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        Abstract -Accurate software defect prediction (SDP) helps to enhance the quality of the software by identifying potential flaws early in 

the development process. However, existing approaches face challenges in achieving reliable predictions. To address this, a novel approach is 

proposed that combines a two-tier-deep learning framework. The proposed work includes four major phases:(a) pre-processing, (b) 

Dimensionality reduction, (c) Feature Extraction and (d) Two-fold deep learning-based SDP. The collected raw data is initially pre-processed 

using a data cleaning approach (handling null values and missing data) and a Decimal scaling normalisation approach. The dimensions of the 

pre-processed data are reduced using the newly developed Incremental Covariance Principal Component Analysis (ICPCA), and this approach 

aids in solving the “curse of dimensionality” issue. Then, onto the dimensionally reduced data, the feature extraction is performed using 

statistical features (standard deviation, skewness, variance, and kurtosis), Mutual information (MI), and Conditional entropy (CE). From the 

extracted features, the relevant ones are selected using the new Euclidean Distance with Mean Absolute Deviation (ED-MAD). Finally, the SDP 

(decision making) is carried out using the optimized Two-Fold Deep Learning Framework (O-TFDLF), which encapsulates the RBFN and 

optimized MLP, respectively. The weight of MLP is fine-tuned using the new Levy Flight Cat Mouse Optimisation (LCMO) method to improve 

the model's prediction accuracy. The final detected outcome (forecasting the presence/ absence of defect) is acquired from optimized MLP. The 

implementation has been performed using the MATLAB software. By using certain performance metrics such as Sensitivity, Accuracy, 

Precision, Specificity and MSE the proposed model’s performance is compared to that of existing models. The accuracy achieved for the 

proposed model is 93.37%. 

Keywords: Software defect prediction; Incremental Covariance Principal Component Analysis (ICPCA); Euclidean Distance with Mean 

Absolute Deviation (ED-MAD); Levy Flight Cat Mouse Optimization (LCMO); Two- Fold Deep Learning Framework (TFDLF) 
 

Nomenclature 

Abbreviation Description 

WPDP Within Project Defect Prediction 

TSE Two-Stage Ensemble 

SDP Software defect prediction 

SDAEs Stacked Denoising Autoencoders 

LSTM Long Short-Term Memory 

LDFP Learning Deep Feature Representation 

DPs Deep Representations 

DP-ARNN Defect Prediction via Attention-Based Recurrent Neural Network 

DL Deep Learning 

CNN Convolutional Neural Networks 

ASTs Abstract Syntax Trees 

 

I. INTRODUCTION 

Software flaws are mistakes made during the 

development of the software that can cause failure, faults, 

collapse, and even jeopardise the security of people and their 

property. Software dependability, understandability, 

availability, maintainability, and effectiveness are all 

significantly impacted by software bugs [1]. Even carefully 

applied software requires laborious bug-free software 

development because hidden bugs are frequently present. A 

significant challenge in software engineering is the 
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development of software bug prediction models that can 

identify faulty modules early on. Predicting software error is 

a crucial step in the development of software. This is due to 

the fact that identifying buggy modules before the software is 

deployed increases user satisfaction and enhances overall 

software performance. Additionally, foreseeing software bugs 

early enhances software adaptation to various environments 

and boosts resource utilization [2, 3]. SDP [4] is only possible 

with past data obtained during the implementation of similar 

or identical software projects, or with design metrics gathered 

during the software development design phase. [5]. 

 SDP is a current area of study for software 

repository mining [6]. By anticipating potential defective 

program modules, the methods of SDP can be used to allocate 

resources for the assurance of software quality more 

effectively [7, 8]. As a result, the minimal testing resources 

can be used more wisely to test the specified modules. After 

mining and analysing software warehouse, SDP can train 

models, and these models can then be used to distinguish 

between non-defective and defective modules in a project. 

The level of detail of modules for gathering can be set to file, 

method, or even code change depending on the developer 

usage scenario [9]. Defects resulting from that software have 

a prominent effect on businesses and people's lives as it 

continues to play a essential role in every aspect of our 

society. However, the complexity and the size of the software 

codebase significantly expands, and finding errors in code 

grows more and more challenging. The topic of defect 

prediction is a active research in software engineering due to 

its significance and difficulties. Significant research has gone 

into creating tools and predictive models that allow software 

testers and engineers to quickly identify the most likely faulty 

areas of a software codebase [10, 11]. 

Software engineering is one of many fields where 

DL has been applied since 2012 DL made its debut in the SDP 

field in 2015, and since then, its use has increased. Numerous 

academics have looked into the application of DL to the 

prediction of software defects up to this point [12, 13]. The 

need for software for various applications has been growing 

quickly over the last 20 years. Numerous software 

applications are created for daily or business use in order to 

satisfy customer demand. Because of the number of 

productions of software programmes, software quality 

remains an unresolved issue, resulting in poor functionality 

for both commercial and personal applications. Software 

testing was developed as a result to address this problem by 

helping to identify and attempt to fix any flaws or bugs in the 

software application [14, 15]. 

 

The major outcome of this research is:  

• To introduce a new Incremental Covariance Principal 

Component Analysis (ICPCA) model for resolving the 

“curse of dimensionality” issue. 

• To Select the optimal Features using the new Euclidean 

Distance with Mean Absolute Deviation (ED-MAD). 

• To design a new O-TFDLF for accurate decision making 

regarding the forecasting of presence/ absence of defects. 

The TFDLF encapsulates the RBFN and optimized MLP, 

respectively. 

• To enrich the prediction accuracy of the model, the 

weight of MLP is fine-tuned using the new LCMO.  

This article's remaining sections are structured as 

follows: The literature studies conducted in the prediction of 

employee absenteeism are discussed in Section 2. Section 3 

explains the proposed employee absenteeism prediction 

model. Section 4 describes the findings obtained using the 

projected model, and Section 5 concludes up this research. 

II. LITERATURE REVIEW 

Qiao et al. [16] proposed a mechanism for 

forecasting the occurrence of software faults in 2020. First, 

we pre-processed a publicly available dataset by conducting 

data normalization and log transformation. Data modelling 

was done to prepare the data input for the DL model. Third, 

submit the modelled data to a deep neural network-based 

model designed to forecast the number of flaws. I have put 

the proposed approach to the test on two well-known datasets. 

The findings of the study revealed that the proposed strategy 

was reliable and could outperform new methods. 

In 2019, Liang et al. [17] suggested Seml, an 

innovative structure for defect prediction that combined word 

embedding and DL techniques. In particular, a token 

sequence was extracted from the abstract syntax tree of each 

program source file. The next step was to use a mapping table 

learned with an unsupervised word embedding model to 

convert each token in the sequence to a real-valued vector. 

Finally, an LSTM network was constructed using the vector 

sequences and their labels. The LSTM model could predict 

defects and automatically learn the program's semantic 

information. 

In 2018, Tong et al. [18] put forth a new SDP 

strategy called SDAEsTSE that makes use of ensemble 

learning and SDAEs to create the proposed TSE. The DL 

phase and the TSE phase were the main components of the 

methodology. The class imbalance issue was then addressed 

using a novel ensemble learning strategy called TSE after first 

use SDAEs to extract the DPs from the conventional software 

metrics. 
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IN 2019, Xu et al. [19] have suggested a new 

framework called LDFR based on the SDP defect data. To 

address the imbalance issue, a deep neural network with a 

new hybrid loss function composed of a triplet loss and a 

weighted cross-entropy loss was used to develop a more 

discriminative feature representation of the defect data. 

Conducted extensive experiments on a benchmark dataset 

with 27 defect data using three conventional and three effort-

aware indicators to assess the efficacy of the proposed LDFR 

framework. 

