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ABSTRACT

There has been significant interest in spin systems involving two or more coupled spins as

a single logical qubit, particularly for scalable quantum computing architectures. Recent

realizations include the so-called singlet-triplet qubits and coupled magnetic molecules. An

important class of coupled-spin systems, the three-spin paradigm for spin greater than 1/2,

has not yet been fully realized in scalable qubit architectures. In this thesis, I develop the

theoretical framework to investigate a class of tripartite spin models for realistic systems.

First, I model a spin 1/2 particle (e.g., an electron) and two spin 1 particles (in a dimer

arrangement) coupled with an exchange interaction. I find that if the two spin particles

possess zero-field magnetic anisotropy, there exists resonance conditions that enable read,

manipulate, and write operations on the representative qubit using the electron. Next, I gen-

eralize this result for any spin S, and describe how the resonance conditions change based

on the type of exchange coupling, magnetic anisotropy, and magnitude of applied magnetic

fields. The rest of the thesis is dedicated to utilizing the tools described in the framework

to uncover the properties of potential scalable quantum architectures. To guide the corre-

spondence between experiment and model Hamiltonians of effective tripartite spin systems

connected to leads, I investigate the transport properties of a three-terminal quantum dot

coupled to a magnetic molecular dimer using the generalized master equation. I then model

both steady state and transient phenomena using equilibrium and non-equilibrium Green’s

functions (NEGF), and comment on the applicability of a newly-developed NEGF-derived

quantum master equation. Finally, I characterize two examples of novel quantum systems:

the spin qubit candidate h-BN VB
– and the thin film Fe[H2B(Pz)2]2(bipy) spin-crossover

molecule.
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EXTENDED ABSTRACT

There has been significant interest in spin systems involving two or more coupled spins

as a single logical qubit, particularly for scalable quantum computing architectures. Recent

realizations include the so-called singlet-triplet qubits, many-electron quantum dots, coupled

atom qubits utilizing scanning tunneling electron microscopy and electron spin resonance,

and coupled magnetic molecules. An important class of coupled-spin systems, the three-

spin paradigm for spin greater than 1/2, has not yet been fully realized in scalable qubit

architectures. A theoretical framework is needed to characterize these novel systems and

provide guidance on the constituents for new devices.

In this thesis, I develop the theoretical framework to investigate a class of tripartite

spin models for realistic systems. First, I model a spin 1/2 particle (e.g., an electron) and

two spin 1 particles (in a dimer arrangement) coupled with an exchange interaction. I find

that if the two spin particles possess zero-field magnetic anisotropy, there exists resonance

conditions that enable read, manipulate, and write operations on the representative qubit

using the electron. Next, I generalize this result for any spin S, and describe how the

resonance conditions change based on the type of exchange coupling, magnetic anisotropy,

and magnitude of applied magnetic fields. The rest of the thesis is dedicated to utilizing the

tools described in the framework to uncover the properties of potential scalable quantum

architectures.

To guide the correspondence between experiment and model Hamiltonians of effec-

tive tripartite spin systems connected to leads, I investigate the transport properties of a

three-terminal quantum dot coupled to a magnetic molecular dimer using the generalized

master equation. The results show signatures of each term of the model Hamiltonian in

differential conductance measurements. I then model a toy model of a steady state two

magnetic impurity system anisotropically exchange-coupled with electrons in a 1D wire us-
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ing first-quantized Green’s functions. I extend these results with a representative three-site

tight-binding model to predict transient phenomena using non-equilibrium Green’s functions

(NEGF), and comment on the applicability of a newly-developed NEGF-derived quantum

master equation. Finally, I characterize two examples of novel quantum systems: the spin

qubit candidate h-BN VB
– using first-principles calculations and quantum defect embed-

ding theory, and the thin film Fe[H2B(Pz)2]2(bipy) spin-crossover molecule, a candidate for

spintronics applications, using the latest generation ab initio + NEGF software.
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CHAPTER 1: INTRODUCTION

Multipartite spin systems are an attractive option as a building block of scalable quantum

computer architectures for use in quantum information science (QIS). Recent two-spin real-

izations include the so-called singlet-triplet qubit which utilize two quantum dots exchange

coupled together, and whose Bloch sphere representation involves the singlet and triplet

spin states [1–3]. The use of three-spin particle scenarios for QIS is growing, like the recent

work on triple quantum dots using a singlet-triplet qubit coupled with a Loss-DiVincenzo

qubit [4, 5], and effective three-center molecular magnet qubits [6]. In this introduction,

I will describe a theoretical approach for characterizing a class of three-spin systems, the

exchange-coupled three-spin system with magnetic anisotropy (MA), in the context of their

use in QIS and other quantum architectures such as spintronics. First I will summarize key

concepts in QIS architectures and provide some physical examples. The model Hamiltonian

derived from these physical examples will then be explained, along with a brief exploration

into the origins of the spin parameters used in the model. I will then comment on the use of

ab initio and non-equilibrium Green’s function techniques to uncover properties of tripartite

spin systems, before providing an outline for the rest of the thesis.

1.1 Principles of QIS Architectures

To understand why different spin systems have been explored for QIS applications, one must

examine the principal unit in quantum computing: the qubit. In classical computing, the

principal unit (the computational bit) possesses the ability to switch between an off (0) and

on (1) state. In modern computational architectures, the states of a bit often correspond

to fine-tuned voltages operated at the nanoscale. Qubits are the quantum extension of the

classic bit, and in principle can be made from any two-level system, provided that the states

1



of the qubit can span any superposition of the two levels, |ψ⟩ = α |0⟩+β |1⟩, where α, β ∈ C

describe the mixing and relative phase of the two states. The magnitudes of the coefficients

are bounded by |α|2+|β|2 = 1 for a two-state system without decoherence, and are in general

bounded by 0 ≤ |α|2 + |β|2 ≤ 1 if other unwanted states are energetically accessible.

The prototypical example of a qubit system is the spin qubit using quantum dots,

or the “Loss and DiVincenzo” qubit [7]. The two levels of the Loss and DiVincenzo qubit

are the two possibilities of the magnetic quantum number associated with the spin of an

electron |ms = ±ℏ/2⟩ trapped in a quantum dot. For the Loss and DiVincenzo qubit, it was

theorized that the use of applied fields, such as a pulsed magnetic field, could enable access to

a particular superposition of states for a single qubit, i.e., to perform a single qubit operation.

In general, quantum computing exploits the properties of entanglement between two or more

qubits, using qubit operations to access a particular entanglement state [8]. Entanglement

is a feature of composite quantum systems. Composite quantum systems are those in which

the composite Hilbert space Hcomp is a tensor product of the Hilbert spaces belonging to

each object: Hcomp = H1 ⊗ H2 ⊗ ...Hn. The general state |χ⟩ belonging to the composite

system can then be expressed as a complex superposition of components of the Kronecker

outer product of each state |ψ⟩i, e.g., for a two object system |χ⟩ =
∑

ij cij |i⟩1 ⊗ |j⟩2 for

cij ∈ C. If the composite system state cannot be decomposed into a product state of two

objects, i.e., |χ⟩ ≠ |ψ⟩1 ⊗ |ψ⟩2, then the |χ⟩ state is considered an entangled state.

For useful quantum computers, David P. DiVincenzo developed criteria for scalable

quantum architectures [9]. The five criteria are a scalable and well-defined Hilbert space

control, a state preparation method, low decoherence (i.e., long qubit lifetimes), controlled

unitary transformations through universal quantum gates, and a state-specific quantum mea-

surement mechanism. Several quantum architectures have been explored, with some better

suited to particular DiVincenzo criteria than others. For example, optical cavity quantum

computers have coherence times on the order of 10 µs and qubit operation times on the order
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of 10 fs, while quantum dots have coherence times on the order of 10 µs and operation times

on the order of ns [8].

One limitation of the spin qubits is the factors that destroy the entanglement between

the qubits. The primary sources of this decoherence are spin-lattice interactions and spin-spin

interactions. These interactions are characterized by relaxation times, T1 and T2 respectively.

If one chooses to utilize spin qubits, one must perform a quantum operation before either

sources of decoherence win over. Several schemes, such as coupled magnetic molecules, and

coupled quantum dots, have been developed to tackle spin decoherence for single logic qubits

to prolong their lifetimes, but there is still much work needed to find a specific platform that

both protects against decoherence and maintains the ability to scale the architecture to large

number of coupled qubits.

1.2 Examples of Physical Systems

As mentioned in the introduction paragraph, there has been recent progress in realizing

three-spin particle scenarios. There are several candidates for the class of exchange-coupled

tripartite spin systems with MA that may be useful for quantum architectures. Magnetic

molecules have been identified as a possible qubit because of the possible protection from

decoherence due to the surrounding spin environment [10]. Magnetic molecules have also

been a focus for quantum devices beyond QIS. Some useful properties for those other ap-

plications include tailorable ligands which offer chemical customization, slow relaxation of

magnetization below a critical block temperature, large MA, and magnetic hysteresis that

is statistically protected against thermal excitations [11]. Dimer molecular magnet systems,

composed of two metal centers, in principle should combine the desirable magnetic prop-

erties of single molecular magnets with tailored asymmetry of either the magnetic centers

or choice of ligands. The creation of asymmetry is important to implementing controllable
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time-irreversible operations. There has been some work on exploring dimer molecules for

this purpose, such as two Cr7Ni rings [6, 12]. The effective tripartite spin molecular magnet

consisting of two Cr7Ni rings and a Cu ion has also been synthesized [6].

The effective exchange-coupled tripartite model, however, is not just constrained to

magnetic molecules. Examples include three magnetic atom structures accessed using scan-

ning tunneling microscopy and electron spin resonance [13] and triple quantum dots [4, 14].

A combination of these physical models, such as a quantum dot or addressable magnetic

atom connected to a molecular magnetic dimer, could provide the necessary spin ingredients

to utilize the resonance conditions important to QIS found in Chapter 2 and 3. As a step

towards identifying which systems would work best, I next explore the properties of the

mentioned physical systems that can be predicted using model Hamiltonians.

1.3 Model Spin Hamiltonians and Origin of Spin Parameters

One has the option of several model Hamiltonians to describe the physical scenarios of the

prior section. As a starting point for this thesis, I first choose the popular Hamiltonian

model for magnetic molecules that incorporates the effective exchange coupling and effective

MA for each giant-spin approximated molecular metal center [10],

Ĥdimer = D
(
Ŝz
2 Ŝ

z
2 + Ŝz

3 Ŝ
z
3

)
+ JzŜ

z
2 Ŝ

z
3 + Jxy

(
Ŝx
2 Ŝ

x
3 + Ŝy

2 Ŝ
y
3

)
+

3∑
i=2

giµBŜi ·B. (1.1)

Here Si is the spin moment of particle i, D is the effective axial MA of each spin, Jz is the

exchange coupling between the spins along their z axis projection (aligned with respect to

the MA axis), and Jxy is the exchange coupling between the spins in the plane perpendicular

to the MA axis. The last term in Eq. (1.1) is easily identified as the Zeeman term, with

effective g-tensor gi for spin particle i, µB is the Bohr magneton and B is a state magnetic

field. The origins of the first two terms will be described in the next two sections. The
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electron is then added to this dimer, and looking only at the spin space of the electron,

interacts initially to the applied magnetic field,

Ĥelectron = g1µBŜ1 ·B. (1.2)

The last ingredient in the model spin Hamiltonian is the interactions of the electron with

the dimer through an exchange term that initially neglects the momentum components of

the electron,

Ĥdimer-electron =
1

2

∑
µ,µ′

J1iŜi · d̂†µ,iσ̂µ,µ′ d̂µ′,i, (1.3)

where µ is a spin index for particle 1, σ̂µ,µ′ is the corresponding µ, µ′ matrix element of

the s = 1
2

Pauli matrix, and d̂†µ,i/d̂µ,i represents (in second quantization language) the cre-

ation/annihilation operator of a state in which particle 1 is bound to particle i. The total

spin Hamiltonian is,

Ĥtotal = Ĥdimer + Ĥelectron + Ĥdimer-electron (1.4)

Next, I will describe the origins for two classes of terms: exchange coupling and MA.

1.3.1 Exchange Coupling

The second and third term in Eq. (1.1) and Eq. (1.3) describe a spin exchange interaction

between two spin particles. At its core, the exchange interaction is a quantum mechanical

one that originates from the indistinguishability of localized particles. There are different

types of exchange coupling that can manifest in an atomic system [15]. As an example, one

can construct a wave function that is built from two one-electron eigenstates ψ(r)χ(ms) (i.e.,

a two-electron Slater determinant) for spatial part ψ and spin part χ with eigenvalues α and
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β,

Ψαβ(r1,msα; r2,msβ) =
1√
2

∣∣∣∣∣∣∣
ψα(r1)χ(msα) ψα(r2)χ(msα)

ψβ(r1)χ(msβ) ψβ(r2)χ(msβ)

∣∣∣∣∣∣∣ . (1.5)

When the Coulomb interaction,

ĤU =
1

|r̂1 − r̂2|
, (1.6)

is expressed in this basis, one finds two types of integrals that appear in the Hamiltonian

representation. The first integral type is the Coulomb integral,

Uαβ =

∫
dr1

∫
dr2

|ψα(r1)|2|ψβ(r2)|2

|r1 − r2|
, (1.7)

while the second type is the exchange integral,

Jαβ =

∫
dr1

∫
dr2

ψ∗
α(r1)ψβ(r1)ψ

∗
β(r2)ψα(r2)

|r1 − r2|
. (1.8)

Diagonalizing the interaction Hamiltonian expressed in the two-electron Slater determinant

results in four eigenstates, one that is triply degenerate (the so-called “triplet” states) with

eigenenergy Uαβ−Jαβ and another eigenstate (the “singlet” state) with eigenenergy Uαβ+Jαβ.

In this way, the interaction of the two electrons will always result in a shift of the energy by

the Coulomb integral Uαβ and the exchange integral ±Jαβ.

One can also extend the idea of interacting electron orbitals to electrons moving

between localized “sites”, e.g., the Hubbard model [16]. In the Hubbard model, the kinetic

movement of the electron between the sites are accounted for by “hopping” terms that are

parameterized by the tunneling parameter t. A localized onsite Coulomb repulsion U is also

6



included. In the two-site spin Hubbard model, ignoring the onsite chemical potential, the

Hamiltonian has the form,

ĤSH = −t
∑
σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)
+ U (n̂1↑n̂1↓ + n̂2↑n̂2↓) , (1.9)

where ĉ†iσ creates an electron with spin σ at site i, and n̂iσ ≡ ĉ†iσ ĉiσ is the number operator.

The eigenenergies of this Hamiltonian are ε = 0, U , and (U ±
√
U2 + 16t2)/2. By assuming

U is very large, one can downfold onto a low energy Hilbert space by projecting out the

high energy states (in a manner similar to what is done for the three-spin Kondo model in

Appendix A). The two lowest eigenenergies in this downfolded space are ε = 0 and −4t2/U

which correspond to the triplet and singlet states, respectively. The exchange energy due to

the singlet-triplet splitting is thus J = 4t2/U . Additionally, the downfolded Hamiltonian,

upon using a suitable transformation of the electron operators to spin 1/2 operators Si ≡

ĉ†µ,iσ̂µ,µ′ ĉµ′,i and using the definition of the exchange energy, is,

ĤSH,downfold = J

(
Ŝ1 · Ŝ2 −

1

4
n̂1n̂2

)
. (1.10)

This form of the exchange interaction is derived from the direct interactions of the

electrons between orbitals, and is referred to as “direct” exchange. One can also start with

the Anderson model [17] of electrons interacting with the d orbitals of metal impurities, and

perform a Schrieffer-Wolff transformation [18] to recover a Kondo Hamiltonian [19] of the

form,

ĤK =
∑
kσ

εkĉ
†
kσ ĉkσ − JŜ · ŝ, (1.11)

where J is the Kondo exchange coupling constant, S is the spin of the impurity, and s is the

7



electron spin density at the impurity site. There are other exchange mechanisms that are

possible such as superexchange and ferromagnetic superexchange, which involves an electron

hopping through an intermediate orbital, and double exchange, which is a combination of

the direct exchange and Coulomb exchange detailed previously [15]. Extending the two-

spin particle results of this section to periodic systems enriches the physics that can be

explored, resulting in a full Hubbard model, and the well-known Heisenberg model (which is

the downfolded Hubbard model in the limit of large U). In all of these models, an effective

exchange coupling constant is present that quantifies the exchange interaction.

It is important to note that the exchange constants have been derived in this section

to be isotropic because of the one-dimensional nature of the hopping elements and spherical

potential in the case of the Coulomb exchange. In principle, the interactions need not be

isotropic. In certain materials, such as α-Fe2O3, one may need complex exchange terms

such as the Dzyaloshinski-Moriya interaction [20, 21] to model their energetics. In the next

section, I will explore one kind of anisotropy in magnetic systems: an intrinsic magnetic

zero-field anisotropy.

1.3.2 Magnetic Anisotropy

The MA in Eq. (1.1) describes the energetic preference of each spin to a magnetic axis. In

general, MA in a solid material is a description of how that material’s magnetic properties

differ depending on the axis chosen from a fixed frame within the solid. For example, if the

solid is known to be more easily magnetized along a single axis, the material is said to possess

MA along this “easy” axis. This property is intrinsic to the material, and exists without an

applied magnetic field. If the solid is easily magnetized along two axes, the material is said

to possess an “easy” plane.

The origins of MA can differ depending on the spin system. Jahn-Teller distortions

are sometimes responsible for the MA in magnetic molecules [22, 23]. On-site interactions
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between atoms in two states in ultra-cold optical lattices [24] can also induce an effective

MA. This thesis utilizes a form of MA whose origin is most likely to be found for molecular

magnets connected to metallic leads or on surfaces, defected periodic solids, and atoms on

surfaces: spin-orbit coupling.

MA in periodic solids arises from the coupling between the orbital motion of the solid’s

electrons in a potential gradient (such as the atomic lattice potential) and the spin of those

electrons [25]. This spin-orbit coupling leads to symmetry breaking where certain directions

of the magnetization is preferred. In the atomic energy point of view, e.g., an electron in the

spherically symmetric potential of the hydrogen atom, the spin-orbit coupling Hamiltonian

is,

Ĥso = (ge − 1)
µB

ℏmec2
1

r

∂V (r)

∂r
L̂ · Ŝ, (1.12)

where ge is the g-factor of the electron, µB is the Bohr magneton, ℏ is the Plank constant,

me is the mass of the electron, e the charge of the electron, c is the speed of light, V (r) is

the electric potential of the electron, L̂ is the angular momentum of the electron, and Ŝ is

the spin angular vector of the electron. In extended systems, the potential gradient ∂V (r)
∂r

is

derived from the atomic lattice potential, and the spin-orbit interaction takes the form of,

Ĥso;extended = ξL̂ · Ŝ (1.13)

where ξ is a spin-orbit parameter, L̂ is the orbital angular momentum operator, and Ŝ is the

spin operator. By expanding the spin-orbit Hamiltonian in an extended system in the basis

of orbital, spin, and momentum quantum numbers, the change of total energy of the system

9



is calculated in second-order perturbation theory (and neglecting spin flip terms) to be [26],

∆E ≈ 1

4
ξŜ · [⟨L↑⟩ − ⟨L↓⟩] , (1.14)

where Lσ is the orbital moment vector for the spin band σ, and it has been projected onto

the magnetization direction Ŝ (not to be confused with the spin operator Ŝ).

The notion of energetic preference along a direction within the solid can be generalized

and described by the effective spin Hamiltonian,

Ĥma =
∑
k∈Z

k∑
q=−k

Aq
kÔ

q
k(Ŝ), (1.15)

where Aq
k ∈ R is an associated coefficient to the hermitian operator Ôq

k of rank k for spin

operator Ŝ, with q-fold symmetry about the axial direction [27]. The collection of these oper-

ators are called the extended Stevens operators (ESOs). The components of these spherical

and tesseral tensor operators Aq
k has been explored for arbitrary rank k and spin S. As an ex-

ample, the MA Hamiltonian term of Eq. (1.1) is related to the component of the second-order

ESO B0
2 minus a constant,

B0
2Ô

0
2 = 3Ŝ2

z − S(S + 1). (1.16)

The use of ESOs is ubiquitous in model Hamiltonians for molecular magnets, for example in

the giant spin description of single molecule magnets [28, 29].

