
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 369

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Formal Semantic Approach to Detect Smart Contract

Vulnerabilities Using KEVM

Mrs. Rohini Pise1, Dr. Sonali Patil2
1Department of Information Technology,

Pimpri Chinchwad College of Engineering

Pune, India

Email: rohini.pise@pccoepune.org
2Department of Information Technology,

Pimpri Chinchwad College of Engineering

Pune, India

Email: sonali.patil@pccoepune.org

Abstract— Smart contracts are self-executing programs that run on blockchain platforms. While smart contracts offer a range of benefits,

such as immutability and transparency, they are not immune to vulnerabilities. Malicious actors can exploit smart contract vulnerabilities to

execute unintended actions or access sensitive data[1]. One approach to mitigating smart contract vulnerabilities is formal verification. Formal

verification is a method of verifying the correctness of software using mathematical techniques. It involves mathematically proving that a

program conforms to a set of specifications. Formal verification can help detect and eliminate vulnerabilities in smart contracts before they are

deployed on the blockchain. KEVM (K Framework-based EVM) is a framework that allows for formal verification of smart contracts on the

Ethereum Virtual Machine (EVM). KEVM uses the K Framework, a formal semantics framework, to specify the behavior of the EVM. With

KEVM, smart contract developers can verify the correctness of their contracts before deployment, reducing the risk of vulnerabilities. In this

paper, we have studied smart contract vulnerabilities such as Over usage of Gas, Signature Replay attack, and misuse of fallback function. We

have also written the formal specification for these vulnerabilities and executed it using KEVM.

Keywords- Smart contracts, Vulnerabilities, Formal verification, K Framework, EVM.

I. INTRODUCTION

A smart contract is a self-executing program that runs on a

blockchain platform. It is a computer program that

automatically executes the terms of a contract when specific

conditions are met. Smart contracts use blockchain technology

to provide a transparent, secure, and immutable way to execute

transactions without the need for intermediaries[1][2].

1.1. Smart Contract:

Smart contracts are written in programming languages such

as Solidity, Vyper, and Go, and they typically contain a set of

rules and conditions that define the terms of an agreement

between two or more parties. These rules can be as simple or

complex as required and include time constraints, payment

requirements, and performance obligations.

Once a smart contract is deployed on a blockchain, it is

publicly accessible and cannot be modified. When the

predetermined conditions are met, the smart contract

automatically executes the agreed-upon terms, triggering the

transfer of assets or payment to the appropriate party. Smart

contracts can be used in various industries, including finance,

real estate, and supply chain management, to automate and

streamline processes.

Overall, smart contracts have the potential to revolutionize

the way we conduct transactions and execute agreements[3].

By providing a transparent, secure, and automated way to

execute contracts, they can reduce transaction costs, eliminate

the need for intermediaries, and increase efficiency and trust

in business processes.

1.2 Formal Verification Method:

Formal verification involves using mathematical methods

to prove that a software system or component meets certain

specified requirements or properties. Formal verification

typically consists of the creation of a formal specification of

the system's functionality, as well as formal proof that the

implementation of the system satisfies the specification.

Formal verification can be used to guarantee that a system is

correct and secure under all possible inputs and

configurations.

Writing test cases can help identify system defects, but it

cannot guarantee that the system is correct and secure under

all possible inputs and configurations. On the other hand,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 370

IJRITCC | August 2023, Available @ http://www.ijritcc.org

formal verification can provide a rigorous proof that a system

meets its specified requirements and is secure under all

possible inputs and configurations[4].

Formal verification is typically highly automated and can

be used to verify large and complex systems with minimal

manual effort. Formal verification can provide rigorous proof

of correctness and security[5].

1.3 KEVM

The KEVM (K Ethereum Virtual Machine) framework is a

tool for verifying and testing smart contracts written in the

Solidity programming language on the Ethereum blockchain.

