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I.  INTRODUCTION 

Any human physiological and/or behavioral 

characteristic is used to construct an authentication system. 

However, multimodal is always preferred over unimodal 

classifier as unimodal has the limitations such as universality, 

uniqueness, permanence, intraclass variation and inter-class 

similarity [1][2]. Classifier is trained on dataset samples, 

captured from the user during the enrolment process. This 

enrolment process is done over a very short period, typically a 

couple of days up to a couple of months. Hence, in along run of 

biometric authentication system, the recognition accuracy in 

terms of false rejection rate starts affecting, if the classifier is 

built based on a variant biometric trait such as the face, 

signature, gait, etc. which varies as age progresses [3][4]. Some 

real-time sample face images compiled over two decades are 

shown in Figure 1. 

Age invariant identification and verification research 

has been extensively carried out on face biometric traits. As it is 

used in many applications mainly photo identification 

demanding services such as access control, claim settlements, 

criminal investigation, searching a person who has been missing 

for a long duration, automatic photo tagging, and e-commerce 

to display wearable products in different colors and 

combinations [5][6]. Before the emergence of deep learning, age 

progression and regression methods were primarily applied with 

a physical model and prototype approaches. The physical 
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modeling approach aims to model the physical characteristics of 

an age-progressive face, such as the progressive changes in hair, 

mouth, and skin texture [7][8].  

 
Fig. 1. Age progressive Face samples 

 

The methods belonging to this approach, require a substantial 

amount of matched data and are pretty time-consuming. The 

prototype approach performs face aging using a non-parametric 

model. Initially, it partitions all faces into distinct age groups, 

and an average face within each age group is computed as a 

specimen. The difference between the average faces is treated as 

the aging effect and this effect is transferred to individual face 

to produce an aged face. However, the prototype approaches 

discard the personalized information and all the people share the 

same aging pattern [9][10]. Moreover, regardless of the model 

type, all these methods perform a one-step transformation from 

one age group to another by learning a single mapping function. 

Thus, the one-step mapping function typically fails to capture 

the dynamics of the in-between face sequence between adjacent 

age groups [11].  

With age progression, intra-class variations become 

larger than inter-class variations, and the mixed features of age 

and identity reduce the robustness of the Age variant Face 

Recognition system to recognize cross-aged faces. Hence, the 

emphasis was on separating age-dependent features from 

identity-revealing features and obliterating age-dependent 

features from performing recognition [12]-[19]. Deep learning 

techniques enabled developers to use Generative Adversarial 

Networks (GANs) in image synthesis and translation tasks, but 

GANs require a huge and balanced dataset to carry out training. 

There are a number of ways to handle imbalanced classes but it 

involves additional computational cost. The Conditional 

generative adversarial networks (cGANs) have achieved 

impressive results in aging faces. Existing cGANs-based 

methods basically require a pixel-wise loss to keep the identity 

and background consistent. However, reducing the pixel-wise 

loss between the input and its synthesized image results in a 

ghosted or blurry face image [20]-[24].  

Existing face recognition systems face challenges of 

variation in pose, illumination, expression, and light effect 

within compiled images as well as in probe images. Many 

factors such as gender, appearance, aspects, beard, hair, 

baldness, and attire are needed to be taken into account while 

synthesizing age-progressive images. In addition to this, 

consideration of the effects of aging on the facial appearance 

which differs from person to person in age-invariant face 

recognition increases the model’s complexity. At the same time, 

we can not ignore the fact that occasionally variations in 

biometric traits are permanent, mostly these changes are 

situational or temporary. Subject’s mood such as 

happiness/sadness/laziness/overexcitement, illness, temporary 

accidental injury, mental stress, or physical stress while 

capturing a sample or probe image may affect the classifier’s 

classification ability. Hence, it is not only about the face-

physiological biometric trait, but the variations that occur in 

behavioral traits over time are significantly large and to track 

these variations is time-consuming and heavily results in high 

computational cost and in increased model complexity. Many 

existing methods have tried to construct models using Age 

Invariant Face Recognition database but did not consider the 

subject-wise confidence level with which the subject is 

identified. Some methods emphasized the key descriptors of the 

face which could help in avoiding the possibility of false 

rejection when the system is used for a longer duration. 

