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ABSTRACT

Videos capture the inherently sequential nature of the real world, making automatic video un-

derstanding an essential need for automatic understanding of the real world. Due to major ad-

vancements in camera, communication, and storage hardware, videos have become a widely used

data format for crucial applications such as home automation, security, analysis, robotics, and

autonomous driving. Existing methods for video understanding require heavy computation and

large training data for good performance, this limits how quick the videos can be processed and

how much data can be labeled for training. Real-world video understanding requires analyzing

dense scenes and sequential information, which increases the processing time and labeling cost

as the video increases in scene density and video length. Therefore, it is crucial to develop video

understanding methods that reduces the processing time and labeling cost.

In this dissertation, we first propose a method to improve network efficiency for video under-

standing task and then provide methods to improve annotation efficiency for video understanding

task. Through these works, we aim to improve the network efficiency as well as data annota-

tion efficiency, as an effort to encourage wider development and adaptation of large scale video

understanding methods. First, we propose an end-to-end neural network which performs faster

video actor-action detection. Our proposed network reduces the need for extra region proposal

computation and post-process filter, making the network training easy as well as increasing the in-

ference speed. Next, we propose an active learning based sparse labeling method that makes large

video dataset annotation efficient. It selects a few useful frames for annotation from videos, re-

ducing annotation cost while maintaining the dataset usefulness for video understanding task. We

also provide a method to train existing video understanding models using such sparse annotations.

Then, we propose a clustering-based hybrid active learning method that also selects useful videos

along with useful frames for annotation, reducing annotation cost even further. Finally, we study
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the relation between different types of annotations and how they impact video understanding task.

We extensively evaluate and analyze our methods on various dataset and downstream tasks to show

that they can do efficient video understanding with faster network and limited sparse annotations.
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EXTENDED ABSTRACT

Dense video understanding is a challenging problem with a wide range of applications in automa-

tion, analysis, security, autonomous driving and robotics. Real-world videos have varying object

density due to crowded scene and they have varying video length based on the underlying appli-

cation. This creates challenge for video understanding as the processing time increases with video

length and density. Better video understanding methods require more annotated data for training,

which also gets costlier to label as the video gets longer and more crowded. These challenges need

to be addressed to overcome different video understanding task such as classification, detection,

segmentation, tracking, summarization and more. As complex task such as detection and segmen-

tation need more processing time and labeled data, it is important to time and label efficiency for

dense video understanding.

While deep neural networks for image understanding have improved a lot over the years, it is not

the same for video understanding task. This comes down to two factors: video models have extra

temporal information which increases the computation cost of the model during training and infer-

ence, and video datasets with full annotations are costly to label. To improve video understanding

further, we need to optimize the models for efficient training and inference by streamlining the

entire process. Furthermore, we need to design methods that enable labeling large video dataset

efficiently by reducing unnecessary annotation cost, along with methods that enable training video

understanding models using sparse annotations.

In chapter 3, we propose a simple yet effective end-to-end deep network for actor-action detection

in videos. The existing methods take a top-down approach based on region-proposal networks

(RPN), where the action is predicted based on the detected proposals followed by post-processing

such as non-maximal suppression. While effective in terms of performance, these methods pose
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limitations in scalability for dense video scenes with a high memory requirement for thousands of

proposals. We propose to solve this problem from a different perspective where we don’t need any

proposals. We propose a method to perform pixel level joint actor-action detection, where every

pixel of the detected actor is assigned an action label. The proposed method is a fully convolutional

network which does not require any proposals and post-processing making it memory as well as

time efficient. This also allows it to be scalable to dense video scenes as its memory requirement is

independent of the number of actors present in the scene. The network is trained end-to-end with

actor and action detection loss and performs competitively to prior works on video actor-action

detection task, while having less computation time and memory requirements.

In chapter 4, we focus on efficient labeling of videos for action detection to minimize the anno-

tation cost for video action detection training tasks. We propose a novel active learning strategy

for sparse labeling for video action detection. Sparse labeling will reduce the annotation cost but

poses two main challenges: 1) how to estimate the utility of annotating a single frame for action

detection as detection is performed at video level?, and 2) how these sparse labels can be used for

action detection which require annotations on all the frames? We address these challenges within a

simple active learning framework. For the first challenge, we analyze frame-level scoring mecha-

nisms aimed at selecting the most informative frames for action detection and propose an intuitive

mechanism for video action detection. Next, we introduce a novel loss formulation which enables

training of action detection model with these sparsely selected frames. We train the network end-

to-end using this loss formulation for sparse labels and use proposed active learning framework

to select high utility frames for further annotation. We demonstrate that the proposed approach

outperforms all existing baselines, with performance comparable to fully-supervised approach.

In chapter 5, we show an active learning based framework that can reduce annotation cost of frames

from all videos which improves video action detection. In chapter 5 we focus on further reducing

annotation cost by also selecting videos for annotation which will have more impact on video
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action detection training. We present a hybrid active learning strategy which performs efficient

labeling by first selecting videos (inter-sample) for labeling and then selecting a few frames from

these videos (intra-sample) to be annotated. This strategy reduces the annotation cost from two

different aspects leading to significant labeling cost reduction. We use video level and frame level

informativeness and diversity to select useful samples while reducing redundancy. We train the

network end-to-end with sparse labels using improved loss formulation from chapter 4 and select

samples using proposed method to reduce annotation cost while performing competitively with

prior works.

In previous chapters we show how to improve network efficiency and how to reduce annotation

cost for video action detection. These methods work on the same type of annotation for the entire

dataset. In chapter 6, we analyze the types of annotation appropriate for each sample and how it

affects video action detection. We focus on two different aspects affecting video action detection:

1) how to obtain varying levels of annotations for videos, and 2) how to learn video action detection

with different types of annotations. We study several annotation types including i) video level tags,

ii) points iii) scribbles, iv) bounding box, and v) pixel level masks. We propose a simple active

learning strategy which estimates appropriate types of annotations needed for each video sample

based on the usefulness of that video sample. We also propose a spatio-temporal deep superpixel

method which generates pseudo-labels from different types of annotations and enables learning of

video action detection from such annotations.
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CHAPTER 1: INTRODUCTION

Recent advancements in deep learning have made computer vision widely used in many real-world

tasks involving videos, images and texts. Generally, video related tasks have higher computation

requirements and lower data availability compared to image and text based tasks, resulting in

slower adaptation and development of video specific methods along with an increased challenge

from noise and perturbations [11, 12]. Video understanding is an important task with growing de-

mand in analysis, security, autonomous driving and robotics [13, 14, 15, 16, 17, 18]. Since videos

have spatial as well as temporal information which is required to solve the underlying task such as

classification, temporal localization, detection, segmentation and summarization, simply extending

image based solutions does not give the best results in videos [19, 6, 20, 4]. As shown in Figure

1.1, different video dataset have different annotation types and focus on different underlying task

which makes video understanding challenging. Our aim is to improve the computation efficiency

of the network for video understanding tasks and to reduce the cost for annotating large video

dataset effectively.

Figure 1.1: Samples for various video understanding tasks for different dataset. 1st column shows
video actor-action detection with pixel-wise annotation for A2D dataset [1]. 2nd column shows
video action detection with pixel-wise annotation for JHMDB-21 dataset [2]. 3rd column shows
video action detection with bounding box annotation for UCF-101-24 dataset [3]. 4th column
shows video object segmentation with pixel-wise annotation for YouTube-VOS dataset [4].
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We focus on detection and segmentation tasks for improving video understanding. First, we look

into improving the network efficiency for video actor-action detection while improving perfor-

mance. Video actor-action task requires detecting the actors in a given scene and then classifying

all the actions each actor performs. While actor detection can be done solely from single image, the

associated actions will need temporal information as they can be ambiguous in a single frame (car-

run vs car-stop, person-walk vs person-stand). Existing works expand on image based approach on

videos, which relies on a costly per-frame region proposal and pooling algorithm [21, 22]. We pro-

pose a simple end-to-end method without using any region proposal, which performs competitively

with prior works while reducing the computation time.

Next, we focus on improving dataset labeling efficiency for video action detection task. Video

action detection has been a challenging task as it requires the localization of where an action oc-

curs spatially within a frame as well as when it occurs temporally across multiple frames [23, 3,

24, 2, 5, 25]. Recent advances in video action detection has stemmed from large models trained

on fully annotated data with bounding box and pixel-level masks [24, 26, 27]. Unlike video ac-

tion classification task which can be trained with only class labels for the video [6, 19], action

detection training requires most of the frames to be correctly annotated. This poses a problem

for scaling to large datasets as the number of frames to annotate increases rapidly, limiting big

datasets to subsample frames for annotation [28, 29]. Lack of large dataset availability also limits

the improvement in video action detection task. Therefore, it is important to improve video ac-

tion detection training using low-cost annotation alternatives. We propose active learning based

frame and video selection algorithms, which identifies and picks high utility samples for human

annotation and reduces redundant and noisy annotation. We develop our algorithm to work on

frame-level and expand it to work on video-level, reducing annotation cost for video dataset while

still maintaining comparative action detection performance. Finally, we look into different types of

low-cost annotations which can be used for dataset annotation while maintaining the performance
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goals.

In the following sections, we first introduce our method for making an efficient network to per-

form video actor-action detection. We then briefly describe our methods to reduce annotation

cost associated with video action detection training. Finally, we explain various types of low-cost

annotations and their relationship with video action detection training.

1.1 Efficient Actor-Action Detection in Videos

Actor-action detection in videos is a challenging problem where the goal is to detect all the actors

in the video and determine which different actions they are performing. Previous methods use per

frame object detection using region proposal and pooling method [30, 31] to identify all actors and

classify their actions [21, 22]. With multiple actors and multiple actions per actor in a video as

shown in Figure 1.2, these methods become complex and inefficient as thousands of region propos-

als per frame are required, followed by a post-processing cleanup using non-maximal suppression.

Due to these limitations, such networks have to be trained in multiple stages [21], leading to an

increase in the training and inference time.

In this work, we propose a streamlined end-to-end network which does not require any proposals

and performs single shot actor-action detection in videos. We use an encoder-decoder based uni-

fied network, which leverages spatio-temporal contextual information between objects and their

surrounding pixels for joint detection of multiple objects and activities in multiple input video

frames at once. Contrary to region proposal based work, we propose an attention based masking

approach which adds emphasis on spatio-temporal features belonging to all actors and their sur-

roundings to make better action prediction. This attention masking is applied to the entire video

in a single step which makes the proposed approach much more efficient for dense video scenes.
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Figure 1.2: Samples from A2D dataset showing the various actor-action pairs. The color of the
label corresponds to the actor-action pair highlighted in the image.

We show through extensive evaluation in A2D and VidOR dataset that the proposed network is

effective and comparative with prior works while being the fastest method.

1.2 Video Action Detection Using Sparse Labels

Action detection in videos is challenging due to increased computation from temporal data and

lack of large scale densely annotated dataset. In previous work, we showed that computation can

be reduced to predict actor-action pairs in videos while maintaining performance. Next, we deal

with the issue of lack of densely annotated dataset. Unlike image domain, video datasets are more

costlier to annotate to provide large data variation and samples as shown in Figure 1.3 and 1.4. Prior

semi-supervised methods using partial labels suffer from performance loss while saving annotation

cost. To deal with high annotation cost, we propose an active learning based sparse labeling method
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which identifies high utility frames for annotation. This approach reduces redundant information

from frames and selects fewer frames from videos, reducing cost of annotation required to perform

competitively to fully supervised methods.

Figure 1.3: Samples from UCF-101-24 dataset for action detection with bounding-box annotation.
Each sample has consecutive action frames with bounding box annotation per action instance.

In this work, we propose an uncertainty-based frame scoring mechanism for videos, termed Adap-

tive Proximity-aware Uncertainty (APU). APU estimates the frame’s utility using the uncertainty

of the detections and its proximity from existing annotations, determining diverse set of informa-

tive frames in a video which are more effective for learning the task of action detection. In ad-

dition, we propose a loss formulation which uses weighted pseudo-labeling for effective learning

from sparsely labeled videos. Together, the proposed cost estimation algorithm based on APU and

the loss function helps in reducing the annotation cost while improving model performance at the

same time. We evaluate the proposed methods in UCF-101-24, J-HMDB-21 and YouTube-VOS

for video action detection and segmentation tasks.
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Figure 1.4: Samples from JHMDB-21 dataset for action detection with pixel-wise mask annotation.
Each sample has consecutive frames annotated with pixel-wise mask for each action instance.

1.3 Video Action Detection Using Hybrid Active Learning

As we have shown in earlier work, the annotation cost for video action detection can be reduced

using the proposed utility estimation method. While effective, that estimation method only works

on frame level by selecting the most useful frame per video. We can further improve the cost

reduction by removing less useful and redundant videos entirely, and only selecting few frames

from high utility videos. To this end, we propose a hybrid active learning approach that uses

clustering to select videos to sample frames from. We propose intra-sample selection which targets

informative frames within a video and inter-sample selection which aims at informative samples at

video-level.

In this work, we propose Clustering-Aware Uncertainty Scoring (CLAUS), a clustering assisted
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active learning strategy which considers informativeness and diversity for sample selection. It

relies on model uncertainty for informative sample selection and clustering based selection criteria

for reducing redundancy. To use the annotated sparse frames effectively, we improve on prior

loss formulation to consider temporal continuity for pseudo-label weights. We perform extensive

evaluation of the proposed approach on UCF-101-24 and JHMDB-21 dataset and demonstrate that

it performs comparatively with prior fully-supervised works.

1.4 Video Action Detection Using Varying Level of Supervision

In previous works, we have shown that video action detection can be improved on inference time

using efficient networks and on annotation cost using active learning based selection strategies.

These still require all the annotation to be of the same type for the entire dataset, which is either

a bounding-box or pixel-wise mask. However, there are different types of annotation which can

also be used for video understanding task with trade-off in performance. To this end, we study

how varying types of low to high cost annotations can be used for video action detection to further

reduce the labeling cost while maintaining performance. Our goal is to be able to train a good video

action detection model using less annotation cost compared to prior weakly and semi-supervised

methods. In this work, we propose a simple active learning strategy to estimate which type of

annotation is sufficient for each video. We also propose pseudo-label generation method which

enables using these different types of annotations together to train a video action detection network.

1.5 Organization

In Chapter 2, we present existing literature for video action detection methods and limited label

learning works. In Chapter 3, we present an efficient video actor-action detection network. In
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Chapter 4, we present an active learning strategy to reduce annotation cost in videos. In Chapter 5,

we present a hybrid active learning method that reduces both video and frame annotation cost and

expands the previous chapter further. In Chapter 6, we present a study on annotation types, cost

and their effect on network performance and propose a method to select correct type of annotation

to reduce overall annotation cost.
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CHAPTER 2: LITERATURE REVIEW

In this chapter we provide reviews for prior works pertaining to this dissertation. In Section 2.1

we provide literature pertaining action detection in videos. Section 2.2 contains methods for actor-

action detection in videos. Section 2.3 explains existing works on weakly and semi-supervised

learning, followed by Section 2.4 containing methods for video action detection using limited

labels. Section 2.5 contains literature using active learning for limited label learning and Section

2.6 contains methods using varying level of supervision for training.

2.1 Action detection in videos

Action detection in videos require spatio-temporal localizations of actors in each frame which

is then used for classification. Extending the image classification models [30, 32, 33, 34, 35],

prior CNN based works detect actors in each frame and combine them temporally to form action

tubes while classifying at clip level [36, 37, 24, 38], leveraging existing classification techniques

from [6, 19, 23, 39, 40, 41, 42, 43]. While some prior works use a separate region proposal network

to detect potential actors [23, 44], using a complicated two-stage process, other prior works have

proposed simplified single-stage approach [5, 45]. [23] uses RPN based approach to detect actors

in each frame and then forms action tubes by stitching them together, followed by Tube of Interest

(TOI) pooling and action classification. [20] does TOI pooling based on foreground segmentation

map from an encoder-decoder based network. [44] uses RPN along with transformer based atten-

tion map that detects and classifies actions. [5] uses a 3D capsule based CNN, where the authors

apply routing-by-agreement algorithm to capture various action representations, leading to local-

ize actions and classify them at the same time. Although prior works show great improvements

on action detection in videos, they are limited by complex region proposal network coupled with
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region pooling or can only detect and classify single actor per video, creating a challenge to adapt

it to denser real-life scenarios.

2.2 Actor-action detection in videos

Actor-action detection problem is related to identifying the actors and their corresponding actions

in a given clip, where both semantic localization and classification is required. The authors in [1]

proposed the A2D dataset, a large scale benchmark dataset to study actor-action detection prob-

lem. An early approach of adaptive grouping of segments during inference improves segmentation

in A2D [46]. [47] proposed weakly supervised method and train the model using only video-

level tags. A two-stage model was proposed by [48], where objects are detected first and their

bounding box are refined for segmentation outputs. [49, 50] use sentence priors to detect actor-

actions in videos. Authors in [22] propose a joint end-to-end model which uses two-stream input

(RGB + optical flow) to classify object regions and perform segmentation on them. Conceptually

based on [51], they generate semantic features and use RPN to segment and classify actor-action

pairs. [21] use similar approach and propose segmentation based region proposal and pooling to de-

tect actor and action classes. They apply a region pooling based fully convolutional segmentation

network for their actor segmentation, followed by 2D ResNet-101 [52] for action classification. Al-

though prior works show great improvements on joint actor-action classification, they are limited

by expensive region proposal and pooling which increases the approach’s complexity.

Recent methods for action detection utilize pseudo-labeling [53, 10], multi-instance learning [54,

55, 53] and consistency regularization via data augmentation [56] to train with limited annotations.

However, they often rely on external off-the-shelf object detector [30, 57, 10] or assume availability

of a subset of fully annotated data to initialize training [56].
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2.3 Weakly/semi-supervised learning

Weakly [58, 59, 54] and semi-supervised [56, 60, 61, 62] methods leverage limited annotations

via consistency regularization [63, 62, 64] and pseudo-labeling [65, 66, 67] to train the model

at the expense of reduced performance. Recent works on weakly and semi-supervised approach

have shown comparable results in various tasks [61, 68, 69, 70, 71, 72] while reducing annotation

cost drastically. The annotation cost to performance trade-off is justified as these methods reduce

human effort and cost for large scale data annotation for various tasks (classification, localization,

detection) [62, 65, 63, 56, 54, 73].