The framework is based on the K framework, a robust

language semantics framework that allows for formal

specification, verification, and execution of programming

languages[6].

The KEVM framework provides formal semantics of the

Ethereum Virtual Machine (EVM), which is the runtime

environment for executing smart contracts on the Ethereum

blockchain. This formal semantics allows for the rigorous

analysis and verification of smart contracts, which is critical

for ensuring their correctness and security.

The KEVM framework works by providing a way to

automatically generate test cases for smart contracts based on

their formal specification [7]. This helps developers to identify

potential bugs or vulnerabilities in their contracts before

deploying them on the Ethereum blockchain.

KEVM framework is a powerful tool for verifying and

testing smart contracts on the Ethereum blockchain. By

providing formal semantics of the EVM and generating test

cases based on the formal specification of smart contracts, the

framework helps ensure these contracts' correctness and

security.

II. RELATED WORK

2.1 Working of KEVM:

The KEVM (K Ethereum Virtual Machine) is an

implementation of the Ethereum Virtual Machine (EVM)

based on the K framework. The KEVM provides a formal

semantics of the EVM and allows for the rigorous analysis and

verification of smart contracts written in the Solidity

programming language.

To execute the KEVM, a developer writes a Solidity smart

contract and then compiles it into EVM bytecode. The

developer then uses the KEVM toolchain to execute the

bytecode in the KEVM runtime environment.

The KEVM runtime environment provides an

implementation of the EVM instructions and a gas metering

mechanism for tracking the computational resources used by

the contract. The KEVM also provides tools for debugging and

analyzing the contract's behavior during execution.

During execution, the KEVM verifies that the bytecode

conforms to the formal semantics of the EVM and checks for

any potential security vulnerabilities or other issues. The

KEVM also provides a way to simulate the execution of the

contract under different inputs and configurations, which can

help developers identify and fix any issues.

Overall, the KEVM is a powerful tool for verifying and

testing smart contracts on the Ethereum blockchain[8][9]. By

providing formal semantics of the EVM and a runtime

environment for executing and analyzing smart contracts, the

KEVM helps ensure these contracts' correctness and security.

2.2 Execution and verification of smart contract using

KEVM:

Consider the following simple Solidity smart contract:

Pragma solidity0.8.0;

Contract Adder{

Function add (uint256 a, uint256 b) public pure

returns (uint256) {

Return a+b;

}

}

This contract defines a simple function add that takes two

integers a and b, add them together, and returns the result.

To use the KEVM framework to verify and test this

contract, we first need to compile it into EVM bytecode. We

can use the solc Solidity compiler to do this:

$ solc --bin adder.sol

This will generate a binary bytecode file called

adder_sol_Adder.bin

Next, we can use the KEVM toolchain to execute

the bytecode in the KEVM runtime environment:

$ evm exec –codefile adder_sol_Adder.bin

--input

000

000000000000000000005

--input

000

000000000000000000003

--method add

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 371

IJRITCC | August 2023, Available @ http://www.ijritcc.org

This command will execute the add function of the Adder

contract with inputs a=5 and b=3. The -- codefile option

specifies the bytecode file generated by the Solidity compiler,

and the --input options specify the two input values encoded

as 256-bit integers. The --method option specifies the name

of the function to execute.

The output of the command should be:

000

000000000000000000008

We can also use the KEVM framework to generate test

cases for the Adder contract. To do this, we can use the kevm-

testgen tool to automatically generate test cases based on the

formal semantics of the contract:

Overall, this example demonstrates how to use the KEVM

framework to verify and test a simple Solidity smart contract.

By providing formal semantics of the EVM and a runtime

environment for executing and analyzing smart contracts,

the KEVM helps ensure these contracts' correctness and

security[10].

