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Abstract— From last decade unbalanced data has gained attention as a major challenge for enhancing software quality and reliability. 

Due to evolution in advanced software development tools and processes, today’s developed software product is much larger and complicated 

in nature. The software business faces a major issue in maintaining software performance and efficiency as well as cost of handling software 

issues after deployment of software product. The effectiveness of defect prediction model has been hampered by unbalanced data in terms of 

data analysis, biased result, model accuracy and decision making. Predicting defects before they affect your software product is one way to cut 

costs required to maintain software quality. In this study we are proposing model using two level approach for class imbalance problem which 

will enhance accuracy of prediction model. In the first level, model will balance predictive class at data level by applying sampling method. 

Second level we will use Random Forest machine learning approach which will create strong classifier for software defect. Hence, we can 

enhance software defect prediction model accuracy by handling class imbalance issue at data and algorithm level.  

Keywords- Software defect prediction;Data imbalance;Machine Learning;Prediction model;Sampling. 

 

I. INTRODUCTION 

The software business faces a constant struggle in building 

open source and commercial software projects with zero bugs. 

Due to the limited number of frameworks that have been 

developed, there is no standardization of the software defect 

prediction process. The software fault forecasting framework 

performs well on training data but averagely on testing data since 

it was not trained with a varied variety of data. We must focus 

on the quality of the dataset if we want to obtain high accuracy 

in the defect prediction model. When enough data is provided to 

develop the prediction model, a higher degree of defect 

prediction accuracy is achieved. The scenario, though, may 

differ from project to project. For instance, the initial release of 

new software does not contain any flaw information which 

makes difficult for prediction model as no historical data 

available.  

In high dimensional datasets, it is very difficult to extract 

important features from large number of data features. More 

features or dimensions in dataset can reduce accuracy of 

prediction model because it deals with huge number of 

dimensions and it is known as Curse of dimensionality. B. 

Pes conducted research to investigate the efficiency of hybrid 

learning strategies that integrate dimensionality reduction 

approache  for resolving class imbalance problem [1].    

In some software defect dataset has a class imbalance issue, 

due to this defect prediction models are likely to select the class 

that contains larger samples which cost decreases accuracy of 

prediction model. Issue of class imbalance can be resolved by 

under-sampling and over-sampling technique which helps to 

improve accuracy of model. Under-sampling techniques 

removes instances of the majority class and over-sampling 

techniques increases instances of the minority class present in 

defect prediction dataset. For developing prediction model there 

are many machine learning techniques available which are:  

Logistic regression:[2] In binary classification logistic 

regression is very effective method. It produces a highly robust 

discriminative model that is based on function. 

𝑓(𝑦) =
1

(1 + ⅇ−𝑦)
 

Support vector machine: It is a distinct classifier that uses a 

suitable hyperplane as the decision boundary to differentiate data 

from two classes Typically, the hyperplane is used to maximize 

the distance between classes. It generates optimum hyperplane 

by solving a Lagrangian optimization problem [3]. 

Decision tree: A decision tree machine algorithm is used for 

both regression and classification problems. The decision tree 
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method divides the data recursively into subsets depending on 

the most significant attribute at each node of the tree. [4]. 

 Random forests: It comprise a set of decision tree, in which 

every tree is dependent on random vector values collected 

independently. Mathematically It can be defined as 

{ℎ(𝑥, 𝜃𝑘)}, 𝑘 =  1, . . . } where input x is represented by a set of 

random vectors {𝜃𝑘 }, each of which cast unit vote for most 

preferred class. Breiman applied the randomization technique to 

generate diversity among base decision trees, which works 

satisfactorily with bagging or random subspace approaches. 

[5][6]. 

Naive Bayes: Naive Bayes is appropriate for huge datasets 

since it is predicated on the idea that particular variables are 

independent of one another and that such a model does not need 

recurrent estimations of parameters. [7]. 

k-nearest neighbour: It identifies new samples according to 

the minimum distance in the initial data. KNN determines the 

correct class by measuring the dispersion between the test data 

and all of the training points[7]. 