1.4 Application of Ab Initio and Transport Theories to Tripartite Spin Systems

Beyond the implicit inclusion of spin-orbit coupling in the magnetic anisotropy terms, so far

there is no other information on the electronic aspects of the spin Hamiltonian in Eq. (1.1)
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and Eq. (1.3). These missing elements may be necessary for an accurate description of

physical systems. There is also no identification of the source of the electron. Even with

the aforementioned toy spin model, there are significant physics that can be teased out for

QIS purposes, as is investigated in Chapter 2 and 3. Once one determines the physical

scenario, the natural progression of questions are 1. how to obtain the parameters for the

model Hamiltonian so that it appropriately predicts magnetic properties, and 2. how does

one take into account the orbital and electronic degrees of freedom, which will undoubtedly

impact the dynamics of a realistic qubit? While the former is not investigated in this thesis, I

explore the latter through several methods, including generalized master equations (GMEs),

ab initio density-functional theory (DFT), and both Green’s function and non-equilibrium

Green’s function (NEGF) techniques.

1.4.1 Master Equation Methods

To uncover transport properties, one can use the GME; of which a formal derivation and

the assumptions used is given in Appendix B. GMEs in general offer a method to predict

the dynamics of open quantum systems embedded in an environmental “bath”. This method

is used in Chapter 4 to explore a three-spin system (a quantum dot coupled to a magnetic

dimer), connected to biased leads and influenced by both a gate and applied magnetic fields.

The inclusion of the density of states in the GME, and the hopping terms that play a role in

the transfer rates via the electrode-molecule coupling, account for the electronic degrees of

freedom. Recent progress has been made to incorporate non-equilibrium Green’s function-

derived transfer rates into similar types of master equations, called quantum master equations

[30, 31]. The use of NEGF-derived transfer rates offer another method to more realistically

treat exchange-coupled tripartite spin systems with magnetic anisotropy coupled to leads;

this advancement is commented on in Chapter 6.
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1.4.2 Density Functional Theory

DFT is used in Chapter 7 to identify important spin excitation properties in the qubit

candidate h-BN VB
– . Standard DFT has its origins in the Hohenberg and Kohn theorem

[32]. DFT primarily works with the ground-state number density distribution n(r) (which is

the electron number density upon multiplication of the electron charge e) and the effective

single-particle Schrödinger equation in the Born approximation called the Kohn-Sham (KS)

equation (in atomic units),

[
−1

2
∇2 +

∫
dr′

n(r′)

|r− r′|
+ v(r) + Vxc(r)

]
ψKS
i (r) = εKS

i ψKS
i (r), (1.17)

where ψKS
i (r) is the i’th KS state, v(r) is the external potential, e.g., from nuclei-electron

interactions, Vxc the exchange correlation potential defined by δExc[n(r)]/δn(r), Exc[n(r)] is

the exchange correlation energy functional, εKS
i is the i’th KS eigenvalue, and the number

density is defined as n(r) =
∑N

i=1

∣∣ψKS
i (r)

∣∣2 with the sum over N electrons. The KS wave

functions are properly normalized to reproduce the total number of electrons within the

volume spanned by the KS equation, and the number density satisfies the Pauli-exclusion

principle for fermions. The KS equation is solved self-consistently because the exchange-

correlation energy Exc is a functional of the number density, which is dependent on the KS

wave functions, which in turn is dependent on the exchange-correlation potential and thus

the exchange-correlation energy. The exchange-correlation energy functional is not known a

priori, and suitable approximations must be made to this functional in order to accurately

model properties of a chosen system.

Standard DFT must be extended in order to predict the electronic structure of spin-

polarized systems. The first extension is the spin-dependent version of DFT, which in the
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collinear form [33] uses spinor KS wave functions,

ϕKS
i (r) →

ϕKS
i,↑ (r)

ϕKS
i,↓ (r)

 . (1.18)

Naturally, collinear spin-polarized DFT must use the number density matrix ραβ with com-

ponents indexed by spin,

ραβ = ϕ∗KS
α (r)ϕKS

β (r). (1.19)

The KS equation is then modified as,

[(
−1

2
∇2 +

∫
dr′

n(r′)

|r− r′|

)
I+ v(r) + Vxc(r)

]ϕKS
i,↑ (r)

ϕKS
i,↓ (r)

 = εKS
i

ϕKS
i,↑ (r)

ϕKS
i,↓ (r)

 , (1.20)

where I is the identity matrix in the spin basis and v now allows for external spin potentials

like magnetic fields. This form of the KS equation requires that the exchange correlation

energy is a functional of the number density matrix, i.e. Exc ≡ Exc[ρ(r)].

As will be shown in Chapter 7, DFT can be used to explore the ground-state prop-

erties of a quantum architecture. To more accurately describe the excited states needed for

quantum architectures, other methods are needed. I provide a brief synopsis of one such

method, quantum defect embedding theory (QDET), in Chapter 7. While these methods

can help guide parameterization of transport models, numerical descriptions of read, manipu-

late, and write operations on a representative qubit or spintronic state cannot be completely

described using DFT or QDET because the processes are inherently time and frequency

dependent. For this problem, one can turn to NEGF methods.
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1.4.3 Non-Equilibrium Green’s Functions

The inherently non-equilibrium problem of excited state dynamics can be explored with

NEGF methods. As described in reference [34], Green’s functions are a method to solve

inhomogeneous differential equations such as the inhomogeneous Schrödinger equation. In

essence, the many-body Green’s functions describe the correlations of operators. Measurable

quantities, such as average particle number, can be extracted once one solves for the many-

body Green’s function. There are several types of many-body Green’s functions, each with

their own advantages and linked to different observables. A review of the Green’s functions

that are used in this thesis are given in Appendix D. In equilibrium (in the sense that the

dynamics does not depend on time, but the difference in times), one can use the fluctuation-

dissipation theorem and a perturbation expansion to solve for energy dependent quantities,

such as the density of states. Solving such problems can be difficult as the problem needs

an identification of the self-energy of a system, which requires choosing which Feynman

diagrams to include in the possibly infinite perturbation expansion.

Assuming that a scheme for the self energy has been determined, predicting the output

of operations on quantum architectures in the time domain is needed. The seminal work of

Yigal Meir and Ned Wingreen brought forth a tractable method to solve the nonequilibrium

problem using nonequilibrium Green’s functions [35]. Their work serves the basis and/or

inspiration of many NEGF codes, including TranSiesta [36–38]. Other methods utilizing

the Meir and Wingreen equations are typically reserved for tractable Hubbard-like models,

like double QDs connected to leads [39]. TranSiesta allows one to use the wave functions

derived from ab initio in a localized basis set and solve the non-equilibrium problem. I

use TranSiesta in Chapter 8 to uncover important properties of the thin film spintronics

candidate Fe[H2B(Pz)2]2(bipy). The aim in the future is to use a combination of DFT+NEGF

tools to adequately characterize quantum operations for the exchange-coupled tripartite spin
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system with MA.

1.5 Outline of Thesis

In this introduction, I have detailed a general theory behind exchange-coupled tripartite

spin systems that contain MA and addressed the problem of how one can implement such

a scheme with a realistic system. The theoretical framework built in this chapter are the

jumping point for the next chapters. In chapter 2, I examine the spin space for one of

the simplest exchange-coupled tripartite spin systems that contains MA: the spin 1 dimer

coupled with an electron. I extend our coupled dimer-electron result to dimer of general

spin S in chapter 3. The results from both chapters prove that there exists necessary, but

not sufficient, resonance conditions for optimal qubit operations utilizing the MA of each

monomer in the dimer, and the exchange coupling of the electron with the dimer. Chapter 4

in effect takes the tripartite spin system and connects it to leads. Utilizing the generalized

master equation approach, I predict signatures of the dimer system within transport spectra,

which can aid in the construction and verification of such a spin system for QIS purposes. In

chapter 5, I describe the first-quantized Green’s function and Lippman-Schwinger approach

to transport for two magnetic impurities. This is contrasted with the two and three-site

tight-binding model NEGF results in chapter 6. Chapter 7 investigates a negatively-charged

boron vacancy in bulk hexagonal boron nitride, a potential spin qubit, using first-principles

calculations and quantum defect embedding theory to identify useful excited states. I then

highlight the utility of transport models such as non-equilibrium Green’s Functions paired

with density functional theory for use in characterizing spin systems such as spin-crossover

molecules in chapter 8, which have been predicted as candidates for spintronics applications.
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CHAPTER 2: ANISOTROPY-EXCHANGE RESONANCE AS A

MECHANISM FOR ENTANGLED STATE SWITCHING

(Adapted from Eric D. Switzer, Xiao-Guang Zhang, and Talat S. Rahman, "Anisotropy-

exchange resonance as a mechanism for entangled state switching." Phys. Rev. A 104,

052434 (2021))

2.1 Introduction

Spin state entanglement plays a key role in many systems, including those considered within

quantum information science (QIS). For example, spin qubits, the coherent superposition

of spin states within quantum objects, make use of entangled spin states for quantum gate

operations [1]. Spin qubits have been explored theoretically and experimentally, notably

in the application of confined electrons in quantum dots fabricated in semiconductors [2–

9] and the search for robust QIS-applicable magnetic molecule systems [10–17]. Molecular

magnets in particular possess an onsite magnetic anisotropy which gives rise to their unique

magnetic properties. Molecular magnets are viable candidates for spin state switching for

QIS purposes because of their long coherence times, the ability to tunnel between spin states

resulting from their magnetic anisotropy, and tailorable ligands [18]. For example, the single

molecule magnet TbPc2 possesses a nuclear spin that is electrically controllable and has long

coherence times [15, 17]. In both of these QIS approaches, the Kondo effect has been found

[19–21], and thus the Kondo or Anderson impurity model [22, 23] is applicable to predict

some features of these systems.

With these considerations, a QIS system that contains onsite magnetic anisotropy

is expected to have a complex interaction between the system’s anisotropy and effective

exchange coupling. While some studies have examined the interplay of exchange coupling
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and onsite magnetic anisotropy for two particles [24], the three-particle case is a qualitatively

different system that has not been fully explored. Some experimental and theoretical studies

have realized multiple-quantum dot scenarios [5–7, 25], or studied the two magnetic impurity

entanglement state dependency of contact exchange interactions with incident electrons [26–

28]. As described in the effectively three spin particle setup in Ref. [29], the strong-coupling

Kondo exchange regime and the weak-coupling spin-orbit interaction regime compete with

each other, resulting in a non-trivial interaction. Outside QIS, a similar balance between

exchange coupling and magnetic anisotropy has been recently found experimentally in a

Mott insulator composed of an ultra-cold optical lattice of 87Rb atoms [30]. In all of these

studies, the exchange coupling mechanism plays a significant role in controlling the system

of interest. Unintended variations in this exchange can cause undesirable effects, and thus a

system must be correspondingly robust against them.

In this work, we explore a general spin model with exchange and magnetic anisotropy

that encompasses these scenarios and investigates the robustness of the spin system by

extending the two-particle case of Ref. [24] to the three-particle paradigm. We consider two

magnetic sites of either S2,3 =
1
2

or S2,3 = 1 in which an exchange interaction is applied either

isotropically or anisotropically between them and the S1 = 1
2

particle. Because we do not

treat the electronic degrees of freedom and instead focus solely on the model’s spin degrees of

freedom, our model is a general one with physical analogs in the recently realized experiments

of three quantum dots [5–7] and ultra-cold optical lattices [30]. As we will show, we find

that for the C18 state space model corresponding to S2,3 = 1, the exchange and anisotropy

interactions lead to a set of necessary conditions on the exchange and magnetic anisotropy

strengths that correspond with perfect non-entangled to entangled state switching in four

smaller SO(2) representation subgroups. We find that at these special resonance conditions,

which we designate as “DJ resonances,” measurement of the coupled particle entanglement

states is possible by measurement of the S1 =
1
2

particle’s spin. We also show the conditions
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J23

S2

S3

S1

J12

D

D

t

J13

Figure 2.1: Schematic of the spin model considered in this work. Particle 2 and 3 are
coupled by an exchange interaction J23. Particle 1 is also coupled to particle 2 and 3 by an
exchange interaction, J12 and J13, respectively. Particle 1 is allowed to hop between particle
2 and particle 3 with hopping strength t.

in which these DJ resonances allow for complete control of appropriately-chosen Bloch vectors

within a subspace of the coupled particles’ total spin space, which is not found for the S2,3 =
1
2

model. We demonstrate conditions for full control of this Bloch vector, and that for a relevant

molecular magnet example, state coherence is robust against anisotropic application of the

exchange coupling.

A representative schematic of the resulting spin model is shown in Fig. 2.1. The spin

Hamiltonian (ℏ = 1) is then,

H = H12 +H13 +H23 +HA +Ht, (2.1)

where each term in the Hamiltonian is explained as follows. Motivated by the application
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of exchange coupling between two coupled dimers [31], the exchange interaction of the two

S2,3 particles is represented by

H23 = JzŜ
z
2 Ŝ

z
3 + Jxy

(
Ŝx
2 Ŝ

x
3 + Ŝy

2 Ŝ
y
3

)
, (2.2)

where Ŝi = (Ŝx
i , Ŝ

y
i , Ŝ

z
i ) is the spin operator for the ith particle, Jz is the strength of the

exchange interaction between particle 2 and 3 parallel to the direction of the magnetic

anisotropy axis, and Jxy is the strength of the exchange interaction between particle 2 and

3 perpendicular to the direction of the magnetic anisotropy axis. When this interaction is

taken to be isotropic, i.e. Jz = Jxy ≡ J23, this equation simplifies to H23 = J23Ŝ2 · Ŝ3. The

interaction of the S1 =
1
2

particle with the S2,3 particles is closely related to the spin portion

of the Kondo interaction, and may be represented by,

H1i =
J1i
2

∑
µ,µ′

Ŝi · d̂†µ,iσ̂µ,µ′ d̂µ′,i, (2.3)

where µ is a spin index for particle 1, σ̂µ,µ′ is the corresponding µ, µ′ matrix element of

the s = 1
2

Pauli matrix, and d̂†µ,i/d̂µ,i represents (in second quantization language) the cre-

ation/annihilation operator of a state in which particle 1 is bound to particle i. In our general

treatment, we allow J12 and J13 to take all values, i.e., we consider both ferromagnetic and

anti-ferromagnetic possibilities.

Additionally, we consider situations in which S2,3 = 1 particles possess an anisotropic

response to applied magnetic fields,

HA = D
(
Ŝz
2 Ŝ

z
2 + Ŝz

3 Ŝ
z
3

)
, (2.4)

where D is a uniaxial anisotropy strength. Our general treatment permits D to span all

values, which allows one to consider both “easy-axis” and “hard-axis” anisotropies. The
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physical origin of the magnetic anisotropy, also called “zero-field splitting”, is dependent on

the manifestation of the S2,3 particles. For example, if the two spin particles refer to magnetic

molecules, the primary source of magnetic anisotropy could be from geometric distortions

(Jahn-Teller distortions) of constituent ions [32]. In the ultra-cold optical lattice context, an

effective magnetic anisotropy is created by direct on-site interactions between atoms in two

states [30].

While we consider the spin interactions of three particles in this work, one can in

principle pursue a more realistic treatment of the three-particle problem by incorporating

the spatial degrees of freedom. If one were to extend our model spatially, the movement

of the particles will impact the time-dependent dynamics of the system non-trivially. The

purpose of this work, however, is to elucidate the spin dynamics of the three-particle model,

which may serve as a necessary, but not sufficient, picture to realize useful control of the

system’s spin states. We balance these considerations by accommodating for Hamiltonian

terms that may not play a key role in spin dynamics, but ultimately may be pivotal in

more realistic contexts. In this light, we follow in the footsteps of other models (such as the

Hubbard model), and include a term that describes the movement of the S1 particle hopping

from the S2 particle to S3 and vice versa. In spin space, this hopping term takes the form,

Ht =
∑
µ

{
td̂†µ,2d̂µ,3 + h.c.

}
, (2.5)

where µ is the spin index for particle 1, and t is the hopping strength.

Incorporating each of the aforementioned Hamiltonian terms, we provide a represen-

tative example of Fig. 2.1. One could imagine a scenario of a magnetic molecule dimer (e.g.,

coupled TbIII ions in a molecular complex) placed on a weakly interacting substrate next to

a quantum dot. Exchange interactions could then be achieved by appropriate gating. The

dynamics of the system, which may involve entangled particle scenarios, is described by the
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density operator ρ in the Schrödinger picture,

i
∂ρ

∂t
= [H, ρ] , (2.6)

where the brackets denote the commutator.

There are various basis sets that uncover different aspects of the dynamics of the

three-spin system. One convenient representation of the Hamiltonian and density operator

can be built from the basis |s,ms⟩, where S = S1+S2+S3. Because we also need to examine

the possible entangled states of the S2,3 particles in anticipation of correlating states within

a qubit representation, we designate a “device” basis with states |s1,m1⟩ |s23,m23⟩. In this

representation, the |s23,m23⟩ states are designated the “coupled particle” basis states.

2.2 Results

We first consider the S2,3 = 1 model and the impact of each term within the total Hamil-

tonian of Eq. (2.1) on the states of the system. We find that the hopping term given in

Eq. (2.5) is diagonal in the spin space, and can therefore be ignored for purposes of examin-

ing the spin dynamics of the system. We remove the hopping term in what follows, though

one may not be able to ignore it when considering a spatial extension of the considered

model. Next, when the exchange Hamiltonians involving S1 are applied anisotropically (i.e.,

J12 ̸= J13), the Hamiltonian connects states between different s23 subspaces in the device

representation and can no longer be block-diagonalized by the s23 subspaces. Instead, the

effective exchange Hamiltonian can be block diagonalized by m values, where Hm is the

block Hamiltonian corresponding to m, and H±5/2 are diagonal. In the H±3/2 subspaces,

the |m1⟩ |s23,m23⟩ =
∣∣±1

2

〉
|2,±1⟩,

∣∣±1
2

〉
|1,±1⟩, and

∣∣∓1
2

〉
|2,±2⟩ states participate, form-

ing three-dimensional subspaces. Similarly, the H±1/2 subspaces contain the interactions

of the
∣∣±1

2

〉
|2, 0⟩,

∣∣±1
2

〉
|1, 0⟩,

∣∣±1
2

〉
|0, 0⟩,

∣∣∓1
2

〉
|2,±1⟩, and

∣∣∓1
2

〉
|1,±1⟩ states, making the
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subspaces five dimensional. These forms of the effective exchange Hamiltonian will play a

pivotal role in transitions between states with the same m value.