2.2 KEVM specification example

Sure, here's an example KEVM specification for a

simple Solidity smart contract:

Consider the following Solidity smart contract:

pragma solidity 0.8.0;

contract Adder {

function add(uint256 a, uint256 b) public pure returns

(uint256) {

return a + b;

}

}

To specify the behavior of this contract in the KEVM

framework, we first need to define the syntax and semantics of

the EVM instructions that implement the contract's bytecode.

We can do this using the K framework[11][12].

Here's an example KEVM specification for the Adder

contract:

module ADDER

imports INT

syntax Value ::= Int | Address | NilValue syntax

Stack ::= List{Value}

syntax Memory ::= Map{Int,Int}

syntax Storage ::= Map{Int,Int} syntax

Globals ::= Map{Int,Int}

configuration <T color="red">

<k> $PGM:Program</k>

<s> .Stack</s>

<m> .Memory</m>

<a> .Address

<g> .Globals</g>

<o> .Storage</o>

</T>

syntax Program ::=KInstruction*

syntax KInstruction ::= "STOP"

| "ADD"

| "MSTORE"

| "MLOAD"

| "SSTORE"

| "SLOAD"

| "PUSH" Int

| "DUP1"

rule <k> PUSH A:Int => .Stack </k>

<m> M </m>

requires Int2ByteList(A) => X ensures

.Stack => A : .Stack

/\ .Memory => M[0..IntSize-1] := X

/\ .Memory => M[IntSize..] :=

.Memory[IntSize..]

rule <k> ADD => .Stack => X : Y : S ...</k>

ensures .Stack => (X + Y) : S

/\ .Memory => M

/\ .Address => A

/\ .Globals => G

/\ .Storage => O

rule <k> MSTORE => .Stack => V : P : S ...

<m> M

</m>

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 372

IJRITCC | August 2023, Available @ http://www.ijritcc.org

requires Int2ByteList(V)

=> X

/\ Int2ByteList(P) => Y

/\ P + IntSize<MapSize

ensures .Stack => S

/\ .Memory => M[0..P-1] := .Memory[0..P-1]

/\ .Memory => M[P..P+IntSize-1] := X

/\ .Memory => M[P+IntSize..] :=

.Memory[P+IntSize..]

rule <k> MLOAD => .Stack => P : S ...

<m> M[P..P+IntSize-1] => X </m>

ensures .Stack => IntList2Int(X) : S

/\ .Memory => M

/\ .Address => A

/\ .Globals => G

/\ .Storage => O

rule <k> SSTORE => .Stack => V : P : S ...

<o> O </o>

requires Int2ByteList(P) => X

ensures .Stack => S

/\ .Memory => M

/\ .Address => A

/\ .Globals => G

/\ .Storage => O[X] := V

rule <k> SLOAD => .

Formal specification is a precise and unambiguous

description of the expected behavior of a system or

component, written in a formal language that both humans and

computers can understand. Formal specifications are often

used in software engineering to ensure that software systems

meet their requirements and behave correctly.

The syntax of a formal specification is often based on a

mathematical notation and defines the set of symbols and

rules for constructing valid expressions in the language. In

other words, it specifies the grammar of the language [13].

The syntax typically includes definitions of data types,

functions, and operators and rules for constructing expressions

from these components. Notation is typically more precise and

rigorous than natural language and allows for constructing

complex expressions with unambiguous semantics.

Here's an example of the syntax of a simple formal

specification language:

syntax Exp ::= Var | Int | Bool | Exp + Exp | Exp *

Exp | If Exp then Exp else Exp

syntax Var ::= String syntax Int

::= Integer syntax Bool ::= True |

False

This specification defines a syntax for expressions

containing variables, integers, booleans, and arithmetic and

conditional expressions. The syntax keyword is used to define

new syntax constructs, while the Var, Int, and Bool keywords

represent data types. The +, *, if, and then/else keywords

define operators and control structures. To check the execution

of the above specification, we use the K Framework. The K

Framework provides formal semantics for Ethereum smart

contracts, which can be used to automatically verify the

properties of the contract. Once the specification has been

written, it can be loaded into the K Framework and executed

using the K Run tool. The K Run tool simulates the execution

of the contract according to the rules defined in the

specification and can be used to check that the contract

behaves correctly under different conditions[15[16].

