
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 173
IJRITCC | August 2023, Available @ http://www.ijritcc.org

Optimized Deeplearning Algorithm for Software

Defects Prediction

*1Anju A.J, 2J.E. Judith
*1Research Scholar, Computer Science, and Engineering, Noorul Islam Centre for Higher Education,

Kumaracoil, India.
*1Corresponding Author Email: ajanju1@gmail.com

2Associate Professor, Computer Science and Engineering, Noorul Islam Centre for Higher Education,

Kumaracoil, India.

Email: judithjegan@gmail.com

 Abstract -Accurate software defect prediction (SDP) helps to enhance the quality of the software by identifying potential flaws early in

the development process. However, existing approaches face challenges in achieving reliable predictions. To address this, a novel approach is

proposed that combines a two-tier-deep learning framework. The proposed work includes four major phases:(a) pre-processing, (b)

Dimensionality reduction, (c) Feature Extraction and (d) Two-fold deep learning-based SDP. The collected raw data is initially pre-processed

using a data cleaning approach (handling null values and missing data) and a Decimal scaling normalisation approach. The dimensions of the

pre-processed data are reduced using the newly developed Incremental Covariance Principal Component Analysis (ICPCA), and this approach

aids in solving the “curse of dimensionality” issue. Then, onto the dimensionally reduced data, the feature extraction is performed using

statistical features (standard deviation, skewness, variance, and kurtosis), Mutual information (MI), and Conditional entropy (CE). From the

extracted features, the relevant ones are selected using the new Euclidean Distance with Mean Absolute Deviation (ED-MAD). Finally, the SDP

(decision making) is carried out using the optimized Two-Fold Deep Learning Framework (O-TFDLF), which encapsulates the RBFN and

optimized MLP, respectively. The weight of MLP is fine-tuned using the new Levy Flight Cat Mouse Optimisation (LCMO) method to improve

the model's prediction accuracy. The final detected outcome (forecasting the presence/ absence of defect) is acquired from optimized MLP. The

implementation has been performed using the MATLAB software. By using certain performance metrics such as Sensitivity, Accuracy,

Precision, Specificity and MSE the proposed model’s performance is compared to that of existing models. The accuracy achieved for the

proposed model is 93.37%.

Keywords: Software defect prediction; Incremental Covariance Principal Component Analysis (ICPCA); Euclidean Distance with Mean

Absolute Deviation (ED-MAD); Levy Flight Cat Mouse Optimization (LCMO); Two- Fold Deep Learning Framework (TFDLF)

Nomenclature

Abbreviation Description

WPDP Within Project Defect Prediction

TSE Two-Stage Ensemble

SDP Software defect prediction

SDAEs Stacked Denoising Autoencoders

LSTM Long Short-Term Memory

LDFP Learning Deep Feature Representation

DPs Deep Representations

DP-ARNN Defect Prediction via Attention-Based Recurrent Neural Network

DL Deep Learning

CNN Convolutional Neural Networks

ASTs Abstract Syntax Trees

I. INTRODUCTION

Software flaws are mistakes made during the

development of the software that can cause failure, faults,

collapse, and even jeopardise the security of people and their

property. Software dependability, understandability,

availability, maintainability, and effectiveness are all

significantly impacted by software bugs [1]. Even carefully

applied software requires laborious bug-free software

development because hidden bugs are frequently present. A

significant challenge in software engineering is the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 174
IJRITCC | August 2023, Available @ http://www.ijritcc.org

development of software bug prediction models that can

identify faulty modules early on. Predicting software error is

a crucial step in the development of software. This is due to

the fact that identifying buggy modules before the software is

deployed increases user satisfaction and enhances overall

software performance. Additionally, foreseeing software bugs

early enhances software adaptation to various environments

and boosts resource utilization [2, 3]. SDP [4] is only possible

with past data obtained during the implementation of similar

or identical software projects, or with design metrics gathered

during the software development design phase. [5].

 SDP is a current area of study for software

repository mining [6]. By anticipating potential defective

program modules, the methods of SDP can be used to allocate

resources for the assurance of software quality more

effectively [7, 8]. As a result, the minimal testing resources

can be used more wisely to test the specified modules. After

mining and analysing software warehouse, SDP can train

models, and these models can then be used to distinguish

between non-defective and defective modules in a project.

The level of detail of modules for gathering can be set to file,

method, or even code change depending on the developer

usage scenario [9]. Defects resulting from that software have

a prominent effect on businesses and people's lives as it

continues to play a essential role in every aspect of our

society. However, the complexity and the size of the software

codebase significantly expands, and finding errors in code

grows more and more challenging. The topic of defect

prediction is a active research in software engineering due to

its significance and difficulties. Significant research has gone

into creating tools and predictive models that allow software

testers and engineers to quickly identify the most likely faulty

areas of a software codebase [10, 11].

Software engineering is one of many fields where

DL has been applied since 2012 DL made its debut in the SDP

field in 2015, and since then, its use has increased. Numerous

academics have looked into the application of DL to the

prediction of software defects up to this point [12, 13]. The

need for software for various applications has been growing

quickly over the last 20 years. Numerous software

applications are created for daily or business use in order to

satisfy customer demand. Because of the number of

productions of software programmes, software quality

remains an unresolved issue, resulting in poor functionality

for both commercial and personal applications. Software

testing was developed as a result to address this problem by

helping to identify and attempt to fix any flaws or bugs in the

software application [14, 15].

The major outcome of this research is:

• To introduce a new Incremental Covariance Principal

Component Analysis (ICPCA) model for resolving the

“curse of dimensionality” issue.

• To Select the optimal Features using the new Euclidean

Distance with Mean Absolute Deviation (ED-MAD).

• To design a new O-TFDLF for accurate decision making

regarding the forecasting of presence/ absence of defects.

The TFDLF encapsulates the RBFN and optimized MLP,

respectively.

• To enrich the prediction accuracy of the model, the

weight of MLP is fine-tuned using the new LCMO.

This article's remaining sections are structured as

follows: The literature studies conducted in the prediction of

employee absenteeism are discussed in Section 2. Section 3

explains the proposed employee absenteeism prediction

model. Section 4 describes the findings obtained using the

projected model, and Section 5 concludes up this research.

II. LITERATURE REVIEW

Qiao et al. [16] proposed a mechanism for

forecasting the occurrence of software faults in 2020. First,

we pre-processed a publicly available dataset by conducting

data normalization and log transformation. Data modelling

was done to prepare the data input for the DL model. Third,

submit the modelled data to a deep neural network-based

model designed to forecast the number of flaws. I have put

the proposed approach to the test on two well-known datasets.

The findings of the study revealed that the proposed strategy

was reliable and could outperform new methods.

In 2019, Liang et al. [17] suggested Seml, an

innovative structure for defect prediction that combined word

embedding and DL techniques. In particular, a token

sequence was extracted from the abstract syntax tree of each

program source file. The next step was to use a mapping table

learned with an unsupervised word embedding model to

convert each token in the sequence to a real-valued vector.

Finally, an LSTM network was constructed using the vector

sequences and their labels. The LSTM model could predict

defects and automatically learn the program's semantic

information.

In 2018, Tong et al. [18] put forth a new SDP

strategy called SDAEsTSE that makes use of ensemble

learning and SDAEs to create the proposed TSE. The DL

phase and the TSE phase were the main components of the

methodology. The class imbalance issue was then addressed

using a novel ensemble learning strategy called TSE after first

use SDAEs to extract the DPs from the conventional software

metrics.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 175
IJRITCC | August 2023, Available @ http://www.ijritcc.org

IN 2019, Xu et al. [19] have suggested a new

framework called LDFR based on the SDP defect data. To

address the imbalance issue, a deep neural network with a

new hybrid loss function composed of a triplet loss and a

weighted cross-entropy loss was used to develop a more

discriminative feature representation of the defect data.

Conducted extensive experiments on a benchmark dataset

with 27 defect data using three conventional and three effort-

aware indicators to assess the efficacy of the proposed LDFR

framework.

In 2023, Giray et al. [20] have conducted a

comprehensive evaluation of the literature of the available

SDP techniques using DL to understand the state-of-the-art.