A biometric authentication system is basically used for 

identification and verification. The effects of aging on a trait 

differ from person to person in its appearance, to learn these 

patterns and to produce accurate simulations of how a trait ages 

or rejuvenates, is a complex methodology and moreover, we do 

not have assurance till that aged time elapses. A model trained 

on synthesized images is good for identification but the 

limitations of these techniques express its unsuitability and risk 

involved in using it for verification. In sensitive applications 

such as banking, military, etc., it is always advisable to recollect 

biometric trait samples from subjects when variations start 

affecting recognition so that it will ensure nonrepudiation, 

security, and liveliness of the subject.  

Our proposed system consists of multimodal biometric 

authentication performing a classifier built using one invariant 

biometric trait and it asks for re-enrolment when model reaches 

to level of false rejection due to variations in features exhibited 

by biometric trait sample compared to its enrolled samples. To 

solve the problem of misclassification associated with age 

progression, we have proposed confidence score-based 

authentication. As individual ages, their physical features 

change gradually and cumulatively. For example, face-aging 

results in fine lines around the eyes and mouth and change in 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9s 

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7426 

Article Received: 07 May 2023 Revised: 25 June 2023 Accepted: 26 July 2023 

___________________________________________________________________________________________________________________ 

 

    324 

IJRITCC | August 2023, Available @ http://www.ijritcc.org 

skin texture, shape of face. Model does not falsely reject sample 

at sudden but the matching score decays over time in response 

of input varied-probe image.  Hence, our system sets and utilizes 

proposed-research-specific thresholds to determine the exact 

time to notify subject about reregistration. Classifier is deployed 

on permission blockchain to carry out said process securely by 

avoiding any kind of intermediate data tampering [25][26] and 

enabling system to trigger appropriate smart contract depending 

upon confidence level of subject authentication.  

II. METHOD 

The proposed system is basically a multimodal biometric 

classifier built from variant traits such as faces and invariant 

traits such as iris. 

Dataset: UPOL dataset of Iris containing 768 x 576 sized 

six images of each of 64 subjects. We used our own dataset 

101FACES containing 8 samples sized 256 x 256 of below 30 

years aged subjects from 101 classes. Practically,  

 
Fig. 2. Age-progressive synthesized images stored with different 

datasets 

 

The system does not use a classifier trained on age-progressive 

synthesized images. However, to evaluate the proposed plan, we 

need three datasets belonging to different age groups of the same 

classes. For the same, images from the original face dataset are 

synthesized using all networks at different age groups and stored 

with respective datasets [27][28].  Fig. 2 shows the sample 

images from the datasets. We have samples from four age 

groups of classes (AG I: age (<30), AG II:(>30 age ≤ 45), AG 

III: (>45 age ≤ 60), AG IV:(age>60)) from an original dataset 

which is piled into respective age group representing datasets.  

 

Fig. 3 represents the trigger of re-enrolment-notification 

depending on variant traits’ prediction-confidence-score.  

The following terms and thresholds describe the working 

of the proposed system. 
a. Invariant biometric trait: A multimodal classifier must 

include a feature vector of at least one biometric trait which 

will remain constant over time. This feature vector will be 

used to encourage the variant feature vectors’ updation. 

Invariant biometric traits are Fingerprint, Palmprint, Iris, 

and Retinal Scan. We used iris for our experimentation. 

b. Variant biometric trait: A biometric trait whose feature 

vector does not remain constant over time, is called a 

variant biometric trait. Invariant feature vectors will be 

used to encourage the updating of variant feature vectors. 

Face samples are chosen for analysis of the proposed 

system. 