In the S2,3 = 1 model, resonant transitions between states are found in several of the

m subspaces. By inspecting the m = 3
2

subspace, which corresponds with the dynamics of

the |m1⟩ |s23,m23⟩ = {|↑⟩ |2, 1⟩ , |↑⟩ |1, 1⟩ , |↓⟩ |2, 2⟩} states, the block Hamiltonian takes the

form (a common t+ t∗ + Jxy +D + 1
4
Σ1 is removed from the diagonal),

H3/2 =
1

4


0 ∆1 2Σ1

∆1 −8Jxy −2∆1

2Σ1 −2∆1 −3Σ1 + 4D + 4∆23

 , (2.7)

where the notation ∆1 ≡ J12 − J13, Σ1 ≡ J12 + J13 ≡ 2J1, and ∆23 ≡ Jz − Jxy has been

introduced. When the application of the S1 exchange coupling is isotropic by choosing

J12 = J13 = J1 and ∆1 = 0, the |↑⟩ |1, 1⟩ state is no longer coupled to the other states within

this block. Under these conditions, the total Hamiltonian takes the form,

Heff = JzŜ
z
2 Ŝ

z
3 + Jxy

(
Ŝx
2 Ŝ

x
3 + Ŝy

2 Ŝ
y
3

)
+ J1

(
Ŝ1 · Ŝ2 + Ŝ1 · Ŝ3

)
+D

(
Ŝz
2 Ŝ

z
2 + Ŝz

3 Ŝ
z
3

)
. (2.8)

Inspecting the m = 3/2 subspace again, the effective Hamiltonian block becomes,

−1

2

(
D − 3

2
J1 +∆23

)1 0

0 −1

+ J1

0 1

1 0

 . (2.9)

For comparison, the same procedure is repeated for them = 1/2 subspace, where the effective
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Hamiltonian corresponding with the |↑⟩ |1, 0⟩ and |↓⟩ |1, 1⟩ basis takes the form,

1

2

(
D +

1

2
J1 −∆23

)1 0

0 −1

+
1√
2
J1

0 1

1 0

 . (2.10)

If one prepares the initial density matrix of the system to represent a pure |↓⟩ |2, 2⟩

state (e.g., by utilizing a setup similar to Ref. [6, 7] to prepare a particular spin state), an

application of the Rabi formula results in the probability of measuring the |↑⟩ |2, 1⟩ state as,

P|↑⟩|2,+1⟩(t) =

(
J1
Ω

)2

sin2(Ωt), (2.11)

with Rabi frequency,

Ω =

√
J2
1 +

1

4

(
D − 3

2
J1 +∆23

)2

. (2.12)

Transforming between the considered device basis states and their site-basis representation

(|m1⟩ |s23,m23⟩ → |m1⟩ |m2⟩ |m3⟩),

|↓⟩ |2, 2⟩ = |↓⟩ |1⟩ |1⟩ , (2.13)

|↑⟩ |2, 1⟩ = 1√
2
(|↑⟩ |0⟩ |1⟩+ |↑⟩ |1⟩ |0⟩) , (2.14)

one can see that the |↓⟩ |2, 2⟩ state corresponds with a non-entangled coupled particle state,

and the |↑⟩ |2, 1⟩ corresponds with a maximally entangled coupled particle state. A single

measurement of particle 1’s spin orientation determines the entanglement state of particle 2

and 3. This demonstrates the read out of the entanglement state if the measurement of the

S1 spin polarization is taken at any general time t. This also demonstrates preparation of the

entanglement state if the S1 spin polarization is measured at a specific time t corresponding
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Table 2.1: Pure state transitions for the S2,3 = 1 model, where JR is the condition on J1 to
reach resonance, PR is the maximum transition probability amplitude at resonance, and ΩR

is the Rabi frequency at resonance.

State Transitions JR PR ΩR

|↑⟩ |2,+1⟩ , |↓⟩ |2,+2⟩ 2
3
(D +∆23) 1 2

3
|D +∆23|

|↑⟩ |2,−2⟩ , |↓⟩ |2,−1⟩ 2
3
(D +∆23) 1 2

3
|D +∆23|

|↑⟩ |1, 0⟩ , |↓⟩ |1,+1⟩ −2 (D −∆23) 1
√
2|D −∆23|

|↑⟩ |1,−1⟩ , |↓⟩ |1, 0⟩ −2 (D −∆23) 1
√
2|D −∆23|

with a peak in the Rabi oscillation.

As shown in Eq. (2.9) and Eq. (2.10), the magnetic anisotropy D, average exchange

interaction strength J1, and the anisotropy of the S2−S3 exchange interaction ∆23 determine

the Rabi frequency and transition amplitudes of the system. When the Rabi frequencies and

amplitudes are calculated for the other possible two state systems in the S2,3 = 1 model, we

see that particular conditions on the magnitude and sign of J1, ∆23, and D result in resonant

transition probabilities, i.e., each state’s transition probability oscillates with a maximum

amplitude of 1. Table 2.1 lists these possible magnetic anisotropy and exchange strength

resonance conditions, i.e., DJ resonances, for two-state switching. To see the physical

consequence of these DJ resonances, we turn to a representation of the states involved in

a transition, where one can project the two-state systems onto a Bloch sphere. For the

m = 3/2 case, Eq. (2.9) is written suggestively to highlight the effect of the unitary operator

U(t) = e−iHt on the Bloch vector V prepared as (|V|, θ, ϕ) = (1, 0, 0). In the case of Eq. (2.9),

the Bloch vector’s poles are defined by the |↓⟩ |2, 2⟩ and |↑⟩ |2, 1⟩ states. The first term in

Eq. (2.9) corresponds with a rotation (up to a global phase) of the Bloch vector about the

z-axis with a frequency D− 3
2
J1+∆23 and the second with a rotation about the x-axis with

a frequency of 2J1.
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Figure 2.2: Bloch sphere representation of the states within the |↓⟩ |2, 2⟩ , |↑⟩ |2, 1⟩, m = 3
2

subspace when J12 = J13 = J1. (a) When J1 is tuned to a DJ resonance, rotation about
the x-axis is realized. (b) When J1 = 0, (D +∆23)-modulated rotation about the z-axis is
possible.

As shown in Fig. 2.2, at the DJ resonance condition of J1 = 2
3
D + ∆23, the z-axis

rotation vector is 0, and the Bloch vector is rotated solely about the x-axis. In this way,

with appropriate pulsing of the DJ resonance condition, control of the Bloch vector in the

x = 0 plane is realized. Physically, the magnitude of the exchange couplings and magnetic

anisotropy determine the contribution of the device states that are energetically favorable

for that parameter. At the DJ resonance, these state contributions are equally balanced. In

other words, there is equal probability to collapse the device state upon measurement to one

that favors the S1 exchange coupling or to one that favors some sort of anisotropy (magnetic

or between S2 and S3).

Similarly, by turning off the exchange coupling between S1 and the two S2,3 particles,

the x-axis rotation is suppressed, leading to rotation solely about the z-axis with frequency
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D + ∆23. Combinations of these rotations, accomplished by appropriate tuning of J1, can

realize any point on the Bloch sphere. By turning off these interactions, or utilizing another

type of anisotropy (e.g., if one can control ∆23), the dynamics can be stopped after a desired

rotation operation after a given time t. Any relevant operation in the qubit representation

on the Bloch sphere, and by extension any equivalent SU(2) operation, can be accomplished

by utilizing the DJ resonance.

Next, we find that when small values of anisotropy of the exchange coupling are in-

cluded, the numerical calculation of the Bloch vector’s projection on the x-axis oscillates,

resulting in a correspondingly small deviation in its z-axis projection. This originates from

the inclusion of additional off-diagonal states (e.g., see Eq. (2.7)) that correspond with one

of the azimuthal axes in the Bloch sphere. Moreover, these additional states include contri-

butions of the exchange interaction between particle 2 and 3, so that five parameters now

control the rotation of the Bloch vector. Despite these contributions, we find that for certain

parameters, the projection of the Bloch vector onto the z-axis (which directly corresponds

with the switching behavior as measured by the electron) results in a maximal transition

probability above P = 0.995 even when using significant ratios of anisotropy in the appli-

cation of the exchange coupling, in our case ∆1/J1 = 0.072, as shown in Fig. 2.3. When

the anisotropic application of the exchange coupling is larger than the ∆1/J1 = 0.072 ratio

for the set of parameters considered, the projection onto the Bloch sphere’s z-axis is more

distorted, as additional rotations about axes lying in the azimuthal plane are included.

We also do not find a simple relationship between the distortions and the strength of

J23. For example, using the same parameters as Fig. 2.3 and setting J23 = 0.60 cm−1, we find

that the maximal transition probability remains above P = 0.995. When J23 = −0.20 cm−1,

the maximal transition probability falls below P = 0.995, but again rises above P = 0.995

when J23 = −0.40 cm−1. The ∆23 parameter, on the other hand, provides a target from which

to maintain fidelity. Inspection of the DJ resonance conditions indicate that modulating J1 to
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a) b)

Figure 2.3: (a) Probability of measuring a state corresponding with the x̂ (dotted), ŷ
(dashed), and ẑ (solid) unit vectors on the Bloch sphere defined in Fig. 2.2, as a function
of time. The Bloch vector is initially prepared in the state |↓⟩ |2, 2⟩, and an anisotropic
application of the exchange coupling strength has been used (∆1/J1 = 0.072). The param-
eter set has been prepared around the DJ resonance. (b) The corresponding Bloch sphere
representation of the path traced by the Bloch vector over the same time interval considered.
In units of cm−1, the parameters are: J23 = −0.05, J1 = −0.40, D = −0.60, t = 0.05.

account for ∆23 allows one to reach resonance. By looking at the variables that participate in

the dynamics in each block of the Hamiltonian (e.g., Eq. (2.7), we find that these distortions

of the Rabi-like oscillations are enhanced by larger values of Jxy and ∆1, and thus the relative

magnitudes of the five parameters (Σ1, ∆1, Jxy, ∆23, and D) dictate the limit of robustness

of a particular resonance scenario.

The behavior of the S2,3 = 1 model is not possible for S2,3 = 1
2

without additional

spin selection methods. Repeating the same type of procedure and analysis for the S2,3 =
1
2

model, and noting that magnetic anisotropy is not expected for S = 1
2

particles, we find that

the maximum probability amplitude is 8/9 for both transition types. When the two states

involved in a transition are mapped onto a Bloch sphere, the effect of the unitary operator

as a rotation is not about an axis solely on the azimuthal plane, but instead contains a
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component in the polar plane.

2.3 Discussion

Fig. 2.3 forms the primary consequence of the main result of this work, namely that resonance

conditions exist in the S2,3 = 1 model in which preparation and measurement of the coupled

particles’ degree of entanglement can be accomplished by appropriate measurement of the

S1 =
1
2

particle. Furthermore, realization of these DJ resonances is robust against anisotropy

of the exchange coupling between the coupled particles. This is found to not be the case

for the S2,3 = 1
2

model. In particular, as shown in Table 2.1, the DJ resonance conditions

for maximal transitions between non-entangled and entangled states is controlled by the

non-trivial interaction of the exchange coupling, J12 and J13, between particle 1 and 2/3, the

anisotropic exchange coupling interaction ∆23, and the magnetic anisotropy D of particle 2

and 3 in the S2,3 = 1 paradigm.

The DJ resonance conditions indicate a possible avenue for investigating complex

spin spaces and the conditions required to simplify complicated spin Hamiltonians, such as

those that represent the interactions of magnetic monomers or dimers with an electron, or

when applied to three-particle Bose-Hubbard-like spin models such as in ultra-cold optical

lattices. It is interesting to note that because our model has not required particular physical

mechanisms for the exchange coupling and magnetic anisotropy, it is possible that outside of

condensed matter physics, the block diagonalization of similar C18 state systems could result

in isolated SO(2) representation subgroups. The DJ resonance feature introduces a different

level of control in Bloch vector rotation operations. The inclusion of the S1 = 1
2

particle

allows for preparation, manipulation, and reading of the entangled coupled particles.

In quantum dot QIS systems, states are often prepared with applied magnetic fields.

Electrically-controlled methods, however, are attractive because of the relative ease of ma-
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nipulating electric fields within a variety of environmental conditions. The results of our

model predict that single-electron control of entangled particles without any use of applied

magnetic fields is possible. Furthermore, an important conclusion to be drawn from Fig. 2.3

is that the Bloch vector, in time, is forgiving against misalignment, so that this scheme does

not actually require impossible experimental perfection to work.

Last, we note that if the resonances are used for QIS applications, several additional

factors must be incorporated that have not been considered in this paper. As an illustrative

example, the parameters chosen in Fig. 2.3 are inspired by a scenario involving [Mn3]2 [33].

The [Mn3]2 dimer, however, has higher spin, and thus a formula to determine the resonance

conditions for higher S2,3 is desired. For general QIS scenarios, the order of parameters used

in Fig. 2.3 imply that several oscillations have completed within 1 ns. This time is smaller

than relevant spin-lattice and spin-spin relaxation times in most novel molecular magnets

and quantum dots. Tuning the magnitudes of the D, ∆23, and J1 parameters can lead to

faster oscillations. In this way, one can identify the T1 and T2 times for a particular system,

and tailor the search of DJ resonance conditions based on those parameters.

Determining a more complete picture of a transient S1 particle requires the incorpo-

ration of additional degrees of freedom not considered here, such as the S1 particle’s source

and drain. We note, however, that while the source of the S1 particle has not been explicitly

identified, some generalizations of the source (e.g., to a conduction band of a metal) will

not substantially change the overall model or results. On the other hand, if the S1 particle

is not transient, but instead is confined on a surface or within bulk material, additional

exchange coupling interactions between the particle and the confinement source may need to

be accounted for. Regardless of the physical mechanism chosen to realize this model, the use

of these DJ resonances provides an exciting avenue to uncover interesting highly-correlated

spin phenomena.
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CHAPTER 3: ELECTRONIC CONTROL AND SWITCHING OF

ENTANGLED SPIN STATE USING ANISOTROPY AND

EXCHANGE IN THE THREE-PARTICLE PARADIGM

(Adapted from Eric D. Switzer, Xiao-Guang Zhang, and Talat S. Rahman, "Electronic con-

trol and switching of entangled spin state using anisotropy and exchange in the three-particle

paradigm." J. Phys. Commun. 6, 075007 (2022))

3.1 Introduction

The ability to generate and stabilize entanglement within qubits is a prerequisite for usable

quantum information devices. Spin qubits, which are the coherent superposition of spin

states within quantum objects, make use of entangled spin states for quantum gate operations

[1]. This general class of qubits has had much success and is seen as a promising candidate for

scalable quantum information science (QIS) technologies [2]. Some applications, like those

utilizing confined electrons in quantum dots fabricated in semiconductors, use manipulation

of electrostatic gates, electric dipole spin resonance, and applied magnetic fields to generate,

stabilize, and manipulate the entangled states [3–10].

Some of these preparation methods have also been applied to QIS approaches that

utilize molecular magnets [11–18]. Molecular magnets, such as TbPc2 [15] and Mn12 [19],

are complex molecules that possess an onsite magnetic anisotropy because of their larger

magnetic moments that distinguishes them from the S = 1
2

Ising spins. The long coherence

times, the ability to tunnel between spin states enabled by their magnetic anisotropy, and

tailorable ligands [20] make molecular magnets desirable candidates for QIS systems.

In several QIS approaches, exchange coupling plays a key role [21–23], including

the use of the Kondo effect [24] in the switching of entanglement states [25]. Considering
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magnetic anisotropy in molecular molecules, it is important to incorporate both exchange

coupling and magnetic anisotropy within models to predict and realize spin entanglement

scenarios. For example, the study of an electron scattering off of two magnetic impurities

under a contact exchange interaction found coherent transmission scenarios based on the

entangled state of the impurities [26–28]. The study of the interplay of exchange coupling

and magnetic anisotropy goes beyond QIS, and has applications in systems which contain

both of these dynamical interactions, as in ultra-cold optical lattices [29]. While the study

of these two effects has been explored for two particles [30], the community’s drive to realize

scalable QIS devices may require the investigation of multi-particle models similar to those

explored in Ref. [31]. Work that incorporates multiple sites/particles, exchange coupling,

and magnetic anisotropy is ongoing [32, 33].

In this work, we further investigate a general model introduced in Ref. [33] that

incorporates the interplay of exchange coupling with magnetic anisotropy for three stationary

spin particles. In the interest of maintaining wide applicability to contexts outside QIS, we

consider a general model in which two of the spin particles can possess any spin magnitude.

Similar to the concepts used in quantum dot technologies and ultra-cold optical lattices, we

neglect the kinetic components of the physical system, and concentrate solely on the spin

degree of freedom.

As we will show, we find the interactions of the exchange coupling and magnetic

anisotropy terms leads to a set of conditions that correspond with perfect (lossless) switching

between non-entangled and entangled states, named as “DJ resonances,” for any spin S2,3 >
1
2
.

These resonances allow for full control of appropriately chosen Bloch vectors. We contrast

these resonances for two applications of the general model: one in which all three particles

possess a spin S1,2,3 =
1
2
, and another in which two of the particles possess a spin S2,3 = 1. We

also demonstrate that control of the entanglement state can be accomplished by appropriate

spin filtering of the S1 particle for any spin S2,3.
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Figure 3.1: Schematic of the three particle spin model. Particle 2 and 3 are coupled via an
exchange interaction JH, and possess magnetic anisotropy D. Each couple with particle 1
with an exchange interaction JK2 and JK3, respectively. Particle 1 may hop between particle
2 and 3 with hopping strength t.

3.2 Theoretical Method

As shown in the schematic in Fig. 3.1, we consider four interactions: the similar uniaxial

magnetic anisotropy possessed by particle 2 and 3, the Heisenberg-like exchange interaction

between particle 2 and 3, a Kondo-like interaction between particle 1 and 2 and particle 1

and 3, and a hopping term which describes the movement of particle 1 between particle 2

and 3. We also allow the parameters of the system to generically encompass all available

regimes. This is achieved by both allowing the exchange interaction and magnetic anisotropy

parameters to take on all values. In other words, the exchange interactions are allowed to be

ferromagnetic (J < 0) or antiferromagnetic (J > 0), and both hard (D > 0) or easy (D < 0)

magnetic anisotropy axes are permitted.
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3.2.1 Model Hamiltonian

The total Hamiltonian is,

H = HH +HK +HA +Ht, (3.1)

where HH is the Heisenberg-like Hamiltonian, HK is the Kondo-like Hamiltonian, HA is the

magnetic anisotropy Hamiltonian, and HT is the hopping Hamiltonian. From this point

forward, ℏ = 1. The Heisenberg-like interaction takes the form,

HH = JzŜ
z
2 Ŝ

z
3 + Jxy

(
Ŝx
2 Ŝ

x
3 + Ŝy

2 Ŝ
y
3

)
, (3.2)

where Ŝi = (Ŝx
i , Ŝ

y
i , Ŝ

z
i ) is the spin operator for the ith particle, Jz is the strength of the

exchange interaction between particle 2 and 3 parallel to the direction of the magnetic

anisotropy axis, and Jxy is the strength of the exchange interaction between particle 2 and

3 perpendicular to the direction of the magnetic anisotropy axis. This exchange term is

similar to those used to describe the exchange interaction between two coupled dimers with

a Heisenberg XXY model [34]. When this interaction is taken to be isotropic, i.e. Jz = Jxy ≡

JH, this equation simplifies to HH = JHŜ2 · Ŝ3. The exchange interaction of the S1 particle

with the S2,3 particles is closely related to the spin portion of the Kondo interaction, and

may be represented by,

HK =
1

2

∑
µ,µ′,i=2,3

JKiŜi · d̂†µ,iσ̂µ,µ′ d̂µ′,i, (3.3)

where µ is a spin index for particle 1, σµ,µ′ is the corresponding µ, µ′ matrix element of

the s = 1
2

Pauli matrix, and d̂†µ,k/d̂µ,i represents (in second quantization language) the

creation/annihilation operator of a state in which particle 1 is bound to particle i.
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The magnetic anisotropy term is given as,

HA = D
(
Ŝz
2 Ŝ

z
2 + Ŝz

3 Ŝ
z
3

)
, (3.4)

where D is a uniaxial anisotropy strength. This Hamiltonian term is derived differently de-

pending on the context of the spin particle type. For example, if the two spin particles refer

to magnetic molecules, magnetic anisotropy is explained by geometric distortions of con-

stituent ions [19]. Conversely, in ultra-cold optical lattices, an effective magnetic anisotropy

is created by direct on-site interactions between atoms in two states [29]. We note that the

magnetic anisotropy Hamiltonian term is only meaningful for S2,3 >
1
2
.

Last, the hopping Hamiltonian is described by,

Ht =
∑
µ

{
td̂†µ,2d̂µ,3 + h.c.

