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Abstract— Smart contracts are self-executing programs that run on blockchain platforms. While smart contracts offer a range of benefits, 

such as immutability and transparency, they are not immune to vulnerabilities. Malicious actors can exploit smart contract vulnerabilities to 

execute unintended actions or access sensitive data[1]. One approach to mitigating smart contract vulnerabilities is formal verification. Formal 

verification is a method of verifying the correctness of software using mathematical techniques. It involves mathematically proving that a 

program conforms to a set of specifications. Formal verification can help detect and eliminate vulnerabilities in smart contracts before they are 

deployed on the blockchain. KEVM (K Framework-based EVM) is a framework that allows for formal verification of smart contracts on the 

Ethereum Virtual Machine (EVM). KEVM uses the K Framework, a formal semantics framework, to specify the behavior of the EVM. With 

KEVM, smart contract developers can verify the correctness of their contracts before deployment, reducing the risk of vulnerabilities. In this 

paper, we have studied smart contract vulnerabilities such as Over usage of Gas, Signature Replay attack, and misuse of fallback function. We 

have also written the formal specification for these vulnerabilities and executed it using KEVM. 

Keywords- Smart contracts, Vulnerabilities, Formal verification, K Framework, EVM.  

 

I.  INTRODUCTION  

A smart contract is a self-executing program that runs on a 

blockchain platform. It is a computer program that 

automatically executes the terms of a contract when specific 

conditions are met. Smart contracts use blockchain technology 

to provide a transparent, secure, and immutable way to execute 

transactions without the need for intermediaries[1][2]. 

1.1. Smart Contract: 

Smart contracts are written in programming languages such 

as Solidity, Vyper, and Go, and they typically contain a set of 

rules and conditions that define the terms of an agreement 

between two or more parties. These rules can be as simple or 

complex as required and include time constraints, payment 

requirements, and performance obligations. 

Once a smart contract is deployed on a blockchain, it is 

publicly accessible and cannot be modified. When the 

predetermined conditions are met, the smart contract 

automatically executes the agreed-upon terms, triggering the 

transfer of assets or payment to the appropriate party. Smart 

contracts can be used in various industries, including finance, 

real estate, and supply chain management, to automate and 

streamline processes. 

Overall, smart contracts have the potential to revolutionize 

the way we conduct transactions and execute agreements[3]. 

By providing a transparent, secure, and automated way to 

execute contracts, they can reduce transaction costs, eliminate 

the need for intermediaries, and increase efficiency and trust 

in business processes. 

1.2 Formal Verification Method: 

Formal verification involves using mathematical methods 

to prove that a software system or component meets certain 

specified requirements or properties. Formal verification 

typically consists of the creation of a formal specification of 

the system's functionality, as well as formal proof that the 

implementation of the system satisfies the specification. 

Formal verification can be used to guarantee that a system is 

correct and secure under all possible inputs and 

configurations. 

Writing test cases can help identify system defects, but it 

cannot guarantee that the system is correct and secure under 

all possible inputs and configurations. On the other hand, 
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formal verification can provide a rigorous proof that a system 

meets its specified requirements and is secure under all 

possible inputs and configurations[4]. 

Formal verification is typically highly automated and can 

be used to verify large and complex systems with minimal 

manual effort. Formal verification can provide rigorous proof 

of correctness and security[5]. 

1.3 KEVM 

The KEVM (K Ethereum Virtual Machine) framework is a 

tool for verifying and testing smart contracts written in the 

Solidity programming language on the Ethereum blockchain. 

The framework is based on the K framework, a robust 

language semantics framework that allows for formal 

specification, verification, and execution of programming 

languages[6]. 

The KEVM framework provides formal semantics of the 

Ethereum Virtual Machine (EVM), which is the runtime 

environment for executing smart contracts on the Ethereum 

blockchain. This formal semantics allows for the rigorous 

analysis and verification of smart contracts, which is critical 

for ensuring their correctness and security. 