III. MATHEMATICAL MODEL FOR PROPOSED

METHOD

In this research, we have used KEVM framework for

verification of smart contracts. As the first step towards the

implementation, here we are proposing the mathematical

model as shown in fig.3.1.

Fig. 3.1 Mathematical model

For mathematical modelling , we have used PetriNet

Modelling technique. The complete process is represented by

two types of elements, one is place and second is transition. In

this directed graph, places represented as circles and

transitions represented as rectangles.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 373

IJRITCC | August 2023, Available @ http://www.ijritcc.org

IV. FORMAL SPECIFICATION TO IDENTIFY GAS

USAGE IN A SMART CONTRACT

 An example of formal specification in the K framework

for identifying gas usage in executing a smart contract is

discussed here:

module GAS

imports INT

syntax Value ::= Int | Address |

NilValue syntax Stack ::= List{Value}

syntax Memory ::=

Map{Int,Int} syntax Storage ::=

Map{Int,Int} syntax Globals ::=

Map{Int,Int} configuration <T

color="red">

<k> $PGM:Program</k>

<s> .Stack</s>

<m> .Memory</m>

<a> .Address

<g> .Globals</g>

<o> .Storage</o>

<gas> Int </gas>

</T>

syntax Program

::=KInstruction* syntax

KInstruction ::= "STOP"

| "ADD"

| "MSTORE"

| "MLOAD"

| "SSTORE"

| "SLOAD"

| "PUSH" Int

| "DUP1"

syntax GasCost ::= Int

rule <k> PUSH A:Int => .Stack </k>

<m> M </m>

<gas> G </gas>

requires Int2ByteList(A) => X

ensures .Stack => A : .Stack

/\ .Memory => M[0..IntSize-1] := X

/\ .Memory => M[IntSize..] :=

.Memory[IntSize..]

/\ .gas => G - 3

rule <k> ADD => .Stack => X : Y : S ...

<gas> G </gas>

ensures .Stack => (X + Y)

: S

/\ .Memory => M

/\ .Address => A

/\ .Globals => G

/\ .Storage => O

/\ .gas => G - 3

rule <k> MSTORE => .Stack => V : P : S ...

<m> M </m>

<gas> G </gas>

requires Int2ByteList(V) => X

/\ Int2ByteList(P) => Y

/\ P + IntSize<MapSize

ensures .Stack => S

/\ .Memory => M[0..P-1] := .Memory[0..P-1]

/\ .Memory => M[P..P+IntSize-1] := X

/\ .Memory => M[P+IntSize..] :=

.Memory[P+IntSiz

e..]

/\ .gas => G - 3

rule <k> MLOAD => .Stack => P : S ...

<m> M[P..P+IntSize-1] => X </m>

<gas> G </gas>

ensures .Stack => IntList2Int(X) : S

/\ .Memory => M

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 374

IJRITCC | August 2023, Available @ http://www.ijritcc.org

/\ .Address => A

/\ .Globals => G

/\ .Storage => O

/\ .gas => G - 2

rule <k> SSTORE => .Stack => V : P : S ...

<o> O </o>

<gas> G </gas>

requires Int2ByteList(P) => X ensures

.Stack => S

/\ .Memory => M

/\ .Address => A

/\ .Globals => G

/\ .Storage => O[X] := V

/\ .gas => G - 3

rule <k> SLOAD => .Stack => P : S ...