}
, (3.5)

where µ is the spin index for particle 1. This term describes kinetic motion of the S1 particle

between S2 and S3 and vice versa. As will be shown later, the hopping term does not play

a significant role in the spin dynamics of the system. This, however, does not mean that

the hopping term serves no role. We show later that the spin dynamics form a necessary

condition in measuring the entanglement state of the coupled particles, but this condition

is not a sufficient one. To realize the results of this work in an experimental setup, one

should also include the spatial degrees of freedom of the spin particles. For example, we

give a derivation of this term as an extension of the two-site Anderson impurity model in

Appendix A, in which the momentum components of this term will certainly contribute

to the overall dynamics of that system. While not vital for those systems that do not fit

the impurity model, we conclude that it is important to keep the hopping term due to the

possible role that the S1 particle will play as a transient carrier of information of the coupled
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particles’ entanglement state. Because of the diagonal nature of the term when projected

onto spin space, one may remove the term if it is not needed.

3.2.2 Dynamics and Choice of Basis

To examine the dynamics of the system, we use the language of density operators to ana-

lytically and numerically solve the Liouville-von Neumann equation (the density operator

equivalent of the time-dependent Schrödinger equation),

i
∂ρ

∂t
= [H, ρ] , (3.6)

where ρ is the density operator in the Schrödinger picture, and the brackets denote the

commutator. In general, the solution for Eq. (3.6) is,

ρ(t) = U(t)ρ(0)U †(t), (3.7)

where U(t) is the unitary time evolution operator,

U(t) = T
[
exp

(
−i
∫ t

0

H(τ) dτ

)]
, (3.8)

and T is the time-ordered operator. For the familiar case in which the Hamiltonian is time-

independent, like in all of our applications to our model considered in this paper, the unitary

time evolution operator simplifies to,

U(t) = e−iHt. (3.9)

Thus, in principle, the time-dependent behavior of our model’s density matrix can be solved

exactly.
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It is important to consider specific choices of three-particle basis sets to uncover the

spin dynamics of our model. The natural choice are states that are aligned to the action of

the Ŝz = Ŝz
1⊗ Ŝz

2⊗ Ŝz
3 operator, i.e., the Hamiltonian and density operator are represented in

the product basis |s,ms⟩ = |s1,ms1⟩⊗(|s2,ms2⟩⊗|s3,ms3⟩), where S = S1+S2+S3. Because

the S2,3 particle states are anticipated to be correlated within a Bloch sphere representation,

we designate a “device” basis which is given by |s1,m1⟩ ⊗ |s23,m23⟩. In this representation,

|s23,m23⟩ = |s2,m2⟩ ⊗ |s3,m3⟩ is designated the “coupled particle” basis.

3.3 Results

3.3.1 Condition for DJ Resonance

Switching is a dynamic process in which the exchange coupling (J) and the onsite anisotropy

(D) act as competing interactions. Maximum switching occurs when these two interactions

are perfectly balanced, a condition we call the DJ resonance [33]. Such resonance has been

observed experimentally in an ultra-cold atom system [29].

We first demonstrate that for general S2,3 >
1
2

and S1 =
1
2
, at least two DJ resonances

exist. We begin by noting that for two particles with similar spin s, the following coupled

particle basis states can be written in |si,msi⟩ spin basis notation,

|2s, 2s⟩ = |s, s⟩ |s, s⟩ , (3.10)

|2s, 2s− 1⟩ = 1√
2

(
|s, s⟩ |s, s− 1⟩+ |s, s− 1⟩ |s, s⟩

)
. (3.11)

We couple the S1 particle to these coupled particle states, while maintaining spin angu-

lar momentum conservation. We choose, as will be apparent later, the two device states

{|↓⟩ |2s, 2s⟩ , |↑⟩ |2s, 2s− 1⟩}. Forming a subspace with these two states, one can easily see

that the isotropic Heisenberg-like exchange Eq. (3.2) and hopping Eq. (3.5) terms are diag-
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onal in the subspace, and can be neglected when considering the transition dynamics. We

again do not restrict the range of the other exchange term, nor of the magnetic anisotropy.

We thus concentrate on a reduced spin Hamiltonian of the form (dropping the K subscript

in the exchange term for notational ease),

H = JŜ1 ·
(
Ŝ2 + Ŝ3

)
+D

(
Ŝz
2 Ŝ

z
2 + Ŝz

3 Ŝ
z
3

)
. (3.12)

Applying this Hamiltonian to the chosen states within the device basis, we find that no other

device states participate in the dynamics within this subspace. The Hamiltonian is then,

H =

2Ds2 − Js J
√
s

J
√
s J

(
s− 1

2

)
+D

(
s2 + (s− 1)2

)
.

 (3.13)

Expressing it in a convenient form by removing a constant diagonal offset, we arrive at,

H = J
√
sσx +

[
D

(
s− 1

2

)
− J

(
s− 1

4

)]
σz, (3.14)

where σz and σx are the spin 1
2

Pauli rotation matrices about the ẑ and x̂ axis, respectively.

Applying the Rabi formula [35] to this Hamiltonian sub-block results in a Rabi frequency,

Ω =

√(
D

(
s− 1

2

)
− J

(
s− 1

4

))2

+
(
J
√
s
)2
. (3.15)

If the system is prepared as a pure |↓⟩ |2s, 2s⟩ state, the transition probability amplitude

takes the form,

P (t) =

(
J
√
s

Ω

)2

sin2 (Ωt) . (3.16)

Resonance is achieved when Eq. (3.16) is maximized to unity. This occurs when the rotation
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a) b)

Figure 3.2: Representations of the DJ resonance for (a) the transition probability amplitudes
between the |↓⟩ |2s, 2s⟩ state (solid) and the |↑⟩ |2s, 2s− 1⟩ state (dashed), and (b) the
corresponding Bloch sphere representation of the system.

about the z-axis in this subspace is stopped, or when,

J =

(
s− 1

2

)(
s− 1

4

)D. (3.17)

Performing a similar procedure on the subspace corresponding with the {|↑⟩ |2s,−2s⟩ , |↓⟩ |2s,−2s+ 1⟩}

states results in the same condition. There are at least two DJ resonances, one for each block

described, for every value of S2,3 >
1
2
. A representation of the transition probability am-

plitudes and a corresponding Bloch sphere representation for any DJ resonance is given in

Fig. 3.2.

3.3.2 Generalized DJ Resonances

The analysis of the last section can be extended by considering a Hamiltonian with additional

terms that contribute to an anisotropic spin response. Our new general spin Hamiltonian

incorporates Eq. (3.2), Eq. (3.12), and an applied magnetic field along the same axis as the
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magnetic anisotropy Hamiltonian term. The general Hamiltonian is then,

H = JŜ1 ·
(
Ŝ2 + Ŝ3

)
+D

(
Ŝz
2 Ŝ

z
2 + Ŝz

3 Ŝ
z
3

)
(3.18)

+ JzŜ
z
2 Ŝ

z
3 + Jxy

(
Ŝx
2 Ŝ

x
3 + Ŝy

2 Ŝ
y
3

)
+

3∑
i=1

giµBŜ
z
iB0,

where gi is spin particle i’s g-factor, and B0 is the applied static magnetic field strength for

a field directed along the axis of particle 2 and 3’s magnetic anisotropy. We assume that

particle 2 and 3 have the same g-factor, i.e. g2 = g3 = g23. Repeating the same procedure,

one finds that when the Hamiltonian is expressed in the device basis, two blocks have the

form,

Ha = Ωxσx − Ωzσz −
1

2
(g1 − g23)µBB0σz (3.19)

Hb = Ωxσx + Ωzσz −
1

2
(g1 − g23)µBB0σz, (3.20)

where the “a” block corresponds with the dynamics of the {|↓⟩ |2s, 2s⟩ , |↑⟩ |2s, 2s− 1⟩} states,

the “b” block corresponds with the dynamics of the {|↓⟩ |2s,−2s+ 1⟩ , |↑⟩ |2s,−2s⟩} states,

Ωx = J
√
s, and Ωz = J (s− 1/4)−D (s− 1/2)+ (Jxy − Jz) s/2. Comparing the two blocks,

one sees that the “a” block rotates an appropriate Bloch vector in that space clockwise about

the z-axis. The applied magnetic field acts in concert with this rotation. Conversely, the

“b” block rotates a corresponding Bloch vector counter-clockwise, with the applied magnetic

field acting in competition with this rotation. This changes the resonance conditions, leading
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to two generalized DJ resonances,

Ja = D

(
s− 1

2

)(
s− 1

4

) + 1

2

s(
s− 1

4

) (Jz − Jxy)

− 1

2

µBB0(
s− 1

4

) (g1 − g23) , (3.21)

Jb = D

(
s− 1

2

)(
s− 1

4

) + 1

2

s(
s− 1

4

) (Jz − Jxy)

+
1

2

µBB0(
s− 1

4

) (g1 − g23) (3.22)

We next analyze the eigenvectors of the simpler Hamiltonian in Eq. (3.12) for the two two-

dimensional blocks considered so far in order to uncover the physical meaning behind these

resonance conditions.

3.3.3 Physical Meaning of the DJ Resonance

We begin by examining which device basis states that participate in the block given in

Eq. (3.14) are energetically preferred. In the following discussion, we neglect the s = 1
2

case,

as we give results for that case in another section. Within that subspace, if J = 0, and the

magnetic anisotropy axis is hard, i.e. D > 0, the |↑⟩ |2s, 2s− 1⟩ state is preferred. If the

magnetic anisotropy axis is easy, i.e. D < 0, the |↓⟩ |2s, 2s⟩ state is preferred. A proof of

this is easily shown by examining the eigensystem of the block when J = 0. The eigenval-

ues are ∓D
(
s− 1

2

)
which are matched to the eigenvectors |↑⟩ |2s, 2s− 1⟩ and |↓⟩ |2s, 2s⟩,

respectively.

The opposite preference occurs when D = 0 and J ̸= 0. If J represents antiferromag-

netic exchange coupling (i.e., when J is positive in our sign convention), then the |↓⟩ |2s, 2s⟩

is favored. If J represents ferromagnetic exchange coupling (i.e., J is negative), then the

|↑⟩ |2s, 2s− 1⟩ is favored. When inspecting the regime of the DJ resonance (when J and

D have the same sign and s > 1
2
), one can see that the magnetic anisotropy and exchange
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terms of the total Hamiltonian act in competition.

Next, we examine the eigensystem of the block for relevant conditions for s > 1
2
. The

eigenvalues are α = ∓
√
β2 + (J

√
s)

2, where β ≡ D
(
s− 1

2

)
− J

(
s− 1

4

)
. The corresponding

eigenvectors are,

|ϕ1⟩ = → A

(
β − α

J
√
s

)
|↓⟩ |2s, 2s⟩+ A |↑⟩ |2s, 2s− 1⟩ , (3.23)

|ϕ2⟩ = → A

(
β + α

J
√
s

)
|↓⟩ |2s, 2s⟩+ A |↑⟩ |2s, 2s− 1⟩ , (3.24)

where A is a normalization constant. It is apparent that the |ϕ1⟩ eigenstate is always pre-

ferred, except when α = 0. The latter condition is never satisfied for J ̸= 0, i.e., there is no

condition in which the |ϕ2⟩ state is energetically favorable.

Armed with the energetically favorable eigenvector, we now uncover the balance of

device basis states around the DJ resonance. This can be done by examining the relative

proportions of the two device basis states within the |ϕ1⟩ eigenvector. For example, if the

eigenvector contains a larger proportion of the |↓⟩ |2s, 2s⟩ basis state for positive D and J ,

then one can infer from the prior analysis that the exchange coupling Hamiltonian term

plays a stronger role in the dynamics than the magnetic anisotropy term. The test is then

to compare the modulus squared values of the components of the eigenvector. When both

components are balanced (and noting that both components are always real), the condition

is,

(
J
√
s
)2

= (β − α)2 . (3.25)

This condition holds exactly at the DJ resonance given in Eq. (3.17). We repeat this analysis

for off resonance conditions, i.e., when J = JR + ϵ for appropriate ϵ. We also enforce

conditions that lie within the DJ resonance regime, i.e., J ∈ (0,∞) when D > 0 and
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Figure 3.3: Representation of basis set mixture in the energetically-favored eigenvector
|ϕ1⟩ when D and J > 0 (solid) and when D and J < 0 (dashed). The difference between
the modulus squared coefficients δ ≡ |c1|2 − |c2|2 is plotted for s = 1, where c1 is the
coefficient of the |↓⟩ |2s, 2s⟩ basis state within the |ϕ1⟩ eigenvector, and c2 the coefficient of
the |↑⟩ |2s, 2s− 1⟩ state. Basis state mixtures that are favorable to magnetic anisotropy are
shaded blue, while those that favor exchange coupling are shaded red.

J ∈ (−∞, 0) when D < 0. A representation of these conditions, and the results, are shown

in Fig. 3.3. We find that when |J | < |JR|, there is a higher proportion of the basis states

within the eigenvector that are energetically favorable to magnetic anisotropy. Conversely,

when |J | > |JR|, there is a lower proportion of those same basis states in the eigenvector.

The DJ resonance is the inflection point in which the action of the two terms in the total

Hamiltonian are in perfect balance. We next explore the S2,3 = 1
2

model, in light of the

condition that Eq. (3.17) takes at that value of s, and compare to the S2,3 = 1 model.
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3.3.4 Coupled Particles with S2,3 =
1
2

Model

For the S2,3 =
1
2

model, when the Hamiltonian of Eq. (3.1) is expressed in the product basis,

the two s = 1
2

subspaces are coupled to each other by anisotropic application of the exchange

term JK, while the s = 3
2

subspace is diagonal and remains uncoupled. The Heisenberg-like

exchange, given in Eq. (3.2), is diagonal in both the product and device basis if Jz = Jxy =

JH, i.e., the interaction is isotropic between particle 2 and 3. While it’s important to consider

the situation in which the Heisenberg-like exchange is applied anisotropically (i.e., Jz ̸= Jxy),

we first consider the isotropic case. The tunneling Hamiltonian in Eq. (3.5) is also diagonal

in both the product and device basis. In the device basis, the tunneling Hamiltonian carries

the same eigenvalue across all s23 subspaces in the device basis, and the isotropic Heisenberg

exchange Hamiltonian has the same eigenvalue in each subspace. As a result, the total

Hamiltonian in the product basis takes the form,



[
H0

3/2

]
[
H1

1/2

]
[
H2

1/2

]

 , (3.26)

where Hn
1/2 refers to the Hamiltonian block that corresponds with the n’th interaction of the

two spin s = 1
2

subspaces, and H0
3/2 is the diagonal s = 3

2
subspace. When the Hamiltonian

is expressed in the device basis, the anisotropic application of the exchange term couples the

different s2,3 subspaces. This leads to a block Hamiltonian of the form,



[
H0

±3/2

]
[
H1/2

]
[
H−1/2

]

 , (3.27)
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where Hm refers to a 3-dimensional Hamiltonian block that corresponds with them subspace,

and H0 refers to a 2-dimensional diagonal block of spin s23 = 1.

We further explore the m = ±1/2 blocks corresponding with the |m1⟩ |s23,m23⟩ =

|↑⟩ |1, 0⟩ , |↑⟩ |0, 0⟩ , |↓⟩ |1, 1⟩ and |↑⟩ |1,−1⟩ , |↓⟩ |1, 0⟩ , |↓⟩ |0, 0⟩ states, respectively. They

take the form (with a common t+ t∗ + 1
4
JH removed from the diagonal),

H1/2 =
1

4


0 ∆K

√
2ΣK

∆K −4JH −
√
2∆K

√
2ΣK −

√
2∆K −ΣK

 , (3.28)

H−1/2 =
1

4


−ΣK

√
2ΣK

√
2∆K

√
2ΣK 0 −∆K

√
2∆K −∆K −4JH

 , (3.29)

where ∆K ≡ JK2 −JK3 and ΣK ≡ JK2 +JK3 ≡ 2JK. When the exchange term is isotropically

applied, i.e. ∆K = 0, the corresponding |0, 0⟩ states no longer interact with the others. The

Hamiltonian blocks then become,

Heff
±1/2 = ±1

4
JKσz +

1√
2
JKσx. (3.30)

Applying the Rabi formula to the case in which the system is initially prepared in

either the pure |↓⟩ |1, 1⟩ or |↑⟩ |1,−1⟩ state, we find,

P (t) =
8

9
sin2(Ωt), (3.31)

with Rabi frequency,

Ω =
3

4
|JK|. (3.32)
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a) b)

Figure 3.4: Transition probability amplitudes for the S2,3 =
1
2

model, for the |↓⟩ |1, 1⟩ (solid),
|↑⟩ |1, 0⟩ (dashed), and |↑⟩ |0, 0⟩ (dot-dashed) states as a function of time. The exchange
strength is (a) isotropically-applied JK and (b) anisotropically-applied JK (i.e., JK2 ̸= JK3).
The system is initially prepared as a pure |↓⟩ |1, 1⟩ state. In units of cm−1, exchange pa-
rameters are (a) JK2 = JK3 = −0.40 and (b) ∆K/JK = 0.5. The shared parameters are:
JH = −0.05 and t = 0.05.

In this case, and as shown in Fig. 3.4, there are no resonance conditions in which the maxi-

mum transition probability amplitude is unity, even when considering anisotropic application

of the exchange coupling.

To check for scenarios in which a maximum transition probability of unity can be

achieved in the S2,3 = 1
2

model, we explore applications of spin filtering on the system.

To do this, first an appropriate change of basis of the device states is needed. The states,

originally expressed in the |s1,ms1⟩ ⊗
∣∣s2,3,ms2,3

〉
, are changed by transforming |s1,ms1⟩

states to |θ, ϕ⟩ spinor states. In general, the spinor takes the form,

χ =

cos θ
2
e−iϕ

2

sin θ
2
ei

ϕ
2

 , (3.33)

where θ is the polar angle and ϕ is the azimuthal angle. Because the reduced Hamiltonian

blocks will no longer be two-dimensional, we numerically solve Eq. (3.7) to obtain the relative

transition probabilities from one state to the next.
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We choose to monitor those states that are coupled in the Hamiltonian and corre-

spond with transitions between non-entangled to maximally entangled states. The transition

|1, 1⟩ → |1, 0⟩ fits this description, as the device-to-spin correspondence is,

|1, 1⟩ = |↑⟩ |↑⟩ , (3.34)

|1, 0⟩ = 1√
2
(|↑⟩ |↓⟩+ |↓⟩ |↑⟩) . (3.35)

Fig. 3.5 investigates the orientations of particle 1’s spin that will lead to maximum prob-

ability between these two states at a given snapshot of the Rabi-like oscillations, with the

azimuthal orientation angle chosen to be 0. Peaks of transition probability are found for sev-

eral combinations of preparation and measurement orientations. Taking Fig. 3.5 as guidance

to explore a higher transition probability scenario for a given spin filter, particle 1’s prepared

polar angle is chosen to be θin = π and the measured polar angle to be θout =
π
8
. The resulting

transition probability oscillations are shown in Fig. 3.6. It is clear from this result that the

maximum amplitude has indeed been raised from 8/9, calculated to be P = 0.995. Fig. 3.6

demonstrates the same feature of the spin dynamics for the three-particle system as found

in Ref. [33], namely that a single measurement of particle 1’s spin orientation determines the

entanglement state of particle 2 and 3. This demonstrates the read out of the entanglement

state if the measurement of the S1 spin polarization is taken at any general time t. This also

demonstrates preparation of the entanglement state if the S1 spin polarization is measured

at a specific time t corresponding with a peak in the Rabi oscillation.

Finally, another method may be used to prepare the entanglement state. Looking to

Eq. (3.21) and Eq. (3.22), the resonance condition for S2,3 =
1
2

without an applied magnetic

field is,

JK = Jz − Jxy. (3.36)
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Figure 3.5: Relative transition probability (z axis) of the |θ, ϕ⟩ |s23,m23⟩ = |θin, 0⟩ |1, 1⟩ →
|θout, 0⟩ |1, 0⟩ with respect to the total probability of finding the system with the chosen S1

particle’s measured polar spin orientation (y axis), as a function of the chosen S1 particle’s
prepared polar spin orientation (x axis). The snapshot of probabilities was calculated for
t = 133 ps. In units of cm−1, the parameters are JK2 = JK3 = −0.40, JH = −0.05, t = 0.05.

When this resonance condition (which we designate as the “JJ resonance”) is applied to the

system considered in Fig. 3.4(a), the maximum transition probability amplitude is unity.