This study is organized systematically as follows: section I 

gives an introduction to the research problem. Section II 

describes corresponding research carried out for handling class 

imbalance issue. Section III describes the proposed architecture 

for predicting software defects by addressing the class imbalance 

problem. In Section IV we discussed what we found for our 

research questions. We conclude our final remark in conclusion 

segment. 

II.RELATED WORK 

Although many researchers and academician made excellent 

contributions, still H. Krasner's (2018) quality report estimates 

that the cost of software reliability for exterior defects and 

breakdowns is roughly around 635 billion dollars. According to  

Report, fixing software flaws can lower quality costs[8]. 

According to research articles it suggests that this can be 

minimized by addressing class imbalance issue, removing 

outliers in classifications, and handling high dimension data. We 

have completed literature survey of available research articles 

for software defect prediction using machine learning 

approach[9].In this work we proposing novel approach for 

software fault prediction by handling class imbalance problem.  

Research on software defect prediction has started in the 

international arena since early 1970s.Akiyama found a 

correlation between the number of flaws and the program's 

judgement calls after discovering a total of 546 bugs across 9 

modules during study observation [10]. A. Ihara et al solved bug 

issue in upcoming release of bug fix. This work performed 

experiment on Eclipse software and the findings of the 

experiment demonstrate that the next release of open-source 

software can fix bug problem[11]. 

Qiao Yu et al used an attribute selection and attribute ranking 

approach to solve the issue of fault prediction performance for 

dissimilar project. The work tested on the NASA and PROMISE 

datasets and the findings shows that performance has been 

enhanced using this method for cross-project defect prediction 

[12]. N. Nagwani et al work finds expert to fix software bugs by 

mapping a list of expert developers with common bug keywords. 

The system will forecast experienced developers for a specific 

bug by mapping frequent phrases with developer relationships. 

1000 software bugs from the Mozilla bug repository and 97 

developers are selected in the experiment for matching bug 

expert[13]. 

Santosh Singh Rathore et al study concentrated on 

establishing a link between fault proneness of object-oriented 

software systems and class level object-oriented metrics with the 

purpose of evaluating coupling, cohesion, complexity, and 

inheritance design features[14]. With the use of test case 

execution paths within the code, Prateek Anand solved the 

problem of future flaws being released due to change in code. 

Twelve data sets from four industrial projects were used to verify 

defect prediction, and the top 10 faulty features were predicted 

with an average normalised cumulative gain of 0. 684[15]. 

Shruthi Puranik et al. devised an approach to forecast the fault 

sensitivity score using minimal R square values and regressions 

as intermediate stage. This work tested using Eclipse JDT Core 

dataset [16]. Santosh Singh Rathore et al used five-fold cross-

validation method to test the work on the PROMISE data 

repository for intra-release prediction. Older releases are utilized 

as the training dataset and testing dataset for inter-releases 

prediction[17]. 

Jianming Zheng et al investigated that accuracy of software 

defect prediction model depends upon balanced distribution of 

defect data sets. This study demonstrates higher 

prediction accuracy over the minority class by using two unique 

algorithms that gain knowledge from unbalanced data sets. In 

first approach IAdaBoost method is used which classifies 

imbalanced data sets using adaptive cost matrix. In the Second 

approach, the SWIMBoost technique creates minority samples 

by using the oversampling method and it increases decision 

boundaries of the minority class of unbalanced data which helps 

to boost classification accuracy[18]. 

Ruchika Malhotra et al handled issue of imbalance dataset 

and dimensionality reduction using naïve bays classifier with 

SMOTE sampling technique. support vector machine synthetic 

minority oversampling technique focuses on borderline area 

between minority and majority classes, so misclassification is 

avoided at border area. Linear Discriminant Analysis is used for 
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dimensionality reduction by calculating variance and the 

distance between means of the two classes[19]. Santosh Singh 

Rathore et al focused on the issue of segmenting the defect 

dataset into various module subsets, each of which is trained 

with a different learning technique before combining the results. 

The PROMISE and the Eclipse bug data set used to test this 

concept and the results show that the dynamic preferred strategy 

gives good result[20]. 