 
Fig. 3. Architecture of executing smart contract based on classifier’s 

decisions 

 

c. Allowed degree of variance in confidence level, conf: It 

is an allowed degree of dissimilarity in the biometric 

features for which re-enrolment is not required or a 

measure that represent controlled dissimilarity. In case of 

biometric traits such as signature, voice; this dissimilarity 

is calculated in terms of Euclidean distance.  

Mid value of accuracy along with confidence interval is 

used as a threshold for first five tests which have been 

resulted in a successful authentication. 

d. Multimodal biometric model: Fusion is carried out at the 

decision level to construct a biometric authentication-

performing classifier. This proposed system consists of 

three channels, two channels corresponding to selected 

one invariant and one variant trait and a third 

corresponding to the combined feature vector of these 

two.  

http://www.ijritcc.org/
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e. Event to trigger an update of feature vector: At any 

point in time, the event to update the feature vector 

triggers when either of the following conditions is met. 

i. Time_to_update_feature_vector threshold, triggtm: 

When already set datetime elapses, it triggers an event of 

updating the feature vector. Currently, it is set to 6 

months. It may be changed to any logical time by 

analyzing the system over a longer duration than 6 

months.  It may alert the system to update feature vectors 

even though the threshold representing the maximum 

low confidence score is not reached. 

ii. Number_Low_confidence_score threshold, triggconf: 

How frequently the subject is authenticated with a low 

confidence score is recorded. When the count exceeds 

the set threshold of an allowable number of times 

authentication with a low confidence score occurs, smart 

contract triggers to update the feature vector even though 

time is not elapsed. 

 

To set thresholds from the original dataset, certain steps are 

followed. Fig. 4 shows the procedure followed to notify the 

subject about alteration in his variant trait. 

a. A pair of biometric traits, i.e. iris having high permanence 

and face having low permanence, are chosen to build unimodal 

deep learning models M1 and M2 from iris and face feature 

vectors fv1 and fv2 respectively. Face images are fed to the 

convolutional neural networks to fetch features and from Iris 

images, Kekre’s median codebook [29] is generated to feed it to 

Long-short term memory for the respective classifier’s 

construction. 

b. These feature vectors are combined to construct a 

multimodal classifier M12. 

c. Set a threshold time_to_update_feature_vector to the 6 

months later datetime from the date, images are enrolled on. 

d. Set maximum low_confidence_level score threshold to the 

average confidence_score resulted from the validation of input 

to the variant trait-based classifier. 

      To define the confidence threshold for each subject: 

i. Initial confidence is defined in the following 

specified  

  way: Say we have n number of samples from class 𝐶𝑖.     

  The feature vector of n samples is represented as   

  fv0, fv1, fv2, …. fvn-1}. 

ii. Calculate the euclidean distance between fv0, with 

fv1 to fvn-1, as {dvi1, dvi2,…. dvin-1} 

 

iii. Calculate mean:   𝑑𝑣𝑖  =  
𝑑𝑣𝑖1+ 𝑑𝑣𝑖2+⋯.+𝑑𝑣𝑖𝑛−1

𝑛
 

 

 

 

Table I. Smart contract invocation depending upon variant biometric 

classifier’s output 

M1O M2O M12O Smart Contract 

Reject or 

authenticate 

with a low 

confidence 

score 

Authenticate Authenticate 

Record_SCon: 

Record datetime and 

increment count of 

authentication with 

low confidence 

matching score. 