In 2023, Giray et al. [20] have conducted a 

comprehensive evaluation of the literature of the available 

SDP techniques using DL to understand the state-of-the-art. 

To found articles, used a thorough procedure supported by 

snowballing and searched several scientific databases. As a 

result of a multiple-assessor quality assessment step with 

clear criteria, we chose the articles to be considered for 

analysis. Totalling 102 high-quality primary studies, the 

research was eventually included. 

In 2021, Nevendra et al. [21] have put forth a 

method for using improved CNNs to find software defects in 

modules. The goal of the research involves an improved DL 

technique to identify defective instances. The tests were based 

on WPDP, which employs K-fold cross-validation. On 19 

open-source software defect datasets, the suggested approach 

was assessed using various evaluation metrics. 

In 2019, Fan et al. [22] put forth a framework known 

as DP-ARNN. To be more precise, DP-ARNN first extracts 

vectors by parsing the ASTs of programs. Then it used word 

embedding and dictionary mapping to encrypt the vectors that 

make up the DP-ARNN's inputs. It could then automatically 

pick up syntactic and semantic features after that. It also 

makes use of the attention mechanism to produce additional 

important features for precise defect prediction. 

In 2019, Ramay et al. [23] have suggested an 

automatic deep neural network approach for predicting bug 

reports' severity. For text preprocessing of bug reports, used 

natural language processing techniques. The second step 

involve calculation and assign an emotion score to each bug 

report. For every pre-processed bug report, create a vector. 

Fourth, send the created vector and each bug report's emotion 

score to a classifier built with a deep neural network to predict 

the severity. On the basis of bug report history data, assessed 

the suggested approach. The cross-product findings show that 

the suggested method beats the most recent methods. 

 

A.  Research Gaps 

The research gaps table (Table 1) provides a 

summary of the existing approaches reviewed in the 

literature. Each study's author, aim, and identified research 

gaps are presented. The research gaps highlight the 

limitations or areas that have not been adequately addressed 

in previous studies, which create opportunities for further 

research. Qu et al. [2] analysed the effectiveness of network 

embedding techniques for predicting software bugs but found 

that these techniques were not evaluated in their study, 

suggesting a research gap in the evaluation of network 

embedding techniques.  Hammouri et al. [3] focused on 

predicting software bugs using machine learning (ML) but 

identified a research gap in the absence of additional software 

metrics incorporated into the learning process, indicating the 

need for considering a broader range of metrics. Zhang et al. 

[4] explored semi-supervised learning for SDP using label 

propagation. They discovered, however, that the performance 

of defect prediction models declined, indicating a research 

gap in enhancing the performance of defect prediction 

models. Dam et al. [11] developed an algorithm for predicting 

software defects based on deep trees, but they did not involve 

programming languages and web applications in their study, 

indicating a research gap in considering these specific 

domains. Qiao et al. [16] focused on predicting software 

defects using DL. However, they did not investigate the 

number of predicted defects in software modules, 

highlighting a research gap in exploring the prediction 

accuracy of defect counts. Liang et al. [17] proposed a 

semantic LSTM model for predicting software defects but 

found that more program semantic information was not 

recorded, indicating a research gap in capturing and utilizing 

richer semantic information. Giray et al. [20] utilized DL to 

predict software defects but identified a research gap in the 

lack of advancement in creating new, comprehensive DL 

methods that can automatically capture richer representations 

and features from diverse sources. Nevendra et al. [21] 

employed DL for the prediction of software defects and found 

research gaps in reducing time and developing more effective 

DL models, emphasizing the need for more efficient and 

powerful approaches. Fan et al. [22] used an attention-based 

recurrent neural network (RNN) for SDP but did not 

implement some programming languages, suggesting a 

research gap in considering a wider range of programming 

languages in the prediction process. 

These identified research gaps provide valuable 

insights into the areas that have not been fully explored or 

addressed in previous studies. They serve as a basis for 

justifying the need for the current research and contribute to 

the overall novelty and significance of the proposed 

methodology. The research gaps identified in the existing 

works is manifested in Table 1.  
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TABLE 1: REVIEW ON THE EXISTING APPROACHES 

Author Aim Research Gaps 

Qu et al. [2] Analysing the 

effectiveness of 

network embedding 

techniques for 

predicting software 

bugs 

Network Embedding 

Techniques is not 

evaluated. 

Hammouri et al. 

[3] 

Prediction of Software 

Bugs Using ML 

There is no addition of 

more software metrics 

in the learning 

process. 

Zhang et al. [4] Semi-supervised 

learning for SDP using 

label propagation 

Performance in defect 

prediction has not 

improved. 

Dam et al. [11] An algorithm for 

predicting software 

defects based on deep 

trees 

Programming 

Languages & Web 

Applications are not 

involved. 

Qiao et al. [16] Prediction of Software 

Defects Using DL 

The number of 

predicted defects in 

software modules is 

not looked into. 

Liang et al. [17] A Semantic LSTM 

Model for Predicting 

Software Defects 

More programme 

semantic information 

is not recorded. 

Giray et al. [20] Using DL to Predict 

Software Defects 

There is no 

advancement in the 

creation of new, all-

encompassing DL 

methods that 

automatically capture 

richer representations 

and features from 

diverse sources. 

Nevendra et al. 

[21] 

DL for Prediction of 

Software Defects 

• Time is not reduced. 

• There is no 

development of more 

effective DL models. 

Fan et al. [22] Prediction of Software 

Defects Using 

Attention-Based RNN 

Some programming 

languages is not 

implemented. 

III. SOFTWARE DEFECT PREDICTION VIA 

OPTIMIZED TWO- FOLD DEEP LEARNING 

FRAMEWORK (TFDLF) 

Recently, ML techniques are being highly applied 

for automated SDP. These approaches require higher 

computation time and require manually extracted features. 

DL approaches enable practitioners to automatically extract 

and learn from more complicated and high-dimensional data. 

Therefore, in this research work, a novel two-fold-deep 

learning-based SDP model is introduced. The proposed work 

includes the following phases: “(a) pre-processing, (b) 

Dimensionality reduction, (c) Feature Extraction and (d) 

Two-fold deep learning-based Software defect prediction”. 

The prediction model is shown in figure 1. 

Step 1: The acquired raw data is pre-processed using the 

Data Cleaning (Missing Data Removal (MDR)) and 

Decimal scaling normalisation techniques. 

Step 2: The dimensions of the pre-processed data are 

decreased using the recently created Incremental 

Covariance Principal Component Analysis 

(ICPCA), which assists in the resolution of the 

"curse of dimensionality". 

Step 3: Feature extraction is then conducted on the 

dimensionally reduced data using statistical features 

(standard deviation, skewness, variance, and 

kurtosis), Mutual information (MI), and Conditional 

entropy (CE). 

Step 4: The appropriate features are chosen from the 

retrieved features using the new Euclidean Distance 

with Mean Absolute Deviation (ED-MAD). 

Step 5: Finally, SDP is performed using the new Optimized 

Two-Fold Deep Learning Framework (O-TFDLF). 

The TFDLF encapsulates the RBFN and optimized 

MLP, respectively. To enhance the prediction 

accuracy of the model, the weight of MLP will be 

fine-tuned using the new (LCMO). The proposed 

LCMO model is the extended version of the standard 

Cat Mouse optimization Algorithm (CMBO). The 

final outcome regarding the predicted outcomes is 

acquired from optimized MLP.  

 
Figure 1: Prediction Model 
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A. Pre-processing  

Initially, the collected raw data is pre-processed via 

data cleaning and Decimal scaling normalization approach. 