2.4 Limited label learning for action detection

Dense frame-wise spatio-temporal annotation is costly to obtain, therefore a natural step ahead was

to use reduced annotations to train models for action detection task. Recent methods for action

detection utilize pseudo-labeling [53, 10], multi-instance learning [54, 55, 53] and consistency

regularization via data augmentation [56] to train with limited annotations. However, they often

rely on external off-the-shelf object detector [30, 57, 10] or assume availability of a subset of fully

annotated data to initialize training [56]. These works only use video-level annotation [53, 74,

54, 75] or point-label or pseudo-label [55, 76, 77] but they do not have any criteria for selecting

the limited samples and can spend annotation budget selecting redundant and non-informative

samples. A common drawback of these methods is the inferior performance compared to fully

supervised methods, which limits their practical utility.
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2.5 Active learning

Active learning (AL) has been used to iteratively select unlabeled data for assigning labels based

on certain utility factors [78, 79, 80, 81, 82]. Labeling a large set of data can often prove to be

expensive and unnecessary, which is why AL can be vital in selecting related unlabeled data for

further annotation in an iterative fashion. AL algorithms use uncertainty [81, 83, 84, 85, 86, 87],

entropy [8, 88], heuristics and mutual information [80, 89, 90], core-set selection [91, 92] to select

samples which are most likely to provide maximum utility to the learning algorithm. AL based

classification algorithms are effective for different modalities such as images [80, 81, 79], videos

[93, 94, 95], text [96, 97, 98] and speech [99]. Classification only needs class labels for an entire

sample, making the scoring easier for the algorithm. However, extending that to a complex task

such as object detection is challenging as it requires dense annotations in each sample [8, 100,

101, 102]. Extending that to videos adds extra level of complexities as it requires spatio-temporal

annotations and selecting parts of video for extra annotation via AL algorithm is challenging.

[103] performs frame selection using AL for object segmentation but does not leverage temporal

aspect of video for avoiding sequential annotation, increasing overall annotation cost. There are

no existing methods which focus on the problem of active sparse labeling in videos for spatio-

temporal detection task and existing deep AL approaches are not applicable directly for this task.

2.6 Omni-supervised learning

There has been some work on combining different type of annotations (box, points, tags, scribbles)

via omni-supervised learning [104, 105, 106] to further reduce overall annotation cost. However,

this is mostly focused on image domain. Annotating points and scribbles are less costly than

boxes or masks while being usable as pseudo-labels together with box/masks [55, 104, 107]. Prior
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works on image object detection [108, 109, 110, 104, 105] handle mixed label types using iterative

[110, 109] and unified [104, 105] methods and require additional bounding boxes using off-the-

shelf detector [33, 30] or pre-computed region proposals [104] for training.

For video action detection, [76] proposed using different labels (boxes, temporal point, tag) with

the help of off-the-shelf detector [57], tracker [111] and linkers [112, 59]. They use only one

type of label at a time and assume entire dataset has same label type for training. In contrast, we

propose to use mixed labels (box, mask, scribble, tags, pseudo-labels) from partial data with an

end-to-end action detection model that doesn’t rely on any external detector or region proposal.

Instead, we utilize a pseudo-label approach using superpixels [113, 114] to train a unified model

that can handle mixed type of labels for training action detector.
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CHAPTER 3: EFFICIENT ACTOR-ACTION DETECTION IN VIDEOS

The work in this chapter has been published in the following paper:

Aayush J. Rana and Yogesh S. Rawat. “We don’t need thousand proposals: Single shot actorac-

tion detection in videos.” In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV), January 2021.[115]

Actor-action detection in videos is a challenging problem where the goal is to detect all the actors in

the video and determine which different actions are being performed by each actor. In this chapter,

we explore a simple and efficient deep learning network to detect actors and their corresponding

actions in videos. This network makes detection easier and faster using a streamlined single stage

approach. We propose SSA2D, an encoder-decoder based unified network, which utilizes spatio-

temporal contextual information between objects and their surrounding pixels for joint detection

of multiple actors and corresponding activities in multiple input video frames at once.

We organize the chapter as follows: Section 3.1 describes the formulation of our efficient network

and the objectives for training it, Section 3.2 provides the experiment setup, dataset details and the

results for the proposed method, Section 3.3 gives analytical overview of different aspects of the

method and Section 3.4 contains summary for this chapter.
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Figure 3.1: Overview of the proposed method for pixel-wise actor-action detection showing the
overall SSA2D architecture. The 3D convolution based encoder network extracts features which
are used in three separate branches for actor, action, and STU-Mask detection. The action detection
branch uses actor prior infusion (AP-Infusion) to utilize actor-priors and SSA-Masking to focus
on relevant activity regions in the video. All three branches use decoder network with similar
architecture, however the weights are not shared among these branches.

3.1 Methodology

3.1.1 Problem formulation

Given a video V ∈ RT×H×W×3 as input, our proposed Single Shot Actor-Action Detection (SSA2D)

network jointly predicts actor detection ActorD ∈ RT×H×W×Cactor and action detection ActionD ∈

RT×H×W×Caction . Here, T is the number of frames in the input clip, H is the height and W is the

width of the video frames, Cactor is total number of actor classes, and Caction is the total num-

ber of action categories. In addition to these two, SSA2D also predicts a spatio-temporal mask

STU − Mask ∈ RT×H×W×2 that is used for filtering features relevant to objects of interest, re-
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ducing computation of unrelated regions in dense video scenes. SSA2D consists of an encoder

network E, and three separate branches for actor, action, and STU-Mask detection. Each task uti-

lize a decoder network (D), which has similar architecture for all the three branches. An overview

of SSA2D is shown in Figure 3.1.

3.1.2 Encoder network

Understanding and extracting relevant features both spatially and temporally is crucial in learning a

video’s actor-action relations. We utilize a 3D convolution based encoder E that extracts actor and

action related feature volume fenc from a given input video clip V ∈ RT×H×W×3. The network

takes as input a video clip of T × H × W × 3 dimension with T frames at a resolution of H

height and W width with 3 channels, and outputs a feature volume fenc ∈ RT
4
×H

16
×W

16 as video

encodings which has 1
4

th frames of the input with 1
16

th reduced spatial resolution. We use I3D [6]

model as our encoder where we adapt the network by controlling the pooling strides (more details

in supplementary). This encoder can use any state-of-the art 3D convolution network.

3.1.3 Decoder network

The spatio-temporal features fenc extracted using the encoder network E needs to be decoded into

a larger fine-grained resolution for jointly detecting the actors and actions, as shown in Figure

3.1. The decoder network D takes fenc as input and performs a series of 3D deconvolution [116]

and upsampling operations to get the desired resolution for fine-grained pixel-wise detection. We

upsample the encoded features to [T
2
× H

4
× W

4
] as a final resolution to reduce parameters. We

add skip connections from the encoder network to every deconvolution layer to preserve the sup-

pressed features during downsampling. Adapting multi-scale object feature learning techniques

from images, we extend atrous convolutions [117, 118] and feature pyramid network [119, 120] to
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3D architecture for videos. Atrous convolutions helps encode multi-scale contextual information

around each pixel while feature pyramid helps preserve features of smaller objects.

The same decoder architecture D is used in all the three branches, however, the network parameters

are not shared as these branches solve different tasks. The final output from all the branches is up-

sampled to match the resolution of the input video with the help of linear interpolation. A detailed

architecture of D is shown in Figure 3.1 and more details are provided in the supplementary.

3.1.4 Actor detection

For pixel-wise actor detection, the actor detection branch utilizes encoded video features fenc and

learns pixel-wise actor prior (A-prior ∈ RT×H×W×Cap) for Cap classes with the help of a decoder

network Dactor. A final 3D convolution layer takes the learned A-Prior and predicts CActor chan-

nels for each pixel (CActor being the total number of actors present in the dataset). A Softmax

activation is applied across actor channels for each pixel location as each pixel will correspond to

only one of the actors. This gives us ActorD for pixel-wise actor detection in the input video.

The scores in each channel corresponds to one of the actor class and indicates its presence in that

spatio-temporal location.

3.1.5 Action detection

The action detection branch Action takes the spatio-temporal features fenc from the encoder net-

work E as input and uses the decoder architecture Daction from section 3.1.3 to learn action rel-

evant feature maps fa for action detection. As each actor’s interaction with surrounding objects

is decisive in inferring its actions, the actor detection branch will have more meaningful features

corresponding to each actor. However, it is also important to focus only on the spatio-temporal
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region where the action is occurring. To address these issues, we propose Actor Prior Infusion

(AP-Infusion) and Single-Shot Attentive Masking (SSA-Masking), which allow the network to

filter and learn meaningful interaction between the detected actors for action detection.

Actor Prior Infusion (AP-Infusion) The Actor Prior Infusion (AP-Infusion) provides additional

information to the action detection network in form of latent actor representations. This is done

by integrating A-priors with action related features, adding more actor focused contextual infor-

mation and helps in action detection. As shown in Figure 3.1, the A-priors fap are integrated with

action features fa from the decoder network in Action branch as fact = Conv3D(< fa, fap >),

where Conv3D is 3D convolution operation and <> represented feature concatenation. We also

experimented with feature addition and observed similar performance.

Single-Shot Attentive Masking (SSA-Masking) Instead of generating proposal boxes from ex-

ternal networks [30] or using all possible region boxes [32], we use single-shot attentive masking

for feature filtering. A fine-grained spatio-temporal region is helpful to filter and improve the

coarse actor-action detection results. To get this spatio-temporal mask, the features fenc from the

encoder network E are passed to a decoder network DSTU−Mask which predicts pixel-wise scores

STU − Mask ∈ RT×H×W×2 for each spatio-temporal location in the input video. Each pixel’s

score in the STU-Mask indicates whether it is relevant to the action or not. The network learns to

identify potential actor regions through the STU-Mask. This mask from the DSTU−Mask is used as

spatio-temporal unified mask fmask ∈ RT×H×W×1 to filter the spatio-temporal features for action

detection.

The action features fact augmented with actor-priors are filtered using SSA-Masking. The aug-

mented features fact are integrated with the STU-Mask [f ′
act = fact ⊙ fmask] to get the filtered

features f ′
act. The filtered features f ′

act are integrated back with the original action features fact

[f ′′
act =< f ′

act, fact >] to keep both action as well as contextual background features for an effec-
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tive learning. With this masking, forward pass only learns detection of useful feature regions while

backward pass has minimal gradient update for unrelated regions. Furthermore, the SSA-Masking

can be done on the whole frame in a single-shot, removing the need for extracting multiple region

proposal boxes and performing ROI/TOI pooling. The masking can be done within the network,

making this an end-to-end architecture. During training, we use the ground truth STU-Mask. While

testing, we extract the DSTU−Mask detection results and pass that as the STU-Mask within the net-

work. Finally, the output feature from SSA-Masking is used to predict ActionD with CAction chan-

nels using 3D convolution, where each channel corresponds to one action class. Since each pixel

is evaluated individually, it can be formulated to have multi-labels and multi-class predictions.

3.1.6 Objective function

The proposed network is trained end-to-end with joint learning of three tasks: actor detection, ac-

tion detection, and STU-Mask detection. Since we predict pixel-wise maps for each branch, we

have to consider the large imbalance in active and non-active pixels, with fewer active pixels for

sparse scenes. This imbalance is handled using ratio loss for the scene. In case of image segmenta-

tion, this can be computed as a ratio of foreground pixels to background using the Generalized Dice

Loss [121]. We extended it to videos as Generalized 3D Dice Loss with the following formulation:

LDL = 1−
2
∑C

c=1

∑N
i=1 pci ∗ p̂ci∑C

c=1(
∑N

i=1 p
2
ci +

∑N
i=1 p̂ci

2 + ϵ)
(3.1)

where the dice coefficient score is computed per class C of given task, N is total number of pixels

in segmentation map of a video clip, probability pci ∈ (0, 1) is the ground-truth segmentation map,

and p̂ci ∈ (0, 1) is the network’s predicted segmentation map probability.

The actor detection loss is defined as the negative log-likelihood of the ground truth class and is

computed as categorical cross-entropy per pixel. For Cactor set of actor classes, the actor detection
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head generates Cactor segmentation maps, where each pixel’s ground truth actor class is x and

predicted actor class is x̂. The loss is calculated for each pixel across all classes and then averaged

over all pixels, which gives us the following loss formulation:

LACT OR = [− 1

N

N∑
i=1

Cactor∑
j=1

(xi,j)log(x̂i,j)] + LDL. (3.2)

Action detection is also defined similarly to actor detection, with Caction segmentation maps gen-

erated. For each pixel’s ground truth action class y an action class ŷ is predicted, and the loss

is:

LACT ION = [− 1

N

N∑
i=1

Caction∑
j=1

(yi,j)log(ŷi,j)] + LDL. (3.3)

We look at the STU-Mask detection task as a binary segmentation task, where all the actor pixels

are considered as positive and all others as negative. The loss is computed using binary cross-

entropy in combination with the dice loss:

LM = [− 1

N

N∑
i=1

pilog(p̂i)− (1− pi)log(1− p̂i)] + LDL, (3.4)

where p̂i is the prediction and pi is the ground-truth. The total loss is a combination of these losses

and is defined as:

L = LACT OR + LACT ION + LM. (3.5)

3.2 Experiments and results

3.2.1 Implementation and training details

We implement the proposed method in Keras [122] with Tensorflow backend. The encoder block

uses I3D [6] pre-trained on Kinetics-400. We input a video clip of temporal resolution (T) of 16

20



frames and spatial resolution 224 x 224. The final output of the encoder network is 4 x 14 x 14,

which we then upsample to 8 x 112 x 112 for STU-Mask detection branch and 8 x 56 x 56 for

actor and action detection branch. For the RGB + optical flow approach, we perform two stream

implementation where two encoders are used for each input type. The encoders share some of the

final layers to reduce network size, and skip connections are passed from both streams. We further

provide the encoder and decoder network details.

skip connection 1 skip connection 2

Conv2Conv1 Conv3
(b,c)

Conv4
(b,c,d,e,f)

Conv5
(b,c)

Encoded
features

T/2 x H/2 x W/2 T/2 x H/4 x W/4 T/4 x H/8 x W/8 T/4 x H/16 
x W/16

T/4 x H/16 
x W/16

Encoder block

T/2 x H/4 x W/4 T/4 x H/8 x W/8

Inception block

Figure 3.2: Encoder block details. The encoder contains multiple inception blocks to extract rel-
evant features for decoder network. To retain fine grained features from initial layers, two skip
connections are passed to the decoder network, which helps in fine grained pixel-level detection.

Encoder details As shown in Figure 3.2, the input clip is passed through the I3D based backbone

network. From Figure 3.2, Conv1 and Conv2 are convolutional layers with same kernel size and

strides as the I3D network. Conv3, Conv4 and Conv5 use the inception configuration with 2, 5 and

2 inception blocks respectively. We change the pooling strides and kernel sizes accordingly to get

final output of T
4
× H

16
× W

16
from an input clip of T ×H×W . We take skip connection after Conv2

layer and Conv3 layer, which is passed to each of the decoder block accordingly.

Decoder details The purpose of decoder block is to take encoded features and produce detection

masks accordingly. All three branches(STU-Mask detection, actor detection, action detection) of
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the proposed network use identical decoder block. Only the final output layer’s channel is adjusted

according to the desired branch output. As A2D only provides annotation for single frame, loss

for action detection is only computed for single frame. As such, decoder block in actor detection

is configured to predict only single frame output. However, the object features going into the OFI

block does not get affected by this configuration. Since ViDOR dataset has per frame annotation,

the decoder block outputs all frames predictions. Input to the block is encoded features from the

encoder block. This is passed through deconvolution layers which will perform convolution as well

as upsampling of the layers to increase the size. The operation is costlier than only convolution, so

we only implement two deconvolution layers. To help retain features, we add skip connection from

the encoder block. Skip connection 2 is concatenated with Deconv1 features and skip connection 1

is concatenated with Deconv2 features. The output feature size of Deconv2 layer is adjusted to be

T
2
× H

4
× W

4
, which is temporally half and spatially one-fourth of the input resolution. This was

done to keep the network smaller and improve efficiency. We apply dilated (atrous) convolution to

capture features at multiple receptive fields (rate=3,6,9,12). Following feature pyramid network,

we also take features after Deconv1 and Deconv2 layer and upsample it 4× and 2× respectively,

which is then concatenated to features from dilated convolution.

Optimization We use Adam optimizer [123] with an initial learning rate of 1e-4 and finetune at a

rate of 1e-5. For our joint training task, we can fit an effective batch size of 14 clips per iteration.

The model is trained for 5 epochs with initial learning rate and fine-tuned for another 6 epochs.

Joint training We train all three branches together with the loss weights assigned based on class

distribution per task. For the A2D dataset, STU-Mask detection is given the weight of 0.3, while

both actor and action detection task is given weights of 1.3 (based on per class pixel distribution).

STU-Mask We input the STU-Mask of size 4 x 56 x 56 for the action detection task, which helps

to increase focus on the related pixels. For training, we use all actor regions from ground truth as
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the STU-Mask. During inference, we use the STU-Mask predicted by the STU-Mask branch.

Since our network does not have any fully connected layers or an extra region proposal network,

the network has fewer number of parameters and can be trained end-to-end in a single stage.

3.2.2 Datasets

A2D dataset A2D [1] is the first video dataset with multiple actor classes and action classes in the

same clip along with semantic labels. It provides pixel-level semantic labels of 3-5 frames for each

video and is the only joint actor-action segmentation benchmark reported in prior works [1, 46,

48, 22]. The dataset consists of 3,782 YouTube videos, consisting of 7 actor classes performing

one of the 9 action classes. A total of 43 actor-action pairs are valid and used for joint actor-action

segmentation task. Both pixel level and bounding box annotation per actor-action pair are provided

in this dataset.

VidOR dataset We also evaluate our method on the VidOR dataset [124] which contains 10,000

videos with 80 object categories and 42 action predicates with bounding box annotations. Although

it has more videos for training, the dataset is more challenging as it has a wide range of objects

with a skewed distribution where 92% of objects are from only 30 categories. Each action is part

of a triplet and consists of a subject and an object, with the subject performing the action. Thus,

action detection using object and its surrounding context is more meaningful.

3.2.3 Evaluation metric

Following the evaluation protocols from [46] and [22], we measure average per-class accuracy

(ave), global pixel accuracy (glo) and mean pixel Intersection-over-Union (mIoU) as evaluation

metrics. Accuracy is the percent of pixels with correct label prediction, where (glo) is computed
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over all pixels and (ave) is first computed per class and then averaged. Since background covers

a large area and most models are biased towards background, mIoU is the most representative

metric for correct pixel prediction over all classes [48]. We report results for actor, action and joint

actor-action detection for (ave), (glo) and (mIoU) metrics for a fair comparison with existing

methods.