Authentic 
Authenticate Authenticate 

Vote_SCon: To 

perform specific 

tasks, authenticated 

parties want to be 

involved. e.g Voting cate 

 

iv. Calculate sample variance for new sample from 

class:
𝑠𝑖 = √

𝛴 (𝑑𝑣𝑛𝑒𝑤−𝑑𝑣𝑖)2

𝑛−1

 

Where, 𝑑𝑣𝑛𝑒𝑤  is the average feature vector distance of a 

new sample’s feature vector from the other samples’ 

feature vector from ith class. 

v. If x1, x2……xn are normally distributed 𝑎 =

𝜒
1−

𝛼

2,𝑛−1

2 and 𝑏 = 𝜒 𝛼

2,𝑛−1

2  , then (1-α)%     

confidence interval for variance 𝜎2  is, 

                (
(𝑛−1).𝑠𝑖

2

𝑏
) ≤ 𝜎2   ≤  (

(𝑛−1).𝑠𝑖
2

𝑎
)
 

vi. Accuracy with a mid value of interval is used as initial 

allowable maximum low_confidence_threshold to 

perform classification first five test images which 

resulted in correct authentication. We used Mean 

Effective Confidence (MEC) method [30] to derive 

confidence score associated with classification and these 

scores are averaged to revise 

maximum_low_confidence_threshold.         

MEC= 
1

𝑛
 ∑ 𝐶𝑖 ∗ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑆𝑖)𝑛

𝑖=1  

𝐶𝑖 = 1, ith prediction is correct. 

n=5, number of testing samples,  

Ci denotes the correctness and  

CSi represents the confidence score of ith prediction 

which is normalized between 0 and 1 

          We have used, so 𝐶𝑖 = 1 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

e. For the fed input test sample to the biometric 

 authentication system consisting of three models and       

 record their output as {M1O, M2O, M12O}. 

f. This model is integrated with permission blockchain to 

enable the invocation of smart contracts. Once a subject is 

authenticated, depending upon the confidence score pushed to 

the blockchain, either of the following smart contracts is 

invoked. Channels' output corresponding to smart contract 

invocation is shown in Table I. 
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i. Vote_SCon- As the subject gets authenticated, it 

triggers a smart contract running on blockchain, a 

subject is intended to participate. e.g., to vote for a 

candidate in an election. 

ii. Record_SCon- Record false rejection for each subject 

by incrementing counter fr when confidence score 

is below threshold conf. If the subject is 

successfully authenticated with below confidence 

threshold conf, then it's internally reported as an 

alteration in trait and increments triggconf by one 

and invokes Vote_Scon too. 

iii. Enroll_SCon- Compares fr with triggconf. If fr >= 

triggconf, then it notifies the subject to re-register 

biometric trait samples. 

 

Fig. 4 shows the execution of the proposed system. To 

trigger updates of feature vectors, a biometric authentication 

system is deployed on the Permission blockchain. The web 

interface is generated to input the probe image and run the 

classifier on an input image. To decide which smart contract to 

invoke, outputs M1O, M2O, and M12O were analyzed. The 

system addresses only the limitation of variant biometric traits, 

confidence score was calculated for the probe image and found 

that on successful authentication, Vote_SCon executes, and on 

authentication with a low confidence score, both Vote_Scon and 

Record_Scon execute.  Once authentication with a low 

confidence score exceeded the set threshold conf, the number of 

times such authentication is allowed; Enroll_Scon ran and 

notified subject to re-enroll. Blockchain ensures security, non-

repudiation, and availability of updated feature vectors by 

storing the logs. 

 

 
Fig. 4. Proposed Multimodal Biometric Authentication System *A: Authenticate, R: Reject, CF: confidence score

III. RESULTS AND DISCUSSION 

Once the thresholds are set by following the steps from the 

above section, a classifier constructed on the original dataset is 

applied to validate samples from other datasets. Fig. 5 shows the 

accuracy of classifier along with confidence interval. Table II 

represents the accuracy and the confidence interval. One sample 

from each dataset of variant traits is used to check a confidence 

score which is ultimately used to classify the sample. A score 

less than the set threshold triggers a smart contract to record the 

count of authentication with low_confidence_score. It also 

triggers a smart contract to notify the system and subject 

regarding re-enrolment, when such authentication exceeds 

triggconf threshold value. 

http://www.ijritcc.org/
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Fig. 5. Confidence interval of the classifier built from the original 

dataset and validated on remaining datasets. 