Since datasets frequently values, contain missing noise, and 

noticeable changes in the size of the features, data pre-

processing is frequently done before training ML models. The 

following pre-processing steps have been used for the IBM 

HR dataset. 

a) Data cleaning - Missing Data Removal (MDR)  

The term "missing data" refers to information that is 

not recorded for a variable for a particular observation. 

Missing data lowers the analysis's statistical power, which 

might skew the conclusions' validity. To prevent bias when 

dealing with missing data at random, relevant data may be 

eliminated. If there aren't enough observations to perform a 

reliable analysis, data removal may not be the best solution. 

In some cases, it may be vital to keep a watch on specific 

things. 

b) Decimal scaling normalization 

The effectiveness and simplicity of the mining 

process may both be enhanced by pre-processing. The 

decimal point of attribute B values is relocated during 

normalisation using the decimal scaling approach. The 

amount of decimal points that are shifted is determined by the 

highest absolute value of B. The following expression (Eq. 

(1) converts a value of B to P': 

𝑃′ = 𝑃/10𝑖        (1) 

where i is the smallest integer such that Max (𝑃′) 1.  

The dimensions of the pre-processed data are 

reduced using the newly developed Incremental Covariance 

Principal Component Analysis (ICPCA), and this approach 

aids in solving the “curse of dimensionality” issue. 

B.  Dimensionality reduction using ICPCA  

The performance of ML models is frequently 

improved using feature selection and dimensionality 

reduction techniques. The PCA is a well-liked approach to 

data analysis and a technique for unsupervised linear feature 

extraction. PCA is frequently employed in tasks including 

dimensionality reduction, feature selection, and lossy data 

compression. Because PCA integrates comparable 

characteristics as a result of variance, data from a high-

dimensional space might be reduced to a low-dimensional 

one by using this method. PCA requires the entire dataset to 

be stored in memory for computation, which can be 

challenging for large datasets. In contrast, ICPCA addresses 

this issue by processing the dataset in incremental batches, 

reducing the memory requirements significantly. As a result, 

IPCA can reduce the volume of data and the number of data 

features, preventing model overfitting. 

• In ICPCA, the eigenvectors of the matrix are generated 

once the covariance matrix of the feature vector has been 

determined. Due to the greatest eigenvectors' eigenvalues, the 

feature vector acquires a new decreased dimensionality. The 

most important components of the data were maintained 

rather than some of them being lost in order to preserve the 

variance. Prior to use the feature dimension reduction using 

the PCA technique, data pre-processing must be carried out 

since it is required for the next phases. Apply mean 

normalisation or feature scaling in a manner akin to 

supervised learning techniques depending on the training set 

with N dimension is represented as 𝑎(1), 𝑎(2), 𝑎(3)... 𝑎(𝑁) that 

are used in Eq. (2) which calculates the mean of each 

attribute.  

𝜇𝑥 =
1

𝑁
∑ 𝑎𝑥

(𝑘)𝑁
𝑘=1                     (2) 

If various features have varying means, scale them so 

that they are within a similar range. To make sure that each of 

the 𝑎𝑥 variables has a mean value of exactly zero, then replace 

each one with an 𝑎𝑥 − 𝜇𝑥 value. The scaling procedure of the 

𝑗𝑡ℎ element is explained by supervised learning's Eqn. (3), 

where 𝑠𝑥  is the 𝑗𝑡ℎ feature value of |𝑚𝑎𝑥 −  𝑚𝑒𝑎𝑛| or static 

deviation. 

𝑎𝑥
(𝑘)

=
𝑎𝑥

(𝑘)
−𝜇𝑥

𝑆𝑥
                            (3) 

To reduce the feature's dimension from N to m (where 

m<N) and N-dimensional spatial definition of the surface, it 

is necessary to first calculate the predicted data's inaccuracy 

on the m-dimensional vector. The computational verification 

of the evaluation of these m vectors: 

𝑣1 , 𝑣2  , 𝑣3  …… . , 𝑣𝑚  and the projected points: 

𝑣𝑦1 , 𝑦2  , 𝑦3  … … . , 𝑦𝑁   on these vectors is challenging and 

outside the purview of this study. Eqn. (20) is used to 

calculate the covariance matrix. The 𝑎(𝑘) vector has N×1 

dimension, while (𝑎(𝑘))𝑇  has 1×N dimensions, resulting in a 

covariance matrix with N ×N dimensions. The covariance 

matrix's eigenvalues and eigenvectors, which stand for the 

feature vectors' new magnitude and associated directions in 

the modified vector space, are next calculated. While working 

with the covariance matrix, the eigenvalues provide a 

quantitative measure of all the vectors' variance. When an 

eigenvector includes high valued eigenvectors, it signifies the 

dataset's variance is high and the eigenvector contains a 

variety of significant dataset-related information. Conversely, 

eigenvectors with tiny eigenvalues contain very little data 

about the dataset. 

http://www.ijritcc.org/
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𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑎𝑡𝑟𝑖𝑥 =
1

𝑁
∑ 𝑎(𝑘) × 𝑁

𝑖=1 (𝑎(𝑘))𝑇       (4) 

Since 𝑤(𝑞) is the eigenvector at 𝑞𝑡ℎ stage, 𝑎(𝑘) 𝑖𝑠 the 

covariance matrix, it is possible to assign a score to the 

𝑞𝑡ℎ full principal component of a data vector, 𝑎(𝑘), in the 

transformed coordinates, using the formula 𝑡𝑐
(𝑞)

 = 𝑎(𝑘) 𝑤(𝑞). 

Since the whole vector decomposition of the PCA is defined 

as A which can be written as T = A× 𝑊. The primary function 

of the PCA technique is to enhance the covariance matrix 

called Incremental Covariance Principal Component Analysis 

(ICPCA) and rebuild the original covariance matrix into a 

low-dimensional matrix while retaining the majority of its 

data. The first step is to determine each column vector in the 

original covariance matrix.  

‖𝒃𝒌‖𝟐 = √∑ |𝑪𝒋𝒌|
𝟐𝑵

𝒌=𝟏                    (5) 

• Create a new matrix B by combining the top k biggest 

column vectors in the resulting norm. To create the low-

dimensional matrix C, do QR decomposition on the new 

matrix B. Singular value decomposition should be applied to 

the C matrix. After dimensionality reduction, sort the 

generated singular value representations according to 

relevance, toss out the irrelevant eigenvectors, and store the 

data set's eigenvalues. 

• The next step is to select k eigenvalues from these N 

eigenvectors by increasing the variance of the retained actual 

data and reducing the total square reconstruction error. The 

"Cumulative Explained Variance," which is the subject of the 

following computation, is the sum of all variances found 

across the top m main components. Next, decide at what point 

the eigenvalues are judged valuable and the rest are discarded 

as irrelevant qualities. 

•   The dimensionality reduced feature vectors connected to 

each feature track are first standardised to a mean of zero and 

a variance of one before choosing a random subset to generate 

a codebook. Each input feature vector is then calculated using 

the top closest vectors from the codebook, resulting in a fixed 

number of vectors. The counts of these assigned vectors, 

when added together over all feature tracks in a sample 

recording, constitute a representation known as a histogram 

that is then subjected to prediction. 

• Singular value decomposition is applied to the C matrix. 

After dimensionality reduction, arrange the generated 

singular value representations according to relevance, toss out 

the unnecessary eigenvectors, and save the original data set's 

eigenvalues. In the IPCA technique, the data is projected onto 

a lower-dimensional space using just the most significant 

singular vectors, and the centre data is decomposed into 

singular values for linear dimensionality reduction. From the 

dimensionally reduced data, the features like Geometric mean 

(GM), Mutual information (MI), and Conditional entropy 

(CE) are extracted.  