Table 3.1: Quantitative comparison of SSA2D on A2D dataset with prior approaches using RGB
and RGB + optical flow (OF) as input, reporting average per-class accuracy (ave), global pixel
accuracy (glo) and mean pixel Intersection-over-Union (mIoU) for each task. We also report
the processing time per frame in millisecond for each method. † Uses sentence priors. *Uses
weakly-supervised training. ** Is time adjusted for same hardware setting by correspondence with
authors.

Input Method Actor Action Joint (A,A) Time
glo ave mIoU glo ave mIoU glo ave mIoU (ms)

GPM + TSP [46] 85.2 58.3 33.4 85.3 60.5 32.0 84.2 43.3 19.9 -
GPM + GBH [46] 84.9 61.2 33.3 84.8 59.4 31.9 83.8 43.9 19.9 -

RGB Chen et al. [125]* 91.3 49.2 49.2 87.4 35.1 38.7 87.1 43.1 26.7 -
Ji et al. [22] 93.7 79.5 66.5 86.3 60.4 36.8 87.8 46.2 29.4 -

Dang et al. [21] 95.0 85.5 67.0 92.9 68.8 48.1 92.5 51.5 34.5 750
SSA2D (Ours) 96.1 79.4 66.8 94.4 66.2 46.5 93.8 49.3 34.6 67

TSMT + GBH [48] 85.8 72.9 42.7 84.6 61.4 35.5 83.9 48.0 24.9 -
RGB TSMT + SM [48] 90.6 73.7 49.5 89.3 60.5 42.2 88.7 47.5 29.7 -

+ Gavrilyuk et al. [49]† 92.8 71.4 53.7 92.5 69.3 49.4 91.7 52.4 34.8 -
OF Ji et al. [22] 94.5 79.1 66.4 92.6 62.9 46.3 92.5 51.4 36.9 350∗∗

Dang et al. [21] 95.3 86.0 68.1 93.4 70.7 51.1 93.0 56.4 38.6 1100
SSA2D (Ours) 96.2 80.1 67.5 94.9 69.1 51.3 95.0 54.7 39.5 180

3.2.4 Results

The performance of SSA2D on A2D is shown in Table 3.1. Using only RGB stream, SSA2D

gives improved joint actor-action mIoU with significant reduction in inference time (∼11x faster).

This demonstrates that the network’s joint training is able to learn action features based on actors
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while computing video level detection faster than previous methods. Moreover, using RGB+OF

input we observe that the network gives improved mIoU scores on action and joint task as expected,

demonstrating that our approach generalizes to different types on input modalities. We also analyze

per class performance and the scores are shown for both of our RGB model and RGB+OF model

in Figure 3.3. We observe that the proposed method can detect most classes accurately in RGB

model and the scores are further increased with additional flow information.

Figure 3.3: Per actor-action category average accuracy score for A2D. The orange bars show results
for RGB modality and blue bar for combined RGB and Optical Flow. We observe that on average,
most of the classes benefit from having extra optical flow information.

We report the performance of proposed method on VidOR dataset in Table 3.2. We evaluate the

model on same evaluation metrics as used for the A2D dataset. Due to its long tail distribution, the

dataset suffers from large data unbalance. As such, even when our network performs well on those

classes, the average accuracy and mean IoU scores drop due to tail classes with fewer training

samples.

Qualitative evaluation Figure 3.4, 3.5 and 3.6 show qualitative results for actor-action detection.

We observe that the proposed method can predict reasonable detections for most of the cases.

Figure 3.7 shows that the network predicts correctly even though ground truth annotation is missing

labels. The network is able to generalize and learn effective actor-action features to predict the
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Figure 3.4: Qualitative results of our method on A2D dataset. The first row shows the input key
frame, second row shows the ground truth with annotation labels and third row shows our joint
actor-action detection result with predicted labels.

Figure 3.5: More qualitative results of our method on A2D dataset. The first row shows the input
key frame, second row shows the ground truth with annotation labels and third row shows our joint
actor-action detection result with predicted labels.
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Figure 3.6: Qualitative results of our method on ViDOR dataset. The top, middle and bottom row
represents input key frame, ground truth and our joint actor-action predictions with label respec-
tively.

missing labels. The last column shows the network detecting a hard sample correctly. Even though

the cat blends with the background, it is well segmented and detected as cat-jumping class. Using

3D convolution on videos where the object is better visible in other frames, detection improves in

such challenging frames as features is evaluated together for the entire video.

3.2.5 Ablation Studies

We further validate the importance of different components proposed in our model through ablation

experiments. Since our contribution is agnostic to input type, we evaluate all variations against the

full RGB only model in Table 3.2.

Actor Prior Infusion (AP-Infusion) One of the key components in improving action detection in

our model is the use of actor prior for inferring activities. The A-prior coming from actor detection
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Figure 3.7: Qualitative analysis of some success cases where the network predicts better than the
ground truth. The top, middle and bottom row represents input key frame, ground truth and our
joint actor-action detection predictions with label respectively. The network correctly predicts
labels for actions which are not annotated in the ground truth but present in the clip.

branch provides contextual information regarding all actors around each pixel. It is reasonable

to have an understanding of the actors involved in order to better judge the actions happening.

While [35] shows that using pair-wise actor features helps improve action classification in images,

our AP-Infusion approach uses all of the involved actor’s features together because of the pixel-

level detection. We train our model without using the AP-Infusion to evaluate its effectiveness. As

seen in Full and w/o Actor-prior models of Table 3.2, A-prior provides a significant gain in the

action detection task (∼ 6% improvement in mIoU for A2D) and subsequently increases the scores

for all other tasks. Since we perform a joint training, we also observe the decrease of scores for

actor detection task when feedback from the AP-Infusion block is not present.
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Table 3.2: Ablation study of various components of SSA2D and their effect on actor-action de-
tection on A2D and VidOR dataset. We report scores on average per-class accuracy (ave), global
pixel accuracy (glo) and mean pixel Intersection-over-Union (mIoU). Values in bracket represent
scores for the 20 most frequent classes in VidOR dataset.

Dataset Method Actor Action Joint (A,A)
glo ave mIoU glo ave mIoU glo ave mIoU

A2D Full (RGB only) 96.2 80.1 67.5 94.4 66.2 46.5 93.8 49.3 34.6
A2D w/o Actor-Prior 96.1 79.1 65.7 93.9 61.5 40.9 93.4 46.3 32.1
A2D w/o SSA-Masking 96.1 79.9 67.2 94.6 63.9 43.6 93.7 48.2 33.8
A2D w/o atrous convolutions 92.4 76.4 62 94.1 62.3 41.6 92.8 45.2 31.7
A2D w/o multi-scale 96.0 79.8 66.5 94.2 63.8 43.1 93.6 47.9 33.1

VidOR Full (RGB only) 72.2 7.6 5.1 66.8 33.2 7.9 41.7 15.7 2.1
(54.1) (20.5) (12.5) (70.2) (40.8) (11.7) (44.2) (18.8) (5.1)

VidOR w/o Actor-Prior 71.1 7.1 4.1 61.8 28.3 5.9 37.7 12.1 1.1
VidOR w/o SSA-Masking 71.8 7.1 4.3 65.4 31.7 7.1 39.2 15.2 1.8
VidOR w/o atrous convolutions 71.5 6.4 3.4 63.1 30.8 6.2 38.3 14.4 1.3
VidOR w/o multi-scale 71.2 6.1 3.1 61.7 29.5 6.0 37.8 14.1 1.1

SSA-Masking SSA-Masking is used in action detection task to filter and enhance focus on action

regions for pixel-wise detection. This reduces the surplus background noise and helps in a faster

convergence. Our motivation to use the STU-Mask is to provide emphasis on features related to

actors while filtering out excess background data. In RPN based methods, ROI-Pooling play the

role of feature filtering. However, pooling is performed for each proposal independently making it

computationally expensive. We use a unified mask for all the actors in the scene for this filtering

making SSA2D more efficient. SSA-Masking enables the network to focus more on the actor pixels

while suppressing the background pixels, which leads to an improved network performance for

action detection (∼ 3% increase in mIoU for A2D) and also provides a faster network convergence

(∼3x).
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3.3 Analysis

Comparative analysis Figure 3.8 shows a comparative view of our method along with [22, 46, 21]

in terms of performance and speed. Compared to [21], our training does not use weights pre-trained

on segmentation task and trains the decoders from scratch, while [21] uses pre-trained weights on

segmentation tasks. We observe that our method performs significantly better compared to [22, 46]

in all evaluation metrics as seen in Table 3.1. We see that despite fast inference time for [22], it

under-performs and has a larger model. Furthermore, our quantitative scores are similar or slightly

better than previous state of the art method [21] and has significantly better inference time(∼11x).

This large gap in inference time makes our approach better suited for actor-action detection in

videos as compared to all prior works.

Figure 3.8: A comparative analysis of SSA2D with existing methods in terms of speed and per-
formance. We observe that SSA2D is faster with comparable performance. The x-axis represents
inference speed in frames per second and the y-axis represents the mean pixel-wise intersection
over union score for joint actor-action detection. (RGB+OF - Using both RGB and optical flow).
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Figure 3.9: Qualitative analysis of some failure cases. The top, middle and bottom row represents
input key frame, ground truth semantic segmentation mask and our joint actor-action detection
predictions with label respectively.

Network parameters Another key aspect of the proposed method is the smaller network size (35M

params for RGB and 55M params for RGB+OF) compared to [21, 22] (44M params for RGB and

88M params for RGB+OF). Compared to prior works, SSA2D has reduced network size which

relates to the overall efficiency and performance speed. The memory-efficient reduced network

also enables end-to-end training for all tasks simultaneously as compared to multi-stage training

[21], which is time consuming.

Running time A crucial difference between SSA2D and prior works is that previous works rely on

RPN as an auxiliary task during training to obtain actor regions for ROI pooling. Our method uses

end-to-end pixel-wise detection and jointly trains actor-action tasks on pixel level while keeping
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the implementation efficient and effective. For a fair evaluation, we evaluate the time taken to

perform the evaluations on a single core of an Intel Xeon 2.3GHz CPU using a single NVidia Tesla

K80 GPU [21]. During inference, our system takes 180 ms per frame with the RGB + OF model,

while it takes only 67 ms per frame for single stream RGB model. [21] report computational time

of 1100 ms per frame for their full system with optical flow, with around 350 ms being used for

optical flow estimation.

Failure cases In Figure 3.9 we have shown some of the failure cases of our method. We observe

that the network is able to detect correct foreground region in most cases, however, it gets confused

on similar actors such as dog-cat or adult-baby. The approach suffers from data imbalance so

classes with lower samples will perform lower which is observed in the prior works as well. This

is one of the limitation of our approach which can be improved in future works.

3.4 Summary

In this chapter, we propose SSA2D, a simple yet effective approach for single-shot actor-action

detection in videos. We demonstrate that actor-action detection in videos can be performed without

relying on region proposal network where thousand of proposals are required making it in-efficient

for dense video scenes. We evaluate the proposed approach on A2D and VidOR datasets and

achieve comparable (sometimes even better) performance when compared with prior works. The

proposed model can be efficiently trained (2x faster) with a fast inference (∼11x faster for RGB

and ∼6x faster for RGB+optical-flow) with fewer network parameters when compared with best

performing prior works.
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CHAPTER 4: VIDEO ACTION DETECTION USING SPARSE LABELS

The work in this chapter has been published in the following paper:

Aayush J. Rana and Yogesh S. Rawat. “Are all frames equal? Active sparse labeling for video

action detection.” In Proceedings of the 36th International Conference on Neural Information

Processing Systems (NeurIPS), 2022.[25]

In the previous chapter, we demonstrated an efficient end-to-end network that can predict actor-

action detection in videos with faster inference time. In this chapter, we focus on improving video

action detection efficiency by reducing annotation cost of the dataset. This is a challenging problem

as video action detection models require lots of annotated frames to train properly, but annotating

such large dataset is costly. We study ways to reduce annotation cost of large video datasets by

labeling frames sparsely for the task of efficient video action detection. We explore different ways

to select a few frames for annotation that improves video action detection while keeping annotation

cost low. We also propose methods to better train models using such sparsely annotated dataset.

We organize the chapter as follows: Section 4.1 describes the proposed methodology, Section 4.2

demonstrates the experiment setup and results, Section 4.3 gives the analysis of components in the

proposed method, and Section 4.4 concludes the chapter with a summary.
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Figure 4.1: Overview of proposed approach. It consists of training and selection. During training
the network is trained using existing annotations from the training set using MGW-loss to handle
the sparse annotations. During iterative APU selection phase, the trained network is used to predict
localizations on each frame of videos in the training set. Using these predictions, APU computes a
score for each frame in a video to rank them and top K frames are sent to oracle for annotation.

4.1 Methodology

4.1.1 Problem formulation

We aim at reducing the annotation cost for labeling a set of videos V = {V1, ...VN} with N videos

to learn an action detection model M, as shown in Figure 4.1. We start with an initial set of sparse

labels S0
L = {Vcls, F

0
L} that consists of annotated frames with class label Vcls, where only a small

number of frames F 0
L are annotated. This initial set of sparsely annotated videos is used to initialize

an action detection model M0. This initialized model M0 is then used to estimate a utility score

for all the unlabeled frames F 0
U from the set of videos V . The goal is to automatically select

frames from unlabelled set to be manually labeled and obtain new set of sparse labels S0
S which is

merged with S0
L for a new labeled set S1

L. The number of additional frames are selected based on

a total budget B and they are annotated by an oracle (e.g. human annotator). The action detection

model M is retrained using the new annotation set S1
L and an updated model M1 is obtained. This
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process is repeated until we find a set SF
L with several annotated frames in the videos V such that

MF meets the target performance or the total budget B is exhausted.

4.1.2 Active sparse labeling

4.1.2.1 Sparse labeling

We hypothesize that some frames will have more utility than others for learning action detection

due to several factors, such as lack of motion, variation in action dynamics, redundancy in appear-

ance or redundancy in action. In sparse labeling, we annotate only l frames fv,l in a video v instead

of labelling all of them, leaving a set of u unannotated frames fv,u. Therefore, it avoids annotation

of frames with lower utility and helps in reducing the overall labeling cost. Each video v has a class

label, denoted as vcls, for the action category and a set of l annotated frames fv,l which indicates

the localization of actions.

4.1.2.2 Uncertainty as frame utility

In each AL cycle, our goal is to select video frames for labeling which will have the highest utility

for learning action detection. Uncertainty provides a measure to estimate models confidence on its

decision and has been used for selecting informative samples in existing works [126, 127, 128, 95].

These works are focused on classification and therefore the uncertainty is computed for the entire

sample. Instead, we require informativeness of each frame in a video which is different from

these works as it is computed for partial sample. The action detection model M provides spatio-

temporal localization for the entire video and we propose to use the pixel-wise confidence score

of localization on each frame to estimate frame-level uncertainty. We use MC-dropout [7] to

estimate the model’s uncertainty for each pixel in the video. MC-dropout is a more efficient form
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of uncertainty estimation compared to using a Bayesian neural network and is easier to implement

[7, 67]. The uncertainty is estimated over T different trials and this score is averaged over all the

pixels in a frame. For a given video v with I frames, the uncertainty U i for the ith frame over T

trials is computed as,

U i∈[1,I] =
1

Ip

Ip∑
h=1

1

T

T∑
j=1

−log(P (vih, j)) (4.1)

where Ip is the total number of pixels in a frame, and P (vih, j) represents the model prediction for

hth pixel in the ith frame of video v during the jth trial.

4.1.2.3 Adaptive proximity-aware uncertainty

Unlike images, the motion in videos has some continuity and it is highly likely that the frames close

to each other will have similar uncertainty scores. Therefore selecting frames merely based on

uncertainty will favor adjacent frames which may have similar utility for learning action detection.

To overcome this issue, we propose a selection mechanism, termed as Adaptive Proximity-aware

Uncertainty (APU), which ensures that the selected frames have diversity in the temporal domain.

APU scoring incorporates a distance measure into cost estimation and uses their proximity to the

existing annotated frames. As we select more frames, this distance measure should adapt to the

additional selected frames. We use a normal distribution N (µ, σ2) for distance measure D, where

each annotated frame has its own distribution centered around its temporal location in the video.

Given a video with K annotated frames, the distance measure Di for the ith frame of the video is

computed as,

Di = 1−
K∑
j=1

φj
ie

− 1
2
(
i−µj

σ
)2 . (4.2)

where Di is distance measure for unannotated frame i from annotated frame j, the distribution
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N for jth annotated frame is centered at frame j with µj mean and σ variance, and φj
i ∈ [0, 1]

is the mask to select the closest distribution for ith frame. The value of mask φj
i will be 1 for jth

distribution if it is closest to the ith frame, otherwise it will be 0. APU scoring uses both uncertainty

and proximity and therefore prefers frames with high uncertainty and ensures temporal diversity.

The overall APU score U i
APU for a given frame is computed as,

U i
APU = λU i + (1− λ)Di (4.3)

where λ is used to control the contribution from uncertainty and temporal diversity. It is set to 0.5

for equal contribution in our formulation where U , D are both normalized in range (0,1).

4.1.2.4 Informative frame selection

Once we get UAPU score for all the frames in V videos, we select the frame with highest score

globally and then score the remaining frames again with the adapted distance measure. The re-

scoring is necessary to reduce probability of picking frames around same region, since a region

doing poorly is likely to have more frames which scored higher in the selection process. We

only need to recompute the distance measure, which is computationally inexpensive. The entire

selection algorithm is provided Appendix. Once we have Fannot frames selected as per our budget,

they are annotated by an oracle and the training set is updated with these new annotations. This

completes one AL cycle and the model M is trained using the updated annotations.

4.1.2.5 Non-activity suppression

If all pixels in a frame are considered to compute its utility, non-activity regions may negatively

influence the score as the model easily determines background pixels compared to the actual action

region in a frame. A low uncertainty score from background pixels will lower the overall frame
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uncertainty even if the activity region has high uncertainty, specially in videos with a relatively

larger background area as compare to the actual action region. Therefore, we ignore pixels which

are predicted as background (true negatives and false negatives) with high confidence (using a

threshold τ ) when computing the frame-level uncertainty. This might exclude some foreground

pixels (false negatives) from the uncertainty estimation. However, these pixels will not be useful

even if we use them as they are predicted as background due to low uncertainty.