While the S2,3 = 1
2

model does not contain a DJ resonance as indicated in Eq. (3.17), a

JJ resonance could be used to achieve the same transition probability behavior. As we will

next show, and in comparison to the S2,3 =
1
2

model, this resonance switching mechanism is
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Figure 3.6: Relative transition probability amplitudes in the S2,3 = 1
2

model, for the
|π/8⟩ |1, 1⟩ (solid) and |π/8⟩ |1, 0⟩ (dashed) states, as a function of time. The system is
initially prepared in the pure |π, 0⟩ |1, 1⟩ state, with the same parameter state as Fig. 3.5.

maximized in the S2,3 = 1 model without the use of spin filtering mechanisms or anisotropy

of the exchange interaction between particle 2 and 3.

3.3.5 Comparison to the Coupled Particles S2,3 = 1 Model

We next compare the S2,3 = 1 model as explored in [33] by identifying the role of each

Hamiltonian term given in Eq. (3.1) in that model. Similar to the S2,3 = 1
2

model, the

Heisenberg-like exchange and tunneling Hamiltonians are diagonal in the device basis. Be-

cause the magnetic anisotropy term is no longer diagonal like in the S2,3 = 1
2

model, the

s = 2 and s = 0 subspaces are connected. As shown in Ref. [33], because the magnetic

anisotropy and exchange Hamiltonians have off-diagonal terms in similar m subspaces, there

is a complicated interplay of these interactions that influence the transition dynamics of
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systems prepared for a given value of m.

We next summarize the blocks of the S2,3 = 1 model Hamiltonian. The m = 3
2

sub-

space, which corresponds with the dynamics of the |m1⟩ |s23,m23⟩ = {|↑⟩ |2, 1⟩ , |↑⟩ |1, 1⟩ , |↓⟩ |2, 2⟩}

states, takes the form (after removing a common t+ t∗ + JH +D+ 1
4
ΣK from the diagonal),

H3/2 =
1

4


0 ∆K 2ΣK

∆K −8JH −2∆K

2ΣK −2∆K −3ΣK + 4D

 . (3.37)

Similarly, them = −3
2

block (corresponding with the dynamics of the {|↑⟩ |2,−2⟩ , |↓⟩ |2,−1⟩ , |↓⟩ |1,−1⟩}

states) with the same diagonal values removed has the form,

H−3/2 =
1

4


−3ΣK + 4D 2ΣK 2∆K

2ΣK 0 −∆K

2∆K −∆K −8JH

 . (3.38)

When the exchange coupling is instead isotropically applied, and similar to the S2,3 = 1
2

model, the |↑⟩ |1, 1⟩ state in Eq. (3.37) and the |↓⟩ |1, 1⟩ state in Eq. (3.38) are no longer

coupled to the other states within their respective block Hamiltonians. For the other two

states in the m = ±3
2

blocks, the effective Hamiltonians (with the appropriate diagonal

entries removed) become,

Heff
±3/2 = ∓1

2

(
D − 3

2
JK

)
σz + JKσx. (3.39)

While the anisotropic case of exchange coupling is more complicated for the m = ±1
2

sub-

spaces, a similar reduction in the corresponding block Hamiltonians is found when the ex-
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Figure 3.7: Transition probability amplitudes as a function of time for the S2,3 = 1 model,
for the |m1⟩ |s23,m23⟩ = |↑⟩ |2, 1⟩ state when the initial state is prepared as a pure |↓⟩ |2, 2⟩
state. Several values of the isotropically-applied JK (i.e. JK2 = JK3) are given. The exchange
strengths correspond with the DJ resonance condition of JK = 2

3
D (solid) and off resonance

by ±0.1 (dot-dashed and dashed, respectively). In units of cm−1, the parameters are: JH =
−0.05, JR = −0.40, D = −0.60, t = 0.05.

change coupling is applied isotropically. Repeating the same procedure, we find,

Heff
±1/2 = ±1

2

(
D +

1

2
JK

)
σz +

1√
2
JKσx. (3.40)

Thus the same procedure to analyze the Rabi frequency of the m sub-blocks can be used.

As shown in Fig. 3.7, if JK is chosen to minimize the Rabi frequency, e.g., when JK = 2
3
D for

m = ±3
2
, the maximum transition probability amplitude is unity. When JK is chosen off of

the resonance condition, the denominator in the Rabi formula increases and the maximum

transition probability amplitude decreases.
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Table 3.1: Pure state transitions for the S2,3 = 1 and S2,3 = 1/2 model, where JR is the
condition on JK to reach resonance, P is the maximum transition probability amplitude, and
Ω is the Rabi frequency for this maximum amplitude.

S2,3 State Transitions JR P Ω

1
2

|↑⟩ |1, 0⟩ , |↓⟩ |1,+1⟩ - 8
9

3
4
|JK|

1
2

|↓⟩ |1, 0⟩ , |↑⟩ |1,−1⟩ - 8
9

3
4
|JK|

1 |↑⟩ |2,+1⟩ , |↓⟩ |2,+2⟩ 2
3
D 1 2

3
|D|

1 |↑⟩ |2,−2⟩ , |↓⟩ |2,−1⟩ 2
3
D 1 2

3
|D|

1 |↑⟩ |1, 0⟩ , |↓⟩ |1,+1⟩ −2D 1
√
2|D|

1 |↑⟩ |1,−1⟩ , |↓⟩ |1, 0⟩ −2D 1
√
2|D|

3.4 Discussion and Summary

3.4.1 Control of Degree of Entanglement and Vectors on the Bloch Sphere

The main result of this work, demonstrated effectively through Eq. (3.17), is that for any

value of S2,3 >
1
2
, with no restriction on half-integer versus integer spin, at least two DJ

resonances exist. Taking the classical limit as s → ∞, the resonance condition tends to-

wards JK = D. As is shown in Table 3.1, Fig. 3.6, and Fig. 3.7, both the S2,3 = 1
2

and

S2,3 = 1 models demonstrate preparation and measurement of the coupled particles’ degree

of entanglement by appropriate measurement of the S1 =
1
2

particle.

We find that the physical interplay between the exchange and anisotropy terms in the

Hamiltonian are vital for realizing the DJ resonance. As shown in the S2,3 = 1
2

model, the

lack of anisotropy in particle 2 and 3 result in no DJ resonances. We also find that at each DJ

resonance, the system has achieved a perfect balance of states that balance the effect of the

exchange coupling and magnetic anisotropy terms in the total Hamiltonian. In other words,

if |JK| = |JR|, where JR is a DJ resonance, the most energetically favorable eigenvector of the
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Hamiltonian sub block contains an equal mixture of states that favor magnetic anisotropy

and exchange coupling.

For the S2,3 =
1
2

model, the non-maximal probability amplitude indicates in the lan-

guage of the Bloch sphere that the rotation is not about an axis solely on the azimuthal plane,

but instead contains a rotation axis component in the polar plane, as shown in Fig. 3.8. By

searching for appropriate spin filtering conditions, as shown in Fig. 3.5, one could find rota-

tions in the Bloch sphere that maximizes the amount of time spent near the non-entangled

to entangled transition is possible. The DJ resonances as found in [33], however, is a feature

for the S2,3 >
1
2

model. Rather than relying on either the use of an extra spin filtering step

to maximize transition probabilities, or the use of other anisotropies such as the anisotropic

application of the Heisenberg-like term, the DJ resonance allows for full control of the Bloch

sphere representation with appropriate control of the exchange coupling strength on and off

resonance.

Control of the rotation of a general Bloch vector within the appropriate Bloch sphere

is important in QIS contexts. Looking to Eq. (3.19) and Eq. (3.20), the exchange coupling

J gives one control over rotations of the Bloch vector about the x-axis, and the resonance

condition allows control of rotations about the z-axis. With appropriate pulsing of the

parameters, one can realize any point on the corresponding Bloch sphere. It’s precisely

because of the resonance condition that all points on the sphere are accessible, which implies

that all single qubit operations are possible. This can be seen by inspecting the effective

Hilbert spin space. The isolated sub blocks of Eq. (3.19) and Eq. (3.20) belong to the SO(2)

group. When substituted into the unitary propagator of Eq. (3.9), the resulting operation is

SU(2). The adjoint representation of SU(2) is isomorphic to SO(3). If one is able to realize

all SO(3) operations on the Bloch vector, as has been shown, all relevant SU(2) operations

can be realized.
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d)

c)a)

b)

Figure 3.8: Probability of measuring a state corresponding with the x̂ (dotted), ŷ (dashed),
and ẑ (solid) unit vectors as a function of time for the (a) S2,3 = 1 and (b) S2,3 = 1

2

models on the Bloch sphere as defined in (c) and (d), respectively. The Bloch vector for
(a)/(c) and (b)/(d) is initially prepared in the |↓⟩ |2, 2⟩ and |↓⟩ |1, 1⟩ states, respectively.
The corresponding Bloch sphere representation of the path traced by the Bloch vector for
the (c) S2,3 = 1 and (d) S2,3 =

1
2

model is given for the same interval considered. In units of
cm−1, the shared parameters are: JK2 = JK3 = −0.40, JH = −0.05, t = 0.05. The S2,3 = 1
model additionally has D = −0.60.

3.4.2 Application to Ultra-Cold Optical Lattices

Because of the general nature of the total Hamiltonian considered in this paper, there are

several immediate applications within the condensed matter context. For example, Ref. [29]

recently found experimentally-realized resonance conditions of magnetic anisotropy and ex-

60



change coupling for a Mott insulator composed of an ultra-cold optical lattice of 87Rb atoms.

The authors uncover an oscillation in an observable parameter A, which represents the lon-

gitudinal spin alignment, that is maximized for the resonance condition of J = ±2
3
D. Re-

covering the authors’ form of the two-site Bose-Hubbard Hamiltonian used to explain these

resonances from our model is trivial, and is accomplished by setting JK2 = JK3 = 0, while

noting the difference in the sign convention of J . We use the experimental example to un-

cover another possible resonance, but also highlight a constraint within DJ resonances. Using

the Hamiltonian m = 0 sub-block in Ref. [29], if one were to prepare the system as a pure

mixture of either state within the block, i.e., either state in {(|1,−1⟩ + |−1, 1⟩)/
√
2, |0, 0⟩},

one finds a resonance condition of J = 2D. If one were to choose instead the product basis, a

single sub block of the Hamiltonian would emerge associated with the {|2, 0⟩ , |0, 0⟩} product

states. Preparation of a pure mixture of one of these states results in a different DJ resonance

condition, namely J = 2
9
D. Whether any particular resonance is important experimentally,

however, is the constraint on whether a measurement of the oscillations between states is

feasible.

It is interesting to note that applying our three-particle model with similar conditions

leads to strikingly different behavior than the two-site Bose-Hubbard model. To do this, one

should first modify our model by matching the particle type across all three particles, i.e.,

change S1 so that S1 = S2 = S3 ≡ S1,2,3 = 1, and extend magnetic anisotropy to particle 1. In

doing so, and assuming an isotropic coupling between nearest neighbors (i.e., JK2 = JH = J

and JK3 = 0), the effective Hamiltonian becomes,

HBH3 = J
(
Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3

)
+D

3∑
i=1

Ŝz
i Ŝ

z
i . (3.41)

Within this total Hamiltonian, there are three two-dimensional blocks that correspond

with transitions between different state phases: {|2, 2⟩A , |2, 2⟩B}, {|2, 0⟩A , |2, 0⟩B}, and
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{|2,−2⟩A , |2,−2⟩B}. These blocks share the same form,

H =
1

2

(
Jσz +

√
3Jσx

)
. (3.42)

Application of the Rabi formula on this block gives a Rabi frequency Ω = |J |, and a transition

probability amplitude of,

P (t) =
3

4
sin2 (Ωt) . (3.43)

Thus in the extension of the approximate form of the two-site Bose-Hubbard Hamiltonian

to three sites, there is no DJ resonance within that basis, and the transition probability

maxima is 3/4. In contrast, we have found that the DJ resonances appear when considering

exchange interactions that extend either to next-nearest neighbor exchange interactions (in

the linear chain geometry) or in trimer geometries for S = 1.

3.4.3 Application to Magnetic Molecules and Quantum Dots

The results of this work can be applied to magnetic molecule models. In single-molecule

quantum dots, like those explored in Ref. [32], the source of magnetic anisotropy is from

spin-orbit interactions and the geometry of the system resembles a two-terminal molecular

transistor. Even so, the spin model approximation of the system resembles the spin model

considered here. Competing effects such as additional exchange coupling interactions with

the substrate and decay mechanisms such as spin lattice vibrations could mask these DJ res-

onances. As found in Ref. [33], however, significant anisotropic application of the exchange

coupling between particle 1 and the others still allows for usable entangled state switching

(up to P=0.995) around a DJ resonance. This is important when considering the experi-

mental uncertainties inherent in a scenario of coupling an electron to a magnetic dimer on a
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substrate. Furthermore, the existence of a DJ resonance for any value of S2,3 via Eq. (3.17)

opens the application of this model to larger spin magnetic molecules coupled together, such

as coupled Mn3 monomers.

When considering a trimer geometry for the S1,2,3 = 1 model, or equivalently a

next-nearest neighbor exchange interaction in a chain geometry, the preceding section’s as-

sumption of JK3 = 0 is modified. Assuming an isotropic application of the exchange strength

coupling between each particle in the three-particle system, the S1,2,3 = 1 model’s effective

spin Hamiltonian is

Htrimer = J
(
Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ1

)
+D

3∑
i=1

Ŝz
i Ŝ

z
i . (3.44)

In the device basis, this Hamiltonian contains four two-dimensional blocks corresponding

with the conserved spin transitions of m = ±1 and m = ±2. The m = ±1 blocks contain

the interactions of the {|1⟩ |1, 0⟩ , |0⟩ |1, 1⟩} and {|0⟩ |1,−1⟩ , |−1⟩ |1, 0⟩} states, respectively.

The m = ±1 block’s effective form is,

Htrimer
m=±1 = ±Dσz + Jσx. (3.45)

The m = ±2 blocks involve the {|1⟩ |2, 1⟩ , |0⟩ |2, 2⟩} and {|0⟩ |2,−2⟩ , |−1⟩ |2,−1⟩} states,

respectively, and have the form,

Htrimer
m=±2 = ±1

2
Jσz +

√
2Jσx. (3.46)

Application of the Rabi formula to both the m = ±1 and m = ±2 blocks yields two cases.

When the state transition is in the m = ±1 block, the Rabi frequency is Ω±1 =
√
D2 + J2
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with a transition probability amplitude of,

P±1(t) =

(
J

Ω±1

)2

sin2(Ω±1t). (3.47)

In other words, the two state system possesses a DJ resonance at D = ±J . If instead the

state transition is in the m = ±2 block, the Rabi frequency is Ω±2 =
3
2
|J | with an amplitude

of,

P±2(t) =
8

9
sin2(Ω±2t). (3.48)

Thus in them = ±2 block, there is no DJ resonance, and the maximum transition probability

amplitude is 8/9. This maximum matches the maximum amplitude in the S1,2,3 =
1
2

model

where anisotropy does not play a role. We also note that in the trimer model, another DJ

resonance exists within a different basis: the product basis. In that basis, there are two two-

dimensional blocks that contain the transitions between the |2,±1⟩B and |1,±1⟩B states.

They take the form,

Htrimer
±1 = Jσz ±Dσx. (3.49)

We note the similarity to Eq. (3.45), but with the reversed role of D and J on Bloch vectors

within the corresponding Bloch sphere. The Rabi frequency is the same (Ω±1 =
√
D2 + J2),

and the transition probability amplitude reflects the D and J role reversal,

P±1(t) =

(
D

Ω±1

)2

sin2(Ω±1t). (3.50)
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3.4.4 Summary

In summary, we have demonstrated the general existence formula for DJ resonances and

how these resonances enable full control of the Bloch vector in an appropriately chosen

Bloch sphere representation. We also contrasted the difference in entanglement switching

mechanisms for the spin S2,3 =
1
2

and S2,3 = 1 models. We have shown that in order to achieve

acceptable control of a Bloch vector within the S2,3 =
1
2

model, additional mechanisms such

as outgoing spin filters for particle 1 or anisotropy of the exchange interaction between

particle 2 and 3 is required. Last, we have indicated several systems of interest where DJ

resonances could be used to explore qubit scenarios and to discover fundamental phenomena.
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CHAPTER 4: MAPPING SPIN INTERACTIONS FROM

CONDUCTANCE PEAK SPLITTING IN COULOMB

BLOCKADE

(Adapted from Eric D. Switzer, Xiao-Guang Zhang, Volodymyr Turkowski, and Talat S.

Rahman, "Mapping Spin Interactions from Conductance Peak Splitting in Coulomb Block-

ade." arXiv:2301.05370 (2023))

4.1 Introduction

Determining the internal structure of a spin complex is important in both quantum infor-

mation science (QIS) and spintronics. Examples of useful spin complexes include molecular

magnets (MMs) [1–5], coupled quantum dots (QDs) [6–8], and many-electron QDs [9] because

they possess properties like magnetic hysteresis, long spin-relaxation times, and protection

against spin decoherence. A complete description of their eigenspectrum involves mapping

the properties of their internal structure onto effective spin model Hamiltonians. Four com-

mon parameterized spin Hamiltonian terms for this purpose are magnetic anisotropy, ex-

change coupling between spin centers, exchange coupling of the spin centers with transitory

electrons when the spin centers are placed between biased leads, and response to an applied

magnetic field.

There is significant work, utilizing a combination of theory and experiment, to match

model spin Hamiltonian terms to experimentally-accessible transport measurements. Sev-

eral commonly used techniques to characterize magnetic systems are electron paramagnetic

resonance spectra measurements for crystalline MM complexes [10–12], magnetic suscepti-

bility measurements [13], neutron inelastic scattering [14], and magnetic circular dichroism

spectroscopy [15]. Characterizing systems important to QIS and spintronics involves the use
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of differential conductance measurements that exploit the Coulomb blockade (CB). Exam-

ples include probing exchange coupling and magnetic anisotropy for MM transistors such as

N@C60 [4] and Fe4 [5], the exchange coupling of two or more coupled QDs [16–20], and the

detection and manipulation of spin states [6–8] for QD qubits. In the blockade, the flow of

electrons is blocked by their Coulomb repulsion at low temperature and small bias voltage

applied across leads connected through a central region [21]. By constraining the dynamics

to a single electron interacting with a complicated spin system, one can extract parameters

based on repeated transport measurements.

Model approximations are often used for MMs, such as ignoring internal exchange

coupling between spin centers and assuming a single spin S (giant spin approximation). For

a certain class of spin complexes, this enables a tractable measurement scheme of some of

the spin Hamiltonian terms [4, 5]. Other spin complexes, however, may not be described

accurately by those approximations, such as Ni4 single MMs (SMM) [1, 2] and Mn3 dimer

complexes [3]. In some molecular cases, and in general with qubit read/write operations

for tripartite spin systems [22, 23], one must characterize all exchange couplings that are

energetically relevant. Some approximations, such as ignoring a particular Hamiltonian

term in MMs (e.g., between exchange coupling or magnetic anisotropy) cannot be made

because they are both defined by the overlap of atomic orbitals belonging to the spin centers.

Changing one of the aforementioned parameters inevitably means that the other parameter

also changes.

Accurate measurements of all four parameters is then necessary in those cases to

help screen materials for quantum architectures. In this paper we propose a scheme to map

the four parameters of a particular class of spin complexes, namely exchange coupled spin

dimers possessing magnetic anisotropy and coupled to an “indirect measurement” QD, using

differential conductance and three experimentally-controlled parameters: anisotropically-

applied magnetic field, bias voltage, and gate voltage. We rely on a rate equation-based
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theoretical approach of an electron transiting through a QD in the CB, as rate equations

have been successful at identifying conductance peak features in transport spectra for systems

consisting of an SMM placed between leads [24–29]. By including all four parameters in our

spin model, we find that one can use the number and location of the peaks in differential

conductance to determine each of the model’s Hamiltonian parameters.