  Thanh Tung Khuat et al performed experiment on   

imbalanced data with synthetic minority oversampling technique 

and ensembles classifiers (LR,SVM,Decision Tree,KNN).This 

work experimentally analyses the significance of data sampling 

in software defect prediction model using different classifiers on 

imbalanced data.Experimental result shows that combined 

sampling approaches using base classifiers gives improved 

defect prediction performance and generates much better F1-

score values[21]. Somya Goyal proposed Neighbourhood based 

undersampling approach for prediction defect in software with 

high accuracy. This algorithm avoid information loss in dataset 

by getting more visibility of minority data points and minimizing 

the surplus elimination of majority data points while sampling 

dataset.[22]. Maohua Gan et al proposed research idea to solve 

the issue of class imbalance which is primarily based on the 

negative and positive values of data set which is used to compute 

accuracy measures. This research provides a rating of 

predictions across multiple data sets using the proposed 

measures, which can discriminate between successful and failed 

forecasts[23]. 

P. Soltanzadeh et al. developed an enhanced SMOTE-based 

technique, Range-Controlled SMOTE (RCSMOTE), to 

overcome the overgeneralizing problem caused by oversampling 

of noisy data and overlapping between various classes near class 

boundaries. This work is carried out in three phases. 1) splitting 

up the unbalanced data input into major and minor classes. 2) 

finding noisy minority class instances, and 3)preventing 

generation of minority instances  inside majority class 

regions[24]. 

F. Thabtah et al explained two approaches for solving class 

imbalance problem 1. Data driven: This approach balances the 

class distribution with training dataset for e.g. Oversampling and 

undersampling technique. 2.Algorithm driven: This approach 

balances the class distribution using machine learning 

algorithms without training dataset for e.g. cost sensitive 

learning (cost of misclassification), thresholding.This work  

performed experiment with Nave Bayes as base classifier and  

five datasets from the University of California Irvine (UCI) 

repository[25] 

The researchers came up with several methods to handle the 

class imbalance issue. We are proposing an approach to boost 

the prediction model accuracy by addressing the class imbalance 

problem with software fault detection. From our proposed 

design we will be able to answer following research questions 

(RQ): 

RQ1. How to increase the accuracy for software defect 

prediction model? 

RQ2. How to decrease the impact of class imbalance on 

software defect prediction? 

RQ3. How to handle high dimensional dataset used for 

software defect prediction 

III. PROPOSED FRAMEWORK FOR SOFTWARE 

DEFECT PREDICTION 

Figure 1 shows proposed framework for handling class 

imbalance issue in software fault prediction. It consists of 

following stages: 

• Data extraction and pre-processing 

• Handling high-dimensional data 

• Data Sampling 

• Building SDP Model  

• Performance measures 

Data extraction and pre-processing: 

For our experimental setup we will be using NASA 

dataset[26]. We extracted data from CM1 and JM1 dataset for 

data preprocessing. Firstly, we explored CM1 dataset which 

contains 39 features and 344 observations with Majority class 

contain 302 observations whereas Minority class contain 42 

observations. We also explored CM1 data for defective class 

distribution and from figure 2 it shows that there is imbalanced 

data for defective and non-defective class. First, we need to 

balance class distribution in order get better result in data 

balancing stage. 

Handling high-dimensional data: 

More features or dimensions in dataset can reduce accuracy 

of prediction model, so we are using gini impurity, entropy and 

information gain to handle high dimensional data. 

For CM1 data there are total 39 features, due to this high 

dimension data we have calculated gini impurity for Feature 

selection using following mathematical equation. 