<o> O[P] => V </o>

<gas> G </gas> ensures

.Stack => V : S

The above formal specification is written in the K

framework and describes a simple gas metering mechanism for

a smart contract execution. The smart contract is assumed to be

represented as a sequence of instructions, with each instruction

taking a certain amount of gas to execute. The specification

defines the syntax of the state of the system during the

execution of the smart contract. The state consists of a stack of

values, a memory map, a storage map, and a global map. The

syntax also includes a gas counter, which keeps track of the

remaining amount of gas available for execution. Each rule

inputs the current state of the system and the gas counter,

producing a new state of the system and a new gas counter.

Each rule also specifies the amount of gas consumed by the

instruction.

For example, the rule for the PUSH instruction takes the

current stack, memory map, and gas counter as input and

produces a new stack and memory map with the value of the

PUSH instruction pushed onto the stack. The rule also

subtracts three from the gas counter since the PUSH

instruction consumes three gas. Similarly, the rule for the

ADD instruction takes as input the current stack and gas

counter and produces a new stack with the sum of the top two

values on the stack. By defining a set of rules for each

instruction in the smart contract, the specification provides a

precise and unambiguous description of the expected behavior

of the smart contract execution, including the amount of gas

consumed by each instruction[17]. The amount of gas

assigned to each instruction is specified in the gasmap

function. For example, the PUSH instruction is assigned a gas

cost of 3, which means that executing a PUSH instruction

consumes three units of gas. During the execution of the

smart contract, the gas counter keeps track of the remaining

amount of gas available for execution. The initial value of the

gas counter is set to N units of gas, where N is a parameter of

the smart contract. The gas consumed by each instruction is

subtracted from the gas counter. If the gas counter reaches

zero or becomes negative during the execution of the smart

contract, then the execution is aborted, and any changes to

the system's state are reverted. The amount of gas used by the

smart contract execution is equal to the difference between the

gas counter's initial value and the gas counter's final value. In

the above example, if the smart contract execution completes

successfully, then the amount of gas used would be equal to

the difference between the initial value of 100 units and the

final value of 91 units, which is nine units of gas[18].

V. FORMAL SPECIFICATION FOR FALLBACK

FUNCTION IN SMART CONTRACT

The formal specification for one of the important

vulnerabilities of improper defining fallback function is given

here.

syntax Int ::= "int" "(" Int ")" // integers

syntax Address ::= "address" "(" Int ")" //

Ethereum addresses

syntax Bool ::= "true" | "false" // boolean values

syntax State ::= state(gascount: Int, sender: Address,

value: Int, data: List{Byte}, balance: Map{Address,

Int})

syntax Byte ::= byte(Int) // individual bytes

syntax List{T} ::= nil | cons(T, List{T}) // lists

syntax Instruction ::= CALLDATALOAD

 | CALLVALUE | CALLER | BALANCE |

JUMPDEST

| PUSH(Int) | JUMP | JUMPI | DUP(Int) |

SWAP(Int) | POP | MSTORE | RETURN

syntax Gasmap ::=gasmap(Instruction ->

Int) syntax Contract ::= contract(State,

Gasmap)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 375

IJRITCC | August 2023, Available @ http://www.ijritcc.org

rule <k>EStack => I ...</k>

<state gascount: Gas, sender: Addr, value: Val,

data: D, balance: B>

<gasmapGasmap>

requires Gas >= getGas(I, Gasmap)

ensures Gas == Gas - getGas(I, Gasmap)

when I != JUMPDEST

rule <k>EStack => I ...</k>

<state gascount: Gas, sender: Addr, value: Val,

data: D, balance: B>

<gasmapGasmap>

requires Gas >= getGas(I, Gasmap)

ensures Gas == Gas - getGas(I, Gasmap)

when I == JUMPDEST

syntax Fallback ::= fallback(State,

Gasmap) rule <k>EStack => Fallback </k>

<state gascount: Gas, sender: Addr, value: Val,

data: D, balance: B>

<gasmapGasmap>

requires Gas >= 2300 // fallback function always has a

minimum gas of 2300

ensures Gas == Gas - 2300

This specification defines a Fallback syntax that represents

the fallback function of a smart contract. The Fallback function

takes the same input state, gasmap, and output stack as a

regular instruction. The Fallback rule specifies that when the

fallback function is executed, it requires a minimum of 2300

gas, which is the minimum amount of gas needed by the

Ethereum protocol for executing a fallback function. The rule

also ensures that 2300 units decrement the gas counter after

the execution of the fallback function[19]. This is a simplified

specification and does not include all possible instructions and

behaviors that may occur during the execution of a fallback

function.