The paper is organized as follows. In Sec. 4.2, we describe our model, write down

the Hamiltonian and solve the generalized master equation to obtain closed equations for

electronic current. In Sec. 4.3 we describe the role of the Hamiltonian terms in predicted

differential conductance peaks. Last, in Sec. 4.4 and Sec. 4.5, we summarize the results and

discuss the experimental scheme to measure the parameters for each Hamiltonian term.

4.2 Model and Hamiltonian

A three-terminal setup consisting of a source and drain electrode, and a gate, is found in many

nanosized devices, including three-terminal coupled QDs [6–8], nuclear and molecular spin

qubit transistors [30–32], and magnetic molecule tunneling junctions [33–36]. We consider

a hybrid of the aforementioned setups by modeling a central region consisting of a QD

influenced by two spin particles, connected to three terminals. This model is functionally

equivalent to the models explored in [37, 38], but instead of exploring timescales in which

coherence can be tracked, we focus on timescales in which incoherent transport is measured.

The source and drain electrodes enable transport of an itinerant electron into the QD where

it interacts with other spins via a spin exchange interaction. The energy levels of the central

region are adjusted by the third terminal to bring the system into the CB regime. The

overall model is shown schematically in Fig. 4.1.
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Figure 4.1: Schematic of the system consisting of a central scattering region, containing
an S2,3 = 1 spin dimer complex interacting through an exchange interaction J23, coupled to
polarized leads at temperature T . The central region’s eigenenergy levels are tuned via gate
voltage VG so that the charged ground state energy E

(0)
N+1 with N + 1 electrons is aligned

with the unbiased leads, i.e., E(0)
N+1 = µL = µR = 0 eV. Applying a symmetric bias voltage as

shown enables transport of a single electron (particle 1) through the N + 1 electron states.
Once the electron has transported into the central region, and prior to leaving the central
region, additional exchange interactions J1i couples the electron’s spin to the dimer.

4.2.1 Hamiltonian

The total Hamiltonian is,

H = Hleads +Hleads−C +HC, (4.1)
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where each term in Eq. (4.1) is explained as follows. The energy of the electrons on the leads

Hleads is,

Hleads =
∑
αkσ

(ϵαk + µα) ĉ
†
αkσ ĉαkσ, (4.2)

where ĉ†αkσ creates an electron in the left and right lead, α = L,R, respectively, with energy

ϵαk relative to the chemical potential of the lead µα, momentum k ≡ k, and spin state σ

projected on the z-axis set by the easy-axis of the zero-field splitting term described later.

We set the zero of the lead’s chemical potential to the ground-state of the N + 1 electron

manifold of the central region, and the bias voltage is applied symmetrically such that

µL = Vb/2 and µR = −Vb/2. The coupling of the leads to the central region can be described

by the hybridization term Hleads−C,

Hleads−C =
∑
αkσn

(
tαkσ ĉ

†
αkσd̂nσ + h.c.

)
, (4.3)

where tαkσ is the tunneling amplitude of an electron with momentum k at lead α to level n,

d̂†nσ creates an electron with spin σ on the central region’s eigenstate n, and we have assumed

that the hopping rate is independent of n.

The central region Hamiltonian has the form,

HC = HeS +H23 +HA +HZ +HE +HG. (4.4)

HeS refers to the exchange interaction of the electron in the QD with the two spin particles

in the central region,

HeS = δNe,1
1

2
J1i
∑
inµµ′

Ŝi · d̂†nµσ̂µµ′ d̂nµ′ , (4.5)
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where Ne is the number of extra electrons in the central region (i.e., the charge state), J1i

is the exchange interaction between an electron and the spin particles (assumed to be the

same strength for each spin particle i), Si is the spin operator for spin particle i, and σ̂µµ′

is the corresponding µ, µ′ matrix element of the s = 1
2

Pauli matrix. This form of the

exchange interaction is derived by extending the single impurity Anderson model [39] to a

two-impurity Anderson model, and transforming into the low energy regime by means of the

Schrieffer-Wolff transformation [40]. The H23 term similarly refers to interactions between

the two spin centers,

H23 = J23Ŝ2 · Ŝ3, (4.6)

where J23 characterize the exchange interaction between spin particle 2 and 3.

Next, the HA term originates from the spin-orbit interaction of one or more unpaired

electrons in spin S > 1
2

impurities, and describes the effective zero-field splitting (and mag-

netic anisotropy), of spin particle 2 and 3,

HA = D
(
Ŝz
2 Ŝ

z
2 + Ŝz

3 Ŝ
z
3

)
. (4.7)

Here D is the magnitude of the uniaxial anisotropy strength, with the z direction determined

by the preferential direction of the easy axis, and in general is dependent on the charge state.

The HZ term represents the applied magnetic field,

HZ = µB

(
δNe,1g1σ̂ + g2Ŝ2 + g3Ŝ3

)
·B, (4.8)

where gi is the isotropic g factor for spin particle i, µB is the Bohr magneton, and B =

Bxx̂ + Byŷ + Bz ẑ is an applied magnetic field. As indicated in this Hamiltonian term, the

magnetic field is locally applied within the central region, and applies to the electron only if
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it transits the central region.

The last two Hamiltonian terms are electrostatic in nature and describe the charging

energy of the central region and the applied gate voltage [41],

HE +HG =
N2

e

2
EC −Nee

CG

C
VG, (4.9)

where EC is the charging energy e2/2C, e is the charge of the electron, C is the total

capacitance across the barriers, CG is the capacitance of the central region connected to the

gate, and VG is the gate voltage. In this work, we do not include N + 2 and N − 1 electron

manifolds (i.e., Ne = 2 and Ne = −1, respectively) because those manifolds are assumed

to be energetically unfavorable. We also rescale VG to highlight the net effect of the gate

voltage on transport properties by performing the transformation CG

C
VG → VG. Under the

manifold assumption, the electrostatic terms become,

HE +HG =
1

2
EC − eVG, (4.10)

for the N+1 electron manifold, and zero for the N electron manifold. As will be useful later,

we define ∆E
(i,j)
N,N+1 ≡ Ei

N − Ej
N+1 as the energy difference of the i’th and j’th eigenstate

of the N and N + 1 manifold, where i = 0 defines the ground state of that manifold. The

magnetic parameters chosen for our model are on the order of cm−1, as is common with MM

systems. Similarly, for parameters that can be easily tuned experimentally, the fields are on

the order of T , while the electrostatics are on the order of mV to access useful transport

properties.
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4.2.2 Model Details

We work in the regime appropriate for single-charge dynamics, i.e., the CB regime, along

with weak lead-central region interactions. As a result, third-order and higher terms of the

lead-central region perturbation will not contribute much to the dynamics of the system’s

density matrix. This allows consideration up to second-order in the perturbation, enabling

access to a tractable solution of electronic current.

The system’s density matrix can be decoupled into two parts,

ρI(t) = ρC(t)ρleads(0), (4.11)

where ρI(t) is the density matrix of the system in the interaction picture, ρC(t) is the density

matrix of the central region, and ρleads(0) is the density matrix of the leads before the pertur-

bation term is turned on. As a consequence of the weak lead-central region interaction and

CB, the time-dependent spin entanglement predicted in Ref. [22, 23] will not be accessible.

In order for equation Eq. (4.11) to hold, the entanglement information between an electron

coupled with the central region must be lost after some time t = tc, where tc is on the order

of the coherence time of the system.

Because the reservoir is split into two leads, they are presumed to not interact with

each other nor possess spin levels that interact with each other. The density matrix of the

leads can then be separated by lead and by spin,

ρleads(0) = ρL↑(0)⊗ ρL↓(0)⊗ ρR↑(0)⊗ ρR↓(0). (4.12)

The constant density matrix of the leads essentially means that the central region does not

have an appreciable effect on the leads, and the leads maintain a thermal equilibrium. This

is a statement of irreversibility of the system considered in this work.
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Next we assume the Markov approximation, in that the behavior of the central region

is not related to its behavior at any past time. This is justified because we assume that the

coupling of the central region to the leads is at least strong enough to dampen any long-

term correlations. To allow the Markov approximation to hold, we consider times longer

than the natural frequency of oscillations between two central region energy states n and n′,

t≫ ℏ/ |ωn′n|.

We assume that the coupling of the central region to the environment of the leads

is weak enough in which the change of the total density matrix in the interaction picture

is slow. By choosing a long time in which the Redfield relaxation tensor is approximately

independent of time, we use the secular approximation by maximizing the exponential factor

in front of the Redfield relaxation tensor to be unity. The surviving secular terms are bound

by energies that satisfy ωn′n − ωN ′N = 0 where the difference is defined between the natural

frequency of between two states of the central region ωn′n and the natural frequency of two

states in the leads ωN ′N .

4.2.3 Generalized Master Equation

We next follow the well-known Fermi golden rule approach to Coulomb blockade transport

and construct the generalized master equation. We assume that quasiparticle lifetime τq

within those manifolds greatly depends on their relative energies, i.e., τq ≪ ℏ/|∆E(i,j)
N,N+1|.

By inspecting the magnitude of ∆E
(0,2)
N,N+1, the quasiparticle lifetime of this excitation is

likely too short to participate in transport across the leads. Higher-order excitations with

energy differences ∆E(i,j)
N,N+1 for i > 1 or j > 1 do not participate in electron transport if the

transport channel involving ∆E
(0,2)
N,N+1 does not participate.
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For our model, the generalized master equation is then,

ρ̇n′n(t) =
i

ℏ
[ρ(t),H0]n′n + δn′n

∑
m,n ̸=m

ρmm(t)Wn′m

− γn′nρn′n(t), (4.13)

where ρ(t) refers to the central region’s density matrix, ρ(t) = ρC(t), and with the notation

Hn′n ≡ ⟨n′|H0|n⟩, ρn′n ≡ ⟨n′|ρ(t)|n⟩. Each term in Eq. (4.13) is explained as follows.

The first term on the right-hand side of Eq. (4.13) is the usual evolution of the central

region’s Hamiltonian containing the QD and multi-spin system, and the lead Hamiltonian.

The dynamics of the system due to the coupling of the leads is given in the next two terms.

The second term contains the transition rates between eigenstates of the system Wn′m from

state |m⟩ to |n′⟩ and is a sum of the contributions from each lead and spin polarization, i.e.,

Wn′m =
∑

ασW
ασ
n′m. These rates are derived in Appendix B. The result for the N → N + 1

(“absorption”) electron manifold transitions are,

Wασ
ciuj

= wασνασ
∣∣ ⟨ci|ĉ†ασ|uj⟩∣∣2fα(∆E(i,j)

N+1,N), (4.14)

where wασ = 2π|tασ|2D(Ef )/ℏ are the lead and polarization dependent transition rate con-

stants, fα(E) is the Fermi function of lead α, D(Ef ) is the density of states at the Fermi

energy, and νασ is the fractional polarization of lead α constrained to the normalization

condition να↑ + να↓ = 1. For example, the leads can be chosen to be fully polarized, e.g,

νL↓ = νR↑ = 1.0 and νR↓ = νL↑ = 0.0, or non-polarized, i.e., νασ = 0.5 ∀ α, σ. The transition

rates for N + 1 → N (“emission”) electron manifold transitions are similarly,

Wασ
uicj

= wασνασ| ⟨ui|ĉασ|cj⟩|2
(
1− fα(∆E

(j,i)
N+1,N)

)
. (4.15)
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The last term on the right-hand side of Eq. (4.13) contains a damping factor γn′n,

also derived in Appendix B. This factor is a consequence of the lead’s interaction with the

central region, and is defined for states n′ ̸= n as,

γn′n =
1

2

∑
m

(Wmn′ +Wmn) +
1

T2
, (4.16)

where T2 is the spin decoherence time. This T2 time can be due to a variety of sources

such as spin-spin coupling with the system and the reservoir, e.g., between the magnetic

moment of the spin particles and the magnetic moment of the atoms in the surrounding

substrate. T2 times have a range of magnitudes depending on the spin system of interest at

low temperatures T ≈ 1 K, such as 10−7 s for magnetic adatoms on surfaces, 10−7 to 10−5 s

for QDs, and 10−4 to 10−1 s for systems of donor electrons embedded in silicon [42].

To produce relevant predictions from the generalized master equation, we look at a

time range in which the overall relaxation time due to transitions τ , e.g., phonon-induced,

is much longer than the decay of the off diagonal elements τd = 1/γmm′ . This means that

for ρn′n(t) ∝ e−t/τd → ρ̇n′n(t) = −(1/τd)e
−t/τd , so we choose a long enough time such that

t >> τd so that ρ̇n′n(t) → 0. We find that to in order to have non-zero electronic current,

this condition is equivalent to the requirement that the off-diagonal terms of each electron

manifold must be non-zero, agreeing with the conditions of non-zero current of a similar

model in Ref. [33, 34]. Finally, the diagonal elements of the differential density matrix are

solved by assuming the steady-state case, i.e., choosing some time ts >> 1/Wmm′ to obtain

closed equations of the density matrix elements ρnn ≡ ρnn(ts). We define the current through

the central region as the transition from the charged to uncharged state across lead α and

polarization σ. The long-time steady-state current is then,

IT = (IR↑ − IL↑) + (IR↓ − IL↓) , (4.17)
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where,

Iασ = e
(
Wασ

u0c0
+Wασ

u1c0

)
ρc0c0

+ e
(
Wασ

u0c1
+Wασ

u1c1

)
ρc1c1 , (4.18)

is the steady-state current through lead α with spin polarization σ.

4.3 Results

4.3.1 Field-Dependent Energy Level Shifts

We first choose a system with parameters that will incorporate all dynamics presented in

prior sections, while simplifying some parameter choices in order to highlight the role of

each interaction in the total Hamiltonian. To this end, we assume an easy axis anisotropy

for S2 and S3, D = −0.6 cm−1, an isotropic antiferromagnetic coupling between the centers

with J23 = 0.6 cm−1, an isotropic ferromagnetic coupling of the itinerant electron with each

center, J1i = −0.8 cm−1, and a charging energy of EC = 1 meV. To obtain non-zero current

within a chosen bias window, we set the charge-state decoherence to 10 µeV. The gate

voltage is initially set to VG = 0 mV. For simplicity, the g factors of the three spin particles

are assigned the same value 2.2. A small longitudinal magnetic field, parallel to the zero-field

easy axis, is applied to aid in numerical convergence, Bz = 0.1 mT. The temperature is set to

be sufficiently low for the CB to hold, at T = 0.1 K. For our figures, we choose non-polarized

leads. The tunneling rates are chosen to be wασ = 10 GHz. The spin decoherence time is

set to be on the order of some magnetic molecules at T2 = 5.0 ns [43].

We diagonalize each block of the uncharged and charged sectors for various choices

of applied transverse magnetic field Bx and By, Bx, By ≥ 0. We find that the energetics and

transport behavior of this system are dependent on the magnitude of the applied transverse
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magnetic field, and not the direction of the field on the plane perpendicular to the shared easy

axis of spin particle 2 and 3. This contrasts the energy differences and asymmetric transport

as a function of applied magnetic field predicted in Ref. [33, 34] because our transport

equations are derived to use the eigenstates of the central region Hamiltonian, allowing us

to consider additional transitions. We also do not see a dependence on the direction of the

transverse field because there is no energetic preference towards a particular direction in any

of the spin Hamiltonian terms (e.g., the lack of a E(Ŝ2
x − Ŝ2

y) term).

The transition rates of Eq. (4.14) and Eq. (4.15) used in the transport equation

crucially depend on the energy differences between electron manifolds ±∆E
(i,j)
N,N+1. The

validity of the form of the transition rates is also dependent on maintaining the CB, which

in turn is dependent on the energy levels of the central region and applied bias. Each

contribution in the total Hamiltonian, then, will play a role in the transport equations. To

elaborate on the roles of the Hamiltonian terms, we inspect the first four energy levels for

each charge sector in Fig. 4.2 for a fixed transverse field of Btrans = 2.0 T. For these choices of

parameters, if the H23 and HE interactions are turned on and the other interactions are off,

the uncharged sector contains a non-degenerate ground state, and a three-fold degenerate

first excited state. The ground and first-excited state of the charged sector are each two-fold

degenerate. When the zero-field splitting HA is turned on, the three-fold degeneracy of the

uncharged sector is broken. The energy differences between ground and excited states of

both manifolds are shifted as a result, and appear to approach a shared value. Turning on

the transverse magnetic field HZ completely breaks the degeneracy of both charge sectors.

The resulting energy differences, however, become degenerate. We find that this degeneracy

occurs around 0.2 T for the parameters used for Fig. 4.2, and persists for fields up to 2.0 T.

When the exchange interaction of the electron is included, the energy difference symmetry

is broken.

We further investigate the dependency of the energy levels and energy differences,

81



Figure 4.2: First four energy levels of the N (black) and N+1 (blue) central region electron
manifolds. Energy differences ∆E(0,0)

N+1,N (green) and ∆E
(1,1)
N+1,N (red) are also plotted. (a) Only

H23 and HE interactions are turned on, with J23 = 0.6 cm−1 and EC = 1 meV. (b) The
zero-field splitting term HA is turned on with D = −0.6 cm−1. (c) The applied magnetic
field term HZ is turned on with a sufficiently high field, Bx = 0.5 T, resulting in degenerate
energy differences. (d) Finally, the exchange interaction HeS is turned on, J1i = −0.8 cm−1,
breaking the degeneracy.

as a function of the applied transverse field, as shown in Fig. 4.3 and Fig. 4.4, respectively.

Fig. 4.3 displays interesting level crossing and avoided crossing behavior for applied fields

in the range of Btrans = 0 T and Btrans = 1.5 T. The interesting level crossing and avoided

crossing behavior also appears in the energy differences as shown in Fig. 4.4. The same

level crossings in the range of Btrans = 0 T and Btrans = 1.5 T result in a flip of energetic

ordering of the excited state ∆E
(1,1)
N+1,N and ground state ∆E

(0,0)
N+1,N transitions. Using the

eigenstates projected onto the axis corresponding to the magnetic anisotropy Hamiltonian

term, the transverse magnetic field mixes states with different total S2 and mS spin quantum

numbers. The resulting spin eigenvectors are found to primarily have mS = 0 and a non-

trivial S2 value as shown in Fig. 4.5.

82



Figure 4.3: Energy levels E of the N (black) and N + 1 (blue) central region electron
manifold. The ground (solid), first excited (dashed), and higher-order (light solid) states are
plotted using the parameters given in the text, as a function of applied transverse magnetic
field Btrans.

4.3.2 Impact on Differential Conductance

Next we solve the current equation Eq. (4.18) for the system used in the prior section in

order to demonstrate the impact of the spin Hamiltonian eigenvalue differences on differential

conductance. We apply a transverse field of 2.0 T, sweep the bias voltage from -1 mV to

+1 mV, and numerically differentiate the current with respect to the bias voltage to obtain

predicted differential conductance. The results are shown in Fig. 4.6. Changing the spin

Hamiltonian parameters results in different conductance spectra. Using the magnitude of J1i

parameter as an example, we find two conductance peaks when the electron-dimer exchange
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Figure 4.4: Energy difference ∆E values for the N → N + 1 electron manifold transitions.
Energy differences are plotted by their transition type: ∆E

(0,0)
N+1,N (green solid), ∆E

(0,1)
N+1,N

(green dashed), ∆E(1,0)
N+1,N (red dashed), ∆E(1,1)

N+1,N (red solid), and the subset of differences
involving the second excited state of both manifolds (gray).

coupling is turned off, as would be expected for a system within CB conditions. As the

absolute magnitude of the exchange coupling is increased, additional peaks appear. Each

peak is found to correspond with the energy differences of the ground states ∆E
(0,0)
N+1,N and

excited states ∆E
(1,1)
N+1,N as the energy differences enter the bias window. If the magnitude

of J1i is increased, the peaks become more aligned with the value ±2∆E
(k,k)
N+1,N involving the

k’th energy states.

Next we investigate the differential conductance as a function of both gate and bias

voltage. The results are shown in Fig. 4.7. A Coulomb diamond-like feature appears in the
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Figure 4.5: S2 projections of the first two states in the uncharged and charged manifolds.

plot, with more than one conductance maxima lines proportional to the magnitude of the

bias and gate voltages. When the exchange interaction of the itinerant electron with the

dimer is turned off and the excitation energies become degenerate, these features disappear,

and the typical Coulomb diamond plot is reproduced.