The KEVM framework works by providing a way to 

automatically generate test cases for smart contracts based on 

their formal specification [7]. This helps developers to identify 

potential bugs or vulnerabilities in their contracts before 

deploying them on the Ethereum blockchain. 

KEVM framework is a powerful tool for verifying and 

testing smart contracts on the Ethereum blockchain. By 

providing formal semantics of the EVM and generating test 

cases based on the formal specification of smart contracts, the 

framework helps ensure these contracts' correctness and 

security. 

II. RELATED WORK  

2.1 Working of KEVM: 

The KEVM (K Ethereum Virtual Machine) is an 

implementation of the Ethereum Virtual Machine (EVM) 

based on the K framework. The KEVM provides a formal 

semantics of the EVM and allows for the rigorous analysis and 

verification of smart contracts written in the Solidity 

programming language. 

To execute the KEVM, a developer writes a Solidity smart 

contract and then compiles it into EVM bytecode. The 

developer then uses the KEVM toolchain to execute the 

bytecode in the KEVM runtime environment. 

The KEVM runtime environment provides an 

implementation of the EVM instructions and a gas metering 

mechanism for tracking the computational resources used by 

the contract. The KEVM also provides tools for debugging and 

analyzing the contract's behavior during execution. 

During execution, the KEVM verifies that the bytecode 

conforms to the formal semantics of the EVM and checks for 

any potential security vulnerabilities or other issues. The 

KEVM also provides a way to simulate the execution of the 

contract under different inputs and configurations, which can 

help developers identify and fix any issues. 

Overall, the KEVM is a powerful tool for verifying and 

testing smart contracts on the Ethereum blockchain[8][9]. By 

providing formal semantics of the EVM and a runtime 

environment for executing and analyzing smart contracts, the 

KEVM helps ensure these contracts' correctness and security. 

2.2 Execution and verification of smart contract using 

KEVM: 

Consider the following simple Solidity smart contract: 

Pragma solidity0.8.0; 

Contract Adder{ 

Function add ( uint256 a, uint256 b) public pure 

returns (uint256) { 

Return a+b; 

} 

} 

This contract defines a simple function add that takes two 

integers a and b, add them together, and returns the result. 

To use the KEVM framework to verify and test this 

contract, we first need to compile it into EVM bytecode. We 

can use the solc Solidity compiler to do this: 

$ solc --bin adder.sol 

This will generate a binary bytecode file called 

adder_sol_Adder.bin 

Next, we can use the KEVM toolchain to execute 

the bytecode in the KEVM runtime environment: 

$ evm exec –codefile adder_sol_Adder.bin 

--input 

0000000000000000000000000000000000000000000 

000000000000000000005 

--input 

0000000000000000000000000000000000000000000 

000000000000000000003 

--method add 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9s 

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432 

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023 

___________________________________________________________________________________________________________________ 

 

    371 

IJRITCC | August 2023, Available @ http://www.ijritcc.org 

This command will execute the add function of the Adder 

contract with inputs a=5 and b=3. The -- codefile option 

specifies the bytecode file generated by the Solidity compiler, 

and the --input options specify the two input values encoded 

as 256-bit integers. The --method option specifies the name 

of the function to execute. 

The output of the command should be: 

0000000000000000000000000000000000000000000 

000000000000000000008 

We can also use the KEVM framework to generate test 

cases for the Adder contract. To do this, we can use the kevm-

testgen tool to automatically generate test cases based on the 

formal semantics of the contract: 

Overall, this example demonstrates how to use the KEVM 

framework to verify and test a simple Solidity smart contract. 

By providing formal semantics of the EVM and a runtime 

environment for executing and analyzing smart contracts, 

the KEVM helps ensure these contracts' correctness and 

security[10]. 

2.2 KEVM specification example 

Sure, here's an example KEVM specification for a 

simple Solidity smart contract: 

Consider the following Solidity smart contract: 

pragma solidity 0.8.0; 

contract Adder { 

function add(uint256 a, uint256 b) public pure returns 

(uint256) { 

return a + b; 

} 

} 

To specify the behavior of this contract in the KEVM 

framework, we first need to define the syntax and semantics of 

the EVM instructions that implement the contract's bytecode. 