4.1.3 Objective function

Learning from sparse labels Given a video clip V ={f1, f2, ...fN} with N frames where K

frames are annotated such that K < N , we have to detect the action through the entire clip. A

traditional action detection network is trained with the help of two different objectives, a classifi-

cation loss Lc for action category and a localization loss Ll for spatio-temporal detection [23]. The

classification loss Lc is computed for the entire video clip and the localization loss is computed for

every frame in the video.

Sparse labeling will not allow us to compute the localization loss Ll on every frame due to missing

annotations. The localization loss Ll with sparse labeling can be computed as, Ll =
∑N

i=1 β
iLi

l.

Here, Li
l represents localization loss in the ith frame and βi ∈ [0, 1] indicates masking, which will

be 1 for annotated frames and 0 otherwise. The masking strategy only uses the annotated frames

for learning, therefore it is not quite effective. In a contrastive approach, we can use all the frames

for learning by generating their pseudo-labels with the help of interpolation of annotations from

neighboring frames. This will allow us to use all the frames but incurs noise from the pseudo-

labels.

Max-gaussian weighted loss We propose a simple loss formulation which benefits from both,

masking and pseudo-labels. We hypothesize that the pseudo-labels close to ground-truth labels
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will be more reliable. Based on this, we propose Max-Gaussian Weighted Loss (MGW-Loss) which

discounts the approximated pseudo-labels as they will not be as reliable as the actual ground-truth.

We compute localization loss for each frame using both available and pseudo-labels, where the

pseudo-labels have a varying weight in the overall loss component. The approximated annotations

will not have a similar weight as their distance from the annotated frames will vary. We use a

mixture of Gaussian distribution w ∈ {1..W} ∼ Nw(µgt, σ
2) to assign the weight to each frame,

given gt ∈ {1..K} actual ground-truth frame location as the mean of the distribution and σ is the

variance of the distribution. We define the weighted localization loss LMGW
l as,

LMGW
l =

N∑
i=1

(

K∑
j=1

ϕi
je

− 1
2
(
i−µj

σ
)2)Li

l. (4.4)

Here Li
l is the localization loss of ith frame for any video, µj is the frame location for jth annotated

frame, and ϕi
j ∈ [0, 1] is the mask to select the max distribution for ith frame. The value of mask

ϕi
j will be 1 for jth distribution if it has the maximum probability among all Gaussians at location

of ith frame, otherwise it will be 0. The value of σ controls the weighting mechanism and it has

two extremes. The high variance is equivalent to interpolation where all the frames will have equal

weights and low variance is equivalent to masking where weights of pseudo-labels will be 0.

4.1.4 Action detection model

Video action detection is a challenging problem and the existing methods usually follow a complex

pipeline [23, 24, 20]. Region proposal based approach has been found to be exceedingly effective

[44], which has also been extended to tube proposals [23, 24]. However, training these two-step

methods is not efficient, specially when we have to develop an iterative framework for AL. We

follow a simpler approach where classification and detection can be done in an end-to-end training

[5]. We simplified VideoCapsuleNet [5] further and replaced the 3D routing with 2D routing [129]

which makes it more efficient in terms of memory and training speed. We then added dropout
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layers for uncertainty and used MGW-Loss from Eq. 4.4 to handle sparse labels. To handle sparse

labels, we get the frame-wise weight from Max-Gaussian Weighted method and adjust the loss

using this weight. Following [5], the network is trained using spread loss for classification and

binary-cross entropy loss for spatio-temporal localization.

4.2 Experiments and Results

4.2.1 Implementation details

We implement our method in PyTorch [130]. In video action detection architecture, we use I3D

encoder head [6] with pre-trained weights from the Charades and Kinetics dataset [131]. We use

Adam optimizer [123] with a batch size of 8 and train for 22K iterations in each active learning

cycle. We train our model using a single 16GB Nvidia RTX 5000 GPU. The frame selection method

only runs in inference mode with Dropout enabled, thus using only a fraction of the GPU memory.

Due to this, we can run multiple instances in parallel for frame selection in the training video

set, reducing the time taken for frame selection process. During each iteration, we only select

the given percentage of frames for further annotation and we retain the previous set of annotated

frames. On a 8 core 3.2 GhZ Intel CPU and 16GB Nvidia RTX 5000 GPU combination, each

AL frame selection round takes 50 minutes for UCF-101. The model training for UCF-101 takes

about 15 minutes per epoch, which is trained for 40 epochs for each set of annotations.

For YouTube-VOS task, we use two existing methods [4, 9]. We use τ = 0.9 for non-active

suppression and σ = 1.3 for Eq. 4.2 and Eq. 4.4, which were empirically determined.

Action detection network We use the 2D variant of video capsule network [5] for action detection

task on UCF-101-24 and JHMDB-21 dataset. The network takes an input clip of T ×H ×W ×C

dimension [T=frames, H=height, W=width, C=channels] and outputs T frames of H × W × 1
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dimension. It also predicts the class prediction vector for the entire clip. The 2D capsule network

takes a batch size of 8 samples per iteration, with each sample clip of size 8× 224× 224× 3 with

a temporal skip rate of 2. We follow the same input/output format as the original paper for 3D

capsule network [5] for the 2D network variant. The full architecture detail is shown in figure 4.2.
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Figure 4.2: Overview of the proposed action detection network. Based on [5], features are
extracted from input frames using I3D [6] architecture based encoder. We take features from
Mixed 4f layer of I3D network. This is then followed by two 2D convolutional capsule layers
which outputs class capsules. The class capsules is used for final class prediction and classifica-
tion loss computation. This is followed by series of transpose convolution layers (2D and 3D)
for upscaling the feature map and concatenation with features from intermediate layers of the I3D
encoder via skip connections. We finally obtain the localization maps of same size as input video,
which is used for detection loss.

4.2.2 Sparse learning settings

In the initialization stage, we assume the availability of annotations for I% of frames in each video

in V to make sparse annotation set S0
L. These frames are randomly selected for the first stage.

We use 1%, 3%, and 5% initial frames for UCF-101, J-HMDB, and Youtube-VOS respectively,
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determined empirically based on each dataset size. We assign annotation cost for each frame as

Cframe = Actor × Clicks based on clicks per actor (bounding box/pixels).

Interpolation: The annotation interpolation for UCF-101 is done using linear interpolation of

the bounding box corners. The pixel-wise annotation interpolation for J-HMDB is done using

CyclicGen [132]. In case of edge frames or single frame annotations, we extrapolate the annotation

to other frames.

4.2.3 Datasets

We evaluate our approach on three different datasets, UCF-101 [3], J-HMDB [2] and YouTube-

VOS [4]. UCF-101 has 3207 untrimmed videos from 24 different classes with spatio-temporal

bounding box annotations. J-HMDB dataset contains 928 trimmed videos from 21 classes with

spatio-temporal pixel-level mask annotations. We further evaluate our method on YouTube-VOS

[4] for video object segmentation to demonstrate its generalization capability. YouTube-VOS con-

sists of 3471 training videos (65 categories) with pixel-level annotation for multi-object segmenta-

tion.

4.2.4 Evaluation metrics

Following prior action detection works [5, 133, 77] on UCF-101 and J-HMDB datasets, we com-

pute the spatial IoU for each frame per class to get the frame average precision score and compute

the spatio-temporal IoU per video per class to get the video average precision scor score. This

is then averaged to obtain the f-mAP and v-mAP scores over various thresholds. The frame-AP

reflects the average precision of detection at the frame level for each class, which is then averaged

to obtain the f-mAP [133]. The video-AP reflects the average precision at the video level, which
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is averaged to obtain the v-mAP score [133, 77]. For video segmentation, we use the J score for

evaluation, which is given by the average IoU between the prediction and ground truth mask [4].

We also measure the average boundary similarity between prediction and ground truth as the F

score [4].

4.2.5 Baseline methods

We explore several baselines to understand their limitations on video action detection. First, we

use random and equidistant frame selection where random selection select the frames at random in

each stage, equidistant uses equal distance between the frames during selection. Next, we extend

existing AL methods used in image-based object detection [7, 8] to video action detection, where

we score each frame using their algorithm for frame selection. We improve upon the uncertainty

sampling for video level selection from [95] and compute uncertainty at pixel-level in all our

baselines. We train all baselines using same action detection backbone for a fair comparison.

We have random, equidistant, uncertainty-based [7] and entropy-based [8] approaches as baseline

methods to compare against.

Table 4.1: Comparison between different baseline methods in UCF-101 and J-HMDB dataset for
different frame annotation percent. * is extended to video action detection using same backbone
detector network as ours.

UCF-101 J-HMDB
f-mAP@0.5 v-mAP@0.5 f-mAP@0.5 v-mAP@0.5

Method 1% 5% 10% 1% 5% 10% 3% 6% 9% 3% 6% 9%
Random 60.7 66.5 69.3 59.2 66.4 69.9 58.3 69.3 71.6 57.4 64.6 70.4
Equidistant 61.8 66.2 68.4 61.7 67.2 69.0 57.4 67.5 71.4 56.9 64.9 66.8
Gal et al.* [7] 60.9 66.7 68.9 59.4 66.8 69.1 58.2 66.7 67.5 57.4 66.8 67.4
Aghdam et al.* [8] 61.4 67.9 69.8 60.1 67.9 70.0 58.8 71.2 71.1 57.7 66.7 71.2
Our 64.7 70.9 71.7 63.9 71.8 73.2 68.8 74.1 74.5 65.6 70.8 74.0
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4.2.6 Results

4.2.6.1 Comparison of baseline methods

We evaluate random, equidistant, entropy-based [8] and uncertainty-based [7] selection methods

as baselines and compare with our approach in Table 4.1. While all baselines are effective for AL

in image-based detection/classification tasks, we demonstrate that for video action detection prior

methods [8, 7] perform similar or worse than random or equidistant methods. The lack of temporal

information prohibits prior methods to select frames effectively as videos have sequential frames

in same region with high uncertainty. Our approach accounts for the temporal continuity and

outperforms all baselines including prior AL based methods [7, 8] consistently on both dataset for

all annotation percent. This demonstrates that extending image-based methods is not well suited

for video action detection task as shown in Figure 4.3.

4.2.6.2 Evaluation of proposed method

We evaluate our approach on UCF-101 and J-HMDB for action detection and compare with fully-

supervised training in Table 4.2. For UCF-101 we initialize with 1% of labelled frames and train

the action detection model with a step size of 5% in each cycle. We achieve results very close to

full annotations (v-mAP@0.5, 73.20 vs 75.12) using only 10% of annotated frames, which is a

huge reduction (90%) in the annotation cost. For J-HMDB, we initialize with 3% labels as it is a

relatively smaller dataset and it is challenging to train an initial model with just 1% labels. Here,

we obtain results comparable with 100% annotations with only 9% of labels.
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Figure 4.3: Analysis of frame selection using different methods. The x-axis represents all frames
of the video, with each row representing a baseline method. The markers for each method mark
the frames selected using that method. For both samples, our method selects distributed frames
centered around action region, Gal et al [7] [G*] selects frame around same region since there is
no distance measure and Aghdam et al. [8] [A*] selects slightly more distributed frames but theose
are not from crucial action region. [G*:Gal et al[7], A*:Aghdam et al[8], Rand: Random, Equi:
Equidistant]

Table 4.2: Evaluation of our proposed ASL method on UCF-101 and J-HMDB. We show v-mAP
and f-mAP scores at various thresholds for 1%, 5% and 10% annotation selected using our APU
algorithm. The model is trained with sparse labels using our MGW-Loss.

UCF-101 J-HMDB
Annot v-mAP@ f-mAP@ Annot v-mAP@ f-mAP@
Percent 0.3 0.5 0.3 0.5 Percent 0.3 0.5 0.3 0.5
1% 89.01 63.94 83.85 64.69 3% 95.15 65.56 89.94 68.78
5% 90.95 71.89 88.71 70.91 6% 95.20 70.75 93.09 74.09
10% 91.12 73.20 88.72 71.75 9% 95.58 74.01 92.67 74.50
100% 91.49 75.15 89.08 74.02 100% 96.39 75.75 93.74 74.91

4.2.6.3 Comparison to prior weakly/semi-supervised approach

We compare to prior weakly/semi-supervised action detection approach [76, 74, 55, 53, 10, 56]

in Table 4.3 and explain their limitations. [10] uses external human and instance detectors to
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Table 4.3: Comparison with state-of-the-art methods. We evaluate our approach using v-mAP
and f-mAP scores using only 10% annotations. ‘Video’ uses video-level class annotations and
‘Partial’ uses sparse temporal and spatial annotations. V: video labels, P: points, B: bounding box,
O: off-the-shelf detector. f@ denotes f-mAP@

UCF-101 J-HMDB
Method Annot f@ v-mAP@ f@ v-mAP@

Percent V P B O 0.5 0.1 0.2 0.3 0.5 0.5 0.1 0.2 0.3 0.5
Fully supervised
Peng et al. [37] 100% 65.7 77.3 72.9 65.7 35.9 58.5 - 74.3 - 73.1
TCNN [23] 100% 67.3 77.9 73.1 69.4 - 61.3 - 78.4 - -
Gu et al. [134] 100% 76.3 - - - 59.9 73.3 - - - -
ACT [112] 100% 69.5 - 76.5 - - - - 74.2 - 73.7
STEP [24] 100% 75.0 83.1 76.6 - - - - - - -
Rel. Graph [26] 100% 77.9 - - - - - - - - -
AIA [27] 100% 78.8 - - - - - - - - -
VidsCapsNet [5] 100% 78.6 98.6 97.1 93.7 80.3 64.6 98.4 95.1 89.1 61.9
Weakly/Semi-supervised
Mettes et al. [53] Video ✓ ✓ - - 37.4 - - - - - - -
Escorcia et al. [74] Video ✓ - - 45.5 - - - - - - -
Zhang et al. [75] Video ✓ ✓ 30.4 62.1 45.5 - 17.3 65.9 81.5 77.3 - 50.8
Arnab et al. [54] Video ✓ ✓ - - 61.7 - 35.0 - - - - -
Weinz. et al. [10] Partial ✓ ✓ ✓ 63.8 - 57.3 - 46.9 56.5 - - - 64.0
Mettes et al. [55] Partial ✓ ✓ - - 41.8 - - - - - - -
Cheron et al. [76] Partial ✓ ✓ - - 70.6 - 38.6 - - - - -
Kumar et al. [56] 20% ✓ ✓ 69.9 - 95.7 - 72.1 64.4 - 95.4 - 63.5
Ours 10% ✓ ✓ 71.7 98.1 96.5 91.1 73.2 74.5 99.2 98.4 95.6 74.0
Ours 100% 74.0 98.3 96.9 91.5 75.2 74.9 99.2 99.2 96.4 75.8

build tubes aligned with 1-5 random spatially annotated GT frames per tube. This incurs larger

annotation cost without any frame selection metric while having low performance. [53, 55, 54]

follow Multi Instance Learning (MIL) approach, where [53] uses off-the-shelf actor detectors to

generate pseudo-annotations and [55] relies on user input for point annotation for every frame,

requiring large annotation cost. [54] expands on MIL approach combined with tubelets generated

by an off-the-shelf human detector. While MIL based approach requires less oversight, it also

suffers from reduced performance, even with state-of-the-art detectors.
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[74] uses actor detector with video-level label to perform action detection, using a less involved

approach as [54], but both have high label noise and low performance. [56] uses consistency

regularization to train with unlabeled data in semi-supervised fashion. [76] uses discriminative

clustering instead of MIL to assign tubelets to action label with various level of supervision, [75]

uses combination of different actor detectors to build tube to train with video labels. They rely on

multiple off-the-shelf components to generate the tubelets and suffer from low performance. [75]

and [10] report their J-HMDB results using bounding-box annotation instead of the fine-grained

pixel-wise annotation due to their design limitation to use external bounding-box detector for tube

generation. Our approach does not rely on such detectors and can work with both bounding-box

(UCF-101) and pixel-wise (J-HMDB) annotation and is comparable to the supervised performance.

4.2.7 Ablations

4.2.7.1 Effect of loss function

We evaluate the effectiveness of MGW-Loss for video action detection with sparse labels and com-

pare it with baseline masking and interpolation based loss in figure 4.4. The proposed MGW-Loss

learns better in sparse label conditions due to the approximated ground truth frames from interpo-

lation. Without the approximated frames, the formulation in Eq. 4.4 will reduce to masking loss as

σ → 0. Masking computes loss only on the sparse ground truth and does not perform as well as the

MGW-loss with interpolated ground truth as seen in figure 4.4. Our Gaussian based interpolation

adapts better for approximated labels compared with simple interpolation due to having different

weight for each frame based on their distance from real ground truth annotation.
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Figure 4.4: Comparison of different loss functions for UCF-101 (a-b) and J-HMDB (c-d). We
report scores for v-mAP and f-mAP at IoU of 0.5 at various annotation percentages.

4.2.7.2 Effect of selection criteria

We compare how commonly used entropy and uncertainty-based selection methods perform against

proposed APU algorithm when using the same loss formulation from Eq. 4.4. Figure 4.5 shows

that APU has optimum frame selection as it encourages diverse selection by using adaptive dis-

tance to existing frames for the scoring process. Following [8], entropy based selection has a less

effective fixed distance filter to avoid nearby frames. The uncertainty method lacks any distance

component and performs worse than random or equidistant, selecting frames from nearby regions

as seen in figure 4.3.
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Figure 4.5: Comparison of different frame selection methods combined with MGW-Loss showing
v-mAP and f-mAP scores for IoU @ 0.5 for (a-b) UCF-101 evaluation up to 20% (∼40k frames)
data annotation. (c-d) J-HMDB evaluation up to 18% (∼3800 frames). Our APU approach gets
better performance at a lower annotation percentage (lower annotation cost).

4.2.7.3 Annotating more frames

We also evaluate adding additional frames until the scores start to saturate, shown in figure 4.5.

We see that for UCF-101 at 20% annotation (∼40k frames) with bounding box for each frame,

all methods score close to each other and are near fully supervised 100% training. Similarly,

we notice similar pattern for J-HMDB dataset evaluation 18% (∼3800 frames) with pixel level

semantic ground truth for each frame, where the scores for different methods start to converge. This
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Figure 4.6: Comparison of our method with different annotation percent and step size against
random selection method and fully-supervised method (100% annotations) on UCF-101. Results
for step size increment of 1% and 5% are shown at 1%, 5%, and 10% annotations for our ASL
based selection and random selection (denoted by Ran).

demonstrates that while the frame selection eventually converges with more data, our approach gets

better score at an earlier stage, saving overall annotation cost.