 

We can observe that the synthesized image from age above 

60 for sample 1 is far different from the real image from 2023 

shown in Fig 6. This difference underlines the importance of re-

enrollment. For evaluating models after re-enrolment, we added 

synthesized images from age groups II, III, and IV successively 

to the original dataset and recorded improved accuracy and 

confidence score. Table III represents the accuracy and 

corresponding confidence interval. 

 
Fig. 6. The sample images from year 2011, synthesized images from 

AG II, and real images from 2023

 

 Table II. Experimental Results from age progressive datasets 

 

Table III. Experimental results after adding synthesized images to original datasets in response to re-enrolment notification (in 

practical use real samples from the subject will be collected and added to the dataset for further training) 
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75

80

85

90

95

AGI AGII AGIII AGIV

Classifier's accuracy from datasets

Datasets Overall 

False 

Rejection 

Rate of 

variant 

classifier 

Accuracy 

of 

integrated 

classifier 

Accuracy of variant 

classifier 
The 

confidence 

score of 

sample1 

The 

confidence 

score of 

sample2 

The 

confidence 

score of 

sample3 

AGI Age  ≤ 30 10.76 93.39 91.95 ± 1.66 0.94 0.94 0.93 
AGII   30 < Age ≤ 45 12.40 91.53 88.58 ± 2.09 0.92 0.89 0.93 
AGIII  45 < Age ≤ 60 12.89 85.67 79.94 ± 5.21 0.87 0.81 0.88 
AGIV Age > 60 15.07 81.45 72.17 ± 6.88 0.73 0.73 0.74 

    
As the low_confidence threshold is 92, the confidence score below this causes 

it to invoke smart contract 2, and on exceeding triggconf or triggtm, smart 

contract Enroll_Scon gets executed. 

Datasets Overall 

False 

Rejection 

rate of 

the 

variant 

classifier 

Accuracy 

of 

integrated 

classifier 

Accuracy of 

variant 

classifier 

The 

confidence 

score of 

sample1 

The 

confidence 

score of 

sample2 

The 

Confidence 

score of 

sample3 

AGI Age ≤ 30 10.76 93.39 93.05 ± 1.66 0.94 0.94 0.93 

AGI +AGII 30 < Age ≤ 45 12.40 92.17 92.03 ± 1.28 0.92 0.92 0.93 

AGI+AGII+AGIII 45 < Age ≤ 60 12.89 93.39 93.11 ± 0.99 0.93 0.92 0.94 

AGI+AGII+AGIII+AGIV Age > 60 15.07 94.6 94.16 ± 0.83 0.92 0.92 0.94 
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IV. CONCLUSION 

On three grounds the results are concluded. First, the 

accuracy of the integrated classifier from Table 2 and Table 3, 

confirm that the multimodal biometric authentication system 

built on the face-variant trait and iris-invariant trait proved to be 

more robust than unimodal system and/or multimodal invariant 

traits-based system.      

Secondly, the confidence score-based re-enrolment controls 

the memory, time, and computational cost incurred in 

conventional periodic reregistration of subjects.  

The third point is related to the use of classification. 

Classification is used for identification or verification. To verify 

individuals using passports, driving licenses, and Aadhar card 

with face-based authentication, in the clearance of signed 

cheques with signature-based authentication; it is essential to 

recollect samples of variant traits as age progresses. The change 

in lifestyle, surgeries, medical treatment (affecting body 

structure), and accidental injury may affect the trait's 

characteristics and hence, the variant trait-based classifier's 

prediction ability gets affected adversely. Re-enrolment assures 

the subject's liveliness, guarantees non-repudiation, and avoids 

impersonation when the subject is notified through the smart 

contracts deployed on the permission blockchain. We can 

clearly observe the difference between a synthesized image of 

sample 1 and the real image from 2023 from age group 45-60, 

which emphasizes that in certain applications identification 

depending upon synthesized images-based training may give 

good results but in sensitive areas, authentication/verification 

must be done from classifiers which are constructed from real 

images only. 
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