To found articles, used a thorough procedure supported by

snowballing and searched several scientific databases. As a

result of a multiple-assessor quality assessment step with

clear criteria, we chose the articles to be considered for

analysis. Totalling 102 high-quality primary studies, the

research was eventually included.

In 2021, Nevendra et al. [21] have put forth a

method for using improved CNNs to find software defects in

modules. The goal of the research involves an improved DL

technique to identify defective instances. The tests were based

on WPDP, which employs K-fold cross-validation. On 19

open-source software defect datasets, the suggested approach

was assessed using various evaluation metrics.

In 2019, Fan et al. [22] put forth a framework known

as DP-ARNN. To be more precise, DP-ARNN first extracts

vectors by parsing the ASTs of programs. Then it used word

embedding and dictionary mapping to encrypt the vectors that

make up the DP-ARNN's inputs. It could then automatically

pick up syntactic and semantic features after that. It also

makes use of the attention mechanism to produce additional

important features for precise defect prediction.

In 2019, Ramay et al. [23] have suggested an

automatic deep neural network approach for predicting bug

reports' severity. For text preprocessing of bug reports, used

natural language processing techniques. The second step

involve calculation and assign an emotion score to each bug

report. For every pre-processed bug report, create a vector.

Fourth, send the created vector and each bug report's emotion

score to a classifier built with a deep neural network to predict

the severity. On the basis of bug report history data, assessed

the suggested approach. The cross-product findings show that

the suggested method beats the most recent methods.

A. Research Gaps

The research gaps table (Table 1) provides a

summary of the existing approaches reviewed in the

literature. Each study's author, aim, and identified research

gaps are presented. The research gaps highlight the

limitations or areas that have not been adequately addressed

in previous studies, which create opportunities for further

research. Qu et al. [2] analysed the effectiveness of network

embedding techniques for predicting software bugs but found

that these techniques were not evaluated in their study,

suggesting a research gap in the evaluation of network

embedding techniques. Hammouri et al. [3] focused on

predicting software bugs using machine learning (ML) but

identified a research gap in the absence of additional software

metrics incorporated into the learning process, indicating the

need for considering a broader range of metrics. Zhang et al.

[4] explored semi-supervised learning for SDP using label

propagation. They discovered, however, that the performance

of defect prediction models declined, indicating a research

gap in enhancing the performance of defect prediction

models. Dam et al. [11] developed an algorithm for predicting

software defects based on deep trees, but they did not involve

programming languages and web applications in their study,

indicating a research gap in considering these specific

domains. Qiao et al. [16] focused on predicting software

defects using DL. However, they did not investigate the

number of predicted defects in software modules,

highlighting a research gap in exploring the prediction

accuracy of defect counts. Liang et al. [17] proposed a

semantic LSTM model for predicting software defects but

found that more program semantic information was not

recorded, indicating a research gap in capturing and utilizing

richer semantic information. Giray et al. [20] utilized DL to

predict software defects but identified a research gap in the

lack of advancement in creating new, comprehensive DL

methods that can automatically capture richer representations

and features from diverse sources. Nevendra et al. [21]

employed DL for the prediction of software defects and found

research gaps in reducing time and developing more effective

DL models, emphasizing the need for more efficient and

powerful approaches. Fan et al. [22] used an attention-based

recurrent neural network (RNN) for SDP but did not

implement some programming languages, suggesting a

research gap in considering a wider range of programming

languages in the prediction process.

These identified research gaps provide valuable

insights into the areas that have not been fully explored or

addressed in previous studies. They serve as a basis for

justifying the need for the current research and contribute to

the overall novelty and significance of the proposed

methodology. The research gaps identified in the existing

works is manifested in Table 1.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 176
IJRITCC | August 2023, Available @ http://www.ijritcc.org

TABLE 1: REVIEW ON THE EXISTING APPROACHES

Author Aim Research Gaps

Qu et al. [2] Analysing the

effectiveness of

network embedding

techniques for

predicting software

bugs

Network Embedding

Techniques is not

evaluated.

Hammouri et al.

[3]

Prediction of Software

Bugs Using ML

There is no addition of

more software metrics

in the learning

process.

Zhang et al. [4] Semi-supervised

learning for SDP using

label propagation

Performance in defect

prediction has not

improved.

Dam et al. [11] An algorithm for

predicting software

defects based on deep

trees

Programming

Languages & Web

Applications are not

involved.

Qiao et al. [16] Prediction of Software

Defects Using DL

The number of

predicted defects in

software modules is

not looked into.

Liang et al. [17] A Semantic LSTM

Model for Predicting

Software Defects

More programme

semantic information

is not recorded.

Giray et al. [20] Using DL to Predict

Software Defects

There is no

advancement in the

creation of new, all-

encompassing DL

methods that

automatically capture

richer representations

and features from

diverse sources.

Nevendra et al.

[21]

DL for Prediction of

Software Defects

• Time is not reduced.

• There is no

development of more

effective DL models.

Fan et al. [22] Prediction of Software

Defects Using

Attention-Based RNN

Some programming

languages is not

implemented.

III. SOFTWARE DEFECT PREDICTION VIA

OPTIMIZED TWO- FOLD DEEP LEARNING

FRAMEWORK (TFDLF)

Recently, ML techniques are being highly applied

for automated SDP. These approaches require higher

computation time and require manually extracted features.

DL approaches enable practitioners to automatically extract

and learn from more complicated and high-dimensional data.

Therefore, in this research work, a novel two-fold-deep

learning-based SDP model is introduced. The proposed work

includes the following phases: “(a) pre-processing, (b)

Dimensionality reduction, (c) Feature Extraction and (d)

Two-fold deep learning-based Software defect prediction”.

The prediction model is shown in figure 1.

Step 1: The acquired raw data is pre-processed using the

Data Cleaning (Missing Data Removal (MDR)) and

Decimal scaling normalisation techniques.

Step 2: The dimensions of the pre-processed data are

decreased using the recently created Incremental

Covariance Principal Component Analysis

(ICPCA), which assists in the resolution of the

"curse of dimensionality".

Step 3: Feature extraction is then conducted on the

dimensionally reduced data using statistical features

(standard deviation, skewness, variance, and

kurtosis), Mutual information (MI), and Conditional

entropy (CE).

Step 4: The appropriate features are chosen from the

retrieved features using the new Euclidean Distance

with Mean Absolute Deviation (ED-MAD).

Step 5: Finally, SDP is performed using the new Optimized

Two-Fold Deep Learning Framework (O-TFDLF).

The TFDLF encapsulates the RBFN and optimized

MLP, respectively. To enhance the prediction

accuracy of the model, the weight of MLP will be

fine-tuned using the new (LCMO). The proposed

LCMO model is the extended version of the standard

Cat Mouse optimization Algorithm (CMBO). The

final outcome regarding the predicted outcomes is

acquired from optimized MLP.

Figure 1: Prediction Model

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 177
IJRITCC | August 2023, Available @ http://www.ijritcc.org

A. Pre-processing

Initially, the collected raw data is pre-processed via

data cleaning and Decimal scaling normalization approach.

Since datasets frequently values, contain missing noise, and

noticeable changes in the size of the features, data pre-

processing is frequently done before training ML models. The

following pre-processing steps have been used for the IBM

HR dataset.

a) Data cleaning - Missing Data Removal (MDR)

The term "missing data" refers to information that is

not recorded for a variable for a particular observation.

Missing data lowers the analysis's statistical power, which

might skew the conclusions' validity. To prevent bias when

dealing with missing data at random, relevant data may be

eliminated. If there aren't enough observations to perform a

reliable analysis, data removal may not be the best solution.

In some cases, it may be vital to keep a watch on specific

things.

b) Decimal scaling normalization

The effectiveness and simplicity of the mining

process may both be enhanced by pre-processing. The

decimal point of attribute B values is relocated during

normalisation using the decimal scaling approach. The

amount of decimal points that are shifted is determined by the

highest absolute value of B. The following expression (Eq.

(1) converts a value of B to P':

𝑃′ = 𝑃/10𝑖 (1)

where i is the smallest integer such that Max (𝑃′) 1.

The dimensions of the pre-processed data are

reduced using the newly developed Incremental Covariance

Principal Component Analysis (ICPCA), and this approach

aids in solving the “curse of dimensionality” issue.