4.3 Analysis

4.3.1 Variation in budget steps

Lower budget steps enables selection of fewer frames with high utility in each step instead of se-

lecting more frames with low utility in higher budget steps. As the annotation set is more curated

in each step in lower steps, we end up with better frames for the same annotation budget as higher

steps. We evaluate the effect of using step size of 1% and 5% in figure 4.6 for UCF-101 dataset,

starting from 1% till 10%. Step size of 1% has constantly better v-mAP and f-mAP score through-

out, showing that smaller steps give greater performance. However, smaller step size needs more

iterations, taking more time as a trade-off for better performance.
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Figure 4.7: Analysis on sample selection strategy. (a-b)Global vs local frame selection strategy
using APU on J-HMDB. (c-d) Frame vs sample selection for UCF-101 (c) and J-HMDB(d).

4.3.2 Local vs. global selection

The proposed approach is focused on sparse labeling where frames with high utility within a video

are selected for annotations. However, it is important to note that videos as a whole have varying

utility. To exploit this aspect, we explore two different frame selection strategies, local selection

and global selection. In local selection, each video has a fixed budget b/N v, where b is budget per

cycle and N v is the total number of videos in our training set. However, frames in global selection

are taken from a global pool which includes frames from all videos, ranking based on overall

dataset utility. Figure 4.7 (a-b) shows that global selection outperforms local selection strategy,

emphasizing that some videos can be more informative than others as confirmed in figure 4.8.

4.3.3 Sample vs. frame selection

We follow [55] and annotate the entire sample (video) instead of finding the most useful frames

within each sample. We compute pixel level uncertainty which is averaged over all the pixels in

a frame using Eq. 4.1 and then averaged over all frames in a video to get the video level score.

While this approach is simpler, it has higher cost during annotation with lower data variation.

Let us assume a fixed cost of c per frame with f frames to annotate, we can assume a budget of
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Figure 4.8: Sparse selection analysis. (a) Histogram showing number of frames selected per video
using our method on UCF-101. Videos on the right show two samples from extreme ends of this
histogram as marked in the plot. (b) Samples for cricket bowling class with APU selected frames
on red marker (APU selects only two frames for 1 action instance). (c) Samples for salsa spin class
(APU selects multiple frames (red) as each spin instance is visually diverse).

B = c × f . We could distribute the frames across the set by picking only few important frames

from each video, which would increase variation in the training set. However, if we annotate entire

sample, there will be many redundant annotations with little gain, which is why frame selection

performs better for action detection task as observed in figure 4.7 (c-d).

Table 4.4: Comparison of the proposed method on YouTube-VOS dataset with baseline AL meth-
ods using STCN [9]. A = Aghdam et al. [8], G = Gal et al. [7]. * is extended to video object
segmentation using same network as ours.

Overall JS JU FS FU

Method 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%
Random 28.4 42.3 42.5 29.1 42.9 43.8 25.8 38.5 38.6 30.2 44.3 45.0 28.4 43.5 42.7
A * [8] 30.1 45.6 47.2 31.5 45.4 47.6 26.7 43.4 47.9 22.8 46.7 48.8 17.6 46.8 44.6
G * [7] 27.9 45.1 48.8 28.5 50.8 48.5 24.8 42.0 46.6 29.7 42.1 49.8 28.7 45.5 50.4
Our 31.7 58.6 66.7 33.6 58.2 66.7 27.8 54.3 61.5 35.2 60.6 69.1 30.1 60.9 69.7

4.3.4 Generalization beyond action detection

We test generalization of proposed cost and loss function for video object segmentation task on the

YouTube-VOS 2019. Table 4.4 shows that our proposed selection approach gets better J and F
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scores for video segmentation task compared to baseline AL methods and random frame selection

method.

4.4 Summary

In this chapter, we present active sparse labeling (ASL), a novel approach for label-efficient video

action detection. The proposed approach uses an uncertainty based scoring mechanism for se-

lecting informative and diverse set of frames for action detection. In addition, we also propose a

simple yet effective loss formulation which can be used to train a model with sparse labels. The

proposed approach is promising in saving annotation costs and we show that merely 10% of labels

can achieve performance comparable to fully supervised methods. We further demonstrate the

generalization capability of the proposed approach for video object segmentation.

53



CHAPTER 5: VIDEO ACTION DETECTION USING HYBRID ACTIVE

LEARNING

The work in this chapter has been selected for publication in the following paper:

Aayush J. Rana and Yogesh S. Rawat. “Hybrid Active Learning via Deep Clustering for Video

Action Detection.” Accepted for publication in the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2023.[135]

In the previous chapter, we demonstrated that an active learning based selection approach is effec-

tive for selecting frames to annotate that improve label-efficient video action detection. However,

this approach assumes all videos have some frames annotated and only performs frame level selec-

tion. In this chapter, we extend that to also do video level selection, where we propose a method

to score and compare videos among each other and select few videos for partial frame annotation.

This means we only select informative videos and annotate a few informative frames from those

videos, making better use of the annotation budget.

The rest of the chapter is organized as follows: Section 5.1 describes the proposed method and

training objective, Section 5.2 explains the experiment setup and results of the proposed method,

Section 5.3 does the analysis of various components of the method, and Section 5.4 contains the

summary.
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Figure 5.1: Overview of the proposed approach. Model training use videos with partial labels
to learn action detection using the STeW loss and classification loss while also learning cluster
assignment via cluster loss. The CLAUS hybrid active learning uses a trained model’s output for
intra sample selection and cluster assignment CV for a video. Intra sample selection uses model
score and selects top At frames of a video to get the video score (Vscore). The Vscore and CV is used
for inter sample selection and selected samples are sent to oracle for annotation. UV: Unlabeled
videos.

5.1 Methodology

5.1.1 Problem formulation

Given a set of N videos V = {v1, v2, ...vN} with F total frames, we intend to select a subset

of videos VT
s ⊂ V with FT

s total frames and annotate only AT % of frames from the subset VT
s

based on the total annotation budget B. At the end we will have a subset of videos VT
s that has

FT
s = (FT

L ,FT
U ) frames, where FT

L are annotated and FT
U are unannotated frames. The proposed

approach enables the use of partial spatio-temporal annotation, utilizing both FT
L and FT

U for model

training. We begin with an initial set of videos V0
s ⊂ V with F0

s = (F0
L,F0

U) frames where A%

(F0
L) of these are annotated. We train the action detection model M0 using (V0

s ,F0
s ) and use this

trained model to select additional videos and frames using proposed AL to obtain new annotations.
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The proposed AL approach selects a diverse set of informative videos for annotation from (V−V0
s )

which is added to V0
s to obtain V1

s . Next we select A% informative frames from the selected videos

V1
s for annotation. This iterative process is repeated till desired performance is met or the total

budget is exhausted. An overview of the proposed approach is shown in Figure 5.1.

Video action detection Video action detection requires spatial localization of the activity in each

frame with temporal consistency of the predicted action location throughout the video. Most of

the existing methods involve complex multi-stage training with dense frame-level annotations [20,

24, 112], making iterative training challenging due to large resource requirement and dependency

on good region proposals [23, 44]. In this work, we utilize a simple one-stage approach which

has state-of-the-art performance on action detection task and can be efficiently trained end-to-end

using a single GPU [5]. We rely on the optimized version proposed in [56] to further reduce model

complexity and the model is trained using spread loss for classification and binary-cross entropy

loss for action localization.

[    ,    ]

Sample selection Intra-sample Hybrid selection

1

2

1

2 2

1

selection

Fully labeled Partially labeled Unlabeled

Figure 5.2: Overview of different active learning strategies for sample selection. We show a toy
example for selection strategy as we add more annotatons to set 1 to obtain set 2. Sample selection
approach takes unlabeled sample and annotates all frames in it. Intra-sample selects frames from
all samples to annotate for the next set. Hybrid selects important samples and high utility frames
to annotate for next set, significantly reducing overall annotation cost.
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5.1.2 Hybrid active learning

The proposed hybrid active learning approach enables selection across unlabeled videos to identify

diverse and important samples while also selecting limited frames within those samples for anno-

tation; significantly reducing overall annotation cost. As shown in Figure 5.2, traditional sample

selection approach simply selects and annotates entire sample, while intra-sample selection ap-

proach obtains frame-level annotations for all video samples. Sample selection does not take into

account redundancy within a sample and intra-sample strategy on the other hand does not consider

utility across samples and selects redundant samples, causing ineffective use of the annotation bud-

get. We propose a hybrid approach that considers both intra-sample redundancy and inter-sample

redundancy to select high utility frames and video samples. In addition, the proposed hybrid ap-

proach also integrates deep clustering to enable diversity along with informativeness while sample

selection.

5.1.2.1 Inter-sample selection:

In active learning, several approaches have been studied to estimate informativeness of a sam-

ple [95, 98, 103]. Motivated by the recent success of uncertainty-based approaches [7, 83], we

focus on model uncertainty [7] to predict the utility of a video sample. In case of classification

task, video-level classification uncertainty can be sufficient, however, video action detection also

requires localization of actions on every frame of a video. Therefore, spatio-temporal localiza-

tion also plays a crucial role in estimating samples utility. To take this into account, we rely on

spatio-temporal uncertainty in our approach.

We consider uncertainty in model’s prediction at pixel-level to compute spatio-temporal uncer-

tainty. We rely on MC-dropout to compute model uncertainty [7, 81, 67] as it is more efficient in
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comparison with other approaches [8, 92, 89, 72]. The activity and non-activity region in a video

will vary across action classes as well as across video samples. Therefore, uncertainty score based

on all pixels in a video for sample utility will not be comparable across all unlabeled videos VU

for learning action detection. It will provide low uncertainty score for videos with short uncertain

actions and long easy non-action regions which is not favorable for such videos. To overcome this

issue, we propose to select limited frames in each video where we rank the video frames based on

uncertainty and select the top At frames with high uncertainty. Given a pixel-level uncertainty U ,

we compute the spatio-temporal uncertainty at video-level as,

Vscore =
1

At

At∑
i=1

P∑
p=1

Ui,p (5.1)

where, At is the number of frames to select from each video in an AL iteration and P is the total

pixels in each frame. The pixel-level uncertainty U is computed as,

U =
1

R

R∑
r=1

−log(M(p, r)) (5.2)

where, M(p) is the model’s prediction of pixel p for each frame, averaged over R different runs.

Uncertainty values for M(p) below certain threshold (definite background) is set to 0. In our

preliminary experiments, we observed that sample level classification uncertainty does not provide

significant improvement over spatio-temporal uncertainty for sample utility. Therefore, we only

utilize spatio-temporal uncertainty in our approach to determine sample informativeness for action

detection.
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5.1.2.2 Intra-sample selection:

The informative videos selected in inter-sample selection V t
s−prime are added to the existing set

V t−1
s to obtain V t

s. In intra-sample selection, we select frames with high utility from these videos

V t
s−prime for frame-level annotation. We rely on frame-level model uncertainty Uf =

∑I
i (Ui)

for all I pixels in a frame to estimate frame utility for action detection. Here U is pixel-level

uncertainty as described in Equation 5.2. Since pixel-level uncertainty U is already computed for

spatio-temporal uncertainty, intra-sample selection has no computation overhead.

5.1.2.3 Diverse sample selection:

Model uncertainty can be used for sample selection focusing on their informativeness. However,

it does not ensure diversity among selected videos and there can be redundancy in such a selection

strategy. A simple solution to address this issue can be developed with the help of class labels.

However, this will require additional annotations which defeats the purpose of saving annotation

cost. We propose an implicit clustering approach which utilize latent video features and does not

require additional annotations. More specifically, we use deep clustering [136] which learns the

cluster representation for each category from the known labeled subset V0
s and adapts the clusters

as the latent features of each video changes during training.

To enable diverse sample selection, we model the relation between diversity of each unlabeled

sample VU with already labeled samples VL. The proposed clustering approach allows the model

M to learn latent features LF which represent each sample in a cluster. The objective of the model

M is to improve the latent features such that it is close to the corresponding cluster center for that

sample. The clustering objective is defined as,

min
θ

LCluster =
N∑
i=1

λ

2
||LF(xi|Mθ)− CK(xi)||2 (5.3)
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where, λ is a scaling term for the loss, θ is the parameters for model M, LF is latent feature for

sample xi where i ∈ [1, N ] and CK is the cluster center for sample xi.

We first compute informativeness scores for each video in VU using Equation 5.1, and then find

cluster in C = [c1, c2, ...ck] with K total clusters corresponding to each unlabeled video. The total

number of videos to be selected in a cycle is constraint by current budget Bv. We limit the samples

selected per cluster such that the selection is proportional to the cluster size. For any cluster with

nc videos, we assign a budget of nc × Bv/NU , where NU represents total number of unlabeled

videos. The selection algorithm is further detailed in supplementary. We argue that nearby frames

in a video will have similar model uncertainty and redundant utility. So, we avoid selecting nearby

frames in intra-sample selection to ensure diversity while frame selection.

5.1.3 Training objective for partial label learning

Traditional video action detection method relies on actor annotation for each frame in order to train

a model for action localization and classification [24, 5, 48]. However, in case of partial annotations

it is not possible to train localization without annotations, which limits the use of these approaches

directly. We propose a novel loss formulation which can effectively utilize partial annotations for

localization.

Spatio-Temporal Weighted (STeW) loss The partial spatio-temporal annotations can be con-

verted into dense pseudo-labels with the help of interpolation [10]. However, these pseudo-labels

can have errors due to motion of actor/camera in a video and temporal gap between the partial

labels. We propose to use temporal continuity of actions to mitigate this issue and enable effec-

tive utilization of partial annotations. We hypothesize that actions have some temporal continuity

across time which may vary with different actions. By leveraging this temporal continuity in a

video, we compute spatio-temporal weight for each pixel independently which captures the confi-
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dence of a pseudo-label.

First, we compute the psuedo-labels using interpolation between the annotated frames as [10].

Next, we apply a spatio-temporal weight to suppress incorrect pseudo-labels. We compute the

overlap of annotation for nearby frames and assign each pixel a weight based on the overall con-

sistency which is given as,

ϕi,j
f = Dist(fa − f)

1

(W + 1)

f+W∑
w=f−W

f i,j
w , (5.4)

where, weight ϕ of frame f with i × j pixels is combination of distance of frame f from nearest

annotated frame fa and average value of pixel i, j of nearby W frames. Our hypothesis is that

the background and foreground should be consistent for most of the frame, except for the moving

actions. The average value of nearby W pixels will give consistency value for each pixel, where we

assign a weight of 1 for consistent background/foreground (≤ Plow or ≥ Phigh) and average value

for other inconsistent pixels. The final localization loss with spatio-temporal weight is computed

as,

LSTeW
l =

1

F

F∑
f=1

ϕfL
f
l , (5.5)

where, for a video with F frames, Lf
l is the BCE localization loss for f th frame and ϕf ∈ [0, 1] is

the pixel-wise spatio-temporal weighted mask from Equation 5.4 for f th frame.

Overall training objective Our overall training objective is given as,

min
θ

L = LCluster + LSTeW
l + LCls (5.6)

where, θ is the model parameters, LCluster is cluster loss from Equation 5.3, LSTeW
l is detection

loss from Equation 5.5 and LCls is the spread loss for classification from [5].
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5.1.4 Sampling budget and cost incorporation

For each stage of annotation we assume a fixed budget B which will be separated to annotate video

label and to annotate frames in that video, given as Bv and Bf respectively. Annotating each video

label will require a cost Cv since the annotator has to watch and identify the class. Similarly,

annotating each frame with bounding-box or pixel-wise labels will require a cost Cf . Thus, for

each stage we can only annotate videos and frames so that Ctotal
v ≤ Bv and Ctotal

f ≤ Bf .

5.2 Experiments and results

5.2.1 Datasets

We evaluate our approach on UCF-101-24 [3] and J-HMDB-21 [2] action detection datasets.

UCF-101-24 consists of 24 different action categories with spatio-temporal bounding-box annota-

tions for 3207 untrimmed videos. J-HMDB-21 dataset has 21 categories with pixel-level spatio-

temporal annotations for 928 trimmed videos.

5.2.2 Evaluation metrics

We measure the standard frame-mAP and video-mAP scores for different thresholds to evaluate our

model’s action detection results following prior works [37]. The frame-mAP reflects the average

precision of detection at the frame level for each class, which is then averaged to obtain the f-mAP

[133]. The video-mAP reflects the average precision at the video level, which is averaged to obtain

the v-mAP score
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5.2.3 Implementation details

Active learning We initialize our training with a set of videos V0
L with class label and A% anno-

tated frames within those videos selected at random. We use K=5 centers for clustering (analysis

on varying K in supplementary) and R=10 forward passes per video. For each stage, we select

v% videos for annotation based on budget Bv,Bf , where the videos are given class label and A%

of their frames are annotated and added to V0
L. We repeat this until total budget is exhausted or

desired performance is achieved.

Training details All our experiments are performed using PyTorch [130] on a single Nvidia

Quadro 5000 GPU. The scores are average of 3 different runs. We adapt the video action de-

tection model from [5] and use 2D capsules and I3D encoder [6] following [56], with pretrained

weights from the Charades dataset [131]. The network is trained using Adam optimizer [123] with

learning rate 5e − 4 and batch size 8. Plow = 0.1 and Phigh = 0.9 is set empirically. We use

random crop and horizontal flip for video augmentation during training. Interpolation is done us-

ing linear point interpolation for bounding-box (UCF-101-24) and CyclicGen [132] for pixel-wise

(JHMDB). We compute uncertainty based on dropout during inference following [7]. We don’t

perform any hyperparameter tuning and use same set of parameter settings for all our experiments

on both the datasets.

5.2.4 Baseline methods

We compare the proposed approach with several baselines to demonstrate its effectiveness. We

develop two non-parametric selection method using random and equidistant frame selection (both

using random video selection). We also use prior AL methods for object detection in images as

baselines. We use uncertainty-based AL [7] and entropy-based AL [8] for scoring each frame and
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Table 5.1: Evaluation of the proposed method on UCF-101-24 and J-HMDB-21 for [v-mAP, f-
mAP] @ 0.5 IoU. We increase the amount of samples and frames in each stage using the proposed
approach and compare with fully-supervised approach. A% is percent of annotated frames and
V% is percent of videos used to sample frames from.

