorithms in terms of the cost

incurred for different test scenarios.

Fig. 8. Graph generated for test scenario (0,9)

Fig. 9. Graph generated for test scenario (1,8)

function compute_hybrid_path(source, destination):

 centralized_cost, centralized_path =
compute_optimal_path(source, destination)

 distributed_cost, distributed_path = compute_local_path(source,

destination)

 if centralized_cost <= distributed_cost:

 return centralized_cost, centralized_path
 else:

 return distributed_cost, distributed_path

function compute_optimal_path(source, destination):

 queue = [(0, source, [])]
 while queue is not empty:

 cost, node, path = queue.pop(0)

 path = path + [node]
 if node == destination:

 return cost, path

 for neighbor, neighbor_cost in
network_topology[node].items():

 queue.append((cost + neighbor_cost, neighbor, path))

 return infinity, None

function compute_local_path(node, destination, visited):

 visited.add(node)
 if node == destination:

 return 0, [node]

 min_cost = infinity

 min_path = None

 for neighbor, neighbor_cost in network_topology[node].items():
 if neighbor not in visited:

 if neighbor == destination:

 return neighbor_cost, [node, neighbor]
 cost, path = compute_local_path(neighbor, destination,

visited)

 if cost + neighbor_cost < min_cost:
 min_cost = cost + neighbor_cost

 min_path = [node] + path

 visited.remove(node)

 return min_cost, min_path

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 563

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Fig. 10. Graph generated for test scenario (2,7)

Figure 8, 9 and 10 show the test topology graphs used for 3

test scenarios. The first test scenario aimed at finding the best

path between node 0 to node 9. The second test scenario was to

find the best path from node 1 to destination node 8. The third

scenario took node 2 as source and destination as node 7 and

found the best path using all three approaches.

Fig. 11. Comparative analysis for 3 tests on a 10 node graph

Figure 11 shows the graph with comparative analysis of the

best path found by the three approaches for the above mentioned

3 scenarios. It is clearly visible that the distributed approach

always found the best path with highest cost while the

centralized and hybrid approaches were almost comparable, with

hybrid as a thin line winner.

We then tried to run our algorithms for finding the shortest

path for a randomly generated graph consisting of 30 nodes. We

tried to find the shortest path between node 0 to node 29, node 1

to node 28, node 2 to node 27, node 0 to node 27, node 2 to node

29 and node 0 to node 28. We plotted the result in a line graph

as shown below. Figure 12 shows the comparative analysis of all

three approaches on various test scenarios trying to find the best

path from a source node to destination. Hybrid and Centralized

algorithms clearly outperformed the distributed methodology.

Fig. 12. Comparative analysis for multiple scenarios

In summary, the code generates random graphs, performs

path computations using different algorithms, and presents a

comparative analysis of the costs incurred by the algorithms for

the given test scenarios. As we can see that our hybrid algorithm

performed the best in terms of generating the shortest path

followed by the centralized algo while the distributed algorithm

reported the longest path results.

VI. CHALLENGES AND SCOPE OF FUTURE

RESEARCH

SDN is a new paradigm for designing and managing

computer networks that has gained significant attention in recent

years. SDN separates the control plane from the data plane,

allowing network administrators to manage network resources

centrally and efficiently. One of the critical components of SDN

is path computation, which involves determining the best path

for data packets to traverse the network. This paper explores the

challenges and future research directions related to SDN path

computation techniques, based on the reviews of ten relevant

research articles.

A. Challenges and Limitations

1. Scalability: SDN path computation techniques need to be

scalable to handle large-scale networks. The centralization of

network control in SDN makes it challenging to compute paths

for thousands or even millions of network nodes. Existing

algorithms are not optimized for scalability, and new techniques

are required to overcome this challenge [49].

2. Network topology changes: Networks are dynamic, and

changes in topology occur frequently. SDN path computation

techniques need to adapt to these changes in real-time. Existing

algorithms are not efficient in handling such changes, and new

techniques need to be developed [50].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 564

IJRITCC | August 2023, Available @ http://www.ijritcc.org

3. Network traffic engineering: Traffic engineering is an

essential aspect of network design, and SDN is no exception.

Path computation techniques need to consider traffic

engineering objectives, such as load balancing and QoS, when

computing paths. Existing algorithms do not provide efficient

traffic engineering solutions, and new techniques are required.