We can do this using the K framework[11][12]. 

Here's an example KEVM specification for the Adder 

contract: 

module ADDER 

imports INT 

syntax Value ::= Int | Address | NilValue syntax 

Stack ::= List{Value} 

syntax Memory ::= Map{Int,Int} 

syntax Storage ::= Map{Int,Int} syntax 

Globals ::= Map{Int,Int} 

configuration <T color="red"> 

<k> $PGM:Program</k> 

<s> .Stack</s> 

<m> .Memory</m> 

<a> .Address</a> 

<g> .Globals</g> 

<o> .Storage</o> 

</T> 

syntax Program ::=KInstruction* 

syntax KInstruction ::= "STOP" 

| "ADD" 

| "MSTORE" 

| "MLOAD" 

| "SSTORE" 

| "SLOAD" 

| "PUSH" Int 

| "DUP1" 

 

rule <k> PUSH A:Int => .Stack </k> 

<m> M </m> 

requires Int2ByteList(A) => X ensures 

.Stack => A : .Stack 

/\ .Memory => M[0..IntSize-1] := X 

/\ .Memory => M[IntSize..] := 

.Memory[IntSize..] 

 

rule <k> ADD => .Stack => X : Y : S ...</k> 

ensures .Stack => (X + Y) : S 

/\ .Memory => M 

/\ .Address => A 

/\ .Globals => G 

/\ .Storage => O 

 

rule <k> MSTORE => .Stack => V : P : S ... 

<m> M 

</m> 
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requires Int2ByteList(V) 

=> X 

/\ Int2ByteList(P) => Y 

/\ P + IntSize<MapSize 

ensures .Stack => S 

/\ .Memory => M[0..P-1] := .Memory[0..P-1] 

/\ .Memory => M[P..P+IntSize-1] := X 

/\ .Memory => M[P+IntSize..] := 

.Memory[P+IntSize..] 

 

rule <k> MLOAD => .Stack => P : S ... 

<m> M[P..P+IntSize-1] => X </m> 

ensures .Stack => IntList2Int(X) : S 

/\ .Memory => M 

/\ .Address => A 

/\ .Globals => G 

/\ .Storage => O 

 

rule <k> SSTORE => .Stack => V : P : S ... 

<o> O </o> 

requires Int2ByteList(P) => X 

ensures .Stack => S 

/\ .Memory => M 

/\ .Address => A 

/\ .Globals => G 

/\ .Storage => O[X] := V 

rule <k> SLOAD => . 

Formal specification is a precise and unambiguous 

description of the expected behavior of a system or 

component, written in a formal language that both humans and 

computers can understand. Formal specifications are often 

used in software engineering to ensure that software systems 

meet their requirements and behave correctly. 

The syntax of a formal specification is often based on a 

mathematical notation and defines the set of symbols and 

rules for constructing valid expressions in the language. In 

other words, it specifies the grammar of the language [13]. 

The syntax typically includes definitions of data types, 

functions, and operators and rules for constructing expressions 

from these components. Notation is typically more precise and 

rigorous than natural language and allows for constructing 

complex expressions with unambiguous semantics. 

Here's an example of the syntax of a simple formal 

specification language: 

syntax Exp ::= Var | Int | Bool | Exp + Exp | Exp * 

Exp | If Exp then Exp else Exp 

syntax Var ::= String syntax Int 

::= Integer syntax Bool ::= True | 

False 

This specification defines a syntax for expressions 

containing variables, integers, booleans, and arithmetic and 

conditional expressions. The syntax keyword is used to define 

new syntax constructs, while the Var, Int, and Bool keywords 

represent data types. The +, *, if, and then/else keywords 

define operators and control structures. To check the execution 

of the above specification, we use the K Framework. The K 

Framework provides formal semantics for Ethereum smart 

contracts, which can be used to automatically verify the 

properties of the contract. Once the specification has been 

written, it can be loaded into the K Framework and executed 

using the K Run tool. The K Run tool simulates the execution 

of the contract according to the rules defined in the 

specification and can be used to check that the contract 

behaves correctly under different conditions[15[16]. 