UCF-101-24 J-HMDB-21
A% V% v-mAP f-mAP A% V% v-mAP f-mAP
0.25 5 45.0 50.1 0.15 5 4.7 27.2
0.50 10 54.3 55.6 0.30 10 41.6 45.3
0.75 15 57.6 59.4 0.45 15 52.5 54.8
1.00 20 61.8 61.6 0.60 20 56.0 60.5
1.25 25 65.5 65.6 0.75 25 57.6 60.9
1.50 30 67.2 66.9 0.90 30 58.3 61.7
2.00 40 68.6 68.5 1.20 40 61.3 62.7
2.50 50 69.2 69.3 1.50 50 63.7 64.0
5.00 80 72.2 72.1 5.40 80 71.5 72.8

90 90 73.6 73.0 90 90 73.1 73.0
100 100 75.2 74.0 100 100 75.8 74.9

do sample selection. All baselines use same action detection backbone as ours.

5.2.5 Results

We show that our iterative AL approach is able to improve results in each step and use only a

fraction of the annotations to perform close to fully-supervised approach with 90% annotations

in Table 5.1. We also perform detailed comparisons with 4 baselines in Table 5.2. We further

compare our approach with previous weakly-supervised action detection approaches on both the

datasets in Table 5.3 and 5.4.
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Table 5.2: Comparison of the proposed approach with various baseline methods. All baseline
methods use same action detection backbone as ours. We show the v-mAP and f-mAP metrics at
0.5 IoU. † is modified for video action detection using public code. A% is total annotations.

UCF-101-24 J-HMDB-21
Method A% v-mAP f-mAP v-mAP f-mAP
Random 1% 52.6 54.1 36.6 42.1
Equi. 1% 53.3 55 38.1 43.5
Entropy [8] † 1% 52.2 53.5 40.7 49.0
Uncertainty [7] † 1% 44.0 46.7 46.0 47.9
Our 1% 61.8 61.6 58.6 61.9
Random 5% 67.5 67.3 69.3 70.1
Equi. 5% 67.2 67.0 70.0 70.4
Entropy [8] † 5% 71.3 70.2 70.7 70.8
Uncertainty [7] † 5% 69.7 68.2 69.0 69.3
Our 5% 72.2 72.1 71.3 72.7

5.2.5.1 Comparison with baselines

Table 5.2 shows comparison of our method with random, equidistant, entropy-based [8] and uncertainty-

based [7] AL baselines for UCF-101-24 and J-HMDB-21. We report the f-mAP and v-mAP scores

at 1% and 5% total annotations. Random and equidistant give an idea of non-parametric sample

selection where the videos are selected at random and the frames are selected at random or equidis-

tant. We notice that these baselines give lowest scores. Then we compare with other AL baselines

using [8, 7]. Since these are image-based, they are not well suited for frame ranking in videos

as reflected by their scores. [8] ignores nearest 5 frames for each selection, but this still does not

work as well as proposed diverse selection. Since these prior AL baselines don’t have notion of

similarity/distance for videos, we see that random performs comparably. In contrast, our approach

gives best performance, highlighting the impact of cluster based diverse sample selection.

65



Table 5.3: Comparison with state-of-the-art weakly-supervised methods on UCF-101-24. We eval-
uate our approach on v-mAP and f-mAP scores using only 1% and 5% total frame annotations. ‘V’
uses video-level annotations and ‘P’ uses a fraction of the mixed annotation. ‘S’ denotes SSL meth-
ods. We report [10] with their scores for 2 (1.1%) and 5 (2.8%) frames annotated per video.

Method A% f-mAP@ v-mAP@
0.5 0.1 0.2 0.3 0.5

Mettes et al. [53] V - - 37.4 - -
Escorcia et al. [74] V - - 45.5 - -
Zhang et al. [75] V 30.4 62.1 45.5 - 17.3
Arnab et al. [54] V - - 61.7 - 35.0
Mettes et al. [55] P - - 41.8 - -
Cheron et al. [76] P - - 70.6 - 38.6
Weinzaepfel et al. [10] 1.1% - - 57.1 - 46.3
Weinzaepfel et al. [10] 2.8% 63.8 - 57.3 - 46.9
MixMatch [62] S-20% 20.2 - 60.2 - 13.8
Pseudo-label [137] S-20% 64.9 - 93.0 - 65.6
Co-SSD(CC) [63] S-20% 65.3 - 93.7 - 67.5
Kumar et al. [56] S-20% 69.9 - 95.7 - 72.1
Ours 1% 61.6 98.1 95.9 88.9 61.8
Ours 5% 72.1 98.1 96.1 91.2 72.2

Table 5.4: Comparison with state-of-the-art semi-supervised methods on J-HMDB-21 using only
1% and 5% total frames annotation. ‘V’ uses video-level class annotations. ‘S’ denotes SSL
method. We report [10] with their scores for 2 (6%) and 5 (15%) frames annotated per video.

Method A% f-mAP@ v-mAP@
0.5 0.1 0.2 0.3 0.5

Zhang et al. [75] V 65.9 81.5 77.3 - 50.8
Weinzaepfel et al. [10] 6% 50.7 - - - 58.5
Weinzaepfel et al. [10] 15% 56.5 - - - 64.0
MixMatch [62] S-30% 7.5 - 46.2 - 5.8
Pseudo-label [137] S-30% 57.4 - 90.1 - 57.4
Co-SSD(CC) [63] S-30% 60.7 - 94.3 - 58.5
Kumar et al. [56] S-30% 64.4 - 95.4 - 63.5
Ours 1% 61.9 99.0 96.8 91.5 58.6
Ours 5% 72.7 99.1 97.3 94.8 71.3
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5.2.5.2 Comparison with weakly supervised approach:

Our cluster based video and frame selection approach selects limited samples and can also be com-

pared with prior weakly supervised methods for video action detection. Prior weakly supervised

methods rely on multiple instance learning [53, 55, 54] or instance learning [10], paired with off-

the-shelf actor detector or user-generated points to create GT annotations for training. These rely

on multiple external components or require user to annotate points in each frame, reducing their

practical use. Some methods are less involved with built-in detector branch [74] but suffer from

noisy annotations. [76] applies discriminative cluster approach to match generated actor tubes

with video label with partially annotated frames. [75] combines multiple actor detectors to build

stronger GT annotations, relying heavily on external components. Our approach doesn’t rely on

external detection components and uses simple iterative approach to select useful limited samples.

This allows our method to be easily used for training. Table 5.3 and 5.4 shows comparative scores

with prior weakly-supervised methods.

5.2.6 Ablations

Effect of clustering We evaluate the effect of clustering for video selection in our approach in

Figure 5.4. The selection approach without clustering simply selects top-k videos for further an-

notation, which ends up selecting some similar samples as it does not take diversity into account.

Clustering increases sample diversity, as seen in Figure 5.3, which improves overall performance

compared to non-clustering selection for both datasets as shown in Figure 5.4.

Effectiveness of STeW loss To evaluate the effect of our proposed STeW loss, we train the action

detection network using simple frame loss and interpolation loss for UCF-101-24 dataset. Frame

loss only computes loss for the annotated frame and ignores the pseudo-labels while interpolation
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Figure 5.3: Visual representation of samples selected using (a) proposed Clustering-Aware Un-
certainty Scoring (CLAUS), (b) entropy, (c) uncertainty and (d) random selection methods using
x marks. We get latent features of the videos from same iteration using same model and project
them after PCA reduction. The clusters are from our clustering method and only for visual demon-
stration in (b), (c) and (d). We observe that our approach has diverse and even sample selection
from different clusters while (b), (c) and (d) often selects samples closer to each other in terms of
representation.

loss simply computes loss for all real and pseudo-labels equally. We use the same AL algorithm

for all the approaches and show the result for UCF-101-24 for different steps in Figure 5.5. With

less than 1% frames annotated, we see that Frame loss is not able to learn detection as well as in-

terpolation and STeW loss. With the pseudo-labels created by interpolating the annotated frames,

we see an increase in performance across all steps with both interpolation and STeW loss. Further-

more, the proposed STeW loss gives more importance to real frames and reduces the impact of the

pseudo-labels that are inconsistent, performing best among all loss variations.
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Figure 5.4: Comparison of our approach with and without clustering based selection for UCF-101-
24(a) and J-HMDB-21(b).
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Figure 5.5: Comparison of proposed STeW loss with different loss variations combined with our
CLAUS selection to train the video action detection network for UCF-101-24 dataset.

Effectiveness of CLAUS scoring We also evaluate different scoring functions (random, equidis-

tant, entropy[8], uncertainty[7]) paired with the proposed STeW loss in Figure 5.6. Proposed

CLAUS method is the only one that selects diverse samples based on global utility and is able

to perform best compared to other scoring functions.
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Figure 5.6: Evaluating various scoring methods for AL based annotation increments. * uses our
STeW Loss for all selection approaches on UCF-101-24(a-b) and J-HMDB-21(c-d).

5.3 Analysis

Cost analysis Figure 5.7 compares cost to performance relation of our method and random selec-

tion. While having more annotation generally improves performance, our method selects diverse

and important frames compared to random selection, resulting in significantly improved model in

each step for the same cost. We further take the final model and evaluate per class performance for

our and random selection in Figure 5.8. We outperform random selection for most classes while

having fewer samples selected and give priority to select more samples for certain harder classes.

Class vs clustering diversity While samples from different classes add diversity, too many sam-

ples for easy classes will also add redundancy. Figure 5.8 shows that random approach has class
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Figure 5.7: Performance evaluation of our method with random selection baseline on UCF-101-24
for various sample annotation percent. The cost of annotation for each step is shown by the shaded
bars, with the cost value in the right axis in thousands.

balanced selection but performs below CLAUS as CLAUS reduces redundant samples from same

class and prioritizes difficult and diverse samples.

Sample vs frame increment We evaluate effect of increasing only samples with a constant frame

annotation rate of 5% and increasing both samples and frames annotation. Our goal is to get max-

imum performance gain with lowest cost. Increasing only samples with constant frame annotation

rate has lower annotation cost than increasing both samples and frames for the same step. We show

the results in Figure 5.10; having more training variation by adding only samples is more cost ef-

fective and has better performance than having more frames annotated for the same samples with

higher cost. Interestingly, even random sampling that increases sample diversity performs better

than our sampling with more frames, showing that sample diversity is an important factor in the

selection process.

Selection strategy analysis We compare selection using proposed hybrid method against classical

approaches for the same annotation budget. Inter selection assumes each video is fully annotated

and randomly selects videos for given budget, thereby selecting fewer videos as more budget is

used to annotate all frames. Intra selection assumes each video of the dataset is annotated for at
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Figure 5.8: Analysis on performance across classes with varying amount of annotations. The scat-
ter plot with markers on left axis shows v-mAP scores @ 0.5 IoU of our method against baseline
random method on 16 action classes for UCF-101-24. The bar plot with markers on right axis
shows per class sample distribution.

least 1 frame, spreading the budget over all videos. We show this comparison in Figure 5.9; our

proposed method consistently scores better with both hybrid selection and random selection. Inter

selection simply exhausts the budget in redundant frames from fewer videos and performs worst.

Intra selection does perform close to our-with-random baseline due to larger sample variation.

Effect of number of clusters Our objective with cluster based sample grouping is to get a general

representation of the sample which is not strictly based on the class label. This makes cluster

assignment easier than having to identify 24 clusters for 24 classes in UCF-101-24 (21 in case of

J-HMDB-21). We evaluate our proposed method using K = 5, K = 10 and K = 15 cluster

centers on UCF-101-24 dataset. As shown in Figure 5.11, the overall performance is more or

less close to each other for all values of K, while the performance for K = 5 is slightly better.
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Figure 5.9: Comparison of the proposed CLAUS based AL method with random selection for
video action detection. The plots show scores for (a-b) UCF-101-24 and (c-d) J-HMDB-21 for
different annotation amount. The green line represents model performance with 90% annotations.
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Figure 5.10: Performance difference for increasing sample and frame annotations [5%] vs increas-
ing only frame annotations [10%] on UCF-101-24. Increasing both sample and frames at 5%
increment adds diversity compared to only increasing frames, giving better scores.
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Allowing the clusters to focus on features not tied to the classes and having fewer of such clusters

performs better than having large cluster centers.
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Figure 5.11: Comparison of model performance using different cluster centers (K). We train our
proposed CLAUS using different cluster centers for UCF-101-24. We observe that model perfor-
mance remains similar for different cluster center numbers.

5.4 Summary

In this chapter, we present a novel hybrid AL strategy for reducing annotation cost for video action

detection. Our hybrid approach uses clustering-aware strategy to select informative and diverse

samples to reduce sample redundancy while also doing intra-sample selection to reduce frame

annotation redundancy. We also propose a novel STeW loss to help the model train with limited

annotations, removing the need for dense annotations for video action detection. In contrast to

traditional AL approach, our proposed hybrid approach adds more annotation diversity at the same

cost. We evaluate the proposed approach on two different action detection datasets demonstrating

its effectiveness in learning from limited labels with minimal trade-off on the performance.
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CHAPTER 6: VIDEO ACTION DETECTION USING VARYING LEVEL

OF SUPERVISION

The work in this chapter has been submitted as conference paper:

Aayush J. Rana and Yogesh S. Rawat. “OmViD: Omni-supervised active learning for video action

detection” (submitted).

In this chapter, we focus on two different aspects of video action detection: 1) obtaining various

types of annotations, and 2) using these omni-labels effectively for video action detection. We

first explain the different types of annotations useful for video action detection. We then explain

how we incorporate all the different annotation types into a unified training approach such that the

model can learn action detection effectively. Lastly, we explain how to obtain additional data for

each type of annotation such that it maximizes performance while keeping annotation cost low.

6.1 Methodology

6.1.1 OMNI-supervision

Omni-supervision training assumes presence of multiple types of annotations present in training

set, with each sample having one or more annotation types present including tags, points, scribbles,

boxes and masks as shown in figure 6.1. For a given set of training videos V with C classes, a

sample yv = {1...Fv} with Fv total frames can have following annotation types:

Video-level tags only: yv = c where c ∈ C classes. Such samples are only used to train the
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classifier.

Point annotation: yv = c, pi where c ∈ C classes; pi = {Px,y} ∈ {Points}F ′
i=1 are point annota-

tion of F ′ frames for the sample yv with Fv total frames.

Box annotation: yv = c, bi where c ∈ C classes; bi = {xmin
i , ymin

i , xmax
i , ymax

i } ∈ {Box}F ′
i=1 are

bounding box annotations of F ′ frames for the sample yv with Fv total frames. We don’t assume

the box annotation is present for all frames, so F ′ < Fv and |F ′| ≥ 1.

Pixel-wise mask annotation: yv = c,mi where c ∈ C classes; mi = {Px,y} ∈ {Mask}F ′
i=1 are

pixel-level mask annotation for pixels P of F ′ frames of sample yv with Fv total frames (assuming

F ′ < Fv and |F ′| ≥ 1).

Scribble annotation: yv = c, si where c ∈ C classes; si = {P s
x,y} ∈ {Scrib}F ′

i=1 are pixel-level

scribble annotation for pixels P s of F ′ frames for the sample yv with Fv total frames. Compared to

pixel-wise mask annotation, the set of pixels P s is smaller than P in mask annotation as scribbles

only have pixels of a thin line drawn as scribble. We assume F ′ < Fv and |F ′| ≥ 1.

. . .
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Figure 6.1: Various types of annotations used for omni-supervised video action detection training.
We show two frames from a video sample where each video is annotated with different annotation
type.
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6.1.2 OmViD: Video action detection

We propose OmViD as a simplified and unified approach to handle realistic variations in anno-

tations for video action detection task. Given a set of training videos V , we assume it has been

separated into unlabeled set DU and partially labeled set DPL. We use the partially labeled set

DPL which has B% box (mask) annotation, S% scribble annotation and T% video-level tag only

annotations to train a unified model M such that we get prediction ŷ = M(v; θ) for a given video

v ∈ DPL; where θ is the trained model weight and prediction ŷ = {c,Det} for c ∈ C classes

and spatio-temporal detection Det. For samples t ∈ T with video-level tag only annotations, we

assume there are no spatio-temporal annotations present and we only know the video label. How-

ever, for samples with box/mask/scribble annotation we assume that we know the video label as

well as have at least one spatio-temporal annotation. Furthermore, we also don’t restrict the sample

to have only one type of spatio-temporal annotation, i.e. a single sample can have some frames

annotated with box and some frames annotated with scribbles. Our experiments show that based

on the level of utility for different frames in a sample, it is cost effective to have mixed annotation

in a single sample.

Pseudo-label generation Superpixels group regions of a given frame F based on similarity in

appearance. This property can be leveraged to extend sparse annotations and fill relevant regions

of F to generate pseudo-labels for training. With sparse annotation in F ′ frames for a video with Fv

frames such that F ′ < Fv, we will also have to fill connected regions spatially and temporally. For

this, we propose using 3D superpixels to identify object regions overlapping the sparse annotation

spatio-temporally. We identify the 3D superpixels that overlap with the sparse annotation and use

all such regions as pseudo ground truth labels. These overlapping regions represent some portion

of the object and can give a refined boundary for training purpose. This formulation can learn the

3D superpixel representations from the training data itself in an unsupervised manner and can be
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jointly trained with the action detection model.

6.1.3 Learning objective

The proposed OmViD is train with mixed type of annotation at the same time; optimizing loss for

classification and detection task. Given a video v from the partially labeled set DPL, we optimize

the classifier loss LCls for all samples as we assume they at least have video-level tags annotation.

As we add different types of spatio-temporal annotations, the training process for detection be-

comes complex as we have to account for pseudo-labels based on the type of annotation. We omit

point annotation based on our preliminary experiments. We explain in detail about the different

losses we use for such unified training.

6.2 Classification loss

We follow [5] for the class level classification and use spread loss for a given video. The objective

function is defined as,

LCls =
∑
i ̸=t

max(0,m− (at − ai))
2 (6.1)

where, at and ai are the final class capsule’s activation value for the target class and ith class

respectively. The margin is set as m ∈ (0, 1) and is linearly increased from 0.2 to 0.9 during

training cycle.