C. Feature Extraction 

In the feature extraction phase, we utilized statistical 

features such as standard deviation, skewness, variance, and 

kurtosis, along with Mutual Information (MI) and 

Conditional Entropy (CE). 

a) Statistical features  

(1) Mean: The term mean is defined as the total number of 

items divided by the total number of elements in a collection. 

The mean calculation provides with a complete knowledge of 

the complete collection of data. Consequently, the mean 

formula is calculated as per Eq. (6) and Eq. (7)     

    𝑀𝑒𝑎𝑛 =
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
               (6)  

                     𝑦 ̅ =  
∑𝑦

𝑧
                                              (7)  

Where, 𝑦 ̅= mean value, y = Items given, z = Total number of 

items 

The significance of mean resides in its capacity to sum up the 

entire dataset in a single value. 

(2) Standard Deviation: A measurement that demonstrates the 

degree of deviation from the mean is the standard deviation. 

When data points are close to the mean, there is little variation, 

whereas when data points are scattered from mean, there is a lot 

difference.  The standard deviation governs the amount of 

deviation from the mean. The standard deviation, which is the 

most widely used measure of dispersion, is based on all data. 

Therefore, the value of the standard deviation can change if 

even one number does. It is distinct of origin and scale. In some 

difficult statistical problems, it is also beneficial.    

    𝑆𝐷 (𝜎) = √
∑(𝑥𝑖−𝜇)2

𝑁
                                (8) 

 (3) Skewness: A measure of a distribution's symmetry is its 

skewness. Actually, calling it a measure of asymmetry 

would be more appropriate. A typical normal distribution is 

completely symmetrical and has zero skew as shown in Eq. 

(9) 

    𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
3(𝑀𝑒𝑎𝑛−𝑀𝑒𝑑𝑖𝑎𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                 (9) 

(4) Variance: The dispersion of a data set's data points from 

its mean is referred to as variation, and it is calculated as the 

average squared departure from the population mean for each 

data point. By appending the squared deviations of all the data 

points and dividing by the total number of data points in the 

data set, one can obtain the formula for a variance. 

http://www.ijritcc.org/
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𝜎2 =
∑(𝑌𝑖−𝜇)

2

𝑛
        (10) 

Here 𝑌𝑖  is the 𝑖𝑡ℎ data point in the dataset, 𝜇 defines the mean 

population and 𝑛 is the number of population data points. 

(5) Kurtosis: The probability distribution of signals is 

reflected in kurtosis. As per Eq. (11), the definition of kurtosis 

is displayed.  

𝑉 =
𝑋{(𝑦−𝜇)4}

[𝑋{(𝑦−𝜇)2}]2
=

𝜇4

𝜎4,       (11) 

where 𝑋{∙} is the expectation operator, is the expectation 

mean of 𝑦(𝑡), and 𝜎 is the anticipated standard deviation. As 

per Eq. (11), kurtosis is defined as the fourth central moment 

divided by the variance's square. Some definitions of kurtosis 

deduct 3 from the calculated value since the kurtosis of the 

normal distribution is 3. 

(6) Geometric Mean (GM): The GM is an average that sums 

all the data points and establishes the number's root. A group 

of n integers must be used to get the nth root of each integer's 

product. Use this descriptive statistic to sum up your data. 

𝐺𝑀 = √
𝑇𝑝×𝑇𝑛

(𝑇𝑝+𝐹𝑛)×(𝑇𝑛+𝐹𝑝)
       (12) 

b) MI 

According to the definition of the MI between two 

random variables A and B: 

𝐼(𝐴; 𝐵) = 𝐻(𝐴) − 𝐻(𝐵|𝐴)     (13) 

Inferentially, the MI between A and B indicates the 

decrease in B's uncertainty following the observation of A and 

vice-versa. I (A; B) = I (B; A), indicating that the MI is 

symmetric.  

c) CE 

The CE, an idea from information theory, quantifies 

how much information is needed to explain a random 

variable's outcome when the value of another random variable 

is known. 

In addition, the empirical conditional entropy of the features 

𝐶𝑒 for dataset 𝐷𝑠 is denoted by the following formula. 

𝐻(𝐷𝑠|𝐶𝑒) = −∑ 𝑃(𝑁
𝑗=1 𝐾𝑗 , 𝐶𝑒) log2 𝑃(𝐾𝑗|𝐶𝑒) (14) 

The following is the expression for 𝑃(𝐾𝑙|𝐶𝑒)  in the formula 

above: 

𝑃(𝐾𝑙|𝐶𝑒) =
∑ 𝑥𝑗,𝑘

(𝑙)|𝐾𝑙|

𝑗

∑ 𝑥
𝑗,𝑘
(𝑙)

𝑗,𝑘,𝑙

      (15) 

Also 𝑃(𝐾𝑗|𝐶𝑒)𝑖𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠  

𝑃(𝐾𝑙|𝐶𝑒) =
∑ 𝑥𝑗,𝑘

(𝑙)|𝐾𝑙|

𝑗

∑ 𝑥
𝑗,𝑘
(𝑙)

𝑗,𝑙

     (16) 

From the extracted features, the relevant ones are 

selected using the new Euclidean Distance with Mean 

Absolute Deviation (ED-MAD). 

D. Feature Selection using ED-MAD model 

The ED-MAD of a dataset is defined as the typical 

distance between each data point and the mean. It provides an 

understanding of a dataset's degree of variability. 

The ED-MAD is calculated as follows. 

Step 1: Calculate the geometric mean (proposed). 

Step 2: Use Euclidian distances(proposed) to determine how 

distant each data point is from the mean. Such are referred to 

as absolute deviations. 

The Euclidean distance can be defined as per Eq. (17).  

𝐸𝑑 = √(𝐴 − 𝐵)𝑇(𝐴 − 𝐵) = √∑ (𝐴𝑖 − 𝐵𝑖)
2𝑁

𝑖=1      (17) 

Where A and B are the two different classes. When the 

datasets are grouped together in compact spaces, Euclidean 

distance yields great results. 

Step 3: Combine those deviations. 

Step 4: Subtract the total from the quantity of data points. 

It is usually better to follow these steps in the example 

below to understand about mean absolute deviation, but here 

is a more formal method to put the stages in a formula (Eq. 

(18).  

𝑀𝐴𝐷 =
∑|𝑃𝑖−�̅�|

𝑛
  (18) 

Where �̅� 𝑖𝑠 𝑡ℎ𝑒 the data set's average value, 𝑃𝑖  is the 

collection of data values, where n is the total number of data 

values. 

E.  Prediction using Optimized Two- Fold Deep Learning 

Framework (O-TFDLF) 

 Finally, the SDP carried out using the O-

TFDLF, which encapsulates the RBFN and optimized MLP, 

respectively. Utilizing the TFDLF model, which combines 

RBFN and MLP, the SDP is carried out. In order to get greater 

prediction performance than what can be achieved with only 

one learning algorithm, ensemble model called TFDLF 

attempt to build a set of numerous learning algorithms. To 

enhance the detection accuracy of the model, the weight of 

MLP is fine-tuned using the new (LCMO). 
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a) Optimized Multilayer Perceptron  

 An ANN known as the MLP has many layers of nodes. 

The output signals are produced by computing the activation 

from the sum of the inputs, and the linked nodes have weights 

associated with them. Its design is made up of an input layer 

that transmits the input vector to the network's subsequent 

levels. The inputs and outputs of the MLP are denoted by the 

phrases "input vectors" and "output vectors," which are single 

vectors. An MLP also contains an additional hidden layer or 

layers in addition to the output layer. MLPs are completely 

linked, meaning that each node is connected to every other 

node in the layer above and below. 