B. Dimensionality reduction using ICPCA

The performance of ML models is frequently

improved using feature selection and dimensionality

reduction techniques. The PCA is a well-liked approach to

data analysis and a technique for unsupervised linear feature

extraction. PCA is frequently employed in tasks including

dimensionality reduction, feature selection, and lossy data

compression. Because PCA integrates comparable

characteristics as a result of variance, data from a high-

dimensional space might be reduced to a low-dimensional

one by using this method. PCA requires the entire dataset to

be stored in memory for computation, which can be

challenging for large datasets. In contrast, ICPCA addresses

this issue by processing the dataset in incremental batches,

reducing the memory requirements significantly. As a result,

IPCA can reduce the volume of data and the number of data

features, preventing model overfitting.

• In ICPCA, the eigenvectors of the matrix are generated

once the covariance matrix of the feature vector has been

determined. Due to the greatest eigenvectors' eigenvalues, the

feature vector acquires a new decreased dimensionality. The

most important components of the data were maintained

rather than some of them being lost in order to preserve the

variance. Prior to use the feature dimension reduction using

the PCA technique, data pre-processing must be carried out

since it is required for the next phases. Apply mean

normalisation or feature scaling in a manner akin to

supervised learning techniques depending on the training set

with N dimension is represented as 𝑎(1), 𝑎(2), 𝑎(3)... 𝑎(𝑁) that

are used in Eq. (2) which calculates the mean of each

attribute.

𝜇𝑥 =
1

𝑁
∑ 𝑎𝑥

(𝑘)𝑁
𝑘=1 (2)

If various features have varying means, scale them so

that they are within a similar range. To make sure that each of

the 𝑎𝑥 variables has a mean value of exactly zero, then replace

each one with an 𝑎𝑥 − 𝜇𝑥 value. The scaling procedure of the

𝑗𝑡ℎ element is explained by supervised learning's Eqn. (3),

where 𝑠𝑥 is the 𝑗𝑡ℎ feature value of |𝑚𝑎𝑥 − 𝑚𝑒𝑎𝑛| or static

deviation.

𝑎𝑥
(𝑘)

=
𝑎𝑥

(𝑘)
−𝜇𝑥

𝑆𝑥
 (3)

To reduce the feature's dimension from N to m (where

m<N) and N-dimensional spatial definition of the surface, it

is necessary to first calculate the predicted data's inaccuracy

on the m-dimensional vector. The computational verification

of the evaluation of these m vectors:

𝑣1 , 𝑣2 , 𝑣3 …… . , 𝑣𝑚 and the projected points:

𝑣𝑦1 , 𝑦2 , 𝑦3 … … . , 𝑦𝑁 on these vectors is challenging and

outside the purview of this study. Eqn. (20) is used to

calculate the covariance matrix. The 𝑎(𝑘) vector has N×1

dimension, while (𝑎(𝑘))𝑇 has 1×N dimensions, resulting in a

covariance matrix with N ×N dimensions. The covariance

matrix's eigenvalues and eigenvectors, which stand for the

feature vectors' new magnitude and associated directions in

the modified vector space, are next calculated. While working

with the covariance matrix, the eigenvalues provide a

quantitative measure of all the vectors' variance. When an

eigenvector includes high valued eigenvectors, it signifies the

dataset's variance is high and the eigenvector contains a

variety of significant dataset-related information. Conversely,

eigenvectors with tiny eigenvalues contain very little data

about the dataset.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 178
IJRITCC | August 2023, Available @ http://www.ijritcc.org

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑎𝑡𝑟𝑖𝑥 =
1

𝑁
∑ 𝑎(𝑘) × 𝑁

𝑖=1 (𝑎(𝑘))𝑇 (4)

Since 𝑤(𝑞) is the eigenvector at 𝑞𝑡ℎ stage, 𝑎(𝑘) 𝑖𝑠 the

covariance matrix, it is possible to assign a score to the

𝑞𝑡ℎ full principal component of a data vector, 𝑎(𝑘), in the

transformed coordinates, using the formula 𝑡𝑐
(𝑞)

 = 𝑎(𝑘) 𝑤(𝑞).

Since the whole vector decomposition of the PCA is defined

as A which can be written as T = A× 𝑊. The primary function

of the PCA technique is to enhance the covariance matrix

called Incremental Covariance Principal Component Analysis

(ICPCA) and rebuild the original covariance matrix into a

low-dimensional matrix while retaining the majority of its

data. The first step is to determine each column vector in the

original covariance matrix.

‖𝒃𝒌‖𝟐 = √∑ |𝑪𝒋𝒌|
𝟐𝑵

𝒌=𝟏 (5)

• Create a new matrix B by combining the top k biggest

column vectors in the resulting norm. To create the low-

dimensional matrix C, do QR decomposition on the new

matrix B. Singular value decomposition should be applied to

the C matrix. After dimensionality reduction, sort the

generated singular value representations according to

relevance, toss out the irrelevant eigenvectors, and store the

data set's eigenvalues.

• The next step is to select k eigenvalues from these N

eigenvectors by increasing the variance of the retained actual

data and reducing the total square reconstruction error. The

"Cumulative Explained Variance," which is the subject of the

following computation, is the sum of all variances found

across the top m main components. Next, decide at what point

the eigenvalues are judged valuable and the rest are discarded

as irrelevant qualities.

• The dimensionality reduced feature vectors connected to

each feature track are first standardised to a mean of zero and

a variance of one before choosing a random subset to generate

a codebook. Each input feature vector is then calculated using

the top closest vectors from the codebook, resulting in a fixed

number of vectors. The counts of these assigned vectors,

when added together over all feature tracks in a sample

recording, constitute a representation known as a histogram

that is then subjected to prediction.

• Singular value decomposition is applied to the C matrix.

After dimensionality reduction, arrange the generated

singular value representations according to relevance, toss out

the unnecessary eigenvectors, and save the original data set's

eigenvalues. In the IPCA technique, the data is projected onto

a lower-dimensional space using just the most significant

singular vectors, and the centre data is decomposed into

singular values for linear dimensionality reduction. From the

dimensionally reduced data, the features like Geometric mean

(GM), Mutual information (MI), and Conditional entropy

(CE) are extracted.

C. Feature Extraction

In the feature extraction phase, we utilized statistical

features such as standard deviation, skewness, variance, and

kurtosis, along with Mutual Information (MI) and

Conditional Entropy (CE).

a) Statistical features

(1) Mean: The term mean is defined as the total number of

items divided by the total number of elements in a collection.

The mean calculation provides with a complete knowledge of

the complete collection of data. Consequently, the mean

formula is calculated as per Eq. (6) and Eq. (7)

 𝑀𝑒𝑎𝑛 =
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 (6)

 𝑦 ̅ =
∑𝑦

𝑧
 (7)

Where, 𝑦 ̅= mean value, y = Items given, z = Total number of

items

The significance of mean resides in its capacity to sum up the

entire dataset in a single value.

(2) Standard Deviation: A measurement that demonstrates the

degree of deviation from the mean is the standard deviation.

When data points are close to the mean, there is little variation,

whereas when data points are scattered from mean, there is a lot

difference. The standard deviation governs the amount of

deviation from the mean. The standard deviation, which is the

most widely used measure of dispersion, is based on all data.

Therefore, the value of the standard deviation can change if

even one number does. It is distinct of origin and scale. In some

difficult statistical problems, it is also beneficial.

 𝑆𝐷 (𝜎) = √
∑(𝑥𝑖−𝜇)2

𝑁
 (8)

 (3) Skewness: A measure of a distribution's symmetry is its

skewness. Actually, calling it a measure of asymmetry

would be more appropriate. A typical normal distribution is

completely symmetrical and has zero skew as shown in Eq.

(9)

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
3(𝑀𝑒𝑎𝑛−𝑀𝑒𝑑𝑖𝑎𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (9)

(4) Variance: The dispersion of a data set's data points from

its mean is referred to as variation, and it is calculated as the

average squared departure from the population mean for each

data point. By appending the squared deviations of all the data

points and dividing by the total number of data points in the

data set, one can obtain the formula for a variance.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 179
IJRITCC | August 2023, Available @ http://www.ijritcc.org

𝜎2 =
∑(𝑌𝑖−𝜇)

2

𝑛
 (10)

Here 𝑌𝑖 is the 𝑖𝑡ℎ data point in the dataset, 𝜇 defines the mean

population and 𝑛 is the number of population data points.