6.2.0.1 Detection loss

Since we assume the samples are not densely annotated, we leverage interpolation to get pseudo-

labels and use weighted loss to assign appropriate value for each pseudo-label based on their reli-
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ability. For a given video v with Fv total frames and F ′ annotated frames such that F ′ < Fv, we

first generate pseudo-labels for neighboring frames without spatio-temporal annotations. We give

higher weight for pseudo-labels closer to actual ground truth frame and lower weight for those

further away. We generalize the detection loss for each sample as,

LDet =
Fv∑
i=1

WiLi (6.2)

where, for a sample v with Fv total frames, Wi is the weight of frame i based on closeness to

real ground truth and Li is the localization loss for frame i. For each spatio-temporal annotation

type, we compute the loss independently and aggregate them all together. This simplifies the

pseudo-label generation as well for each annotation type, specially if a single sample v has multiple

annotation type in different frames. Next, we expand the detection loss for each type of annotation

and explain the pseudo-label generation process.

Bounding box loss: For a sample v with box annotations bi = {xmin
i , ymin

i , xmax
i , ymax

i } ∈

{Box}F ′
i=1 for F ′ frames, we generate pseudo-labels for unannotated frames F” such that Fv =

F ′ ∪ F”. As fine pixel-level boundary is not needed, we use linear interpolation of boxes to get

pseudo-labels. The box detection loss is given as,

LBox
Det =

Fv∑
i=1

WBox
i LBox

i (6.3)

where, WBox
i is the weight for frame i based on distance from the closest real box annotation in

{Box}F ′
i=1, and LBox

i is the localization loss of the bounding box in frame i.

Pixel-wise mask loss: For sample with pixel-wise mask annotations, we cannot perform linear

interpolation for pseudo-label generation of the mask. Instead, we can compute the pseudo-masks
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prior to training using pixel-level interpolation. We can then compute the mask loss as,

LPixel
Det =

Fv∑
i=1

W Pixel
i LPixel

i (6.4)

where, W Pixel
i is the weight for frame i based on closest real mask annotation and LPixel

i is the

localization loss of predicted mask for ith frame.

Scribble loss: The last variation we have is for scribble annotation, where for a given video v we

only have scribble annotation si = {P s
x,y} ∈ {Scrib}F ′

i=1 for frames F ′, where P s are pixels with

scribbles. We use 3D superpixels to get J total superpixels such that [∃si{SPixj(si)}Jj=0]; where

each superpixel SPixj has at least one pixel si from the scribble in it. This extends the scribble to

spatio-temporally connected regions to generate pseudo-labels for detection training. This allows

us to use sparse scribbles to compute the detection loss as,

LScribble
Det =

Fv∑
i=1

W Scribble
i LScribble

i (6.5)

where, W Scribble
i is the weight for frame i based on closest scribble frame and LScribble

i is the

localization loss of prediction for ith frame. Next, we describe the superpixel training process

which enables pseudo-label generation for scribbles.

Superpixel loss:

Since scribbles are only thin pixels and don’t tell us the exact area of the action region in a frame,

traditional approaches (interpolation, largest box region) are not able to adequately address the

problem of finding right areas to label. This leads us to learn superpixel segmentation to predict

connected areas based on their features following [138, 139]. We extend [114] to predict 3D spatio-

temporal superpixels and optimize the superpixel loss. First we extend the association map Q for

each pixel to predict pixel property f(p), where the property f(p) is a 9-dimensional CIELAB
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color vector representing a 3D spatio-temporal association map for pixel p = [x, y, z] in a volume.

The 3D superpixel loss is given as,

LSLIC(Q) =
∑
p

∥fcol(p)− f ′
col(p)∥2 +

m

S
∥p− p′∥2 (6.6)

where, fcol(p) is the 9-dimensional pixel property of pixel p, f ′
col(p) is the predicted property for

pixel p, S is superpixel sampling interval, m is a weight balance, p is the location of pixel in a

volume and p′ is the predicted location. The first term encourages grouping of pixels with similar

interest while the second term enforces spatial compactness of superpixels.

6.2.0.2 Full training objective

Based on the individual loss for each annotation type present and the superpixel training, our

overall training objective can be specified as,

L = LCls + λBLBox
Det + λPLPixel

Det + λSLScribble
Det + LSLIC (6.7)

where, (λB, λP , λS) ∈ [0, 1] are weights that enable the specific loss if a given sample has corre-

sponding annotation.

6.2.1 Sample selection

We start model training using an initial partially labeled set D1
PL. Once the model is trained, we

want to increase overall videos by adding some high value samples from the unlabeled set DU to

get D2
PL. However, there is no specification to the type of annotation each new sample should

get. We assume that there is a fixed budget for each round of annotation increment, such that we

add B′%, S ′%, T ′% annotation to the original B%, S%, T% for box, scribble and video-level tag

only respectively. We select new videos from DU to get D2
PL. We also rank the videos in D2

PL
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to select the annotation type for each video and select the frames to annotate. This selection can

be done randomly or using a metric based selection approach. We end up with D2
PL consisting of

B + B′%, S + S ′%, T + T ′% annotation after one round of AL based sample selection. Next, we

describe the AL strategy in detail.

6.2.1.1 AL based selection strategy

We use AL to select new videos from DU and rank the videos in D2
PL to select annotation type for

labeling.

Uncertainty sampling: We follow prior AL methods and use uncertainty based sampling [7, 140]

to score and select new samples and frames for annotation. We use the model’s uncertainty in

prediction to score frames, which can be used to get video level scores. Since we get spatio-

temporal prediction for each frame, we compute frame-wise uncertainty given as,

Uf =

I,J∑
i,j=0

Ui,j (6.8)

where, Uf is the uncertainty for a frame f with I × J pixels and Ui,j is the uncertainty of model

prediction for i, jth pixel. We average score of all frames to get the video level scores. Next, we

rank the videos from highest to lowest and select a set Vs of top-k videos from unlabeled set DU to

add to D1
PL. This is determined by the budget for each round.

Annotation type selection: Once we have Vs, we combine them with prior partially labeled set

D1
PL to get D2′

PL. However, we don’t need to fully annotate the new samples from Vs, or even give

them the same type of annotation. In order to reduce annotation cost and extract maximum utility

we further identify annotation type of each sample based on their rank. First we use the already

computed video level scores from Equation 6.8, we rank all videos in D2′
PL. Then we simply take
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top-b% videos to add b% box/mask annotations, then take next top-s% videos to add s% scribble

annotation and finally take the remaining videos to annotate them with video-level tag. The top-b%

and top-s% is fixed based on annotation budget.

6.3 Experiments and results

6.3.1 Datasets

We evaluate the proposed approach on UCF-101 [3] and J-HMDB [2] dataset for video action

detection. UCF-101 contains 3207 untrimmed videos with spatio-temporal bounding box anno-

tation for 24 action classes. J-HMDB has 928 trimmed videos with pixel-level spatio-temporal

annotations for 21 action classes.

6.3.2 Evaluation metrics

Following prior works, we compute f-mAP and v-mAP at various thresholds to evaluate the per-

formance on UCF-101 and J-HMDB datasets. We compute the average precision of detections for

each class at the frame and video level, which is then averaged to obtain the f-mAP and v-mAP

respectively [133, 77]. The video-mAP score is used to evaluate the detection’s average precision

at video level while the frame-mAP score is used to evaluate the average precision at frame level.

These scores are computer per class and averaged to obtain the v-mAP and f-mAP scores.

6.3.3 Implementation details

Training details We define the proposed network architecture for training in figure 6.2. For a given

video V with mixed annotation types, we pass it through a encoder-decoder network to predict the
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Model Training

Pseudo-GT

GTEnc. Dec.

Spix

Figure 6.2: Our proposed network architecture used for training with mixed annotations. We use an
encoder (Enc.) and decoder (Dec.) architecture following [5] for video action detection training.
We train each video with all available annotation types including video tags, bounding box, pixel-
wise mask and scribbles using the corresponding loss. We also propose a 3D superpixel prediction
branch (Spix) which is trained in unsupervised fashion using the SLIC loss. We use combination
of pseudo-GT (Ground Truth) and real GT to train the model for each annotation type.

action class and corresponding actor bounding box / pixel-wise mask. We follow [25, 56] for

the action detection framework, which uses a 2D capsule variant of Video Capsule Network [5]

with I3D [6] encoder using pretrained weights from Charades dataset [131]. The action prediction

output from the decoder branch is used to then compute the loss of bounding box, pixel-wise mask

and scribbles. We compute both bounding box and pixel-wise mask loss for each pixel of the

output video, making the loss a binary classification problem (whether an action is present or not

in the given pixel). We train the model using a single 16-GB GPU with a batch size of 6 for clips

of dimension 8× 224× 224× 3 as depth× height×width× channels as input for the network.

We also have a 3D superpixel branch (Spix), which takes the features from intermediate layers of

decoder to do 3D superpixel prediction for each pixel of the video. The Spix branch follows the

decoder branch structure and performs upsampling, 3D transpose convolution and skip connections

for multiple layers. The Spix branch outputs a video where each pixel has the likelihood values for
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all neighbors. Each pixel will have 27 neighbor values which indicates the superpixel it belongs to

spatio-temporally. This is trained using the SLIC loss computed using ground truth superpixel for

each pixel obtained from CIE-Lab version of the same video following [114].

Once we have the superpixels, we use that information to create pseudo-labels from scribble anno-

tations. We also use interpolation for box/mask ground truth to get pseudo-labels for intermediate

frames. We combine the pseudo-label ground truth and real ground truth to compute loss for all

annotation types.

Training set

videos

Trained
Model

Ranked
videos

Box/Mask

Scribble

Video Tags

No Annotation

Oracle
Updated

training set

AL cycle

Figure 6.3: Our proposed active learning (AL) based sample selection strategy. For each AL
cycle, we use a trained model from prior round to rank all training videos. Based on the ranking,
we separate the videos into groups for different type of annotation to add. The selected videos for
corresponding annotation type are sent to the oracle and added to the existing training set for future
model training.

Active learning We use AL based sample selection to pick frames from videos for future anno-

tation. As shown in figure 6.3, once we get a trained model we use it to score the entire training

set. We follow [25] and use MC dropout in the model during inference and do 10 forward pass for

each video to get the uncertainty in prediction. We use uncertainty score per frame to compute a

video level score. Once we normalize the score for all videos, we rank them based on their overall

uncertainty scores. The highest scoring videos are selected for box/mask annotation as they are the
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most uncertain videos and the model could use highest quality annotations for such videos. Next

group of videos are selected for scribble annotation as the model could use low cost and low quality

annotation to learn from those based on their medium uncertainty score. Next we pick videos with

low uncertainty for video level tags. Lastly, we don’t annotate videos with very low uncertainty

scores. During different active learning cycles the videos shuffle up and down the rank based on

their changing uncertainty scores, so we get mixed annotations for videos which move to differ-

ent annotation groups. After the oracle annotates each video’s selected frames for the suggested

annotation type, we add it to the updated training set.

Incremental supervision We use a small initial set of sparse annotations (bounding-box, mask)

selected randomly from a small set of videos (20% for UCF-101, 30% for J-HMDB) with mixed

annotation types equally divided among the videos. We only annotate 5 frames per video randomly

for bbox/mask and scribble annotations, while videos with only tags have no frames annotated.

During model training, we use 3D superpixels to generate pseudo-labels from the scribbles which

is then used to train the detector. Videos with only tag annotation only get trained on classification

and 3D superpixel loss. We perform annotation increment using the proposed AL selection strat-

egy. For each round of annotation increment, we follow baseline approach and select new frames

for annotation equally divided from a 20% subset of the training set. This subset is selected using

AL based ranking and can contain new unlabeled videos and videos from prior rounds.

6.3.4 Cost overview

Annotation cost We standardize the cost of annotation for each type based on prior studies in order

to get overall annotation cost. For each annotation type, we provide an estimate of annotation cost

as follow:
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• Video level tags: For videos with only 1 class per sample, we estimate the time to annotate

as 3 seconds. This includes watching the video sample and putting a label to the video.

For dataset with multiple labels per class, it takes additional 1 second per class to annotate

[105, 104, 141].

• Scribbles: Based on [139], annotating every instance with scribble takes 10.9 seconds.

• Bounding box: Each high quality and accurate bounding box instance takes 35 seconds to

annotate following [142] and [104].

• Masks: Annotating an accurate mask instance takes an average of 79.2 seconds based on

[141].

Based on these annotation cost estimates, annotating training bounding boxes in UCF-101 for 24

classes takes 4,686 man hours. Similarly, annotating J-HMDB for 21 classes with pixel-wise

masks will take 487 man hours.

Computational cost We compute the computation cost for the proposed uncertainty based active

learning approach. We have to score the entire training set to get the rank for each video which is

used to determine the type of annotations to select. Each round of AL selection takes about 1 hour

for UCF-101 with 2,284 training videos consisting of about 482,000 frames.

6.3.5 Baseline methods

We use the proposed OmViD approach and increment via AL to achieve action detection perfor-

mance similar with fully-supervised approach. We evaluate a baseline using OmViD with random

increment for comparison.
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6.3.6 Results

We evaluate the performance of each dataset trained using various types of annotations mixed at

different ratio. We first compare the performance of proposed OmViD method with prior weakly

supervised action detection methods and demonstrate the performance for each method along

with their annotation properties. Then we evaluate our method at varying levels of supervision

to demonstrate the improvement in performance at different level of supervision.

Table 6.1: Comparison with state-of-the-art weakly-supervised methods using various annotation
type and amount for UCF-101. We show the percent of annotation used as A% for available
methods and the cost of annotations as C%. O denotes if the method uses off-the-shelf object
detector to generate training annotations. The annotation types used in training is denoted as: B→
Box, P→ Points, S→ Scribbles, V→ Video tag. S-20 use semi-supervised approach with 20%
data. We compare f-mAP and v-mAP at different thresholds. We report [10] with their scores for
2 (1.1%) and 5 (2.8%) frames annotated per video.

Method AB% C O Type f-mAP@ v-mAP@
B P S V 0.5 0.2 0.5

Mettes et al. [53] - - ✓ ✓ ✓ ✓ - 37.4 -
Esc. et al. [74] - - ✓ ✓ ✓ - 45.5 -
Zhang et al. [75] - - ✓ ✓ ✓ 30.4 45.5 17.3
Arnab et al. [54] - - ✓ ✓ ✓ - 61.7 35.0
Mettes et al. [55] - - ✓ ✓ ✓ - 41.8 -
Cheron et al. [76] - - ✓ ✓ ✓ - 70.6 38.6
Weinz. et al. [10] 1.1% 52 ✓ ✓ ✓ - 57.1 46.3
Weinz. et al. [10] 2.8% 132 ✓ ✓ ✓ 63.8 57.3 46.9
ASL [25] 1.0% 47 ✗ ✓ ✓ 64.7 95.3 63.9
ASL [25] 5.0% 235 ✗ ✓ ✓ 70.9 96.0 71.9
PSL [137] S-20% 938 ✗ ✓ ✓ 64.9 93.0 65.6
Co-SSD [63] S-20% 938 ✗ ✓ ✓ 65.3 93.7 67.5
Kumar et al. [56] S-20% 938 ✗ ✓ ✓ 69.9 95.7 72.1
Ours (random) 1.0% 28 ✗ ✓ ✓ ✓ 64.8 95.3 64.6
Ours (random) 6.0% 172 ✗ ✓ ✓ ✓ 68.2 97.3 67.8
Ours (w/AL) 1.0% 28 ✗ ✓ ✓ ✓ 65.3 96.1 65.9
Ours (w/AL) 6.0% 172 ✗ ✓ ✓ ✓ 72.4 97.8 71.2
Ours (Full-sup) 100% 4.6K ✗ ✓ ✓ 75.2 98.8 74.0
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Table 6.2: Comparison with state-of-the-art weakly-supervised methods using various annotation
type and amount for J-HMDB. We show the percent of annotated frames as A% for available
methods and their cost as C. O denotes if the method uses off-the-shelf object detector to generate
training annotations. The annotation types used in training is denoted as: M→ Mask, P→ Points,
S→ Scribbles, V→ Video tag. S-30 use semi-supervised training with 30% data. We compare
f-mAP and v-mAP at different thresholds.

Method A% C O Type f-mAP@ v-mAP@
M P S V 0.5 0.2 0.5

Zhang et al. [75] - - ✓ ✓ ✓ 65.9 77.3 50.8
Weinz. et al. [10] 6% 30 ✓ ✓ ✓ 50.7 - 58.5
Weinz. et al. [10] 15% 74 ✓ ✓ ✓ 56.5 - 64.0
PSL [137] S-30% 146 ✗ ✓ ✓ 57.4 90.1 57.4
Co-SSD [63] S-30% 146 ✗ ✓ ✓ 60.7 94.3 58.5
Kumar et al. [56] S-30% 146 ✗ ✓ ✓ 64.4 95.4 63.5
Ours (random) 6% 16 ✗ ✓ ✓ ✓ 56.0 97.1 57.9
Ours (random) 15% 40 ✗ ✓ ✓ ✓ 67.4 97.3 67.3
Ours (w/AL) 6% 16 ✗ ✓ ✓ ✓ 58.2 97.2 56.7
Ours (w/AL) 15% 40 ✗ ✓ ✓ ✓ 70.9 97.6 69.9
Ours (Full-sup) 100% 487 ✗ ✓ ✓ 75.8 98.9 74.9

6.3.6.1 Comparison with baselines

We show the performance of our baseline approach in Table 6.1 and 6.2 for UCF-101 and J-

HMDB respectively. We compare with another baseline which uses our proposed omni-supervised

training approach with random frame selection for annotation instead. Our baseline (Ours w/AL)

consistently outperforms random selection baseline for both UCF-101 and J-HMDB for equal

amount of annotation cost, giving better use of the annotation budget with our training and selection

method.
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6.3.6.2 Comparison with prior work

We compare our approach (Ours w/AL) with prior work on UCF-101 and J-HMDB dataset. Com-

pared to most prior works, we use pseudo-labels from interpolation and 3D superpixels instead

of external detector. This allows us to use mixed types of annotations, keeping the annotation

cost lower than prior approaches for same amount of annotated frames. With our omni-supervised

training, our total annotation cost for 6% data (172 hours) is lower than 5% of prior work (235

hours) while performing better in Table 6.1. At 1% annotations we need only 28 man hours of

budget to outperform prior works which need 47 man hours [25] and 52 man hours [10]. As shown

in Figure 6.4, we are able to obtain comparable performance with fully-supervised approach us-

ing 6% training data and using fewer annotation cost (6% @ 171 man hours) compared to prior

methods (5% @ 234 man hours, 20% @ 937 man hours).
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Figure 6.4: Our proposed OmViD approach outperforms prior weakly/semi-supervised video ac-
tion detection work while using less annotation cost. We show the performance (v-mAP/f-mAP @
0.5) using various budgets for UCF-101 dataset. The bubble size represents the amount of frames
annotated for each method. Our omni-supervised approach is able to annotate more frames at
lower cost and perform better, optimizing annotation cost and model performance.
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6.3.7 Ablations
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Figure 6.5: Effectiveness of frame selection using our full method (OmViD w/AL) compared to
without AL. We use random selection approach and show the impact AL based selection has for
selecting useful frames given same annotation budget. We show v-mAP score for UCF-101 (a) and
J-HMDB (b).