III. MATHEMATICAL MODEL FOR PROPOSED 

METHOD  

In this research, we have used KEVM framework for 

verification of smart contracts. As the first step towards the 

implementation, here we are proposing the mathematical 

model as shown in fig.3.1. 

 
Fig. 3.1 Mathematical model 

For mathematical modelling , we have used PetriNet 

Modelling technique. The complete process is represented by 

two types of elements, one is place and second is transition. In 

this directed graph, places represented as circles and 

transitions represented as rectangles. 
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IV. FORMAL SPECIFICATION TO IDENTIFY GAS 

USAGE IN A SMART CONTRACT 

 An example of formal specification in the K framework 

for identifying gas usage in executing a smart contract is 

discussed here: 

module GAS 

imports INT 

syntax Value ::= Int | Address | 

NilValue syntax Stack ::= List{Value} 

syntax Memory ::= 

Map{Int,Int} syntax Storage ::= 

Map{Int,Int} syntax Globals ::= 

Map{Int,Int} configuration <T 

color="red"> 

<k> $PGM:Program</k> 

<s> .Stack</s> 

<m> .Memory</m> 

<a> .Address</a> 

<g> .Globals</g> 

<o> .Storage</o> 

<gas> Int </gas> 

</T> 

 

syntax Program 

::=KInstruction* syntax 

KInstruction ::= "STOP" 

| "ADD" 

| "MSTORE" 

| "MLOAD" 

| "SSTORE" 

| "SLOAD" 

| "PUSH" Int 

| "DUP1" 

 

syntax GasCost ::= Int 

 

rule <k> PUSH A:Int => .Stack </k> 

<m> M </m> 

<gas> G </gas> 

requires Int2ByteList(A) => X 

ensures .Stack => A : .Stack 

/\ .Memory => M[0..IntSize-1] := X 

/\ .Memory => M[IntSize..] := 

.Memory[IntSize..] 

/\ .gas => G - 3 

 

rule <k> ADD => .Stack => X : Y : S ... 

<gas> G </gas> 

ensures .Stack => (X + Y) 

: S 

/\ .Memory => M 

/\ .Address => A 

/\ .Globals => G 

/\ .Storage => O 

/\ .gas => G - 3 

 

rule <k> MSTORE => .Stack => V : P : S ... 

<m> M </m> 

<gas> G </gas> 

requires Int2ByteList(V) => X 

/\ Int2ByteList(P) => Y 

/\ P + IntSize<MapSize 

ensures .Stack => S 

/\ .Memory => M[0..P-1] := .Memory[0..P-1] 

/\ .Memory => M[P..P+IntSize-1] := X 

/\ .Memory => M[P+IntSize..] := 

.Memory[P+IntSiz

e..] 

/\ .gas => G - 3 

 

rule <k> MLOAD => .Stack => P : S ... 

<m> M[P..P+IntSize-1] => X </m> 

<gas> G </gas> 

ensures .Stack => IntList2Int(X) : S 

/\ .Memory => M 
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/\ .Address => A 

/\ .Globals => G 

/\ .Storage => O 

/\ .gas => G - 2 

 

rule <k> SSTORE => .Stack => V : P : S ... 

<o> O </o> 

<gas> G </gas> 

requires Int2ByteList(P) => X ensures 

.Stack => S 

/\ .Memory => M 

/\ .Address => A 

/\ .Globals => G 

/\ .Storage => O[X] := V 

/\ .gas => G - 3 

rule <k> SLOAD => .Stack => P : S ... 