(5) Kurtosis: The probability distribution of signals is

reflected in kurtosis. As per Eq. (11), the definition of kurtosis

is displayed.

𝑉 =
𝑋{(𝑦−𝜇)4}

[𝑋{(𝑦−𝜇)2}]2
=

𝜇4

𝜎4, (11)

where 𝑋{∙} is the expectation operator, is the expectation

mean of 𝑦(𝑡), and 𝜎 is the anticipated standard deviation. As

per Eq. (11), kurtosis is defined as the fourth central moment

divided by the variance's square. Some definitions of kurtosis

deduct 3 from the calculated value since the kurtosis of the

normal distribution is 3.

(6) Geometric Mean (GM): The GM is an average that sums

all the data points and establishes the number's root. A group

of n integers must be used to get the nth root of each integer's

product. Use this descriptive statistic to sum up your data.

𝐺𝑀 = √
𝑇𝑝×𝑇𝑛

(𝑇𝑝+𝐹𝑛)×(𝑇𝑛+𝐹𝑝)
 (12)

b) MI

According to the definition of the MI between two

random variables A and B:

𝐼(𝐴; 𝐵) = 𝐻(𝐴) − 𝐻(𝐵|𝐴) (13)

Inferentially, the MI between A and B indicates the

decrease in B's uncertainty following the observation of A and

vice-versa. I (A; B) = I (B; A), indicating that the MI is

symmetric.

c) CE

The CE, an idea from information theory, quantifies

how much information is needed to explain a random

variable's outcome when the value of another random variable

is known.

In addition, the empirical conditional entropy of the features

𝐶𝑒 for dataset 𝐷𝑠 is denoted by the following formula.

𝐻(𝐷𝑠|𝐶𝑒) = −∑ 𝑃(𝑁
𝑗=1 𝐾𝑗 , 𝐶𝑒) log2 𝑃(𝐾𝑗|𝐶𝑒) (14)

The following is the expression for 𝑃(𝐾𝑙|𝐶𝑒) in the formula

above:

𝑃(𝐾𝑙|𝐶𝑒) =
∑ 𝑥𝑗,𝑘

(𝑙)|𝐾𝑙|

𝑗

∑ 𝑥
𝑗,𝑘
(𝑙)

𝑗,𝑘,𝑙

 (15)

Also 𝑃(𝐾𝑗|𝐶𝑒)𝑖𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠

𝑃(𝐾𝑙|𝐶𝑒) =
∑ 𝑥𝑗,𝑘

(𝑙)|𝐾𝑙|

𝑗

∑ 𝑥
𝑗,𝑘
(𝑙)

𝑗,𝑙

 (16)

From the extracted features, the relevant ones are

selected using the new Euclidean Distance with Mean

Absolute Deviation (ED-MAD).

D. Feature Selection using ED-MAD model

The ED-MAD of a dataset is defined as the typical

distance between each data point and the mean. It provides an

understanding of a dataset's degree of variability.

The ED-MAD is calculated as follows.

Step 1: Calculate the geometric mean (proposed).

Step 2: Use Euclidian distances(proposed) to determine how

distant each data point is from the mean. Such are referred to

as absolute deviations.

The Euclidean distance can be defined as per Eq. (17).

𝐸𝑑 = √(𝐴 − 𝐵)𝑇(𝐴 − 𝐵) = √∑ (𝐴𝑖 − 𝐵𝑖)
2𝑁

𝑖=1 (17)

Where A and B are the two different classes. When the

datasets are grouped together in compact spaces, Euclidean

distance yields great results.

Step 3: Combine those deviations.

Step 4: Subtract the total from the quantity of data points.

It is usually better to follow these steps in the example

below to understand about mean absolute deviation, but here

is a more formal method to put the stages in a formula (Eq.

(18).

𝑀𝐴𝐷 =
∑|𝑃𝑖−�̅�|

𝑛
 (18)

Where �̅� 𝑖𝑠 𝑡ℎ𝑒 the data set's average value, 𝑃𝑖 is the

collection of data values, where n is the total number of data

values.

E. Prediction using Optimized Two- Fold Deep Learning

Framework (O-TFDLF)

 Finally, the SDP carried out using the O-

TFDLF, which encapsulates the RBFN and optimized MLP,

respectively. Utilizing the TFDLF model, which combines

RBFN and MLP, the SDP is carried out. In order to get greater

prediction performance than what can be achieved with only

one learning algorithm, ensemble model called TFDLF

attempt to build a set of numerous learning algorithms. To

enhance the detection accuracy of the model, the weight of

MLP is fine-tuned using the new (LCMO).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 180
IJRITCC | August 2023, Available @ http://www.ijritcc.org

a) Optimized Multilayer Perceptron

 An ANN known as the MLP has many layers of nodes.

The output signals are produced by computing the activation

from the sum of the inputs, and the linked nodes have weights

associated with them. Its design is made up of an input layer

that transmits the input vector to the network's subsequent

levels. The inputs and outputs of the MLP are denoted by the

phrases "input vectors" and "output vectors," which are single

vectors. An MLP also contains an additional hidden layer or

layers in addition to the output layer. MLPs are completely

linked, meaning that each node is connected to every other

node in the layer above and below.

 The first processing components of MLP are set up in a

one-directional order beforehand. These networks' three

matching layer types—input, hidden, and output—

communicate with one another in order for information to

evolve. A MLP network with a single hidden layer is depicted

in Figure 1. The weighting values for the networks between

these layers range between [-1, 1]. Every node of the MLP is

capable of performing the summation and activation

operations. Based on the summing function shown in Eq.

(19), it is possible to determine the product of input values,

weight values, and bias values. The architecture of optimized

MLP is shown in Fig.2.

𝑇𝑠 = ∑ ℎ𝑛𝑚𝐼𝑁 + 𝐵𝑁
𝐿
𝑛=1 (19)

I1

 I2

I3

IN

H1

H2

HN

O1

O2

O3

ON

B1

BN

Input Layer

Output

Layer
Hidden

Layer

Figure 2: optimized MLP

where L stands for the overall number of inputs, 𝐼𝑁 represents

the input variable 𝐼𝑚 is a bias value, and ℎ𝑛𝑚 shows the

connection weight. The conclusion of the Eqn. (14) is used to

trigger an activation function in the following step. The MLP

supports a number of activation strategies, the most popular

of which, according to the literature, is S-shaped sigmoid

function. Based on Eq. (20), one can compute this function.

To enhance the prediction accuracy of the model, the weight

of MLP is optimized using thew new LCMO model.

𝑓𝑚(𝑎) =
1

1+𝑒−𝑇𝑠
 (20)

As a result, Eq. (21) is used to produce the neuron m's final

output:

𝑏𝑛=𝑓𝑚(∑ ℎ𝑛𝑚𝐼𝑁 + 𝐵𝑁)𝐿
𝑛=1 (21)

 The learning process is started once the ANN's final

structure has been built in order to adjust and evolve the

network's weighting vectors. To approximate the findings and

reduce the network's overall inaccuracy, these weighting

vectors should be modified. The MLP's effectiveness and

capacity for handling various situations are significantly

impacted by the computationally difficult learning (training)

stage of the ANN.

b) Levy Flight Cat Mouse Optimization (LCMO)

The LCMO is a population-based algorithm that

took design cues from how a mouse would naturally flee from

a cat assault and find safety. In the recommended method, cats

and mice are split into two groups as the search agents. The

recommended strategy involves updating the population

twice. Cats advance toward mice in the first phase of the

simulation, and mice flee to safe havens in the second phase

to avoid being killed. As per Eq. (22), a matrix called

population matrix is used to determine the algorithm's

population.