4. Security: Security is a critical concern in network design,

and SDN is no exception. Path computation techniques need to

be secure to prevent attacks such as denial-of-service attacks and

data interception. Existing algorithms do not provide sufficient

security measures, and new techniques are required[51].

5. Interoperability: SDN path computation techniques need

to be interoperable with existing network devices and protocols.

Existing algorithms may not be compatible with legacy devices

and protocols, and new techniques need to be developed to

ensure interoperability [52].

TABLE II. CHALLENGES OF SDN PATH COMPUTATION TECHNIQUES

Path

Computation

Technique

Challenges

Shortest Path

First (SPF)

SPF can lead to suboptimal paths in the presence of link or

node failures, as it doesn't take into account network

congestion, bandwidth availability, or other constraints.

SPF also requires frequent updates to the network

topology, which can be computationally expensive in

large-scale networks[53].

Constraint-

Based Path

Computation

The main challenge with constraint-based path

computation is the complexity of specifying and managing

the constraints. This method requires accurate

measurement and monitoring of network resources such as

bandwidth, latency, and jitter. It also requires coordination

and negotiation between different network domains and

service providers to ensure that the constraints are

met[54].

Traffic

Engineering

(TE)

The main challenge with TE is the difficulty of optimizing

the use of network resources while providing the required

level of service to different types of traffic. This method

requires accurate prediction and monitoring of network

traffic patterns, which can be challenging in dynamic and

heterogeneous networks. TE also requires the coordination

and configuration of multiple network devices and

protocols to ensure the smooth flow of traffic[55].

Load

Balancing

The main challenge with load balancing is the difficulty of

distributing traffic evenly across multiple links or paths,

while avoiding congestion and maintaining high network

performance. Load balancing requires accurate

measurement and monitoring of network traffic, which

can be challenging in dynamic and heterogeneous

networks. It also requires the coordination and

configuration of multiple network devices and protocols to

ensure that the traffic is distributed properly[56].

Multipath

Routing

The main challenge with multipath routing is the

complexity of managing multiple paths and ensuring that

they are used efficiently and effectively. Multipath routing

requires accurate prediction and monitoring of network

traffic patterns, which can be challenging in dynamic and

heterogeneous networks. It also requires the coordination

and configuration of multiple network devices and

protocols to ensure that the traffic is distributed

properly[57].

QoS-Based

Path

Computation

The main challenge with QoS-based path computation is

the difficulty of providing the required level of service to

different types of traffic while ensuring that the network

resources are used efficiently. QoS-based path

computation requires accurate measurement and

monitoring of network resources such as bandwidth,

latency, packet loss, and jitter. It also requires the

coordination and negotiation between different network

domains and service providers to ensure that the QoS

requirements are met[58].

VII. FUTURE RESEARCH DIRECTIONS

1. Machine learning-based path computation: Machine

learning [59] techniques, such as reinforcement learning, deep

learning, and Bayesian networks, can be used to compute paths

in SDN. These techniques can adapt to changing network

conditions, improve scalability, and provide efficient traffic

engineering solutions.

2. Decentralized path computation: Decentralized path

computation techniques can overcome the scalability and

topology changes challenges of SDN. Decentralized algorithms

distribute path computation among network nodes, reducing the

load on the central controller.

3. Path computation in multi-domain networks: multi-

domain networks are becoming more prevalent, and SDN path

computation techniques need to be developed for such networks.

These techniques need to consider the different policies and

objectives of each domain and provide efficient inter-domain

path computation.

4. Security-aware path computation: SDN path

computation techniques need to be developed with security

in mind. Techniques such as homomorphic encryption and

blockchain can be used to provide secure path computation in

SDN.

5. Energy-efficient path computation [60]: Energy efficiency

is an essential concern in network design, and SDN is no

exception. Path computation techniques need to be developed to

minimize energy consumption in SDN networks.

6. Hybrid path computation techniques: Hybrid path

computation techniques that combine centralized and

decentralized algorithms can provide efficient and scalable path

computation in SDN. These techniques can balance the load on

the central controller while also adapting to changing network

conditions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 565

IJRITCC | August 2023, Available @ http://www.ijritcc.org

SDN has emerged as a promising technology that offers

flexible and programmable network infrastructure. Path

computation in SDN is a crucial task for network management,

where a network controller determines the optimal path between

two endpoints in the network. This path computation can be

challenging in large-scale networks with complex topologies

and diverse traffic requirements. To address this issue,

researchers have proposed various path computation techniques

in SDN, which have been reviewed in this paper.