<o> O[P] => V </o> 

<gas> G </gas> ensures 

.Stack => V : S 

 

The above formal specification is written in the K 

framework and describes a simple gas metering mechanism for 

a smart contract execution. The smart contract is assumed to be 

represented as a sequence of instructions, with each instruction 

taking a certain amount of gas to execute. The specification 

defines the syntax of the state of the system during the 

execution of the smart contract. The state consists of a stack of 

values, a memory map, a storage map, and a global map. The 

syntax also includes a gas counter, which keeps track of the 

remaining amount of gas available for execution. Each rule 

inputs the current state of the system and the gas counter, 

producing a new state of the system and a new gas counter. 

Each rule also specifies the amount of gas consumed by the 

instruction. 

For example, the rule for the PUSH instruction takes the 

current stack, memory map, and gas counter as input and 

produces a new stack and memory map with the value of the 

PUSH instruction pushed onto the stack. The rule also 

subtracts three from the gas counter since the PUSH 

instruction consumes three gas. Similarly, the rule for the 

ADD instruction takes as input the current stack and gas 

counter and produces a new stack with the sum of the top two 

values on the stack. By defining a set of rules for each 

instruction in the smart contract, the specification provides a 

precise and unambiguous description of the expected behavior 

of the smart contract execution, including the amount of gas 

consumed by each instruction[17]. The amount of gas 

assigned to each instruction is specified in the gasmap 

function. For example, the PUSH instruction is assigned a gas 

cost of 3, which means that executing a PUSH instruction 

consumes three units of gas. During the execution of the 

smart contract, the gas counter keeps track of the remaining 

amount of gas available for execution. The initial value of the 

gas counter is set to N units of gas, where N is a parameter of 

the smart contract. The gas consumed by each instruction is 

subtracted from the gas counter. If the gas counter reaches 

zero or becomes negative during the execution of the smart 

contract, then the execution is aborted, and any changes to 

the system's state are reverted. The amount of gas used by the 

smart contract execution is equal to the difference between the 

gas counter's initial value and the gas counter's final value. In 

the above example, if the smart contract execution completes 

successfully, then the amount of gas used would be equal to 

the difference between the initial value of 100 units and the 

final value of 91 units, which is nine units of gas[18]. 

V. FORMAL SPECIFICATION FOR FALLBACK 

FUNCTION IN SMART CONTRACT 

The formal specification for one of the important 

vulnerabilities of improper defining fallback function is given 

here. 

syntax Int ::= "int" "(" Int ")" // integers 

syntax Address ::= "address" "(" Int ")" // 

Ethereum addresses 

syntax Bool ::= "true" | "false" // boolean values 

syntax State ::= state(gascount: Int, sender: Address, 

value: Int, data: List{Byte}, balance: Map{Address, 

Int}) 

syntax Byte ::= byte(Int) // individual bytes 

syntax List{T} ::= nil | cons(T, List{T}) // lists 

syntax Instruction ::= CALLDATALOAD

 | CALLVALUE | CALLER | BALANCE | 

JUMPDEST 

| PUSH(Int) | JUMP | JUMPI | DUP(Int) | 

SWAP(Int) | POP | MSTORE | RETURN 

syntax Gasmap ::=gasmap(Instruction -> 

Int) syntax Contract ::= contract(State, 

Gasmap) 
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rule <k>EStack => I ...</k> 

<state gascount: Gas, sender: Addr, value: Val, 

data: D, balance: B> 

<gasmapGasmap> 

requires Gas >= getGas(I, Gasmap) 

ensures Gas == Gas - getGas(I, Gasmap) 

when I != JUMPDEST 

 

rule <k>EStack => I ...</k> 

<state gascount: Gas, sender: Addr, value: Val, 

data: D, balance: B> 

<gasmapGasmap> 

requires Gas >= getGas(I, Gasmap) 

ensures Gas == Gas - getGas(I, Gasmap) 

when I == JUMPDEST 

syntax Fallback ::= fallback(State, 

Gasmap) rule <k>EStack => Fallback </k> 

<state gascount: Gas, sender: Addr, value: Val, 

data: D, balance: B> 

<gasmapGasmap> 

requires Gas >= 2300 // fallback function always has a 

minimum gas of 2300 

ensures Gas == Gas - 2300 

 