  Gini Impurity = 1 − ∑ (pi)
2c

i=1
     ……………. (1) 

Table 1 shows gini impurity calculated for CM1 dataset. 
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Figure 1. Software defect prediction architecture 

 

Figure 2. CM1 Software defect Imbalance class distribution 

 

 

TABLE 1 GINI IMPURITY FOR CM1 DATASET 

Gini impurity Value target feature 

0.193624071 locComments 

0.194694632 locExecutable 

0.196201667 locTotal 

0.196653312 numUniqueOperators 

0.198222519 numOfLines 

0.198839768 numUniqueOperands 

0.200464139 halsteadContent 

0.202190654 numOperator 

0.202424683 halsteadEffort 

0.202424683 halsteadProgTime 

0.202947539 halsteadVolumn 

0.202957631 loc_blank 

0.202963698 halsteadEffortEst 

0.203642364 halsteadLength 

0.203981144 numOperands 

0.204238523 normCyclomaticComplex 

0.204708153 designComplexity 

0.204717195 percentComments 

0.205095759 callPairs 

0.205820916 parameterCount 

0.206163297 cyclomaticComplexity 

0.206237606 nodeCount 

       0.20677133 branchCount 

0.206898721 cyclomaticDensity 

       0.20690006 edgeCount 

0.207768467 halsteadDifficulty 

0.208131643 halsteadLevel 

0.208324693 decisionCount 

0.208757045 modifiedConditionCount 

0.209048378 ConditionCount 

0.209048378 multipleConditionCount 

0.209154561 maintenanceServirity 

0.209526095 locCode&Comment 

0.209878636 essentialComplexity 

0.209920337 designDensity 

0.212311526 decisionDensity 

0.213018819 essentialDensity 

 

For splitting data in CM1 dataset we have calculated entropy 

using following mathematical equation, 

 Entropy = − ∑ p𝑘 log2 pk
N
k=1     …………. (2) 

Software defect 

repository / dataset 

Data Preprocessing 

Test Data 
Training Data 

Data Sampling 

                                                                                       

 

Software Defect Classification 

 

Software Defect Prediction Model 

Performance Evaluation 

Result 
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In equation 2 The probability of selecting a class k item at an 

arbitrary rate is expressed by the symbol pk and N represents 

number of classes and to decide the ordering of attributes in a 

decision tree we have calculated information gain by using 

following mathematical equation, 

Information Gain = 𝐸𝑃𝑎𝑟𝑒𝑛𝑡−𝐸𝐶ℎ𝑖𝑙𝑑  

Where, Eparent is the entropy of the parent node and Echild is 

the average entropy of the child nodes. Table 2 shows 

information gain calculated for CM1 dataset. 

TABLE 2 INFORMATION GAIN FOR CM1 DATASET 

Info Gain target feature 

0.273033042 decisionDensity 

0.382419785 essentialDensity 

0.385127871 essentialComplexity 

0.461587796 modifiedConditionCount 

0.462375873 parameterCount 

0.468614218 branchCount 

0.468614218 cyclomaticComplexity 

0.469167803 decisionCount 

0.470223841 multipleConditionCount 

0.470464467 locCode&Comment 

0.471378419 ConditionCount 

0.472490352 edgeCount 

      0.47742667 maintenanceServirity 

0.477792474 halsteadLevel 

0.478567621 designDensity 

0.479964826 nodeCount 

0.481763928 halsteadDifficulty 

0.483094208 callPairs 

0.484931519 loc_blank 

0.485596819 percentComments 

      0.48883191 designComplexity 

0.490646312 cyclomaticDensity 

0.491404677 numOperands 

0.495544374 normCyclomaticComplex 

      0.49635303 locTotal 

0.496574295 locExecutable 

0.497813671 numOperator 

      0.49958927 halsteadContent 

0.501045814 halsteadLength 

0.501538386 halsteadEffort 

0.501538386 halsteadProgTime 

      0.50331986 halsteadEffortEst 

0.505678967 halsteadVolumn 

0.519858894 numOfLines 

0.519909257 numUniqueOperators 

0.522310168 numUniqueOperands 

0.53687742 locComments 

 

Data Sampling: 

   Solving class imbalance problem in a dataset is very 

difficult, this can be handled by data sampling technique. 

Sampling will transform training dataset in balanced class 

distribution. For our experiment we will use Synthetic Minority 

Oversampling Technique which leads to improve model 

performance by adding minority sample in SDP (Software defect 

prediction) data. SMOTE Oversampling generates synthetic 

samples by linearly interpolating between feature vectors of 

neighbouring minority class samples and their close neighbours. 

Working procedure for Synthetic Minority Oversampling 

Technique will be as follows. 