VI. FORMAL SPECIFICATION FOR SIGNATURE

REPLAY ATTACK IN SMART CONTRACT

A signature replay attack in blockchain is a type of attack

where a valid digital signature is reused without the owner's

consent to perform unauthorized transactions on the

blockchain network. In a signature replay attack, an attacker

intercepts a valid signature from a legitimate transaction and

then uses it to create a new transaction without the owner's

consent. Since the signature is valid, the transaction is

accepted by the blockchain network and added to the

blockchain[20][21].

To prevent this type of attack, we have written formal

specifications to identify it. The given formal specification

describes how to prevent a signature replay attack in a smart

contract.

syntax Int ::= "int" "(" Int ")" // integers

syntax Address ::= "address" "(" Int ")" // Ethereum

addresses

syntax Bytes32 ::= "bytes32" "(" Int ")" // 32-byte

values

syntax Bool ::= "true" | "false" // boolean values

syntax State ::= state(signer: Address, nonce: Int, balance:

Map{Address, Int})

syntax Transaction ::=tx(from: Address, to: Address, value:

Int, data: List{Byte}, nonce: Int, gasprice: Int, gaslimit: Int, v:

Int, r: Bytes32, s: Bytes32)

syntax SignatureReplayAttack ::=

sigAttack(from: Address, to: Address, value: Int, data:

List{Byte}, nonce: Int, gasprice: Int, gaslimit: Int, v: Int, r:

Bytes32, s: Bytes32, originalTx: Transaction) syntax Byte ::=

byte(Int) // individual bytes

syntax List{T} ::= nil | cons(T, List{T}) // lists

syntax Contract ::= contract(State)

syntax VerifySignature ::=verifySignature(data:

List{Byte}, v: Int, r: Bytes32, s: Bytes32, pubkey:

Bytes32) -> Bool

rule <k>EStack => F ...</k>

<state signer: SignerAddr, nonce: Nonce, balance:

Balance>

<verifySignature(data: Data, v: V, r: R, s: S,

pubkey: PubKey) |G: Gas>

<tx from: FromAddr, to: ToAddr, value: Value,

nonce: TxNonce>

requires G >= 20000 // gas cost for calling

verifySignature function

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 376

IJRITCC | August 2023, Available @ http://www.ijritcc.org

ensures G == G - 20000

when FromAddr == SignerAddr and TxNonce ==

Nonce and VerifySignature(Data, V, R, S, PubKey)

== true

// if the signature is valid and transaction is sent by

the signer

rule <k>EStack => F ...</k>

<state signer: SignerAddr, nonce: Nonce, balance:

Balance>

<verifySignature(data: Data, v: V, r: R, s: S,

pubkey: PubKey) |G: Gas>

<tx from: FromAddr, to: ToAddr, value: Value,

nonce: TxNonce>

requires G >= 20000 // gas cost for calling

verifySignature function

ensures G == G - 20000

when FromAddr == SignerAddr and TxNonce<

Nonce and VerifySignature(Data, V, R, S, PubKey)

== true

// if signature is valid and transaction is sent by the

signer, but with an old nonce

syntax TransactionPool ::=

pool(List{Transaction}) rule <k>EStack => F ...</k>

<state signer: SignerAddr, nonce: Nonce, balance:

Balance>

<verifySignature(data: Data, v: V, r: R, s: S,

pubkey: PubKey) |G: Gas>

<sigAttack(from: FromAddr, to: ToAddr, value:

Value, data: Data, nonce: TxNonce, gasprice: GasPrice,

gaslimit: GasLimit, v: V, r: R, s: S, originalTx:

OriginalTx)>

requires G >= 20000 // gas cost for calling

verifySignature function

ensures G == G - 20000

when FromAddr == SignerAddr and TxNonce ==

Nonce and VerifySignature(Data, V, R, S, PubKey)

== true

The specification defines several syntax definitions for

various data types, such as integers, addresses, bytes, and

booleans. It then defines a State syntax to represent the state

of the contract, which includes the signer's address, nonce, and

balance. The specification also defines a Transaction syntax to

represent Ethereum transactions, as well as a Verify Signature

function to verify the authenticity of a given signature[22].

The rules of the specification define the behavior of the

contract in certain situations. In particular, there are two rules

that define how the contract should behave when a valid

transaction is received: one for when the transaction has the

correct nonce, and one for when the transaction has an old

nonce. Both rules require that the transaction's signature be

verified using the Verify Signature function, and that the

transaction be sent by the signer. Additionally, the specification

defines Signature Replay Attack syntax to represent a potential

attack, as well as a Transaction Pool syntax to represent a pool

of unprocessed transactions. The last rule specifies how the

contract should behave when a signature replay attack is

attempted[23]. It requires that the transaction's signature be

verified, and that the transaction have the correct nonce and be

sent by the signer. However, this rule only applies if the

transaction is sent as part of an attack and is already present in

the transaction pool. This is intended to prevent an attacker

from replaying a valid transaction that was originally sent by

the signer. Overall, the specification is designed to prevent a

signature replay attack by ensuring that only valid transactions

are processed and that transactions with old nonces are

rejected. By verifying the authenticity of each transaction's

signature using the VerifySignature function, the contract can

ensure that the transaction is indeed being sent by the intended

signer.

VII. DISCUSSION

Here is a general overview of the steps involved in

executing a formal specification:

Define the formal specification: This involves writing the

specification in a language that can be executed by a formal

verification tool. For example, the specification could be

written in the K Framework's syntax or another formal

specification language such as Coq or Alloy. Compile the

specification: Once the specification has been defined, it needs

to be compiled into an executable format. This is typically done

using a compiler or interpreter that is designed for the specific

language and tool used. Run the specification: Once the

specification has been compiled, it can be run using a tool

that can execute the specification. For example, the K

Framework provides a tool called KRun that can be used to

execute K specifications[24]. Test the specification: After the

specification has been executed, it should be tested to ensure

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7432

Article Received: 09 May 2023 Revised: 01 July 2023 Accepted: 28 July 2023

 377

IJRITCC | August 2023, Available @ http://www.ijritcc.org

that it behaves correctly. This can involve running test cases

that cover different scenarios and checking that the

specification produces the expected output.

Overall, the process of executing a formal specification can

be complex and may require specialized knowledge and tools.

However, the benefits of formal verification can be significant,

as it can help to ensure the correctness and security of software

systems.

VIII. CONCLUSION

In conclusion, smart contract vulnerabilities can have

serious consequences for blockchain systems, and formal

verification using frameworks such as KEVM can help

mitigate these risks. The K Framework provides a set of tools

for defining and executing formal specifications, including a

parser, compiler, and execution engine. Overall, the K

Framework provides a powerful way to specify and verify the

behavior of smart contracts and can be used to ensure that

contracts behave correctly under a wide range of conditions.

By ensuring the correctness of smart contracts, we can

increase the security and reliability of blockchain systems.

REFERENCES

[1] Atzei, Nicola, Bartoletti, Massimo, “A survey of attacks on

Ethereum smart contracts”,2018.