 The first processing components of MLP are set up in a 

one-directional order beforehand. These networks' three 

matching layer types—input, hidden, and output—

communicate with one another in order for information to 

evolve. A MLP network with a single hidden layer is depicted 

in Figure 1. The weighting values for the networks between 

these layers range between [-1, 1]. Every node of the MLP is 

capable of performing the summation and activation 

operations. Based on the summing function shown in Eq. 

(19), it is possible to determine the product of input values, 

weight values, and bias values. The architecture of optimized 

MLP is shown in Fig.2.  

𝑇𝑠 = ∑ ℎ𝑛𝑚𝐼𝑁 + 𝐵𝑁
𝐿
𝑛=1     (19) 

I1

 I2

I3

IN

H1

H2

HN

O1

O2

O3

ON

B1

BN

Input Layer

Output 

Layer
Hidden 

Layer

 

Figure 2: optimized MLP 

where L stands for the overall number of inputs, 𝐼𝑁 represents 

the input variable 𝐼𝑚  is a bias value, and ℎ𝑛𝑚 shows the 

connection weight. The conclusion of the Eqn. (14) is used to 

trigger an activation function in the following step. The MLP 

supports a number of activation strategies, the most popular 

of which, according to the literature, is S-shaped sigmoid 

function. Based on Eq. (20), one can compute this function. 

To enhance the prediction accuracy of the model, the weight 

of MLP is optimized using thew new LCMO model.  

𝑓𝑚(𝑎) =
1

1+𝑒−𝑇𝑠
    (20) 

As a result, Eq. (21) is used to produce the neuron m's final 

output: 

𝑏𝑛=𝑓𝑚(∑ ℎ𝑛𝑚𝐼𝑁 + 𝐵𝑁)𝐿
𝑛=1                 (21) 

 The learning process is started once the ANN's final 

structure has been built in order to adjust and evolve the 

network's weighting vectors. To approximate the findings and 

reduce the network's overall inaccuracy, these weighting 

vectors should be modified. The MLP's effectiveness and 

capacity for handling various situations are significantly 

impacted by the computationally difficult learning (training) 

stage of the ANN. 

b) Levy Flight Cat Mouse Optimization (LCMO) 

The LCMO is a population-based algorithm that 

took design cues from how a mouse would naturally flee from 

a cat assault and find safety. In the recommended method, cats 

and mice are split into two groups as the search agents. The 

recommended strategy involves updating the population 

twice. Cats advance toward mice in the first phase of the 

simulation, and mice flee to safe havens in the second phase 

to avoid being killed. As per Eq. (22), a matrix called 

population matrix is used to determine the algorithm's 

population. 

𝑌 = [

𝑌1...
𝑌𝑖...
𝑌𝑁

]

𝑁×𝑚

=

[
 
 
 𝑌1,1…𝑌1,𝑑…𝑌1,𝑚

...
𝑌𝑖,1…𝑌𝑖,𝑑…𝑌𝑖,𝑚

...
𝑌𝑁,1…𝑌𝑁,𝑑…𝑌𝑁,𝑚]

 
 
 

𝑁×𝑚

     (22) 

where 𝑌 define LCMO population of matrix, 𝑌𝑖 

represents 𝑖𝑡ℎ search agent, 𝑌𝑖,𝑑 represents value of 𝑑𝑡ℎ 

variable discovered by 𝑖𝑡ℎ search, 𝑁 represents size of 

population, and 𝑚 define the problem variable number. As per 

Eq. (8), a vector is used to indicate obtained values for the 

objective function. 

The fitness function of this research work is 

minimization of the error (RMSE). This is mathematically 

shown in Eq. (23). The weight of MLP is the input (solution) 

fed as input to LCMO. This weight function is delineating to 

the position of the solutions 𝑌.  

𝐹𝑖𝑡 = min(𝑅𝑀𝑆𝐸)  (23) 

𝑉 = [

𝑉1...
𝑉𝑖...
𝑉𝑁

]

𝑁×𝑚

      (24) 
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Here 𝑉𝑖 defines value of the goal function for the first search 

agent and 𝑉 is an objective vector. The sorted goal function 

and the sorted population matrix are calculated as per Eq. (25) 

and Eq. (26), respectively.  

𝑌𝑠 =

[
 
 
 
 𝑌1𝑠...
𝑌𝑖

𝑠

...
𝑌𝑁

𝑠]
 
 
 
 

𝑁×𝑚

= 

[
 
 
 
 𝑌1,1

𝑠 …𝑌1,𝑑
𝑠 …𝑌1,𝑚

𝑠

...
𝑌𝑖,1

𝑠 …𝑌𝑖,𝑑
𝑠 …𝑌𝑖,𝑚

𝑠

...
𝑌𝑁,1

𝑠 …𝑌𝑁,𝑑
𝑠 …𝑌𝑁,𝑚

𝑠 ]
 
 
 
 

𝑁×𝑚

    (25) 

𝑉𝑠 = [
𝑉1

𝑠   min (𝑉)
...

𝑉𝑁
𝑠    max (𝑉)

]

𝑁×1

        (26) 

here 𝑌𝑠 defines depending on value of objective, 

sorted population matrix, 𝑌𝑖
𝑠 defines sorted matrix with 

member, 𝑌𝑖,𝑑
𝑠  explains the 𝑑𝑡ℎ problem variable value derived 

from the population-sorted matrix by ith agent, and 𝑉𝑠 is 

objective function sorted vector. Two populations of mice and 

cats make up the proposed LCMO's population matrix. In 

LCMO, It is assumed that the mouse population contains half 

of the population members who produced higher values for 

the objective function, and the cat population contains the 

other half of the population members who produced lower 

values for the objective function. As per Eq. (27) and Eq. (28), 

determine the numbers of cats and mice. 

𝑀𝑖 =

[
 
 
 
 𝑀𝑖1=𝑌1

𝑠

...
𝑀𝑖𝑖=𝑌𝑖

𝑠

...
𝑀𝑖𝑁𝑚=𝑌𝑁𝑚

𝑠 ]
 
 
 
 

𝑁𝑚×𝑚

= 

[
 
 
 
 𝑌1,1

𝑠 …𝑌1,𝑑
𝑠 …𝑌1,𝑚

𝑠

...
𝑌𝑖,1

𝑠 …𝑌𝑖,𝑑
𝑠 …𝑌𝑖,𝑚

𝑠

...
𝑌𝑁𝑚,1

𝑠 …𝑌𝑁𝑚,𝑑
𝑠 …𝑌𝑁𝑚,𝑚

𝑠 ]
 
 
 
 

𝑁𝑚×𝑚

     (27) 

𝐶𝑎 =

[
 
 
 
 𝐶𝑎1=𝑌𝑁𝑚+1

𝑠

...
𝐶𝑎𝑗=𝑌𝑁𝑚+𝑗

𝑠

...
𝐶𝑎𝑁𝑐𝑎=𝑌𝑁𝑚+𝑁𝑐𝑎

𝑠 ]
 
 
 
 

𝑁𝑐𝑎×𝑚

= 

[
 
 
 
 𝑌𝑁𝑚+1,1

𝑠 …𝑌𝑁𝑚+1,𝑑
𝑠 …𝑌𝑁𝑚+1,𝑚

𝑠

...
𝑌𝑁𝑚+𝑗,1

𝑠 …𝑌𝑁𝑚+𝑗,𝑑
𝑠 …𝑌𝑁𝑚+𝑗,𝑚

𝑠

...
𝑌𝑁𝑚+𝑁𝑐𝑎,1

𝑠 …𝑌𝑁𝑚+𝑁𝑐𝑎,𝑑
𝑠 …𝑌𝑁𝑚+𝑁𝑐𝑎,𝑚

𝑠 ]
 
 
 
 

𝑁𝑚×𝑚

    (28) 

where 𝑀𝑖 is the cat population matrix, 𝐶𝑎 is the 

mouse population matrix, 𝑁𝑐𝑎 is the cat population matrix, 

𝑀𝑖𝑖  is the 𝑗𝑡ℎ mouse, and 𝐶𝑎𝑗 is the 𝑖𝑡ℎ cat. Cats' position 

change is first simulated based on their natural behaviour and 

movement toward mice in updating the search parameters. 