𝑌 = [

𝑌1...
𝑌𝑖...
𝑌𝑁

]

𝑁×𝑚

=

[

 𝑌1,1…𝑌1,𝑑…𝑌1,𝑚

...
𝑌𝑖,1…𝑌𝑖,𝑑…𝑌𝑖,𝑚

...
𝑌𝑁,1…𝑌𝑁,𝑑…𝑌𝑁,𝑚]

𝑁×𝑚

 (22)

where 𝑌 define LCMO population of matrix, 𝑌𝑖

represents 𝑖𝑡ℎ search agent, 𝑌𝑖,𝑑 represents value of 𝑑𝑡ℎ

variable discovered by 𝑖𝑡ℎ search, 𝑁 represents size of

population, and 𝑚 define the problem variable number. As per

Eq. (8), a vector is used to indicate obtained values for the

objective function.

The fitness function of this research work is

minimization of the error (RMSE). This is mathematically

shown in Eq. (23). The weight of MLP is the input (solution)

fed as input to LCMO. This weight function is delineating to

the position of the solutions 𝑌.

𝐹𝑖𝑡 = min(𝑅𝑀𝑆𝐸) (23)

𝑉 = [

𝑉1...
𝑉𝑖...
𝑉𝑁

]

𝑁×𝑚

 (24)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 181
IJRITCC | August 2023, Available @ http://www.ijritcc.org

Here 𝑉𝑖 defines value of the goal function for the first search

agent and 𝑉 is an objective vector. The sorted goal function

and the sorted population matrix are calculated as per Eq. (25)

and Eq. (26), respectively.

𝑌𝑠 =

[

 𝑌1𝑠...
𝑌𝑖

𝑠

...
𝑌𝑁

𝑠]

𝑁×𝑚

=

[

 𝑌1,1

𝑠 …𝑌1,𝑑
𝑠 …𝑌1,𝑚

𝑠

...
𝑌𝑖,1

𝑠 …𝑌𝑖,𝑑
𝑠 …𝑌𝑖,𝑚

𝑠

...
𝑌𝑁,1

𝑠 …𝑌𝑁,𝑑
𝑠 …𝑌𝑁,𝑚

𝑠]

𝑁×𝑚

 (25)

𝑉𝑠 = [
𝑉1

𝑠 min (𝑉)
...

𝑉𝑁
𝑠 max (𝑉)

]

𝑁×1

 (26)

here 𝑌𝑠 defines depending on value of objective,

sorted population matrix, 𝑌𝑖
𝑠 defines sorted matrix with

member, 𝑌𝑖,𝑑
𝑠 explains the 𝑑𝑡ℎ problem variable value derived

from the population-sorted matrix by ith agent, and 𝑉𝑠 is

objective function sorted vector. Two populations of mice and

cats make up the proposed LCMO's population matrix. In

LCMO, It is assumed that the mouse population contains half

of the population members who produced higher values for

the objective function, and the cat population contains the

other half of the population members who produced lower

values for the objective function. As per Eq. (27) and Eq. (28),

determine the numbers of cats and mice.

𝑀𝑖 =

[

 𝑀𝑖1=𝑌1

𝑠

...
𝑀𝑖𝑖=𝑌𝑖

𝑠

...
𝑀𝑖𝑁𝑚=𝑌𝑁𝑚

𝑠]

𝑁𝑚×𝑚

=

[

 𝑌1,1

𝑠 …𝑌1,𝑑
𝑠 …𝑌1,𝑚

𝑠

...
𝑌𝑖,1

𝑠 …𝑌𝑖,𝑑
𝑠 …𝑌𝑖,𝑚

𝑠

...
𝑌𝑁𝑚,1

𝑠 …𝑌𝑁𝑚,𝑑
𝑠 …𝑌𝑁𝑚,𝑚

𝑠]

𝑁𝑚×𝑚

 (27)

𝐶𝑎 =

[

 𝐶𝑎1=𝑌𝑁𝑚+1

𝑠

...
𝐶𝑎𝑗=𝑌𝑁𝑚+𝑗

𝑠

...
𝐶𝑎𝑁𝑐𝑎=𝑌𝑁𝑚+𝑁𝑐𝑎

𝑠]

𝑁𝑐𝑎×𝑚

=

[

 𝑌𝑁𝑚+1,1

𝑠 …𝑌𝑁𝑚+1,𝑑
𝑠 …𝑌𝑁𝑚+1,𝑚

𝑠

...
𝑌𝑁𝑚+𝑗,1

𝑠 …𝑌𝑁𝑚+𝑗,𝑑
𝑠 …𝑌𝑁𝑚+𝑗,𝑚

𝑠

...
𝑌𝑁𝑚+𝑁𝑐𝑎,1

𝑠 …𝑌𝑁𝑚+𝑁𝑐𝑎,𝑑
𝑠 …𝑌𝑁𝑚+𝑁𝑐𝑎,𝑚

𝑠]

𝑁𝑚×𝑚

 (28)

where 𝑀𝑖 is the cat population matrix, 𝐶𝑎 is the

mouse population matrix, 𝑁𝑐𝑎 is the cat population matrix,

𝑀𝑖𝑖 is the 𝑗𝑡ℎ mouse, and 𝐶𝑎𝑗 is the 𝑖𝑡ℎ cat. Cats' position

change is first simulated based on their natural behaviour and

movement toward mice in updating the search parameters.

Eq. (29) to Eq. (31) are used to describe the portion of the

planned LCMO update analytically.

𝐶𝑎𝑗
𝑛𝑒𝑤: 𝐶𝑎𝑗,𝑑

𝑛𝑒𝑤 = 𝐶𝑎𝑗,𝑑 + 𝑟 × (𝑚𝑖𝑘,𝑑 − 𝐼 × 𝐶𝑗,𝑑)&𝑗 =

1: 𝑁𝑐𝑎 , 𝑑 = 1:𝑚𝑖, 𝑘𝜖1: 𝑁𝑚𝑖 , (29)

𝐼 = 𝑟𝑜𝑢𝑛𝑑 (1 + 𝑟𝑎𝑛𝑑), (30)

𝐶𝑎𝑗 = {
𝐶𝑎𝑗

𝑛𝑒𝑤 , |𝑉𝑗
𝑐𝑎,𝑛𝑒𝑤 < 𝑉𝑗

𝑐𝑎

𝐶𝑎𝑗 , |𝑒𝑙𝑠𝑒
 (31)

Here, 𝐶𝑎𝑗
𝑛𝑒𝑤 is the 𝑗𝑡ℎ cat's new status, 𝐶𝑎𝑗,𝑑

𝑛𝑒𝑤 is the

𝑗𝑡ℎ cat new value of 𝑑𝑡ℎ variable, 𝑟 - random number

between [0,1], 𝑚𝑖𝑘,𝑑 - 𝑘𝑡ℎ mouse's 𝑑𝑡ℎ dimension, and

𝑉𝑗
𝑐𝑎,𝑛𝑒𝑤

 - depending on the jth cat's new status, objective

function value. Escaping mice to safe havens is represented

in the second stage of the proposed LCMO. In LCMO, it is

presumed that each mouse has a random haven, and the mice

seek solace there. By patterning the placements of various

algorithmic elements, the havens are positioned in the search

space at random. Eq. (32) to Eq. (34) are used in a

mathematical model to represent this step of updating the

positions of mice. To increase the convergence rate, the

proposed levy flight is added in the second stage.

𝐻𝑎𝑖 ∶ ℎ𝑎𝑖,𝑑 = 𝑦𝑙,𝑑&𝑖 = 1: 𝑁𝑚𝑖 , 𝑑 = 1:𝑚𝑖, 𝑙𝜖1: 𝑁 (32)

𝑀𝑖𝑖
𝑛𝑒𝑤: 𝑚𝑖𝑖,𝑑

𝑛𝑒𝑤 = 𝑚𝑖𝑖,𝑑 + 𝑟 × (ℎ𝑎𝑖,𝑑 − 𝐼 ×

𝑚𝑖𝑖,𝑑)𝑠𝑖𝑔𝑛(𝐹𝑖
𝑚𝑖 − 𝐹𝑖

𝐻𝑎)&𝑖 = 1:𝑁𝑚𝑖 , 𝑑 = 1:𝑚𝑖 ∗ 𝐿𝑒𝑣𝑦(𝛽)

 (33)

𝑀𝑖𝑖 = {
𝑀𝑖𝑖

𝑛𝑒𝑤 , |𝑉𝑖
𝑚𝑖,𝑛𝑒𝑤 < 𝑉𝑖

𝑚𝑖

𝑀𝑖𝑖 , |𝑒𝑙𝑠𝑒
 (34)

In this case, 𝐻𝑎𝑖 is the 𝑖𝑡ℎ mouse safe haven and 𝐹𝑖
𝐻𝑎 - value

of objective function. The 𝑖𝑡ℎ mouse's new status is 𝑀𝑖𝑖
𝑛𝑒𝑤,

and objective function value - 𝑉𝑖
𝑚𝑖,𝑛𝑒𝑤

. The haven location is

chosen at random within the search space as per the Eq. (11)

to Eq. (18), until the stop condition is satisfied, the algorithm

iterates. Optimization techniques may be stopped after a

certain number of iterations or when an acceptable error

between solutions obtained in subsequent rounds is defined.