Without AL selection We evaluate the effectiveness of using proposed AL for increasing train-

ing annotations. We use random selection for same amount of annotation in each round for fair

comparison, so while the annotation cost stays same the frames selected are at random. We use an

initial set of sparse annotations (bounding-box, mask, tags) equally divided among the videos and

increase annotations gradually using AL and random method. We show the model performance in

figure 6.5. While performance improves for both selection with more rounds, the model perfor-

mance on random frame selection does not improve as much as proposed AL frame selection for

same annotation budget.

Without 3D Superpixel We compare the efficacy of using proposed 3D superpixel to generate

pseudo-labels from scribbles with alternative methods for pseudo-label generation. We create
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Table 6.3: We compare OmViD training with and without proposed 3D superpixel on J-HMDB
dataset. We fit boxes over scribbles instead of proposed 3D superpixel for pseudo-labels in
’wo/Superpixel’ method. We report [v-mAP, f-mAP] @ 0.5 IoU scores.

Videos Mask Scribbles With Superpixel wo/Superpixel
% % % v-mAP f-mAP v-mAP f-mAP

30% 1.5% 1.5% 43.4 47.1 41.8 46.6
50% 3.0% 3.0% 56.0 57.9 58.6 61.5
70% 4.5% 4.5% 61.2 65.4 58.9 61.9
90% 6.0% 6.0% 64.9 67.3 64.2 65.4

100% 7.5% 7.5% 67.3 67.4 65.7 66.2
100% 9.0% 9.0% 68.0 68.3 66.6 67.0

pseudo-labels from scribbles by converting it directly to bounding box based on the scribble size

as an alternative method. We show the effect of using this alternative pseudo-lable technique on

Table 6.3 for J-HMDB dataset. We notice that the bounding box pseudo-labels start falling behind

with more annotations added compared to 3D superpixel approach for same annotations. This is

primarily due to 3D superpixel generating better annotations from scribbles that is closer to the

ground truth.

Annotation type selection We evaluate the importance of having different types of annotations for

each round of increment. We use similar setting as baseline but only add scribbles or box/masks in

each round instead of proposed mixed increment approach and show the results in Figure 6.6 for

UCF-101 and J-HMDB. We notice that while adding only scribbles has lower cost compared to an-

notating box/masks, the performance gain is also limited. On the other hand, adding box/mask for

all those selected frames in a round would increase performance while also increasing annotation

cost. Our proposed approach selects mixed annotation types (box/mask, scribbles, tag only) which

reduces annotation budget while still improving performance in a comparable way and provides a

quantitative method to trade-off between performance and annotation cost.
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Figure 6.6: We increase only one type of annotation and demonstrate the effectiveness vs anno-
tation cost for doing so. We also compare with the proposed method of increasing all annotation
types based on AL ranking. We show v-mAP score for UCF-101 (a) and J-HMDB (b). The bubbles
represent the annotation cost hours for each type of annotation increment. For the same percent
of annotation, increasing box/mask only incurs large annotation cost hours compared to proposed
method with mixed selection. Scribble only increment costs less but also severely underperforms.

6.4 Analysis

Annotation cost reduction Video understanding tasks generally require large annotation budget

since each video requires multiple frames annotated. The total annotation budget for UCF-101

with boxes is 4,686 man hours for 2284 training videos from table 6.1 and for J-HMDB with

masks is 487 man hours for 666 training videos from table 6.2. This high cost limits dataset scaling

compared to image and language domains. Our approach uses 171 man hours (vs 235 hours [25],

938 hours [56]) for UCF-101 and 40 man hours (vs 74 hours [10], 146 hours [56]) for J-HMDB

and beats prior weakly-supervised work that use more budget for fewer annotated frames.

Selection approach We provide a quantitative method to select annotations based on the training

93



Figure 6.7: Samples with varying annotation types from our method. 1st row: As GolfSwing is
easy class, it only needs video level tag to train this sample. 2nd row: Skating is medium hard
class, using more scribble annotations. 3rd row: BasketballDunk is very hard class and uses both
box and scribble annotation.

needs (video tags → scribbles → box/mask) as shown in figure 6.7. Using AL selection, we pick

samples based on their uncertainty (high to low) for box/mask to tag annotation. We show the

selected frame distribution for all 24 classes using the proposed approach for UCF-101 in figure

6.8. We sort the classes from high to low based on their v-mAP score @ 0.5 IoU from left to

right. We notice that classes with lower performance often end up needing more box annotations

(highest quality and highest cost). These are harder classes for the model to learn action detection

and thus demand more accurate annotations. For classes with higher performance on the left (such

as SoccerJug., Skating, HorseRiding, and GolfSwing), we notice that more scribble and video tag

annotations are selected. Since these classes are easier to learn, the annotation type can be of lower

quality and thus also be of lower cost. We observe a mix of box and scribble for classes with

average scores in the middle. We demonstrate that AL based selection is a more meaningful use
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Figure 6.8: Per class annotation distribution for UCF-101. We show the performance of all 24
classes along with the total frames in each class for each type of annotation. The frame count is
shown in left axis in thousands (K) and the v-mAP @ 0.5 is shown in right axis. We scale the
’video tags only’ by 10 to make it more visible.

of the annotation budget as we can extract more out of the same annotation budget compared to

random selection. Qualitative visual of proposed approach shown in figure 6.9 and 6.10.

6.5 Summary

In this chapter, we present a unified video action detection model that can be trained with differ-

ent annotation type (box/mask, scribble, tag) under omni-supervision paradigm. It consists of a

learnable 3D superpixel module which is jointly trained with the action detection model and helps

in generating pseudo-labels from sparse annotations for effective model training. We also demon-

strate that proposed model trains better with AL based frame selection, utilizing the available

annotation budget better by selecting appropriate frames for the respective annotation type.
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Figure 6.9: Demonstration of our proposed superpixel based pseudo-label generation on UCF-101.
We use output of the superpixel (1st col) to get regions that overlays with scribble (2nd col). This
is then used to generate pseudo-bounding box for training (3rd col) which trains the network to
make action prediction (4th col). The actual ground truth is shown in last column. We show the
full 3D superpixel label in last row with the pseudo-label in green highlight.
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Figure 6.10: Demonstration of our proposed superpixel based pseudo-label generation on J-
HMDB. We use output of the superpixel (1st col) to get regions that overlays with scribble (2nd
col) and used for network training to predict actions(3rd col). The actual ground truth is shown
in last column. We show the full 3D superpixel label in last row with the pseudo-label in blue
highlight.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

We provide concluding remarks for this dissertation and list the future direction this work can be

expanded to.

7.1 Conclusion

In chapter 3, we improve the model efficiency for video action detection in terms of inference

speed and model size while improving performance. We propose an end-to-end model for single-

shot actor-action detection in videos which does not rely on thousands of proposals for accurate

detection. Instead, our proposed model performs a joint pixel-level prediction for actors and actions

which removes reliance on external proposal generator reducing network size and computation

time. Furthermore, the joint pixel-level prediction approach uses local and global spatio-temporal

context to predict correct class for each pixel and improves detection performance. As a result,

we are able to perform quicker video actor-action detection on A2D and VidOR datasets with

competitive performance.

In chapter 4, we explore improving video understanding from sparse annotations in an effort to

reduce the large annotation cost for video dataset. We identify the limitation on video action

detection using sparse spatio-temporal annotation. We find that for sparse annotation setting, it

is vital to have good representation of the training set such that the model can learn underlying

task. We propose an active learning based frame selection approach, which uses video specific

properties to improve selection of high utility frames under a given budget. We also provide a

simple and effective loss formulation that can be used to train existing video action detection model

with sparse annotations. We demonstrate that this proposed active learning selection approach
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combined with the novel loss formulation enables reduction in annotation cost for several datasets

and video understanding tasks.

In chapter 5, we extend video understanding from sparse annotations further by doing selection

at frame as well as video level. We provide a novel hybrid active learning approach which uses

cluster information to select high utility videos for annotation and then annotate only few useful

frames within those videos. We also improve on the loss formulation to give each pixel individual

weight during loss computation based on the spatio-temporal consistency of pseudo-label. Our

approach allows comparison across video from different class with different length and complexity.

We evaluate the proposed approach on two different action detection datasets demonstrating its

effectiveness in learning from limited labels with minimal trade-off on the performance.

Lastly, in chapter 6, we explore the relation between different annotation types, their cost, and

their effect on video action detection learning. We provide a omni-supervised training approach

for video action detection where several annotation types are used together to train the model. We

show how sparse annotation of various types (box, mask, scribble, tag) can be used to train video

model effectively while reducing annotation cost. We provide an active learning approach which

can help rank samples for different annotation type based on their usefulness. We also provide a

learnable 3D superpixel module which is jointly trained with the action detection model, which is

used to generate pseudo-labels from sparse anntation of different types. We show that the active

learning based ranking allows annotating less informative samples with lower-cost annotation and

the 3D superpixel pseudo-label helps train video action detection model for two different video

action detection dataset.
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7.2 Future work

Video understanding is a challenging topic that needs to be expanded meticulously for integration

in everyday tasks. While we have explored and presented several methods for efficient and cost

effective video understanding, there are a lot of unexplored aspects which can be studied to expand

the findings of this work. Here we outline some of the possible avenues for each of our work.

Chapter 3 provides an efficient model for joint actor-action detection. While it avoids proposal

generation and saves computation cost, an interesting direction for future work can be to do in-

stance level detection. Detecting individual instances of actors/actions from same class in a scene

is challenging with applications in crowded scene analysis, tracking, and automation. The pro-

posed approach does not handle such conditions as the pixel-wise prediction has no notion of

separate instance. Our approach is designed for global-local feature understanding for each pixel

to predict the correct actor-action pair, and as such has no loss for identifying correct instance.

Some feasible methods for making the approach instance-aware is by associating all foreground

detections with unique object entities, which can be achieved using edge or center association in

an efficient manner.

Chapter 4 and 5 explores various efficient annotation techniques which reduces redundancy and

helps annotate high utility samples for video action understanding task. In chapter 5 we explore

frame level sample selection which is limited by not being able to compare and rank different

videos against one another. This is due to lack of a fair comparison approach which can account

for the model’s shortcoming for each video with respect to the underlying task. Videos often

have varying action length, number of actors involved, complexity of scene, density of scene with

background, and motion of camera as well as subjects. All of these combined makes comparison

of videos from one class to another challenging. We provide a method to rank videos across classes

and give a solution to this in chapter 6. We also provide methods to use such sparse annotation
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effectively for pseudo-label generation as well as loss computation from those pseudo-labels. One

common challenge for both frame and video level sample selection was on already sparse data.

Existing sparse dataset with 1 frame annotation per second makes using the psuedo-label technique

unreliable, giving rise to cold start problem as the initial models are not able to learn meaningful

features from the video. Future work can explore a more dynamic pseudo-label generation and

loss computation method that uses the motion information to give proper weight to each pseudo-

label. Currently, the video selection and ranking approach in chapter 6 suffers when there is small

or no video for some classes in initial setup. This is a common cold start problem which needs

to be addressed. Since we dont know the labels beforehand, a good solution to this can be to use

semi-supervised approach to use partial unlabeled samples in training earlier models, in an attempt

to enable feature understanding from underrepresented classes.

Chapter 6 studies relation between various annotation type and their utility for video understanding

task and provides an omni-supervised training framework that can use mix of annotation types for

video understanding. This is one of the first work of this type for video understanding, and as such

has many limitations to get a fair baseline for analysing different annotation type. One limitation

is the use of equal proportion of each annotation type in the training set. Ideally, each dataset

will have a different optimum proportion of annotation for each type (box, mask, scribble, tag)

which gives the best results while using least annotation budget possible. Currently there is no

metric to find this optimum proportion of annotations and doing a hyperparameter grid search is

not a practical solution as the dataset is evolving. Thus, a good future direction can be to develop

metrics which also indicate the contribution of each annotation type in the training process which

can help to adjust the proportion of annotation types.

We believe that efficient annotation technique will be valuable to curate and generate high quality

video understanding dataset for complex tasks and that the methods presented in this work can be

further extended to improve the efficiency for annotation techniques.
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Temporal coherence for active learning in videos. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision Workshops, pages 0–0, 2019.

[95] Fabian Caba Heilbron, Joon-Young Lee, Hailin Jin, and Bernard Ghanem. What do i anno-

tate next? an empirical study of active learning for action localization. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 199–216, 2018.

[96] Bishan Yang, Jian-Tao Sun, Tengjiao Wang, and Zheng Chen. Effective multi-label active

learning for text classification. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 917–926, 2009.

[97] Ye Zhang, Matthew Lease, and Byron Wallace. Active discriminative text representation

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,

2017.

[98] Ameya Prabhu, Charles Dognin, and Maneesh Singh. Sampling bias in deep active classifi-

cation: An empirical study. arXiv preprint arXiv:1909.09389, 2019.

[99] Dilek Hakkani-Tür, Giuseppe Riccardi, and Allen Gorin. Active learning for automatic

speech recognition. In 2002 IEEE international conference on acoustics, speech, and signal

processing, volume 4, pages IV–3904. IEEE, 2002.

114



[100] Soumya Roy, Asim Unmesh, and Vinay P Namboodiri. Deep active learning for object

detection. In BMVC, page 91, 2018.

[101] Jiwoong Choi, Ismail Elezi, Hyuk-Jae Lee, Clement Farabet, and Jose M Alvarez. Ac-

tive learning for deep object detection via probabilistic modeling. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 10264–10273, 2021.

[102] Tianning Yuan, Fang Wan, Mengying Fu, Jianzhuang Liu, Songcen Xu, Xiangyang Ji, and

Qixiang Ye. Multiple instance active learning for object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5330–5339,

2021.

[103] Alireza Fathi, Maria Florina Balcan, Xiaofeng Ren, and James M Rehg. Combining self

training and active learning for video segmentation. In Proceedings of the British Machine

Vision Conference (BMVC), 2011.

[104] Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-Yu Liu, Alexander G Schwing, and

Jan Kautz. Ufo2: A unified framework towards omni-supervised object detection. In Euro-

pean Conference on Computer Vision, pages 288–313. Springer, 2020.

[105] Pei Wang, Zhaowei Cai, Hao Yang, Gurumurthy Swaminathan, Nuno Vasconcelos, Bernt

Schiele, and Stefano Soatto. Omni-detr: Omni-supervised object detection with transform-

ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 9367–9376, 2022.

[106] Jia Xu, Alexander G Schwing, and Raquel Urtasun. Learning to segment under various

forms of weak supervision. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 3781–3790, 2015.

115



[107] Liangyu Chen, Tong Yang, Xiangyu Zhang, Wei Zhang, and Jian Sun. Points as queries:

Weakly semi-supervised object detection by points. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages 8823–8832, 2021.

[108] Zhenheng Yang, Dhruv Mahajan, Deepti Ghadiyaram, Ram Nevatia, and Vignesh Ra-

manathan. Activity driven weakly supervised object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2917–2926,

2019.

[109] Zhongzheng Ren and Yong Jae Lee. Cross-domain self-supervised multi-task feature learn-

ing using synthetic imagery. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 762–771, 2018.

[110] Jasper Uijlings, Stefan Popov, and Vittorio Ferrari. Revisiting knowledge transfer for train-

ing object class detectors. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1101–1110, 2018.

[111] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with an

application to stereo vision, volume 81. Vancouver, 1981.

[112] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari, and Cordelia Schmid. Action

tubelet detector for spatio-temporal action localization. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4405–4413, 2017.

[113] Yaxiong Wang, Yunchao Wei, Xueming Qian, Li Zhu, and Yi Yang. Ainet: Association

implantation for superpixel segmentation. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 7078–7087, 2021.

116



[114] Fengting Yang, Qian Sun, Hailin Jin, and Zihan Zhou. Superpixel segmentation with fully

convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pages 13964–13973, 2020.

[115] Aayush J. Rana and Yogesh S. Rawat. We don’t need thousand proposals: Single shot

actor-action detection in videos. In Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision (WACV), pages 2960–2969, January 2021.

[116] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Robert Fergus. Deconvolutional

networks. In proceedings of the IEEE International Conference on Computer Vision, vol-

ume 10, pages 2528–2535, 2010.

[117] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking

atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587,

2017.

[118] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.

Encoder-decoder with atrous separable convolution for semantic image segmentation. In

Proceedings of the European Conference on Computer Vision (ECCV), pages 801–818,

2018.

[119] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Be-

longie. Feature pyramid networks for object detection. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 2117–2125, 2017.

[120] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid

networks. arXiv preprint arXiv:1901.02446, 2019.

[121] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso.

Generalised dice overlap as a deep learning loss function for highly unbalanced segmen-

117



tations. In Deep learning in medical image analysis and multimodal learning for clinical

decision support, pages 240–248. Springer, 2017.

[122] François Chollet et al. Keras, 2015.

[123] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[124] Xindi Shang, Donglin Di, Junbin Xiao, Yu Cao, Xun Yang, and Tat-Seng Chua. Annotating

objects and relations in user-generated videos. In Proceedings of the 2019 on International

Conference on Multimedia Retrieval, pages 279–287. ACM, 2019.

[125] Jie Chen, Zhiheng Li, Jiebo Luo, and Chenliang Xu. Learning a weakly-supervised video

actor-action segmentation model with a wise selection. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 9901–9911, 2020.

[126] Prateek Jain and Ashish Kapoor. Active learning for large multi-class problems. In 2009

IEEE Conference on Computer Vision and Pattern Recognition, pages 762–769. IEEE,

2009.

[127] Xin Li and Yuhong Guo. Adaptive active learning for image classification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 859–866, 2013.

[128] Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann. Multi-

class active learning by uncertainty sampling with diversity maximization. International

Journal of Computer Vision, 113(2):113–127, 2015.

[129] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. In

International conference on learning representations, 2018.

118



[130] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-

dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
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