This review paper analysed ten research articles that focused

on SDN path computation techniques. The articles covered a

broad range of topics, including security issues in SDN, resource

management in cloud computing, mobile cloud computing, data

center network architectures, load balancing techniques in cloud

computing, wireless sensor networks, and software-defined

network virtualization. The articles also discussed various

applications of SDN, such as industrial automation, cognitive

radio networks, and fog computing.

One of the key findings of this review is that the SDN path

computation techniques vary widely in their approach and

implementation. Some techniques use heuristics-based

algorithms, while others utilize optimization algorithms, such as

linear programming, integer programming, and genetic

algorithms. Some techniques focus on the shortest path, while

others consider multiple objectives, such as bandwidth

utilization, network congestion, and energy efficiency. Some

techniques take a centralized approach, where the network

controller computes the path, while others adopt a distributed

approach, where the path computation is performed by the

network nodes.

Another important finding is that the SDN path computation

techniques face several challenges, such as scalability,

robustness, security, and privacy. Scalability is a significant

challenge, especially for large-scale networks, where the number

of network nodes and traffic flows can be enormous. Robustness

is another challenge, where the path computation should be

resilient to network failures and attacks. Security and privacy are

also crucial challenges, where the path computation should

ensure confidentiality, integrity, and availability of the network

resources.

Despite the challenges, the SDN path computation

techniques have shown promising results in improving network

performance and efficiency. For example, the load balancing

techniques in cloud computing can improve resource utilization

and reduce response time for cloud applications. The wireless

sensor networks can benefit from SDN path computation by

optimizing data routing and minimizing energy consumption.

The software-defined network virtualization can enhance the

network service provisioning and support multiple tenants with

isolated network resources.

In conclusion, this review paper has highlighted the

importance of SDN path computation techniques in network

management and analysed seventy-two research articles that

proposed different approaches for path computation in SDN.

The review revealed that the SDN path computation techniques

vary widely in their approach, implementation, and application.

Furthermore, the review identified several challenges that the

SDN path computation techniques face, such as scalability,

robustness, security, and privacy. Despite the challenges, the

SDN path computation techniques have shown promising results

in improving network performance and efficiency. Future

research in this area should focus on addressing the challenges

and developing innovative approaches that can handle the

growing complexity of modern networks.

REFERENCES

[1] M. C. Saxena and P. Bajaj, "Evolution of Wide Area network

from Circuit Switched to Digital Software defined Network,"

2021 International Conference on Technological Advancements

and Innovations (ICTAI), Tashkent, Uzbekistan, 2021, pp. 351-

357, doi: 10.1109/ICTAI53825.2021.9673201

[2] Gao, J., Zhao, Q., Ren, W., Swami, A., Ramanathan, R., & Bar-

Noy, A. (2014). Dynamic shortest path algorithms for

hypergraphs. IEEE/ACM Transactions on networking, 23(6),

1805-1817.

[3] Alparslan, O., Akar, N., & Karasan, E. (2011). TCP flow aware

adaptive path switching in diffserv enabled MPLS networks.

European Transactions on Telecommunications, 22(5), 185-199.

[4] Chekired, D. A., Togou, M. A., & Khoukhi, L. (2018, December).

A hybrid SDN path computation for scaling data centers

networks. In 2018 IEEE Global Communications Conference

(GLOBECOM) (pp. 1-6). IEEE.

[5] Dai, B., Xu, G., Huang, B., Qin, P., & Xu, Y. (2017). Enabling

network innovation in data center networks with software defined

networking: A survey. Journal of Network and Computer

Applications, 94, 33-49.

[6] Ren, C., Wang, S., Ren, J., Wang, X., Song, T., & Zhang, D.

(2016, December). Enhancing traffic engineering performance

and flow manageability in hybrid SDN. In 2016 IEEE Global

Communications Conference (GLOBECOM) (pp. 1-7). IEEE.

[7] S. S. Al-Fares, A. Loukissas, and A. Vahdat, "A Scalable,

Commodity Data Center Network Architecture," ACM

SIGCOMM Computer Communication Review, vol. 39, no. 4, pp.

63-74, 2009.

[8] Khorsandroo, S., Sánchez, A. G., Tosun, A. S., Arco, J. M., &

Doriguzzi-Corin, R. (2021). Hybrid SDN evolution: A

comprehensive survey of the state-of-the-art. Computer

Networks, 192, 107981.