4.3.3 Mapping of Spin Hamiltonian Parameters

The finding from the prior section suggests that one could use differential conductance mea-

surements to characterize and parameterize the spin Hamiltonian. The mapping procedure

to the model in this work is complicated by four parameter types, J1i, J23, D, and gi. To

make the procedure tractable, we first assume the same simplifications of the last section,
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Figure 4.6: Differential conductance G as a function of bias voltage for Vgate = 0.2 mV. Four
peaks of conductance correspond with key energy difference values entering the bias window,
±2∆E

(0,0)
N+1,N (green arrow) and ±2∆E

(1,1)
N+1,N (red arrow), broadened by temperature. The

values of J1i (in units of cm−1) are (a) −0.2, (b) −0.4, (c) −0.6, and (d) −0.8.

but now allow D, J23, and J1i to take on reasonable values. The range of values chosen

are provided as an example of the energy range relevant for MMs and QDs. The magnetic

anisotropy is allowed to take on a representative “easy” axis, no axis, and “hard” axis values:

D ∈ {−0.6, 0.0, 0.6} cm−1. Similarly, we choose the dimer exchange coupling to be either

ferromagnetic or antiferromagnetic: J23 ∈ {−0.6, 0.6} cm−1. Last, we choose the dot-dimer

exchange coupling to be either ferromagnetic, “weakly” ferromagnetic, weakly antiferromag-

netic, or antiferromagnetic: J1i ∈ {−0.8, −0.08, 0.08, 0.8} cm−1. We assume that the J1i

value is non-zero to ensure the QD’s coupling to the spin space of the dimer. We also assume
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Figure 4.7: Differential conductance G as a function of bias voltage and gate voltage.
For the parameter set chosen, four conductance lines are clearly seen, associated with the
inclusion of four energy difference values as bias is increased.

that the g factor of each spin center in the dimer has the same value, but can be different

from the QD’s effective g factor of 2.2: g23 ∈ {2.2, 3.2, 4.2}.

The first stage in the mapping of the parameters is to make differential conductance

measurements without the use of an applied magnetic field. By doing so, the Zeeman term

of the Hamiltonian disappears, and the g factor does not need to be parameterized in this

stage. We explore the parameter space of J1i, J23, andD using the Vgate and Vbias independent

variables. The key highlights of the dependency of the conductance spectra on the sign of

J1i and the sign of D is highlighted in Fig. 4.8.

The next stage in mapping of the parameters is to utilize the Zeeman field to in-

vestigate Hamiltonian terms that should be sensitive to the field magnitude. We also set

Btrans = 2.0 T for those independent variable combinations that do not involve it, such as the

dependence of conductance on Bz and Vbias. We find important changes in the conductance
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Figure 4.8: Differential conductance G as a function of bias voltage and gate voltage, with
a ferromagnetic J23 parameter. The correspondence of plot labels to numerical parameters
can be found in the text of Section 4.3.3.

to identify the sign and magnitude of J1i and the sign of J23 as shown in Fig. 4.9.

Once the signs and magnitudes of J1i, J23, and D have been determined, we create a

third stage of measurements to get information on the g factor. We find in Fig. 4.10 that it

is relatively easy to see changes in the conductance spectra at the resolution of our example

using the parallel-aligned applied magnetic field and bias voltage because the change in

location and magnitude of the peaks is dependent on the magnitude of the g factor.

Finally, noting that the sensitivity of the magnitude of the exchange coupling strength

of the QD and the spin system is apparent in the prior figures, we further explore the role

of the magnitude and sign of J1i in Fig. 4.11. As the absolute magnitude of the exchange

coupling is increased from J1i = 0.0 cm−1, the double peak feature is broken into four peaks.

If a gate voltage is applied, one can access the three-peak regime within a chosen bias window,
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Figure 4.9: Differential conductance G as a function of gate voltage and transverse applied
magnetic field, with an easy axis D. The correspondence of plot labels to numerical param-
eters can be found in the text of Section 4.3.3.

Figure 4.10: Differential conductance G as a function of bias voltage and parallel applied
magnetic field, with an easy axis D and a ferromagnetic J23. The correspondence of plot
labels to numerical parameters can be found in the text of Section 4.3.3.
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Figure 4.11: Differential conductance G as a function of bias voltage and exchange coupling
J1i. The exchange coupling breaks the symmetry of the conductance peaks as the absolute
magnitude is increased from J1i = 0.0 cm−1. Different gate voltage Vgate at (a) 0.0 mV and
(b) 0.2 mV changes the bias needed to split the conductance peaks.

and even revert to two conductance peaks for large enough J1i. The choice of gate voltage

is equivalent to accessing different parts of the Coulomb diamond shown in Fig. 4.7.

4.4 Discussion

The dependency of the conductance splitting on each spin Hamiltonian parameter is evident

in Figures 4.8-4.11. The measurement scheme, involving each of the three stages, is the main

result of this paper. Parameterizing all four spin Hamiltonian terms at once is a difficult

task, and so we find that the three-stage process listed here is a method to constrain the

parameter search by simplifying the parameter space at each stage. We first note the reason

why different peaks and lines appear in the differential conductance plots. The splitting of

conductance peaks are explained by the inclusion of additional energy differences (and thus
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additional transport channels) in the bias window, as shown in Fig. 4.6. Both the ∆E
(0,0)
N+1,N

and ∆E
(1,1)
N+1,N energy differences are degenerate at zero exchange coupling, which leads to

only two peaks appearing in the differential conductance plots. We have found that this

degeneracy appears only when a critical threshold of Btrans is reached depending on the

parameters of J23, D, and g.

The features resulting from energy difference degeneracy and change of ordering of

the ground states for each charge manifold appear to allow one to probe different regimes

for a chosen parameter combination. In Fig. 4.8, we find that for ferromagnetic J23, one

can determine the sign of D and J1i by comparing the peak magnitude and location of the

differential conductance and the number of conductance lines. When comparing the lower-

left corner of Fig. 4.9 to Fig. 4.5, we see that the re-ordering of the ground state leads to

observed changes in the conductance spectra. That particular conductance plot is unique to

the parameter choices we explore, in comparison to the other combinations of ferromagnetic

and antiferromagnetic J1i and J23 for an easy D axis. There are still challenges, however,

when searching for particular parameter combinations in each stage. For example, if J23 is

antiferromagnetic, it is difficult to discern differences in the conductance spectra within the

first stage with zero applied magnetic field (see Fig. 2 in B).

While an analytical solution for the eigenenergies is not trivial, Fig. 4.11 demonstrates

that one can still infer important information regarding the contribution of each parame-

ter in the system to the additional conductance peaks. It’s important to note the role of

temperature. For example, with the small J1i in 4.6, the peaks of conductance do not align

with the energy difference values because of the finite temperature broadening induced by

the Fermi functions in Eq. (4.14) and Eq. (4.15). Because of the temperature dependence

in the transition rates equation, higher temperatures smooth out the energy differences, and

thus the four peak features may be difficult to resolve in a conductance measurement. High

enough temperature, however, will result in moving out of the regime that utilizes the CB,
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in which our results are no longer applicable.

We also compare the results of this work to a similar approach that was used for

systems that contained a few of the elements of our model Hamiltonian, but not its entirety.

In the double dot model of Ref. [20], conductance peak splitting was found as a function of

the interdot coupling. Comparing to our work, a similar type of coupling is accomplished

through the HeS Hamiltonian term. Instead of transport between the two dots in their work,

our model has an effective spin interaction mediated between the two centers via H23 and

onsite zero-field splitting terms HA, which establishes an energetic preference of states, and

thus ordering of preferable transport channels.

An interesting feature can be seen in the energy differences shown in Fig. 4.4. Sweep-

ing the transverse magnetic field within the parameter space changes the number of state

transitions within a given bias window. If one were to extend our two electron manifold and

eigenstate model to include the new transport channels, additional features in the electronic

current should appear. Based on the results of Fig. 4.6, as long as the lowest transition

∆E
(i,0)
N+1,N for i > 2 is within the bias window, these additional state transitions would result

in a change of the width and number of the predicted conductance peaks.

Our model can be extended to include more effects found in systems consisting of

a QD coupled to a molecular complex or impurity. For example, one could introduce the

effects of charging on the coupled spin system. It’s known that the SMM Mn12 zero-field

splitting parameter and other spin parameters change upon charging [44]. We find that

accommodating for a charge state anisotropy in zero-field splitting results in similar or dif-

ferent conductance peak behavior depending on the parameter range. If we use the same

parameters in Fig. 4.7, and instead choose an uncharged D0 = −0.6 cm−1 and charged

D1 ⪆ −1.2 cm−1, the four peak feature is retained. If one instead chooses D1 ⪅ −1.2 cm−1,

the four peak feature disappears.
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4.5 Summary and Outlook

As has been shown, within the CB for the model of an itinerant electron originating from

leads passing into a QD connected to a multi-spin complex, conductance peak splitting ap-

pears within a range of parameters related to the magnetic response of the central region.

We have also shown that one may match the location and number of differential conduc-

tance peaks as a function of bias voltage, gate voltage, and anisotropically-applied magnetic

field in order to effectively measure each parameter of the model spin Hamiltonian. This

provides a mapping to experimentally determine these magnetic properties for increasingly

small nanoscale devices, such as molecular transistors, using only electronic differential con-

ductance.

One challenge with this mapping is the number of Hamiltonian parameters. Machine-

learning methods may be used to help fit experimental differential conductance measurements

to the model Hamiltonian explored in this work, using the results from this work as the start-

ing point for a training set. In addition, sources of decoherence, the role of the magnitude

of decoherence, and the impacts of higher spin Si > 1 were not studied in this work. In-

vestigations are needed to determine the relative impact of each property on the measured

conductance and location of conductance peak splitting. Furthermore, this work assumes

a steady-state transport measurement with unpolarized leads. From prior studies [22, 23],

one can hypothesize that the itinerant electron will entangle the spin system and produce

a time-dependent coherent current in short timescales. This time-dependent entanglement

may be useful to quantum information science applications. Nano- and femto-timescale elec-

tron and spin current studies with polarized (and possibly asymmetric) leads are needed to

fully explore that possibility.
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CHAPTER 5: EQUILIBRIUM GREEN’S FUNCTIONS

FORMALISM APPLIED TO EXCHANGE COUPLED

TRIPARTITE SYSTEMS

5.1 Introduction

In prior chapters, I established the spin-space interactions that can occur when two of the

spins possess magnetic anisotropy. I also explored the impact of incorporating leads and

the use of perturbation theory to extract quantities like current and conductance, which are

found to be strongly dependent on the spin structure. To go further in the model, so that

it may be applied more readily to more complicated systems, one must look at the energy

dependence and time dependence of spin states. One of the techniques to do so is the Green’s

function formalism, as described in Chapter 1. I will do so now, using an important and

simple example of a toy three-spin particle model that accounts for the momentum of the

electron and spin exchange coupling, compared to known results for the model [1–3].

5.2 Theoretical Method

5.2.1 1D Wire and Two Magnetic Impurity Model

Cicarrello et al. explored the toy model of an electron in 1D wire interacting with two

magnetic impurities separated by a distance x0 through a contact exchange interaction, with

the Hamiltonian,

H =
p̂2

2m∗ + Jσ̂ · Ŝ1δ(x) + Jσ̂ · Ŝ1δ(x− x0), (5.1)
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where p̂ is the momentum operator, m∗ is the effective electron mass, J the exchange coupling

constant, σ̂ is the electron spin operator, and Ŝi the spin of the i’th S = 1/2 impurity [2].

The impurities in this model behave statically, and so spin-flip scattering processes are not

accounted for. By imposing boundary conditions at the impurities and solving the time-

independent Schrödinger equation for the eight stationary states, H |Ψi,stat⟩ = Ei |Ψi,stat⟩,

the electron transmissivity T can be calculated. The authors found that the transmission

was dependent on two dimensionless quantities: kx0 where k > 0 is the quantum number

associated with the eigenvalues E = ℏ2k2/2m∗, and ρ(E)J , where ρ(E) = (
√

2m∗/E)/πℏ

is the density of states per unit length of the wire. They also found that transmission

was dependent on the static spin state of the impurities. For example, if the impurities

were prepared in the entangled spin triplet configuration (|↑↓⟩+ |↓↑⟩) /
√
2, there were no

conditions of the two dimensionless quantities that led to perfect transmission. Surprisingly,

they found that if the impurities were prepared in the entangled spin singlet configuration

(|↑↓⟩ − |↓↑⟩) /
√
2, there existed conditions in which perfect transmission could be achieved.

Their result was also generalized for any spin S impurities [3].

The toy model of reference [1–3] is a jumping point from which one can construct

a Green’s function formalism for the tripartite spin problem, before attempting the more

complicated non-equilibrium Green’s function method found in Chapter 6. I convert the

problem into the well-known double-well potential and show the method of solving with

first-quantized Green’s functions and the Lippman-Schwinger equation. I then apply this to

the toy-model of Ref. [1, 2] to demonstrate that one can easily obtain the solutions without

solving the boundary-problem explicitly. I then extend the results by considering anisotropic

exchange coupling and comment on the modulation of transmission. Finally, I summarize

the challenges of using this method to solve for the model in which the two impurities are

exchange coupled.
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5.2.2 Spinless First Quantization Green’s Function Solution

The first step is to convert the problem into a spin-independent delta-function potential

problem to ensure that well-known results can be reproduced. The modified Hamiltonian is,

H =
p̂2

2m∗ + J1δ(x) + J2δ(x− x0), (5.2)

Next, the problem is converted into a Dyson-like time-independent Green’s function equation

in first-quantized form,

G(x, x′) = G0(x, x
′) +

∫
dy

∫
dz G0(x, y)V (y, z)G(z, x′), (5.3)

where,

V (y, z) = V (y) = J1δ(y) + J2δ(y − x0), (5.4)

and the first-quantized Green’s function is defined as,

G(x, x′) ≡ G(E, x, x′) =
ℏ2

2m∗ ⟨x|
1

E −H± iη
|x′⟩ . (5.5)

The Dyson equation is then,

G(x, x′) = G0(x, x
′) + J1G0(x, 0)G(0, x

′) + J2G0(x, x0)G(x0, x
′). (5.6)

The method of substitution is used to solve this equation in Appendix C.1. The result is,

Gtwo-delta(x, x
′) = Gone-delta(x, x

′) +Gcorrections(x, x
′), (5.7)
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where,

Gone-delta(x, x
′) = G0(x, x

′) +
G0(x, 0)G0(0, x

′)

β1(0)
, (5.8)

βi(x) =
1

Ji
−G0(x, x), (5.9)

λ = [β2(x0)β1(0)−G0(x0, 0)G0(0, x0)]
−1 , (5.10)

and,

Gcorrections(x, x
′) = λ

(
G0(x, 0)G0(0, x0)G0(x0, x

′) +G0(x, x0)G0(x0, 0)G0(0, x
′)

+ β1(0)G0(x, x0)G0(x0, x
′) +

G0(x, 0)G0(0, x0)G0(x0, 0)G0(0, x
′)

β1(0)

)
.

(5.11)

5.2.3 Scattering Problem from Lippmann-Schwinger Formalism

The scattering problem can now be solved by making use of the Lippmann-Schwinger equa-

tion expressed in the position basis and solved for a particular energy E,

ψ(x) = ψ0(x) +

∫
dy Gr

0(x, y)V (y)ψ(y), (5.12)

with ψ0(x) ≡ ⟨x|ψ0⟩ as the solution of the free Schrödinger’s equation and Gr
0(x, x

′) ≡

⟨x|Gr
0(x, x

′)|x′⟩ and Gr
0(x, x

′) ≡ G0(E + iη, x, x′). Inserting the spin-less potential gives,

ψ(x) = ψ0(x) + J1G
r
0(x, 0)ψ(0) + J2G

r
0(x, x0)ψ(x0). (5.13)
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As expected, this form is similar to the form determined from the Green’s function approach.

Following the procedure in Appendix C.2, one obtains in the case when x > x0 and x0 is

positive (i.e., looking at the region to the right of the second potential barrier),

ψone-delta(x)

∣∣∣∣
x>x0

= eikx +
γ1

1− γ1
eikx =

1

1− γ1
eikx, (5.14)

and,

ψcorrections(x)

∣∣∣∣
x>x0

=

[(
1

γ1
− 1

)(
1

γ2
− 1

)
− e2ikx0

]−1 [
1

γ1
+

(
1

1− γ1

)
e2ikx0

]
eikx, (5.15)

where,

γi ≡
Jim

∗

ikℏ2
(5.16)

Using ψone-delta(x), one obtains the transmission amplitude,

tone-delta =
1

1− γ1
=

1

1− Jm∗

ikℏ2
, (5.17)

matching textbook solutions for the transmission of a single delta function potential with

E > 0. Obtaining the probability for transmission is trivial,

Tone-delta = |tone-delta|2 =
1

1 + J2(m∗)2

k2ℏ4
. (5.18)

Similarly for the double-delta problem with the same conditions and J1 = J2, the transmis-

sion coefficient is,

ttwo-delta =
(
1− 2γ1 + γ21

(
1− e2ikx0

))−1
. (5.19)
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The transmission probability tends towards 1 as kx0 → ∞, and is zero when kx0 = 0.

5.2.4 First-Quantized Green’s Function Solution with Spin

Now that the double-potential problem has been solved using the Green’s function method,

spin is reintroduced into the problem. One can extend the momentum space to the tensor

product of the momentum and spin space site representation as,

|k⟩ → |k, s1, s2, s3,m1,m2,m3⟩ ≡ |k⟩ ⊗ |s1, s2, s3,m1,m2,m3⟩ . (5.20)

One can also use the product basis through the use of the appropriate standard procedure

involving Clepsch-Gordon coefficients, to describe a state with spin s and spin quantum

number ms:

|k⟩ → |k, s,ms⟩ ≡ |k⟩ ⊗ |s,ms⟩ . (5.21)

As an example of this extension, for the free Green’s function with spin,

G0(r, s,ms; r
′, s′,m′

s′) = ⟨r, s,ms| Ĝ0 |r′, s′,m′
s′⟩ (5.22a)

= ⟨r, s,ms| Ĝ0

(∫
ddk′ |k′⟩ ⟨k′|

)
|r′, s′,m′

s′⟩ (5.22b)

=

∫
ddk′ ⟨r|k′⟩ 1

E − ℏ2|k′|2
2m∗

⟨k′|r′⟩ δs,s′δms,m′
s′

(5.22c)

=
2m∗

ℏ2
1

(2π)d

∫
ddk′

eik
′·(r−r′)

k2 − |k′|2
δs,s′δms,m′

s′
. (5.22d)

It is immediately clear that a free Green’s function will maintain the spin state of the particle

because there are no spin interactions that induce a spin flip.

Turning now to the problem at hand, one converts the problem into a Dyson-like
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time-independent Green’s function equation in first-quantized form,

G(x, σ;x′, σ′) = G0(x, σ;x
′, σ′)

+
∑
σy ,σz

∫
dy

∫
dz G0(x, σ; y, σy)V (y, σy; z, σz)G(z, σz;x

′, σ′), (5.23)

where σ contains all the information that is needed for the spin space. Because of the

one-body nature of the potential V , the Dyson equation simplifies to,

G(x, σ;x′, σ′) = G0(x, σ;x
′, σ′) +

∑
σy

∫
dy G0(x, σ; y, σy)V (y, σy)G(y, σy;x

′, σ′). (5.24)

5.3 Results

I apply this Green’s function result to the contact exchange model with strengths J1 and

J2. Defining the total spin S = σ + S1 + S2 and electron-impurity spin Sei = σ + Si, and

noting that spin-flip processes are not allowed to occur, one can inspect each spin subspace

as follows.