Eq. (29) to Eq. (31) are used to describe the portion of the 

planned LCMO update analytically. 

𝐶𝑎𝑗
𝑛𝑒𝑤: 𝐶𝑎𝑗,𝑑

𝑛𝑒𝑤 = 𝐶𝑎𝑗,𝑑 + 𝑟 × (𝑚𝑖𝑘,𝑑 − 𝐼 × 𝐶𝑗,𝑑)&𝑗 =

1: 𝑁𝑐𝑎 , 𝑑 = 1:𝑚𝑖, 𝑘𝜖1: 𝑁𝑚𝑖 ,   (29) 

𝐼 = 𝑟𝑜𝑢𝑛𝑑 (1 + 𝑟𝑎𝑛𝑑),     (30) 

𝐶𝑎𝑗 = {
𝐶𝑎𝑗

𝑛𝑒𝑤 , |𝑉𝑗
𝑐𝑎,𝑛𝑒𝑤 < 𝑉𝑗

𝑐𝑎

𝐶𝑎𝑗 , |𝑒𝑙𝑠𝑒
   (31) 

Here, 𝐶𝑎𝑗
𝑛𝑒𝑤  is the 𝑗𝑡ℎ cat's new status, 𝐶𝑎𝑗,𝑑

𝑛𝑒𝑤 is the 

𝑗𝑡ℎ cat new value of 𝑑𝑡ℎ variable, 𝑟 - random number 

between [0,1], 𝑚𝑖𝑘,𝑑 - 𝑘𝑡ℎ mouse's 𝑑𝑡ℎ dimension, and 

𝑉𝑗
𝑐𝑎,𝑛𝑒𝑤

 - depending on the jth cat's new status, objective 

function value. Escaping mice to safe havens is represented 

in the second stage of the proposed LCMO. In LCMO, it is 

presumed that each mouse has a random haven, and the mice 

seek solace there. By patterning the placements of various 

algorithmic elements, the havens are positioned in the search 

space at random. Eq. (32) to Eq. (34) are used in a 

mathematical model to represent this step of updating the 

positions of mice. To increase the convergence rate, the 

proposed levy flight is added in the second stage. 

𝐻𝑎𝑖 ∶  ℎ𝑎𝑖,𝑑 = 𝑦𝑙,𝑑&𝑖 = 1: 𝑁𝑚𝑖 , 𝑑 = 1:𝑚𝑖, 𝑙𝜖1: 𝑁  (32) 

𝑀𝑖𝑖
𝑛𝑒𝑤: 𝑚𝑖𝑖,𝑑

𝑛𝑒𝑤 = 𝑚𝑖𝑖,𝑑 + 𝑟 × (ℎ𝑎𝑖,𝑑 − 𝐼 ×

𝑚𝑖𝑖,𝑑)𝑠𝑖𝑔𝑛(𝐹𝑖
𝑚𝑖 − 𝐹𝑖

𝐻𝑎)&𝑖 = 1:𝑁𝑚𝑖 , 𝑑 = 1:𝑚𝑖 ∗ 𝐿𝑒𝑣𝑦(𝛽)

    (33) 

𝑀𝑖𝑖 = {
𝑀𝑖𝑖

𝑛𝑒𝑤 , |𝑉𝑖
𝑚𝑖,𝑛𝑒𝑤 < 𝑉𝑖

𝑚𝑖

𝑀𝑖𝑖 , |𝑒𝑙𝑠𝑒
 (34) 

In this case, 𝐻𝑎𝑖  is the 𝑖𝑡ℎ mouse safe haven and 𝐹𝑖
𝐻𝑎 - value 

of objective function. The 𝑖𝑡ℎ mouse's new status is 𝑀𝑖𝑖
𝑛𝑒𝑤, 

and objective function value - 𝑉𝑖
𝑚𝑖,𝑛𝑒𝑤

. The haven location is 

chosen at random within the search space as per the Eq. (11) 

to Eq. (18), until the stop condition is satisfied, the algorithm 

iterates. Optimization techniques may be stopped after a 

certain number of iterations or when an acceptable error 

between solutions obtained in subsequent rounds is defined. 

Furthermore, after running for a specific amount of time, the 

programme might be terminated. The best acquired optimum 

solution is provided by the LCMO following the completion 

of iterations and full application of the algorithm to the 

optimization problem. 

c) RBFN 

 The Multilayer Perceptron is typically mentioned when 

people discuss neural networks or "Artificial Neural 

Networks" (MLP). An MLP's neurons take the weighted sum 

of their input values into consideration. In other words, after 

multiplying each input value by a coefficient, the results are 

summed together. Simple linear classifiers can be created by 

a single MLP neuron, while complicated non-linear 

classifiers may be created by connecting these neurons 

together into a network. 

http://www.ijritcc.org/
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Compared to the MLP, the RBFN method is easier 

to understand. By comparing input instances to examples 

from the training set, an RBFN conducts categorization. One 

sample from the training set serves as the "prototype" that 

each RBFN neuron stores. When classifying a new input, 

each neuron computes the Euclidean distance between the 

input and its prototype. The architecture of RBFN is shown 

in Fig.3.  

µ 1

µ 2

µ N

S1

SN

Input Vector

Weighted 

sum

RBF 

Neurons

C1

CN

 

Figure 3: Architecture of RBFN 

The accompanying diagram depicts the usual design of an 

RBF network. It has an input vector, an output layer with one 

node for each type or class of data, and an RBF neuron layer. 

• The Input Vector 

The input vector is being attempted to be categorized 

by the n-dimensional vectors. Each RBF neuron is shown the 

whole input vector. 

• The RBF Neurons 

The RBF neuron is carrying a "prototype" vector, 

which is one of the vectors from the training set. Each RBF 

neuron compares the input vector to its prototype and returns 

a value between 0 and 1 indicating the degree of similarity. 

Whenever the value of the input is equal to the prototype, the 

RBF neuron's output also equals 1. The reaction decreases 

exponentially approaches zero as input and prototype go 

further apart. The diagram of network architecture shows that 

the RBF neuron's response takes the form of a bell curve. 

Sometimes the term "activation" value—which refers to the 

neuron's response value—is used. Given that it represents the 

value located in the middle of the bell curve, the prototype 

vector is also sometimes referred to as the neuron's "centre.". 

• The Output Nodes 

A collection of nodes, one for each category are 

attempting to categorize, produce the network's output. For 

the corresponding category, each output node calculates a 

type of score. A classification decision is normally made by 

allocating the input to the category with the greatest score. 

The score is calculated by adding the activity levels from 

all RBF neurons in a weighted manner. By "weighted sum," 

that means each output node assigns each RBF neuron a 

weight value and multiplies the activity of each neuron by this 

weight before adding it to the overall response. 

 In the hidden layer of the RBFN neural network, each 

node has a centroid attached to it. It determines the distance 

between the centroid of the node and P for each of the input 

vectors, P = (𝑃1, 𝑃2,..., 𝑃𝑛). The output of the unit is thereafter 

determined as a nonlinear function of this distance. In the 

nodes of the output layer, the output of the hidden nodes is 

finally merged and given weight. The response function of 

each output node may be determined in the scenario of 𝑅, 

input nodes and m output nodes as per Eq. (35).  