[2] Liu J, Liu Z, “A Survey on Security Verification of

Blockchain Smart Contracts”, ACCESS.2019.2921624 , IEEE

Access 2019

[3] Atzei et al. "Smart Contract Vulnerabilities: Vulnerable

Does Not Imply Exploited" , 2018

[4] Ivica Nikolic, Aashish Kolluri et al. "Finding The Greedy,

Prodigal, and Suicidal Contracts at Scale, 2018

[5] Sun, Tianyu Yu, Wensheng, “A formal verification

framework for security issues of blockchain smart contracts”,

Electronics (Switzerland), 10.3390/electronics9020255, 2020

[6] Bhargava et al. "Towards Safer Smart Contracts: A Survey of

Languages and Verification Methods" by Bhargava et al.,2018

[7] Bhattacharya P, Singh A , “A Systematic Review on

Evolution of Blockchain Generations ITEE Journal A

Systematic Review on Evolution of Blockchain Generations”,

International Journal of Information Technology and

Electrical Engineering, December 2018.

[8] Praitheeshan, Purathani, Pan, Lei, “Security Analysis Methods

on Ethereum Smart Contract Vulnerabilities: A Survey”,

ArxIvID 1908.08605, 2019

[9] Kshirsagar, P. R., Yadav, R. K., Patil, N. N., & Makarand L,

M. (2022). Intrusion Detection System Attack Detection and

Classification Model with Feed-Forward LSTM Gate in

Conventional Dataset. Machine Learning Applications in

Engineering Education and Management, 2(1), 20–29.

Retrieved from

http://yashikajournals.com/index.php/mlaeem/article/view/21

[10] Everett Hildenbrandt , Manasvi Saxena, Xiaoran Zhu et al.

"KEVM: A Complete Semantics of the Ethereum Virtual

Machine", 2018

[11] Atzei et al. "A Survey of Attacks on Ethereum Smart

Contracts (SoK)" by Atzei et al., 2017

[12] Ilya Grishchenko, “A Semantic Framework for the Security

Analysis of Ethereum smart contracts”, 10.1007/978-3-319-

89722- 6_10, 2018

[13] Nikolić et al. "Smart Contract Security: An Imperative for

Blockchain Adoption" , 2018

[14] Conti et al, "A Classification of Blockchain-based Attacks and

Vulnerabilities" , 2018

[15] Bhargava et al. "Smart Contract Security: Challenges and

Future Directions" ,2019

[16] Gabriel Santos, Natural Language Processing for Text

Classification in Legal Documents , Machine Learning

Applications Conference Proceedings, Vol 2 2022.

[17] Bhargavan et al. ,"A Formal Verification Framework for

Ethereum Virtual Machine Bytecode", 2016

[18] Tsankov et al., "Formal Verification of Smart Contracts: Short

Paper", 2018

[19] Delmolino et al. ,"Formally Verified Smart Contracts in

Ethereum", 2016

[20] Kavaliro et al. , "Automated Verification of Smart Contracts

Using K Framework", 2019

[21] Braghin et al. , "Formal Verification of Smart Contracts

withthe K Framework" ,2019

[22] Bansal et al., "Smart Contract Verification with KEVM: A

Comprehensive Study", 2019

[23] Kalaivani, A. ., Karpagavalli, S. ., & Gulati, K. . (2023).

Expert Automated System for Prediction of Multi-Type

Dermatology Sicknesses Using Deep Neural Network Feature

Extraction Approach. International Journal of Intelligent

Systems and Applications in Engineering, 11(3s), 170–178.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2557

[24] Levy et al., "Formal Verification of Solidity Smart Contracts

with K", 2019

[25] Arroyo et al. ,"On the Use of K for the Formal Verification of

Smart Contracts" , 2020

[26] Aurrecoechea et al. ,"KEVM-IDE: A Development

Environment for Smart Contracts Based on K Semantics"

,2019 [24]. Chen et al. ,"KEVM-IELE: Toward Translation

Validation from EVM to IELE", 2020.

http://www.ijritcc.org/