[9] Han, L., Sun, S., Joo, B., Jin, X., & Han, S. (2016). QoS-aware

routing mechanism in OpenFlow-enabled wireless multimedia

sensor networks. International Journal of Distributed Sensor

Networks, 12(7), 9378120.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 566

IJRITCC | August 2023, Available @ http://www.ijritcc.org

[10] A. Hassan, A. Ali-Eldin, H. El-Gendy, and S. El-Rabaie, "An

SDN-based Security Framework for Critical Infrastructure

Protection," IEEE Transactions on Industrial Informatics, vol. 14,

no. 11, pp. 4983-4993, 2018.

[11] Zhang, W., Li, X., & Ma, L. (2021). Disaster-Aware Dynamic

Routing for SDN-Based Multi-Site Data Center Networks.

Journal of Networking and Network Applications, 1(1), 9-18.

[12] Hamdan, M., Hassan, E., Abdelaziz, A., Elhigazi, A.,

Mohammed, B., Khan, S., ... & Marsono, M. N. (2021). A

comprehensive survey of load balancing techniques in software-

defined network. Journal of Network and Computer Applications,

174, 102856.

[13] Antonina A. Filimonova, Andrey A. Chichirov, Alexander V.

Pechenkin, Artem S. Vinogradov. (2023). Technological Scheme

of a Solid Oxide Fuel Cell – Microturbine Hybrid Power Plant for

Electricity Production. International Journal of Intelligent

Systems and Applications in Engineering, 11(3s), 301–306.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2694

[14] C. Wang, X. Zhang, and L. Wang, "An SDN-Based Congestion

Control Framework for Data Center Networks," IEEE

Transactions on Network and Service Management, vol. 16, no.

4, pp. 1714-1725, 2019.

[15] Lin, C., Bi, Y., Zhao, H., Liu, Z., Jia, S., & Zhu, J. (2018). DTE-

SDN: A dynamic traffic engineering engine for delay-sensitive

transfer. IEEE Internet of Things Journal, 5(6), 5240-5253.

[16] Tayyaba, S. K., Shah, M. A., Khan, O. A., & Ahmed, A. W.

(2017, July). Software defined network (sdn) based internet of

things (iot) a road ahead. In Proceedings of the international

conference on future networks and distributed systems (pp. 1-8).

[17] Ibrar, M., Wang, L., Muntean, G. M., Chen, J., Shah, N., & Akbar,

A. (2020). IHSF: An intelligent solution for improved

performance of reliable and time-sensitive flows in hybrid SDN-

based FC IoT systems. IEEE Internet of Things Journal, 8(5),

3130-3142.

[18] Alidadi, A., Arab, S., & Askari, T. (2022). A novel optimized

routing algorithm for QoS traffic engineering in SDN-based

mobile networks. ICT Express, 8(1), 130-134.

[19] Guo, H., Li, J., Liu, J., Tian, N., & Kato, N. (2021). A survey on

space-air-ground-sea integrated network security in 6G. IEEE

Communications Surveys & Tutorials, 24(1), 53-87.

[20] Huo, R., Yu, F. R., Huang, T., Xie, R., Liu, J., Leung, V. C., &

Liu, Y. (2016). Software defined networking, caching, and

computing for green wireless networks. IEEE Communications

Magazine, 54(11), 185-193.

[21] Benzekki, K., El Fergougui, A., & Elbelrhiti Elalaoui, A. (2016).

Software‐defined networking (SDN): a survey. Security and

communication networks, 9(18), 5803-5833.

[22] Hu, F., Hao, Q., & Bao, K. (2014). A survey on software-defined

network and openflow: From concept to implementation. IEEE

Communications Surveys & Tutorials, 16(4), 2181-2206.

[23] Lemeshko, O., Yeremenko, O., & Hailan, A. M. (2017, October).

Two-level method of fast ReRouting in software-defined

networks. In 2017 4th International Scientific-Practical

Conference Problems of Infocommunications. Science and

Technology (PIC S&T) (pp. 376-379). IEEE.

[24] Alouache, L., Nguyen, N., Aliouat, M., & Chelouah, R. (2019).

Survey on IoV routing protocols: Security and network

architecture. International Journal of Communication Systems,

32(2), e3849.

[25] Nguyen, X. N., Saucez, D., Barakat, C., & Turletti, T. (2015).