∑ 𝐻𝑗
𝑁
𝑗=1 × 𝐾 , (

𝑃−𝑎𝑗

𝜎𝑗
) = ∑ 𝐻𝑗

𝑁
𝑗=1 × 𝑑 (

‖𝑃−𝑎𝑗‖

𝜎𝑗
)  (35) 

where P is an input vector and N is the total number of hidden 

units; The weights connecting the 𝑗𝑡ℎ  hidden-layer unit to the 

output nodes are designated 𝐻𝑗as; 𝐾 , represents a radially 

symmetric kernel function; j is the ith kernel node's 

smoothing factor; 𝑎𝑗 is its centroid factor; and,  d[0,1 ) ∈R is 

the activation function. 

With respect to weights, each output node is different since 

they are each used to calculate the score for a separate 

category. RBF neurons that fall into this category are 

normally given a positive weight by the output node, while 

the others receive a negative weight. 

• RBF Neuron Activation Function 

A measure of how comparable the input and its 

prototype vector are computed by each RBF neuron (taken 

from the training set). The output is nearer to 1 for input 

vectors that are more like the prototype. Although there are 

alternative possibilities, the Gaussian distribution-based 

similarity function is the most popular. The equation for a 

one-dimensional Gaussian is shown in Eq. (36).  

𝑔(𝑎) =
1

𝜎√2𝜋
𝑒

−(
(𝑎−𝜇)2

2𝜎2     (36) 

Where the input value is represented as a, the mean value is 

𝜇, and the standard deviation is 𝜎 .  

A somewhat modified formula is used to represent 

the RBF neuron activation function and is usually represented 

as per Eq. (37).  

𝜑(𝑎) = 𝑒−𝛽‖𝑎−𝜇‖2
   (37) 
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The Gaussian distribution's mean is referred to as 𝜇. In this 

instance, the bell curve's centre is occupied by the prototype 

vector. 

IV.RESULT AND DISCUSSION 

The proposed work has been implemented in 

MATLAB. The data for analysis has been collected from 

PROMISE. The performance of the proposed model in this 

part is evaluated using metrics like sensitivity, accuracy, F-

score, specificity, MCC, recall, NPV, FPR, and FNR, 

respectively.  

A.  Performance metrics 

Below are the performance measures and their calculation 

algorithms. 

• Sensitivity: To determine the sensitivity value, just 

divide the total positives by the percentage of genuine 

positive predictions. 

                   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (38) 

• Specificity: The number of predicted negative outcomes 

is precisely divided by the total number of negatives to 

calculate specificity. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡 𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                 (39) 

• Accuracy: The accuracy is calculated as the proportion 

of correctly sorted data to all other data in the log. The 

level of accuracy is defined as, 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (40) 

• Precision: Precision is the depiction of the complete 

number of authentic samples that are properly taken into 

account throughout the classification process by using 

the full number of samples utilised in the classification 

procedure.  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (41) 

• Recall: Recall rate is determined by estimating how many 

real samples are taken into account overall when 

classifying data using all samples drawn from the same 

categories in the training data.  

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (42) 

• F- Score: The harmonic mean of recall rate and accuracy 

is the definition of the F-score.  

𝐹𝑆𝑐𝑜𝑟𝑒 =
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (43) 

• NPV: A diagnostic test or other quantitative metric's 

efficiency is described by NPV. 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                 (44) 

• MCC: The MCC, a two-by-two binary variable 

association measure, is depicted below, 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝐹𝑃)
 (45) 

• FPR: The ratio of the number of negative events to the 

number of negative events that are mistakenly broken down 

into positive events gives the FPR value. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                            (46) 

• FNR: The false-negative rate, commonly referred to as 

the "miss rate," is the probability that a real positive may go 

undetected by the test. 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
                       (47) 

B. Classifier Performance Analysis  

The proposed approach's (TFDLF)) effectiveness has 

been investigated, and the outcomes have been analysed with 

those of existing techniques like the Artificial Neural 

Network (ANN), K-Nearest Neighbour (KNN), Deep Belief 

Network (DBN), random forest (RF), Support Vector 

Machine (SVM), and RNN. Table 2 explains the classifier 

performance with highest accuracy by optimized RNN. 

 

TABLE 2: OVERALL PERFORMANCE ANALYSIS: CLASSIFIER PERFORMANCE (AT LEARNING RATE=70) 

Performance metrics ANN DBN SVM KNN RF RNN TFDLF 

Accuracy 0.87542 0.80502 0.86318 0.81114 0.88766 0.84481 0.93442 

Precision 0.94276 0.88447 0.93795 0.88163 0.94775 0.82711 0.95389 

Sensitivity 0.88239 0.82255 0.87078 0.83034 0.89432 0.85336 0.92883 

Specificity 0.91391 0.86791 0.90516 0.87351 0.92265 0.91892 0.94888 

F-Measure 0.89389 0.82837 0.88186 0.83695 0.90561 0.79732 0.92908 

MCC 0.83281 0.72877 0.81729 0.73455 0.84835 0.75047 0.89536 

NPV 0.91391 0.86791 0.90516 0.87351 0.92265 0.91891 0.91888 

FPR 0.09622 0.14221 0.10495 0.13661 0.08745 0.09118 0.05121 

FNR 0.12771 0.18755 0.13932 0.17976 0.11611 0.15674 0.07127 
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As per table I, the effectiveness of the proposed 

method is evaluated by using different methods and metrics 

including accuracy, recall, sensitivity, specificity, false-

positive-ratio (FPR), false-negative-ratio (FNR), and 

precision. Analysis of results shows that projected model, 

which uses an optimised RNN model, has the highest 

accuracy level, at 93.4%. The projected model clearly 

recorded the lowest FPR and FNR, 0.051 and 0.071, 

respectively, which is the least value, after analysing the 

obtained results. Figure 2, explains the graphical 

representation of the classifiers. 

C.  Algorithmic Analysis  

As per Table 3, the algorithmic performance of the 

overall analysis is performed. The performance of the 

suggested strategy is contrasted with that of widely used 

algorithms like Honey Badger Algorithm (HBA), Cat Swarm 

Optimization (CSO), Grey Wolf Optimizer (GWO), Genetic 

Algorithm (GA), Grasshopper Optimization Algorithm 

(GOA), Squirrel Search Algorithm (SSA). The projected 

model, which makes use of the LCMO model as a suggestion, 

has the highest accuracy level at 95.4%, according to the 

results of the analysisThe lowest FPR and FNR are clearly 

recorded in the projected model, which are 0.041 and 0.061, 

and that is employed as the least value, after analysing the 

acquired results. The algorithmic analysis of the proposed as 

well as state-of-art models is shown in Fig.4.  

 

TABLE 3: ALGORITHMIC PERFORMANCE ANALYSIS (AT LEARNING RATE=70) 

Performance metrics HBA GA SSA GWO GOA CSO LCMO 

Accuracy 0. 80709 0. 88323 0. 84590 0. 87104 0. 85886 0. 80099 0.95442 

Precision 0. 87722 0. 94301 0. 82297 0. 93805 0. 93326 0. 88005 0.93389 

Sensitivity 0. 82619 0. 88953 0. 84909 0. 87798 0. 86642 0. 81844 0.94883 

Specificity 0. 86914 0. 91803 0. 91431 0. 90933 0. 90063 0. 86357 0.92888 

F-Measure 0. 83277 0. 90107 0. 79333 0. 88942 0. 87745 0. 82423 0.94908 

MCC 0. 73088 0. 84411 0. 74672 0. 82865 0. 81321 0. 72512 0.91536 

NPV 0. 86914 0. 91803 0. 91431 0. 90933 0. 90063 0. 86357 0.93888 

FPR 0. 13591 0. 08701 0. 09074 0. 09571 0. 10442 0. 14148 0.04121 

FNR 0. 17886 0. 11552 0. 15596 0. 12708 0. 13863 0. 18661 0.06127 

 

 

Figure 4: Algorithmic analysis of graphical representation 

Figure 4, explains the graphical representation of the 

algorithmic analysis. All of the aforementioned findings 

make it clear that the suggested technique is superior to the 

existing methods. 