This specification defines a Fallback syntax that represents 

the fallback function of a smart contract. The Fallback function 

takes the same input state, gasmap, and output stack as a 

regular instruction. The Fallback rule specifies that when the 

fallback function is executed, it requires a minimum of 2300 

gas, which is the minimum amount of gas needed by the 

Ethereum protocol for executing a fallback function. The rule 

also ensures that 2300 units decrement the gas counter after 

the execution of the fallback function[19]. This is a simplified 

specification and does not include all possible instructions and 

behaviors that may occur during the execution of a fallback 

function. 

VI. FORMAL SPECIFICATION FOR SIGNATURE 

REPLAY ATTACK IN SMART CONTRACT 

A signature replay attack in blockchain is a type of attack 

where a valid digital signature is reused without the owner's 

consent to perform unauthorized transactions on the 

blockchain network. In a signature replay attack, an attacker 

intercepts a valid signature from a legitimate transaction and 

then uses it to create a new transaction without the owner's 

consent. Since the signature is valid, the transaction is 

accepted by the blockchain network and added to the 

blockchain[20][21]. 

To prevent this type of attack, we have written formal 

specifications to identify it. The given formal specification 

describes how to prevent a signature replay attack in a smart 

contract. 

syntax Int ::= "int" "(" Int ")" // integers 

syntax Address ::= "address" "(" Int ")" // Ethereum 

addresses 

syntax Bytes32 ::= "bytes32" "(" Int ")" // 32-byte 

values 

syntax Bool ::= "true" | "false" // boolean values 

 

syntax State ::= state(signer: Address, nonce: Int, balance: 

Map{Address, Int}) 

 

syntax Transaction ::=tx(from: Address, to: Address, value: 

Int, data: List{Byte}, nonce: Int, gasprice: Int, gaslimit: Int, v: 

Int, r: Bytes32, s: Bytes32) 

syntax SignatureReplayAttack ::= 

sigAttack(from: Address, to: Address, value: Int, data: 

List{Byte}, nonce: Int, gasprice: Int, gaslimit: Int, v: Int, r: 

Bytes32, s: Bytes32, originalTx: Transaction) syntax Byte ::= 

byte(Int) // individual bytes 

syntax List{T} ::= nil | cons(T, List{T}) // lists 

syntax Contract ::= contract(State) 

syntax VerifySignature ::=verifySignature(data: 

List{Byte}, v: Int, r: Bytes32, s: Bytes32, pubkey: 

Bytes32) -> Bool 

 

rule <k>EStack => F ...</k> 

<state signer: SignerAddr, nonce: Nonce, balance: 

Balance> 

<verifySignature(data: Data, v: V, r: R, s: S, 

pubkey: PubKey) |G: Gas> 

<tx from: FromAddr, to: ToAddr, value: Value, 

nonce: TxNonce> 

requires G >= 20000 // gas cost for calling 

verifySignature function 
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ensures G == G - 20000 

when FromAddr == SignerAddr and TxNonce == 

Nonce and VerifySignature(Data, V, R, S, PubKey) 

== true 

// if the signature is valid and transaction is sent by 

the signer 

 

rule <k>EStack => F ...</k> 

<state signer: SignerAddr, nonce: Nonce, balance: 

Balance> 

<verifySignature(data: Data, v: V, r: R, s: S, 

pubkey: PubKey) |G: Gas> 

<tx from: FromAddr, to: ToAddr, value: Value, 

nonce: TxNonce> 

requires G >= 20000 // gas cost for calling 

verifySignature function 

ensures G == G - 20000 

when FromAddr == SignerAddr and TxNonce< 

Nonce and VerifySignature(Data, V, R, S, PubKey) 