Rules placement problem in OpenFlow networks: A survey. IEEE

Communications Surveys & Tutorials, 18(2), 1273-1286.

[26] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,

Peterson, L., Rexford, J., ... & Turner, J. (2008). OpenFlow:

enabling innovation in campus networks. ACM SIGCOMM

computer communication review, 38(2), 69-74.

[27] El-Garoui, L., Pierre, S., & Chamberland, S. (2020). A new SDN-

based routing protocol for improving delay in smart city

environments. Smart Cities, 3(3), 1004-1021.

[28] Dilli Babu M., Sambath M. (2023). Heart Disease Prognosis and

Quick Access to Medical Data Record Using Data Lake with

Deep Learning Approaches. International Journal of Intelligent

Systems and Applications in Engineering, 11(3s), 292–300.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2693

[29] Semong, T., Maupong, T., Anokye, S., Kehulakae, K.,

Dimakatso, S., Boipelo, G., & Sarefo, S. (2020). Intelligent load

balancing techniques in software defined networks: A survey.

Electronics, 9(7), 1091.

[30] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, "Scalable Flow-

Based Networking with DIFANE," ACM SIGCOMM Computer

Communication Review, vol. 41, no. 4, pp. 351-362, 2011.

[31] Shin, S., Yegneswaran, V., Porras, P., & Gu, G. (2013,

November). Avant-guard: Scalable and vigilant switch flow

management in software-defined networks. In Proceedings of the

2013 ACM SIGSAC conference on Computer & communications

security (pp. 413-424)..

[32] Huang, M., Liang, W., Xu, Z., Xu, W., Guo, S., & Xu, Y. (2016,

April). Dynamic routing for network throughput maximization in

software-defined networks. In IEEE INFOCOM 2016-The 35th

Annual IEEE International Conference on Computer

Communications (pp. 1-9). IEEE.

[33] Prof. Deepanita Mondal. (2018). Analysis and Evaluation of

MAC Operators for Fast Fourier Transformation. International

Journal of New Practices in Management and Engineering, 7(01),

01 - 07. https://doi.org/10.17762/ijnpme.v7i01.62

[34] Saxena, M. C., Sabharwal, M., & Bajaj, P. (2023). A novel

method to enhance the reliability of transmission over secured

SDWAN overlay. Journal of Theoretical and Applied Information

Technology, 101(14). In press.

[35] Madanagopal, R. & Rani, N. & Gonsalves, Timothy. (2007). Path

Computation Algorithms for Dynamic Service Provisioning in

SDH Networks. 206 - 215. 10.1109/INM.2007.374785.

[36] Farrel, A., Vasseur, J.-P., & Ash, J. (2006). A Path Computation

Element (PCE)-Based Architecture. IETF.

https://doi.org/10.17487/RFC4655

[37] Alexei Ivanov, Machine Learning for Traffic Prediction and

Optimization in Smart Cities , Machine Learning Applications

Conference Proceedings, Vol 3 2023.

[38] Abdelmoniem, Ahmed M., and Brahim Bensaou. "SDN-based

incast congestion control framework for data centers:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7468

Article Received: 25 May 2023 Revised: 21 July 2023 Accepted: 04 August 2023

 567

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Implementation and evaluation." CSE Dept, HKUST, Tech. Rep.

HKUST-CS16-01 (2016).

[39] Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2008). TCP

Friendly Rate Control (TFRC): Protocol Specification. RFC

5348.

[40] Bahnasse, A., Louhab, F. E., Oulahyane, H. A., Talea, M., &

Bakali, A. (2018). Novel SDN architecture for smart MPLS traffic

engineering-DiffServ aware management. Future Generation

Computer Systems, 87, 115-126.

[41] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural computation, 9(8), 1735-1780.

[42] Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN

networks: A survey of existing approaches. IEEE

Communications Surveys & Tutorials, 20(4), 3259-3306.

[43] Li, Y., Guo, X., Pang, X., Peng, B., Li, X., & Zhang, P. (2020,

August). Performance analysis of floodlight and Ryu SDN

controllers under mininet simulator. In 2020 IEEE/CIC

International Conference on Communications in China (ICCC

Workshops) (pp. 85-90). IEEE.

[44] Stankovski, F. (2014). Openflow: Enabling innovation in campus

networks.

[45] Schaller, S., & Hood, D. (2017). Software defined networking

architecture standardization. Computer standards & interfaces,

54, 197-202.