 

D.  Analysis on Feature Selection  

The analysis on feature selection techniques for SDP 

reveals interesting insights into their impact on the accuracy 

of the prediction models. The results acquired are manifested 

in Fig. 5. Four different techniques were evaluated, and their 

performance was compared against a baseline model without 

any feature selection. The results demonstrate that the choice 

of feature selection technique has a significant influence on 

the accuracy of the SDP. When no feature selection was 

applied, the accuracy varied between 0.78 and 0.86, 

indicating that using all available features without any 

filtering or selection leads to inconsistent results. The 

application of a Genetic Algorithm (GA) for feature selection 

showed improvement compared to the baseline model. The 

accuracy ranged from 0.844 to 0.89, suggesting that the GA-

based approach helped identify more relevant features, 

resulting in better prediction performance. Using the Mean 

Absolute Deviation (MAD) as a feature selection technique 

yielded mixed results. The accuracy ranged from 0.79 to 0.89, 
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indicating that MAD alone may not effectively capture the 

most important features for SDP. However, the proposed 

Euclidean Distance with Mean Absolute Deviation (ED-

MAD) feature selection technique consistently outperformed 

the other approaches. The accuracy ranged from 0.91 to an 

impressive 0.967, demonstrating the effectiveness of ED-

MAD in selecting highly relevant features. By identifying and 

including only the most informative features, the ED-MAD 

technique significantly improved the accuracy of the SDP 

models. Overall, this analysis emphasizes the importance of 

feature selection in SDP. The results highlight that the 

proposed ED-MAD technique outperforms other methods, 

consistently achieving high accuracy. By selecting the most 

relevant features, the ED-MAD approach enhances the 

performance and reliability of SDP models, contributing to 

enhanced software quality and early identification of 

potential defects in the development process. 

 
Figure 5: Analysis on Feature Selection Approaches 

E.  Analysis on Dimensionality reduction  

 

Figure 6: Analysis on Dimensionality Reduction Approaches 

The analysis on dimensionality reduction techniques 

for SDP provides valuable insights into their impact on the 

accuracy of prediction models. The results acquired are 

manifested in Fig. 6.  Four different techniques were 

evaluated, and their performance was compared against a 

baseline model without any dimensionality reduction. The 

results reveal that the choice of dimensionality reduction 

technique has a significant influence on the accuracy of SDP. 

When no dimensionality reduction was applied, the accuracy 

ranged from 0.78 to 0.86, indicating that using all available 

dimensions without any reduction can lead to inconsistent 

results. Applying Linear Discriminant Analysis (LDA) for 

dimensionality reduction showed improvement compared to 

the baseline model. The accuracy ranged from 0.79 to 0.89, 

suggesting that LDA-based approach helped capture the 

discriminative information in the data and reduced the 

dimensionality effectively. Principal Component Analysis 

(PCA) based dimensionality reduction yielded mixed results. 

The accuracy ranged from 0.844 to 0.89, indicating that PCA 

alone may not be sufficient to capture the most informative 

dimensions for SDP. However, the proposed Incremental 

Covariance Principal Component Analysis (ICPCA) 

technique consistently outperformed the other approaches. 

The accuracy ranged from 0.91 to an impressive 0.967, 

demonstrating the effectiveness of ICPCA in reducing 

dimensionality while preserving the most relevant 

information. By extracting the most discriminative 

dimensions, the ICPCA technique significantly improved the 

accuracy of SDP models. Overall, this analysis emphasizes 

the importance of dimensionality reduction in SDP The 

results highlight that the proposed ICPCA technique 

outperforms other methods, consistently achieving high 

accuracy. By reducing the dimensionality while retaining the 

most informative features, the ICPCA approach enhances the 

performance and reliability of SDP models, contributing to 

improved software quality and early detection of potential 

defects in the development process. 

F. Overall Performance Analysis  

The proposed model, O-TFDLF, consistently 

exhibits the highest values in terms of accuracy, MCC, and 

sensitivity across different data percentages. The results 

acquired are manifested in Fig. 7. This indicates that O-

TFDLF performs exceptionally well in correctly classifying 

both positive and negative cases, capturing underlying 

patterns in the data, and providing an overall accurate 

prediction. The high performance of O-TFDLF can be 

attributed to its unique combination of techniques, such as DL 

and feature selection through LCMO. These techniques 

enhance the model's ability to extract meaningful features and 

optimize its predictive capabilities. The consistently superior 

performance of O-TFDLF underscores its effectiveness in 

addressing the problem at hand and makes it a strong 

candidate for accurate predictions in real-world scenarios. 
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Figure 7: overall Performance Analysis 

 

V.CONCLUSION 

In the present study, we proposed a novel approach 

that aimed to enhance software quality by accurately 

predicting software defects at an early stage in the 

development process. Existing approaches encountered 

challenges in achieving reliable predictions, necessitating the 

need for a new solution. Our work focused on addressing 

these challenges and providing a significant contribution to 

the field. The significance of our work lay in the successful 

combination of a two-tier DL framework for SDP. This 

approach not only improved the accuracy of defect 

identification but also enabled the early detection of potential 

issues, leading to more efficient software development and 

improved overall quality. Throughout our research, we 

conducted a comprehensive investigation comprising four 

major phases: pre-processing, dimensionality reduction, 

feature extraction, and two-fold deep learning-based defect 

prediction. In the pre-processing phase, we employed data 

cleaning techniques to handle null values and missing data, 

ensuring the integrity of the dataset. Additionally, we applied 

Decimal scaling normalization to normalize the data for 

subsequent analysis. To address the issue of high-dimensional 

data and the associated "curse of dimensionality," we 

introduced the Incremental ICPCA method. This technique 

effectively reduced the dimensionality of the data, allowing 

for more efficient and accurate defect prediction. In the 

feature extraction phase, we utilized statistical features such 

as standard deviation, skewness, variance, and kurtosis, along 

with MI and CE. These features provided valuable insights 

into the data and played a crucial role in the subsequent defect 

prediction process. One of the significant contributions of our 

work was the development of the ED-MAD method for 

feature selection. This technique ensured that only relevant 

features were considered, eliminating noise and improving 

the overall accuracy of defect prediction. Furthermore, our O-

TFDLF, which incorporated the RBFN and an optimized 

MLP, demonstrated enhanced performance in defect 

prediction. The fine-tuning of MLP weights using the LCMO 

algorithm further improved the accuracy of our model. Our 

work was implemented using MATLAB software, and we 

conducted a comprehensive evaluation of the proposed 

model's performance. We compared our approach against 

existing models, considering various performance metrics 

such as accuracy, sensitivity, precision, specificity, and Mean 

Squared Error (MSE). The achieved accuracy of 93.37% 

demonstrated the significance and effectiveness of our 

proposed model in accurately predicting software defects. In 

conclusion, our study made a significant contribution to the 

field of SDP by introducing a novel approach that combined 

a two-tier DL framework. The successful integration of pre-
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processing, dimensionality reduction, feature extraction, and 

defect prediction phases provided accurate and reliable 

predictions, leading to improved software quality. The 

significance of our work lies in its potential to enable early 

defect identification, resulting in more efficient software 

development processes and enhanced overall software 

quality. 
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