== true 

// if signature is valid and transaction is sent by the 

signer, but with an old nonce 

syntax TransactionPool ::= 

pool(List{Transaction}) rule <k>EStack => F ...</k> 

<state signer: SignerAddr, nonce: Nonce, balance: 

Balance> 

<verifySignature(data: Data, v: V, r: R, s: S, 

pubkey: PubKey) |G: Gas> 

<sigAttack(from: FromAddr, to: ToAddr, value: 

Value, data: Data, nonce: TxNonce, gasprice: GasPrice, 

gaslimit: GasLimit, v: V, r: R, s: S, originalTx: 

OriginalTx)> 

requires G >= 20000 // gas cost for calling 

verifySignature function 

ensures G == G - 20000 

when FromAddr == SignerAddr and TxNonce == 

Nonce and VerifySignature(Data, V, R, S, PubKey) 

== true 

 

The specification defines several syntax definitions for 

various data types, such as integers, addresses, bytes, and 

booleans. It then defines a State syntax to represent the state 

of the contract, which includes the signer's address, nonce, and 

balance. The specification also defines a Transaction syntax to 

represent Ethereum transactions, as well as a Verify Signature 

function to verify the authenticity of a given signature[22]. 

The rules of the specification define the behavior of the 

contract in certain situations. In particular, there are two rules 

that define how the contract should behave when a valid 

transaction is received: one for when the transaction has the 

correct nonce, and one for when the transaction has an old 

nonce. Both rules require that the transaction's signature be 

verified using the Verify Signature function, and that the 

transaction be sent by the signer. Additionally, the specification 

defines Signature Replay Attack syntax to represent a potential 

attack, as well as a Transaction Pool syntax to represent a pool 

of unprocessed transactions. The last rule specifies how the 

contract should behave when a signature replay attack is 

attempted[23]. It requires that the transaction's signature be 

verified, and that the transaction have the correct nonce and be 

sent by the signer. However, this rule only applies if the 

transaction is sent as part of an attack and is already present in 

the transaction pool. This is intended to prevent an attacker 

from replaying a valid transaction that was originally sent by 

the signer. Overall, the specification is designed to prevent a 

signature replay attack by ensuring that only valid transactions 

are processed and that transactions with old nonces are 

rejected. By verifying the authenticity of each transaction's 

signature using the VerifySignature function, the contract can 

ensure that the transaction is indeed being sent by the intended 

signer. 

VII. DISCUSSION 

Here is a general overview of the steps involved in 

executing a formal specification: 

Define the formal specification: This involves writing the 

specification in a language that can be executed by a formal 

verification tool. For example, the specification could be 

written in the K Framework's syntax or another formal 

specification language such as Coq or Alloy. Compile the 

specification: Once the specification has been defined, it needs 

to be compiled into an executable format. This is typically done 

using a compiler or interpreter that is designed for the specific 

language and tool used. Run the specification: Once the 

specification has been compiled, it can be run using a tool 

that can execute the specification. For example, the K 

Framework provides a tool called KRun that can be used to 

execute K specifications[24]. Test the specification: After the 

specification has been executed, it should be tested to ensure 
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that it behaves correctly. This can involve running test cases 

that cover different scenarios and checking that the 

specification produces the expected output. 

Overall, the process of executing a formal specification can 

be complex and may require specialized knowledge and tools. 

However, the benefits of formal verification can be significant, 

as it can help to ensure the correctness and security of software 

systems. 

VIII.  CONCLUSION 

In conclusion, smart contract vulnerabilities can have 

serious consequences for blockchain systems, and formal 

verification using frameworks such as KEVM can help 

mitigate these risks. The K Framework provides a set of tools 

for defining and executing formal specifications, including a 

parser, compiler, and execution engine. Overall, the K 

Framework provides a powerful way to specify and verify the 

behavior of smart contracts and can be used to ensure that 

contracts behave correctly under a wide range of conditions. 

By ensuring the correctness of smart contracts, we can 

increase the security and reliability of blockchain systems. 
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