Furthermore, after running for a specific amount of time, the

programme might be terminated. The best acquired optimum

solution is provided by the LCMO following the completion

of iterations and full application of the algorithm to the

optimization problem.

c) RBFN

 The Multilayer Perceptron is typically mentioned when

people discuss neural networks or "Artificial Neural

Networks" (MLP). An MLP's neurons take the weighted sum

of their input values into consideration. In other words, after

multiplying each input value by a coefficient, the results are

summed together. Simple linear classifiers can be created by

a single MLP neuron, while complicated non-linear

classifiers may be created by connecting these neurons

together into a network.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 182
IJRITCC | August 2023, Available @ http://www.ijritcc.org

Compared to the MLP, the RBFN method is easier

to understand. By comparing input instances to examples

from the training set, an RBFN conducts categorization. One

sample from the training set serves as the "prototype" that

each RBFN neuron stores. When classifying a new input,

each neuron computes the Euclidean distance between the

input and its prototype. The architecture of RBFN is shown

in Fig.3.

µ 1

µ 2

µ N

S1

SN

Input Vector

Weighted

sum

RBF

Neurons

C1

CN

Figure 3: Architecture of RBFN

The accompanying diagram depicts the usual design of an

RBF network. It has an input vector, an output layer with one

node for each type or class of data, and an RBF neuron layer.

• The Input Vector

The input vector is being attempted to be categorized

by the n-dimensional vectors. Each RBF neuron is shown the

whole input vector.

• The RBF Neurons

The RBF neuron is carrying a "prototype" vector,

which is one of the vectors from the training set. Each RBF

neuron compares the input vector to its prototype and returns

a value between 0 and 1 indicating the degree of similarity.

Whenever the value of the input is equal to the prototype, the

RBF neuron's output also equals 1. The reaction decreases

exponentially approaches zero as input and prototype go

further apart. The diagram of network architecture shows that

the RBF neuron's response takes the form of a bell curve.

Sometimes the term "activation" value—which refers to the

neuron's response value—is used. Given that it represents the

value located in the middle of the bell curve, the prototype

vector is also sometimes referred to as the neuron's "centre.".

• The Output Nodes

A collection of nodes, one for each category are

attempting to categorize, produce the network's output. For

the corresponding category, each output node calculates a

type of score. A classification decision is normally made by

allocating the input to the category with the greatest score.

The score is calculated by adding the activity levels from

all RBF neurons in a weighted manner. By "weighted sum,"

that means each output node assigns each RBF neuron a

weight value and multiplies the activity of each neuron by this

weight before adding it to the overall response.

 In the hidden layer of the RBFN neural network, each

node has a centroid attached to it. It determines the distance

between the centroid of the node and P for each of the input

vectors, P = (𝑃1, 𝑃2,..., 𝑃𝑛). The output of the unit is thereafter

determined as a nonlinear function of this distance. In the

nodes of the output layer, the output of the hidden nodes is

finally merged and given weight. The response function of

each output node may be determined in the scenario of 𝑅,

input nodes and m output nodes as per Eq. (35).

∑ 𝐻𝑗
𝑁
𝑗=1 × 𝐾 , (

𝑃−𝑎𝑗

𝜎𝑗
) = ∑ 𝐻𝑗

𝑁
𝑗=1 × 𝑑 (

‖𝑃−𝑎𝑗‖

𝜎𝑗
) (35)

where P is an input vector and N is the total number of hidden

units; The weights connecting the 𝑗𝑡ℎ hidden-layer unit to the

output nodes are designated 𝐻𝑗as; 𝐾 , represents a radially

symmetric kernel function; j is the ith kernel node's

smoothing factor; 𝑎𝑗 is its centroid factor; and, d[0,1) ∈R is

the activation function.

With respect to weights, each output node is different since

they are each used to calculate the score for a separate

category. RBF neurons that fall into this category are

normally given a positive weight by the output node, while

the others receive a negative weight.

• RBF Neuron Activation Function

A measure of how comparable the input and its

prototype vector are computed by each RBF neuron (taken

from the training set). The output is nearer to 1 for input

vectors that are more like the prototype. Although there are

alternative possibilities, the Gaussian distribution-based

similarity function is the most popular. The equation for a

one-dimensional Gaussian is shown in Eq. (36).

𝑔(𝑎) =
1

𝜎√2𝜋
𝑒

−(
(𝑎−𝜇)2

2𝜎2 (36)

Where the input value is represented as a, the mean value is

𝜇, and the standard deviation is 𝜎 .

A somewhat modified formula is used to represent

the RBF neuron activation function and is usually represented

as per Eq. (37).

𝜑(𝑎) = 𝑒−𝛽‖𝑎−𝜇‖2
 (37)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 183
IJRITCC | August 2023, Available @ http://www.ijritcc.org

The Gaussian distribution's mean is referred to as 𝜇. In this

instance, the bell curve's centre is occupied by the prototype

vector.

IV.RESULT AND DISCUSSION

The proposed work has been implemented in

MATLAB. The data for analysis has been collected from

PROMISE. The performance of the proposed model in this

part is evaluated using metrics like sensitivity, accuracy, F-

score, specificity, MCC, recall, NPV, FPR, and FNR,

respectively.

A. Performance metrics

Below are the performance measures and their calculation

algorithms.

• Sensitivity: To determine the sensitivity value, just

divide the total positives by the percentage of genuine

positive predictions.

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (38)

• Specificity: The number of predicted negative outcomes

is precisely divided by the total number of negatives to

calculate specificity.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡 𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (39)

• Accuracy: The accuracy is calculated as the proportion

of correctly sorted data to all other data in the log. The

level of accuracy is defined as,

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (40)

• Precision: Precision is the depiction of the complete

number of authentic samples that are properly taken into

account throughout the classification process by using

the full number of samples utilised in the classification

procedure.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (41)

• Recall: Recall rate is determined by estimating how many

real samples are taken into account overall when

classifying data using all samples drawn from the same

categories in the training data.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (42)

• F- Score: The harmonic mean of recall rate and accuracy

is the definition of the F-score.

𝐹𝑆𝑐𝑜𝑟𝑒 =
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (43)

• NPV: A diagnostic test or other quantitative metric's

efficiency is described by NPV.

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (44)

• MCC: The MCC, a two-by-two binary variable

association measure, is depicted below,

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝐹𝑃)
 (45)

• FPR: The ratio of the number of negative events to the

number of negative events that are mistakenly broken down

into positive events gives the FPR value.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (46)

• FNR: The false-negative rate, commonly referred to as

the "miss rate," is the probability that a real positive may go

undetected by the test.

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (47)

B. Classifier Performance Analysis

The proposed approach's (TFDLF)) effectiveness has

been investigated, and the outcomes have been analysed with

those of existing techniques like the Artificial Neural

Network (ANN), K-Nearest Neighbour (KNN), Deep Belief

Network (DBN), random forest (RF), Support Vector

Machine (SVM), and RNN. Table 2 explains the classifier

performance with highest accuracy by optimized RNN.