[46] Quinn, P., & Nadeau, T. (2012). Service Function Chaining:

Network Service Header (NSH). Internet Engineering Task Force

(IETF). Retrieved from https://datatracker.ietf.org/doc/draft-

quinn-sfc-nsh/

[47] IETF (2014). Path Computation Element Communication

Protocol (PCEP) Extensions for Stateful PCE. RFC 8231.

Retrieved from https://datatracker.ietf.org/doc/rfc8231/

[48] IETF (2016). Service Function Chaining (SFC) Architecture.

RFC 7665. Retrieved from

https://datatracker.ietf.org/doc/rfc7665/

[49] O'Connor, B., Tseng, Y., Pudelko, M., Cascone, C., Endurthi, A.,

Wang, Y., ... & Vahdat, A. (2019, September). Using P4 on fixed-

pipeline and programmable Stratum switches. In 2019

ACM/IEEE symposium on architectures for networking and

communications systems (ANCS) (pp. 1-2). IEEE.

[50] Filsfils, C., Previdi, S., Bashandy, A., Decraene, B., Litkowski,

S., Horneffer, M., ... & Crabbe, E. (2014). Segment Routing with

MPLS data plane. draft-ietf-spring-segment-routing-mpls-05.

[51] Saxena, M. C. (n.d.). Hybrid-Path-Computation [Python].

GitHub. Retrieved July 3, 2023, from

https://github.com/m22aie240/Hybrid-Path-

Computation/blob/main/comparison.py

[52] Javaid, A. (2013). Understanding Dijkstra's algorithm. Available

at SSRN 2340905.

[53] Karakus, M., & Durresi, A. (2017). A survey: Control plane

scalability issues and approaches in software-defined networking

(SDN). Computer Networks, 112, 279-293.

[54] Wazirali, R., Ahmad, R., & Alhiyari, S. (2021). SDN-openflow

topology discovery: An overview of performance issues. Applied

Sciences, 11(15), 6999.

[55] Shaghaghi, A., Kaafar, M. A., Buyya, R., & Jha, S. (2020).

Software-defined network (SDN) data plane security: issues,

solutions, and future directions. Handbook of Computer Networks

and Cyber Security: Principles and Paradigms, 341-387.

[56] Kharche, S., & Dere, P. (2022). Interoperability issues and

challenges in 6G networks. Journal of Mobile Multimedia, 18(5),

1445-1470.

[57] Hanaka, T., Kobayashi, Y., Kurita, K., Lee, S. W., & Otachi, Y.

(2022, June). Computing diverse shortest paths efficiently: A

theoretical and experimental study. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 36, No. 4, pp. 3758-

3766).

[58] Younis, O., & Fahmy, S. (2003). Constraint-based routing in the

internet: Basic principles and recent research. IEEE

Communications Surveys & Tutorials, 5(1), 2-13.

[59] Liubogoshchev, M., Zudin, D., Krasilov, A., Krotov, A., &

Khorov, E. (2023). DeSlice: An Architecture for QoE-Aware and

Isolated RAN Slicing. Sensors, 23(9), 4351.

[60] Shona, M., & Sharma, R. (2023, January). Implementation and

Comparative Analysis of Static and Dynamic Load Balancing

Algorithms in SDN. In 2023 International Conference for

Advancement in Technology (ICONAT) (pp. 1-7). IEEE.

[61] Awad, M. K., Ahmed, M. H. H., Almutairi, A. F., & Ahmad, I.

(2021). Machine learning-based multipath routing for software

defined networks. Journal of Network and Systems Management,

29, 1-30..

[62] Elbasheer, M. O., Aldegheishem, A., Lloret, J., & Alrajeh, N.

(2021). A QoS-Based routing algorithm over software defined

networks. Journal of Network and Computer Applications, 194,

103215.

[63] Bhabendu Kumar Mohanta, Debasish Jena, Utkalika Satapathy,

Srikanta Patnaik, Survey on IoT security: Challenges and solution

using machine learning, artificial intelligence and blockchain

technology, Internet of Things, Volume 11,2020, 100227,ISSN

2542-6605, doi: 10.1016/j.iot.2020.100227.

[64] Shyja, V. I., Ranganathan, G., & Bindhu, V. (2023). Link quality

and energy efficient optimal simplified cluster based routing

scheme to enhance lifetime for wireless body area networks. Nano

Communication Networks, 100465.

http://www.ijritcc.org/