A new synthetic sample in feature space is created by adding 

the difference between a sample and its nearest neighbour, 

multiplied by a random value between 0 and 1, and then moving 

on to the next nearest neighbour for generation of new synthetic 

sample. Mathematically it can be expressed by, 

SDPNewSample=SDPDataSample+Random(0,1)*( 

NeighbourSample- SDPDataSample) 

Where, SDPDataSample represents SDP (Software defect 

prediction) minority class sample. 

Random represents random value between 0 and 1 that 

controls the degree of interpolation.  

NeighbourSample represents close neighbour of the 

SDPDataSample. 

After applying data sampling on CM1 dataset we have 

balanced data as shown in figure 3 

 

Figure 3. CM1 Software defect balanced class distribution 
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Building SDP Model: 

As single classifier will create bias-variance problem, 

due to this in our experiment we are using ensemble approach 

with random forest machine learning algorithm to predict 

software defect. Random Forest's ensemble nature helps to 

minimize overfitting and limiting the influence of noisy or 

irrelevant features in the dataset. 

Our Software defect prediction model gives 81% 

accuracy by deploying random forest ensemble classifiers with 

balanced dataset. 

 Performance measures: 

We evaluated the performance of our model using 

model accuracy, recall, and precision values as well as an F-

measure created from the recall and precision values. Confusion 

matrix evaluate following parameters for measuring predictive 

performance of the model. 

TP (True Positive): project faulty category as faulty 

FP (False Positive): project non-faulty category as faulty 

FN (False Negative): project faulty category as no-faulty  

TN (True Negative): project non-faulty category as non-faulty 

From above parameter we can calculate different model 

performance measure like model accuracy, recall, precision, F-

measure and mathematically it can be represented as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴)

=
𝑇𝑟𝑢ⅇ𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑇𝑟𝑢ⅇ𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢ⅇ𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠ⅇ𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢ⅇ𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +   𝐹𝑎𝑙𝑠ⅇ𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

 

 𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

 𝑅ⅇ𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

 

 𝐹_𝑀ⅇ𝑎𝑠𝑢𝑟ⅇ(𝐹) =
2×𝑃×𝑅

𝑃+𝑅
 

Also, for evaluating the effectiveness of our software defect 

categorization approach, we use a receiver operating characteristic 

curve by generating true versus false positives plot.  

As precision-recall curve is much suitable measure for imbalanced 

data, so we have used precision-recall curve to assess the performance 

of our classification model. 

IV. RESULT DISCUSSION: 

In our experimental model we got performance measure result as 

shown in table 3. 

 

TABLE 3 DEFECT PREDICTION PERFORMANCE MEASURE 

Accuracy Precision Recall F_measure 

0.8142 0.8571 0.7272 0.7868 

 

       In our plot generated from our result is shown in figure 4. 

It shows the ROC curve is closer to the top left corner of our 

plot diagram, that shows our model is better in categorizing the 

data. To quantify this, we computed the AUC (area under the 

curve), which shows how much of the plot lies behind the curve. 

For our experimental model we got AUC (area under the curve) 

computed value as 0.91 and our model got highest AUC, 

indicating that it has the most area under the curve and is the 

best model at correctly categorizing observations. 

The precision-recall curve shows the trade-off 

between Precision and Recall scores across different thresholds, 

the lower the threshold model will get more False Positive 

predictions. As shown in figure 5, the graph is trending 

downward and from graph we conclude that our model is good 

classifier.  

 
Figure 4 ROC curve for Software defect prediction 

 

Figure 5 precision-recall curve for Software defect prediction 
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CONCLUSION 

In the software projects, imbalanced software defect 

dataset gives inaccurate classification as an outcome for 

software fault detection model and a bias in favour of the 

dominant class. Here we have first addressed high dimensional 

data by calculating gini impurity, entropy, and information gain 

for selection of important features. Then we applied data 

sampling to handle class imbalance in defect dataset. Finally, 

we build model using random forest algorithm which gives 

better accuracy for software defect prediction model. In future 

this work can be extended to cross project data for detecting 

defect in software product. 
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