TABLE 2: OVERALL PERFORMANCE ANALYSIS: CLASSIFIER PERFORMANCE (AT LEARNING RATE=70)

Performance metrics ANN DBN SVM KNN RF RNN TFDLF

Accuracy 0.87542 0.80502 0.86318 0.81114 0.88766 0.84481 0.93442

Precision 0.94276 0.88447 0.93795 0.88163 0.94775 0.82711 0.95389

Sensitivity 0.88239 0.82255 0.87078 0.83034 0.89432 0.85336 0.92883

Specificity 0.91391 0.86791 0.90516 0.87351 0.92265 0.91892 0.94888

F-Measure 0.89389 0.82837 0.88186 0.83695 0.90561 0.79732 0.92908

MCC 0.83281 0.72877 0.81729 0.73455 0.84835 0.75047 0.89536

NPV 0.91391 0.86791 0.90516 0.87351 0.92265 0.91891 0.91888

FPR 0.09622 0.14221 0.10495 0.13661 0.08745 0.09118 0.05121

FNR 0.12771 0.18755 0.13932 0.17976 0.11611 0.15674 0.07127

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 184
IJRITCC | August 2023, Available @ http://www.ijritcc.org

As per table I, the effectiveness of the proposed

method is evaluated by using different methods and metrics

including accuracy, recall, sensitivity, specificity, false-

positive-ratio (FPR), false-negative-ratio (FNR), and

precision. Analysis of results shows that projected model,

which uses an optimised RNN model, has the highest

accuracy level, at 93.4%. The projected model clearly

recorded the lowest FPR and FNR, 0.051 and 0.071,

respectively, which is the least value, after analysing the

obtained results. Figure 2, explains the graphical

representation of the classifiers.

C. Algorithmic Analysis

As per Table 3, the algorithmic performance of the

overall analysis is performed. The performance of the

suggested strategy is contrasted with that of widely used

algorithms like Honey Badger Algorithm (HBA), Cat Swarm

Optimization (CSO), Grey Wolf Optimizer (GWO), Genetic

Algorithm (GA), Grasshopper Optimization Algorithm

(GOA), Squirrel Search Algorithm (SSA). The projected

model, which makes use of the LCMO model as a suggestion,

has the highest accuracy level at 95.4%, according to the

results of the analysisThe lowest FPR and FNR are clearly

recorded in the projected model, which are 0.041 and 0.061,

and that is employed as the least value, after analysing the

acquired results. The algorithmic analysis of the proposed as

well as state-of-art models is shown in Fig.4.

TABLE 3: ALGORITHMIC PERFORMANCE ANALYSIS (AT LEARNING RATE=70)

Performance metrics HBA GA SSA GWO GOA CSO LCMO

Accuracy 0. 80709 0. 88323 0. 84590 0. 87104 0. 85886 0. 80099 0.95442

Precision 0. 87722 0. 94301 0. 82297 0. 93805 0. 93326 0. 88005 0.93389

Sensitivity 0. 82619 0. 88953 0. 84909 0. 87798 0. 86642 0. 81844 0.94883

Specificity 0. 86914 0. 91803 0. 91431 0. 90933 0. 90063 0. 86357 0.92888

F-Measure 0. 83277 0. 90107 0. 79333 0. 88942 0. 87745 0. 82423 0.94908

MCC 0. 73088 0. 84411 0. 74672 0. 82865 0. 81321 0. 72512 0.91536

NPV 0. 86914 0. 91803 0. 91431 0. 90933 0. 90063 0. 86357 0.93888

FPR 0. 13591 0. 08701 0. 09074 0. 09571 0. 10442 0. 14148 0.04121

FNR 0. 17886 0. 11552 0. 15596 0. 12708 0. 13863 0. 18661 0.06127

Figure 4: Algorithmic analysis of graphical representation

Figure 4, explains the graphical representation of the

algorithmic analysis. All of the aforementioned findings

make it clear that the suggested technique is superior to the

existing methods.

D. Analysis on Feature Selection

The analysis on feature selection techniques for SDP

reveals interesting insights into their impact on the accuracy

of the prediction models. The results acquired are manifested

in Fig. 5. Four different techniques were evaluated, and their

performance was compared against a baseline model without

any feature selection. The results demonstrate that the choice

of feature selection technique has a significant influence on

the accuracy of the SDP. When no feature selection was

applied, the accuracy varied between 0.78 and 0.86,

indicating that using all available features without any

filtering or selection leads to inconsistent results. The

application of a Genetic Algorithm (GA) for feature selection

showed improvement compared to the baseline model. The

accuracy ranged from 0.844 to 0.89, suggesting that the GA-

based approach helped identify more relevant features,

resulting in better prediction performance. Using the Mean

Absolute Deviation (MAD) as a feature selection technique

yielded mixed results. The accuracy ranged from 0.79 to 0.89,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 185
IJRITCC | August 2023, Available @ http://www.ijritcc.org

indicating that MAD alone may not effectively capture the

most important features for SDP. However, the proposed

Euclidean Distance with Mean Absolute Deviation (ED-

MAD) feature selection technique consistently outperformed

the other approaches. The accuracy ranged from 0.91 to an

impressive 0.967, demonstrating the effectiveness of ED-

MAD in selecting highly relevant features. By identifying and

including only the most informative features, the ED-MAD

technique significantly improved the accuracy of the SDP

models. Overall, this analysis emphasizes the importance of

feature selection in SDP. The results highlight that the

proposed ED-MAD technique outperforms other methods,

consistently achieving high accuracy. By selecting the most

relevant features, the ED-MAD approach enhances the

performance and reliability of SDP models, contributing to

enhanced software quality and early identification of

potential defects in the development process.

Figure 5: Analysis on Feature Selection Approaches

E. Analysis on Dimensionality reduction

Figure 6: Analysis on Dimensionality Reduction Approaches

The analysis on dimensionality reduction techniques

for SDP provides valuable insights into their impact on the

accuracy of prediction models. The results acquired are

manifested in Fig. 6. Four different techniques were

evaluated, and their performance was compared against a

baseline model without any dimensionality reduction. The

results reveal that the choice of dimensionality reduction

technique has a significant influence on the accuracy of SDP.

When no dimensionality reduction was applied, the accuracy

ranged from 0.78 to 0.86, indicating that using all available

dimensions without any reduction can lead to inconsistent

results. Applying Linear Discriminant Analysis (LDA) for

dimensionality reduction showed improvement compared to

the baseline model. The accuracy ranged from 0.79 to 0.89,

suggesting that LDA-based approach helped capture the

discriminative information in the data and reduced the

dimensionality effectively. Principal Component Analysis

(PCA) based dimensionality reduction yielded mixed results.

The accuracy ranged from 0.844 to 0.89, indicating that PCA

alone may not be sufficient to capture the most informative

dimensions for SDP. However, the proposed Incremental

Covariance Principal Component Analysis (ICPCA)

technique consistently outperformed the other approaches.

The accuracy ranged from 0.91 to an impressive 0.967,

demonstrating the effectiveness of ICPCA in reducing

dimensionality while preserving the most relevant

information. By extracting the most discriminative

dimensions, the ICPCA technique significantly improved the

accuracy of SDP models. Overall, this analysis emphasizes

the importance of dimensionality reduction in SDP The

results highlight that the proposed ICPCA technique

outperforms other methods, consistently achieving high

accuracy. By reducing the dimensionality while retaining the

most informative features, the ICPCA approach enhances the

performance and reliability of SDP models, contributing to

improved software quality and early detection of potential

defects in the development process.

F. Overall Performance Analysis

The proposed model, O-TFDLF, consistently

exhibits the highest values in terms of accuracy, MCC, and

sensitivity across different data percentages. The results

acquired are manifested in Fig. 7. This indicates that O-

TFDLF performs exceptionally well in correctly classifying

both positive and negative cases, capturing underlying

patterns in the data, and providing an overall accurate

prediction. The high performance of O-TFDLF can be

attributed to its unique combination of techniques, such as DL

and feature selection through LCMO. These techniques

enhance the model's ability to extract meaningful features and

optimize its predictive capabilities. The consistently superior

performance of O-TFDLF underscores its effectiveness in

addressing the problem at hand and makes it a strong

candidate for accurate predictions in real-world scenarios.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 186
IJRITCC | August 2023, Available @ http://www.ijritcc.org

Precision

Accuracy

Sensitivity

MCC

(e)FNR

(f) Recall

Figure 7: overall Performance Analysis

V.CONCLUSION

In the present study, we proposed a novel approach

that aimed to enhance software quality by accurately

predicting software defects at an early stage in the

development process. Existing approaches encountered

challenges in achieving reliable predictions, necessitating the

need for a new solution. Our work focused on addressing

these challenges and providing a significant contribution to

the field. The significance of our work lay in the successful

combination of a two-tier DL framework for SDP. This

approach not only improved the accuracy of defect

identification but also enabled the early detection of potential

issues, leading to more efficient software development and

improved overall quality. Throughout our research, we

conducted a comprehensive investigation comprising four

major phases: pre-processing, dimensionality reduction,

feature extraction, and two-fold deep learning-based defect

prediction. In the pre-processing phase, we employed data

cleaning techniques to handle null values and missing data,

ensuring the integrity of the dataset. Additionally, we applied

Decimal scaling normalization to normalize the data for

subsequent analysis. To address the issue of high-dimensional

data and the associated "curse of dimensionality," we

introduced the Incremental ICPCA method. This technique

effectively reduced the dimensionality of the data, allowing

for more efficient and accurate defect prediction. In the

feature extraction phase, we utilized statistical features such

as standard deviation, skewness, variance, and kurtosis, along

with MI and CE. These features provided valuable insights

into the data and played a crucial role in the subsequent defect

prediction process. One of the significant contributions of our

work was the development of the ED-MAD method for

feature selection. This technique ensured that only relevant

features were considered, eliminating noise and improving

the overall accuracy of defect prediction. Furthermore, our O-

TFDLF, which incorporated the RBFN and an optimized

MLP, demonstrated enhanced performance in defect

prediction. The fine-tuning of MLP weights using the LCMO

algorithm further improved the accuracy of our model. Our

work was implemented using MATLAB software, and we

conducted a comprehensive evaluation of the proposed

model's performance. We compared our approach against

existing models, considering various performance metrics

such as accuracy, sensitivity, precision, specificity, and Mean

Squared Error (MSE). The achieved accuracy of 93.37%

demonstrated the significance and effectiveness of our

proposed model in accurately predicting software defects. In

conclusion, our study made a significant contribution to the

field of SDP by introducing a novel approach that combined

a two-tier DL framework. The successful integration of pre-

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 187
IJRITCC | August 2023, Available @ http://www.ijritcc.org

processing, dimensionality reduction, feature extraction, and

defect prediction phases provided accurate and reliable

predictions, leading to improved software quality. The

significance of our work lies in its potential to enable early

defect identification, resulting in more efficient software

development processes and enhanced overall software

quality.

REFERENCE

[1]. X. Cai, Y. Niu, S. Geng, J. Zhang, Z. Cui, J. Li, and J. Chen,

“An under‐sampled software defect prediction method

based on hybrid multi‐objective cuckoo search,”

Concurrency and Computation: Practice and Experience,

32(5), 2020, p.e5478.

[2]. Y. Qu, and H. Yin, “Evaluating network embedding

techniques’ performances in software bug prediction,”

Empirical Software Engineering, 26, 2021, pp.1-44.

[3]. A. Hammouri, M. Hammad, M. Alnabhan, and F.

Alsarayrah, “Software bug prediction using machine

learning approach,” International journal of advanced

computer science and applications, 9(2), 2018.

[4]. Z.W. Zhang, X.Y. Jing, and T.J. Wang, “Label propagation

based semi-supervised learning for software defect

prediction”. Automated Software Engineering, 24, 2017,

pp.47-69.

[5]. D.L. Gupta, and K. Saxena, “Software bug prediction using

object-oriented metrics,” Sādhanā, 42, 2017, pp.655-669.

[6]. Sunanda, P. ., Janardhanan, K. A. ., Gupta, R. ., Tannady,

H. ., Shrivastava, N. K. ., & Sharma, T. K. . (2023).

Distributed Hashing Based Group Management Scheme

for the Peer-to-Peer Trust Model. International Journal of

Intelligent Systems and Applications in Engineering,

11(3s), 08–13. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2525

[7]. Z. Yuan, X. Chen, Z. Cui, and Y. Mu, “ALTRA: Cross-

project software defect prediction via active learning and

tradaboost,” IEEE Access, 8, 2020, pp.30037-30049.

[8]. X. Chen, Y. Mu, K. Liu, Z. Cui, and C. Ni, “Revisiting

heterogeneous defect prediction methods: How far are

we?,” Information and Software Technology, 130, 2021,

p.106441.

[9]. X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “MULTI: Multi-

objective effort-aware just-in-time software defect

prediction,” Information and Software Technology, 93,

2018, pp.1-13.

[10]. D. Chen, X. Chen, H. Li, J. Xie, and Y. Mu, “Deepcpdp:

Deep learning based cross-project defect prediction,” IEEE

Access, 7, 2019, pp.184832-184848.

[11]. Z. Wan, X. Xia, A.E. Hassan, D. Lo, J. Yin, and X. Yang,

“Perceptions, expectations, and challenges in defect

prediction,” IEEE Transactions on Software Engineering,

46(11), 2018, pp.1241-1266.

[12]. H.K. Dam, T. Pham, S.W. Ng, T. Tran, J. Grundy, A. Ghose,

T. Kim, and C.J. Kim, “A deep tree-based model for

software defect prediction,” arXiv preprint

arXiv:1802.00921, 2018.

[13]. X, Li, H. Jiang, Z. Ren, G. Li, and J. Zhang, “Deep learning

in software engineering,” arXiv preprint

arXiv:1805.04825, 2018.

[14]. C. Pan, M. Lu, B. Xu, and H. Gao, “An improved CNN

model for within-project software defect prediction,”

Applied Sciences, 9(10), 2019, p.2138.

[15]. Mr. Vaishali Sarangpure. (2014). CUP and DISC OPTIC

Segmentation Using Optimized Superpixel Classification

for Glaucoma Screening. International Journal of New

Practices in Management and Engineering, 3(03), 07 - 11.

Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/30

[16]. C. Manjula, and L. Florence, “Deep neural network based

hybrid approach for software defect prediction using

software metrics,” Cluster Computing, 22(Suppl 4), 2019,

pp.9847-9863.

[17]. Dhablia, A. (2021). Integrated Sentimental Analysis with

Machine Learning Model to Evaluate the Review of

Viewers. Machine Learning Applications in Engineering

Education and Management, 1(2), 07–12. Retrieved from

http://yashikajournals.com/index.php/mlaeem/article/view

/12

[18]. D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An

analysis of the automatic bug fixing performance of

chatgpt,” arXiv preprint arXiv:2301.08653, 2023.

[19]. L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based

software defect prediction,” Neurocomputing, 385, 2020,

pp.100-110.

[20]. Pérez, C., Pérez, L., González, A., Gonzalez, L., & Ólafur,

S. Personalized Learning Paths in Engineering Education:

A Machine Learning Perspective. Kuwait Journal of

Machine Learning, 1(1). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/107

[21]. H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A semantic

LSTM model for software defect prediction,” IEEE

Access, 7, 2019, pp.83812-83824.

[22]. H. Tong, B. Liu, and S. Wang, “Software defect prediction

using stacked denoising autoencoders and two-stage

ensemble learning,” Information and Software Technology,

96, 2018, pp.94-111.

[23]. Z. Xu, S. Li, J. Xu, J. Liu, X. Luo, Y. Zhang, T. Zhang, J.

Keung, and Y. Tang, “LDFR: Learning deep feature

representation for software defect prediction,” Journal of

Systems and Software, 158, 2019, p.110402.

[24]. G. Giray, K.E. Bennin, Ö. Köksal, Ö. Babur, and B.

Tekinerdogan, On the use of deep learning in software

defect prediction. Journal of Systems and Software, 195,

2023, p.111537.

[25]. M. Nevendra, and P. Singh, “Software defect prediction

using deep learning,” Acta Polytechnica Hungarica,

18(10), 2021, pp.173-189.

[26]. G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software

defect prediction via attention-based recurrent neural

network,” Scientific Programming, 2019.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7409

Article Received: 01 May 2023 Revised: 28 June 2023 Accepted: 24 July 2023

 188
IJRITCC | August 2023, Available @ http://www.ijritcc.org

[27]. W.Y. Ramay, Q. Umer, X.C. Yin, C. Zhu, and I. Illahi, Deep

neural network-based severity prediction of bug reports.

IEEE Access, 7, 2019, pp.46846-46857.

http://www.ijritcc.org/