5.3.1 Isotropic Exchange s=3/2 Subspace

In the s = 3/2 spin subspace, both se1 and se2 take on the value of 1, and so the equation

models the spin free case with a modified uniform strength J . For completeness, I indicate

the spin wave functions for this space using the same spin basis as Ref. [1, 2] of |se2, s,ms⟩
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and their equivalent |me,m1,m2⟩ form,

|1, 3/2,+3/2⟩ = |↑, ↑, ↑⟩ , (5.25)

|1, 3/2,+1/2⟩ =
√

1

3
|↑, ↑, ↓⟩+

√
1

3
|↑, ↓, ↑⟩+

√
1

3
|↓, ↑, ↑⟩ , (5.26)

|1, 3/2,−1/2⟩ =
√

1

3
|↓, ↑, ↓⟩+

√
1

3
|↓, ↓, ↑⟩+

√
1

3
|↑, ↓, ↓⟩ , (5.27)

|1, 3/2,−3/2⟩ = |↓, ↓, ↓⟩ . (5.28)

Converting the Green’s function to the Lippman-Schwinger wave function form,

ψ(x, 3
2
,ms) = ψ0(x,

3
2
,ms) +

J1ℏ2

4
Gr

0(x, 0)ψ(0,
3
2
,ms) +

J2ℏ2

4
Gr

0(x, x0)ψ(x0,
3
2
,ms). (5.29)

one sees that the form is similar to the spin-free case, and thus one needs to simply tack on

the information of the total s,ms space. The transmission for the case when J1 = J2 (i.e.,

the result in Ref. [1, 2]) can be calculated using the wave function result for a double-delta

function to obtain,

ttwo-delta =
(
1− 2γ1 + γ21

(
1− e2ikx0

))−1 (5.30a)

=
64

64 + πρ(E)J [16i+ (e2ikx0 − 1) πρ(E)J ]
. (5.30b)

where,

γ1 =
1

4i
J
m∗

kℏ2
=

1

4i
J
π

2
ρ(E) =

π

8i
Jρ(E), (5.31)

has been used.
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5.3.2 Isotropic Exchange s=1/2 Subspace

The s = 1/2 case is more complicated because now se1 and se2 are no longer good quantum

numbers. Expressing the S2
e1 operator using the four se2 states,

S2
e1 |0; 1/2,m⟩ = 3

2
|0; 1/2,m⟩+

√
3

2
|1; 1/2,m⟩ , (5.32)

S2
e1 |1; 1/2,m⟩ =

√
3

2
|0; 1/2,m⟩+ 1

2
|1; 1/2,m⟩ . (5.33)

and for the S2
e2 operator,

S2
e2 |0; 1/2,m⟩ = 0, (5.34)

S2
e2 |1; 1/2,m⟩ = 2 |1; 1/2,m⟩ . (5.35)

As one can see, these spin eigenstates mix upon action of the spin operator. One must solve,

G(x, se2;x
′, s′e2) = G0(x, se2;x

′, s′e2) +
∑
sye2

∫
dy G0(x, se2; y, se2)

×
(
J1
2

[
S2
e1 −

3

2

]
δ(y) +

J2
2

[
S2
e2 −

3

2

]
δ(y − x0)

)
G(y, sye2;x

′, s′e2), (5.36)

with the understanding that the spin sye2 is connected to the se2 spin through the interactions

of the S2
ei operators. Because s′e2 is not a good quantum number, the action of the operators

will necessarily split the Green’s function into contributions of all possible values of se2. In

the case of s = 1/2 impurities, the span of the possible se2 values are 0 and 1. The action

of the contact exchange coupling is to connect these distinct spin spaces. This is seen in the
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form of the Green’s functions,

G(x, se2;x
′, s′e2) = G0(x, se2;x

′, s′e2) +

∫
dy G0(x, se2; y, se2) ⟨se2|V |0⟩G(y, 0;x′, s′e2)

+

∫
dy G0(x, se2; y, se2) ⟨se2|V |1⟩G(y, 1;x′, s′e2) (5.37)

Substituting the interaction V ,

G(x, se2;x
′, s′e2) = G0(x, se2;x

′, s′e2)

+

∫
dy G0(x, se2; y, se2)

(
Jse2,0
e1 δ(y) + Jse2,0

e2 δ(y − x0)
)
G(y, 0;x′, s′e2)

+

∫
dy G0(x, se2; y, se2)

(
Jse2,1
e1 δ(y) + Jse2,1

e2 δ(y − x0)
)
G(y, 1;x′, s′e2),

(5.38)

where the modulated strength Jse2,sze2
e1/e2 is determined by the result of the operation,

Jse2,n
ei ≡ ⟨se2|

Ji
2

[
S2
ei −

3

2

]
|n⟩ . (5.39)

For the sye2 = 0, m = ±1/2 spin states,

⟨0| J1
2

[
S2
e1 −

3

2

]
|0⟩ = J0,0

e1 = 0, (5.40)

⟨0| J2
2

[
S2
e2 −

3

2

]
|0⟩ = J0,0

e2 = −3

4
J2, (5.41)

⟨0| J1
2

[
S2
e1 −

3

2

]
|1⟩ = J0,1

e1 =

√
3

4
J1, (5.42)

⟨0| J2
2

[
S2
e2 −

3

2

]
|1⟩ = J0,1

e2 = 0, (5.43)
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and for the sye2 = 1, m = ±1/2 spin states,

⟨1| J1
2

[
S2
e1 −

3

2

]
|0⟩ = J1,0

e1 =

√
3

4
J1, (5.44)

⟨1| J2
2

[
S2
e2 −

3

2

]
|0⟩ = J1,0

e2 = 0, (5.45)

⟨1| J1
2

[
S2
e1 −

3

2

]
|1⟩ = J1,1

e1 = −1

2
J1, (5.46)

⟨1| J2
2

[
S2
e2 −

3

2

]
|1⟩ = J1,1

e2 =
1

4
J2. (5.47)

One can exploit the delta function in the contact exchange coupling and simplify the integrals,

resulting in,

G(x, se2;x
′, s′e2) = G0(x, se2;x

′, s′e2) + Jse2,0
e1 G0(x, se2; 0, se2)G(0, 0;x

′, s′e2)

+ Jse2,0
e2 G0(x, se2;x0, se2)G(x0, 0;x

′, s′e2)

+ Jse2,1
e1 G0(x, se2; 0, se2)G(0, 1;x

′, s′e2)

+ Jse2,1
e2 G0(x, se2;x0, se2)G(x0, 1;x

′, s′e2). (5.48)

Solving this equation by substitution can be done with the aid of a computational algebra

software, such as Mathematica [4], whose resultant expanded form has over 1000 terms. One

can then convert the Green’s function to the Lippman-Schwinger wave function form, and

calculate transmission probabilities, obtaining the same results as Ref. [1, 2].

5.3.3 Anisotropic Exchange

Instead of assuming an isotropic J as in Ref. [1, 2], I assume an anisotropic J1 and J2 for the

coupling of the electron to the magnetic impurities. First, I explore the s = 3/2 subspace.

Taking ρ(E)J1 = 2 as an example, the ratio of the magnitude of J1 and J2 results in different

transmission behavior, as seen in Fig. 5.1. The relative sign of the exchange coupling results
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Figure 5.1: Transmission as a function of the dimensionless quantity kx0 for ρ(E)J1 = 2 for
any state preparation in the s = 3/2 spin space, for a range of different exchange coupling
ratios.

in a shift of the transmission curve, as shown in Fig. 5.2.

Moving now to the s = 1/2 spin subspace, I repeat the same explore of the ratios

and signs of the ρ(E)Ji quantities. The case when the electron is injected as ↑ and the

impurities are prepared in the non-entangled |↑↓⟩ state results in different transmission

profiles, dependent on the ratio of the different exchange coupling strengths, as shown in

Fig. 5.3. I also look at the difference in transmission profiles for singlet (in Fig. 5.4 and

Fig. 5.5) and triplet-prepared impurity spin states (in Fig. 5.4 and Fig. 5.5) for both different

ratios and relative signs of the exchange coupling.
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Figure 5.2: Transmission as a function of the dimensionless quantity kx0 for ρ(E)J1 =
ρ(E)J2 = 2 for any state preparation in the s = 3/2 spin space, for a range of different
relative signs of the exchange coupling.

5.4 Discussion and Summary

In Fig. 5.1, when the coupling is equal, perfect transmission is possible, agreeing with the

results from Ref. [2]. When the coupling has different magnitudes, but the same sign, there

are no conditions in which perfect transmission can occur because the spin states are no

longer eigenstates of the Hamiltonian. The effect of sign is clearly seen in Fig. 5.2. The

point at which perfect transmission is shifted symmetrically about the condition kx0 = π

when the exchange-coupling constant for each impurity carries the same sign. The case for

opposite sign (e.g., a ferromagnetic J1 and antiferromagnetic J2 coupling) shows that the

same principle holds as for similar magnitude and sign coupling. This also says that the use

of an electron transmission to ascribe the sign of exchange coupling of a particular impurity
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Figure 5.3: Transmission as a function of the dimensionless quantity kx0 for ρ(E)J1 = 2.
The electron is injected as |↑⟩, and the spin impurities are prepared with the spin state |↑↓⟩,
for a range of different exchange coupling ratios.

is not possible in this toy model if at least one of the impurities has opposite sign.

As I have shown, the Green’s function formalism is a powerful tool to explore spin-

dependent problems and avoid some complexities of using solving the time-independent

Schrödinger equation using the boundary condition method, but there are limitations in

the first-quantized form. For example, if one wants to include an exchange coupling term

of spin 1 and 2, the potential is no longer single body. A different formalism is needed to

solve the problem, like the many-body Green’s function method. In addition, a Dyson-like

equation must be solved self-consistently in that scenario to obtain a steady-state solution

(if it exists). The method of using a many-body Green’s function, and exploring the time-

dependent behavior of such a system will be explored in the next chapter.
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Figure 5.4: Transmission as a function of the dimensionless quantity kx0 for ρ(E)J1 =
2. The electron is injected as |↑⟩, and the spin impurities are prepared as a spin triplet
(|↑↓⟩+ |↓↑⟩) /

√
2 state, for a range of different exchange coupling ratios.
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Figure 5.5: Transmission as a function of the dimensionless quantity kx0 for |ρ(E)J1| =
|ρ(E)J2| = 2. The electron is injected as |↑⟩, and the spin impurities are prepared as a spin
triplet (|↑↓⟩+ |↓↑⟩) /

√
2 state, for a range of different relative signs of the exchange coupling.
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Figure 5.6: Transmission as a function of the dimensionless quantity kx0 for ρ(E)J1 =
2. The electron is injected as |↑⟩, and the spin impurities are prepared as a spin singlet
(|↑↓⟩ − |↓↑⟩) /

√
2 state, for a range of different exchange coupling ratios.
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Figure 5.7: Transmission as a function of the dimensionless quantity kx0 for |ρ(E)J1| =
|ρ(E)J2| = 2. The electron is injected as |↑⟩, and the spin impurities are prepared as a spin
singlet (|↑↓⟩ − |↓↑⟩) /

√
2 state, for a range of different relative signs of the exchange coupling.
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CHAPTER 6: NON-EQUILIBRIUM GREENS FUNCTIONS

APPLIED TO TRIPARTITE TIGHT-BINDING MODELS

6.1 Introduction

I now extend the work from the last chapter to the many-body Green’s function formalism,

with the aim of also introducing the non-equilibrium paradigm. There has been much work

on investigating multi-site problems using the NEGF formalism. As mentioned in Chapter 1,

many of them are based on the Meir-Wingreen formalism [1], where one solves NEGFs in

the energy domain for the case of a central region connected to two large leads,

I =
e

ℏ
∑
kαn

∫
dω

2π

[
VkαnG

<
n,kα(ω)− V ∗

kαnG
<
kα,n(ω)

]
, (6.1)

where G<
n,kα is the Keldysh Green’s function for the energy level n in the central region and k

wave vector in lead α, and Vkαn is the interaction connecting the leads to the central region.

This approach has been widely successful, and is used in the latest-generation NEGF codes

[2–4] to explore steady-state transport.

Of interest is the time-dependent NEGF formalism, where one can attempt to model

transient behavior of a quantum system. For example, the non-linear time-dependent behav-

ior of double-dot systems that utilize a two-site Hubbard model for the scattering region with

hopping from electrodes has been explored [5]. Because of the complexities involved with

spin-spin interactions, I explore a relatively simple toy model of two and three tight-binding

sites at finite temperature and solve it using NEGF. I present the results of several non-

equilibrium conditions and the impact on the occupation number of each site as a function

of time. I will then outline the procedure that one must do in order to incorporate spin and

describe the equations of motion that must be solved self-consistently to model exchange
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Figure 6.1: Schematic of the three-site model considered in this chapter. One site on the
left and one on the right represent the sites with the surface of a bulk-like lead, with a
single transition site located a distance a (leading to effective hopping terms tLd and tdR) in
between the leads.

coupled spins.

6.2 Tight-Binding Three-Site Model

I first consider the tight-binding model represented in Fig. 6.1. In this model, I consider

one orbital site connected to orbital sites on the surface of leads without spin interactions.

The lead sites are assumed to be at a particular chemical potential that mirrors the bulk

properties of the lead. The electron can hop from lead orbitals into and out of a device

region site’s orbitals, accounted for by a hopping term in the Hamiltonian that represented

the kinetic energy of the electron and is in principle directly related to the spacing of the

site from the leads. In this model, an electron hops from one lead to the site and onto the

next lead if a chemical potential difference or electric field has been created between both

leads. The full Hamiltonian is

Ĥ = ĤL + ĤC + ĤR + V. (6.2)

117



Each Hamiltonian term is described as follows. For lead α ∈ {L,R}, the Hamiltonian after

the bias has been turned on is,

Ĥα =
∑
σ

(εα − µα) ĉ
†
ασ ĉασ, (6.3)

where c†σ creates an electron in lead α whose eigenvalue upon action of the spin projection

operator Ŝz is +ℏ/2 or −ℏ/2 (this will be notated as ↑, ↓, respectively), the spin-independent

onsite energy is given by εα, and the chemical potential of the lead is µα. For the central

region, the Hamiltonian is simply,

HC =
∑
σ

εdd̂
†
σd̂σ, (6.4)

where d†σ creates an electron in the single-orbital site, and εd is the spin-independent onsite

energy. Importantly, this model does not include the interaction energy Un̂↑n̂↓ of two op-

positely polarized electrons on a single site, as is done in other theoretical treatments [5].

Including the interaction energy could lead to an energetic preference of singly-occupied sites.

I assume that one is already in the regime in which the low energy states of singly-occupied

sites dominate the dynamics, and thus I do not include U . The coupling between the central

site and the leads is given by a perturbation term that turns on after some time t = 0,

V =
∑
ασ

(
tαdĉ

†
ασd̂σ + h.c.

)
, (6.5)

where tαd is the hopping parameter and h.c. denotes the Hermitian conjugate of every term in

the parenthesis. In essence, the system in the infinite past is decoupled and in equilibrium,

and after t = 0, the coupling V is turned on. As can be seen in the form of the total

Hamiltonian, there are no spin-interaction terms, and thus the Hamiltonian can be block-
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diagonalized into separate spin polarization blocks.

6.2.1 Fermion Operator Equation of Motion

The time-dependent nature of the fermion operators can be solved. For the lead operators,

the equation of motion (EOM) reads,

iℏ
d

dt
ĉασ =

[
ĉασ, Ĥ

]
, (6.6)

where the commutator has been defined
[
Â, B̂

]
= ÂB̂ − B̂Â, and the anticommutator{

Â, B̂
}
= ÂB̂ + B̂Â. To solve the right-hand side (RHS) of Eq. (6.6), I quote the result of

the commutation relations in Appendix D.1, and obtain,

[
ĉα′σ′ , Ĥ

]
=
∑
ασ

{
(εα − µα)

[
ĉα′σ′ , ĉ†ασ ĉασ

]
+
(
tαd

[
ĉα′σ′ , ĉ†ασd̂σ + h.c.

])}
+
∑
σ

εd

[
ĉα′σ′ , d̂†σd̂σ

]
(6.7a)

=
∑
ασ

{
(εα − µα) δα′αδσ′σ ĉασ + tαdδαα′δσσ′ d̂σ

}
(6.7b)

= (εα′ − µα′) ĉα′σ′ + tα′dd̂σ′ . (6.7c)

The equation of motion for the ĉ operators are then,

iℏ
d

dt
ĉασ = (εα − µα) ĉασ + tαdd̂σ. (6.8)

119



Figure 6.2: The two-branch contour considered for the zero-temperate non-equilibrium
Green’s functions considered in this chapter.

Performing the same procedure for the d̂ operator results in,

[
d̂σ′ , Ĥ

]
=
∑
ασ

{
(εα − µα)

[
d̂σ′ , ĉ†ασ ĉασ

]
+
(
tαd

[
d̂σ′ , ĉ†ασd̂σ + h.c.

])}
+
∑
σ

εd

[
d̂σ′ , d̂†σd̂σ

]
(6.9a)

=
∑
ασ

t∗αdδσσ′ ĉασ +
∑
σ

εdδσ′σd̂σ (6.9b)

=
∑
α

t∗αdĉασ′ + εdd̂σ′ , (6.9c)

with an equation of motion,

iℏ
d

dt
d̂σ = t∗LdĉLσ + t∗RdĉRσ + εdd̂σ. (6.10)

6.2.2 NEGF Equation of Motion

The EOM for the NEGFs can now be calculated. One should use the contour-ordered

Green’s functions, as defined in Appendix D.4. For this simple model, I set the temperature

at T = 0, and use the two branch contour defined in Fig. 6.2. The NEGFs are evaluated on

the two-branch contour for variable z that describes the location on the contour. The z and

z′ coordinate arguments may be on different branches of the time contour, and so I designate
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the time variable t+ for times on the upper branch (C1) and t− for the lower branch (C2).

Using the results of Appendix D.5, in general the contour Green’s function EOM,

with respect to the contour variable z is,

iℏ
d

dz
Gc

ab(z, z
′) = δ(z − z′)

〈{
ak(z), b

†
q(z

′)
}〉

− i

ℏ
〈
T
(
[ak(z),H] b†q(z

′)
)〉
, (6.11)

where z, z′ contain the coordinates of interest on the contour, k and q contain other co-

ordinates that increase the dimensionality considered (e.g., spin, momenta), and T is the

contour-ordered operator. For the three-site tight-binding problem, there will be 9 equations

in total for each spin σ. Defining the B vector of operators, with the entries,

B =

[
ĉLσ d̂σ ĉRσ

]
, (6.12)

I index the contour Green’s function as the combination of operators in the B vector with

the indices i and j,

iℏ
d

dz
Gc

ij(z, z
′) = δ(z − z′)

〈{
Bi(z), B

†
j (z

′)
}〉

− i

ℏ

〈
T
(
[Bi(z),H]B†

j (z
′)
)〉

. (6.13)

As an example, for the ĉLσ ĉ†Lσ combination, the contour Green’s functions EOM are,

iℏ
d

dz
Gc

11(z, z
′) = δ(z − z′) + ϵLG

c
11(z, z

′) + tLdG
c
21(z, z

′), (6.14)

where I have transformed the onsite energies to effective onsite energy ϵi = εi−µi. Performing

the same for the rest of the operator combinations, and dropping the contour c index for

brevity, results in,

iℏ
d

dz
G(z, z′) = δ(z − z′)1+H(z)G(z, z′), (6.15)
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where the Green’s function vector G(z, z′) is defined as (and dropping the (z, z′) as well for

brevity),

G =


Gc

L

Gc
d

Gc
R

 , Gc
L =


Gc

LL

Gc
Ld

Gc
LR

 Gc
d =


Gc

dL

Gc
dd

Gc
dr

 Gc
R =


Gc

RL

Gc
Rd

Gc
RR

 , (6.16)

1 is the unit vector, and the one-body part of the Hamiltonian H(z) (which in general

depends on time, but for our case does not) has the form,

H =


HLL HLd

HdL Hdd HdR

HRd HRR

 , (6.17)

where the empty entries are zero. The nine-dimensional representation of H is,

H =



ϵL tLd

ϵL tLd

ϵL tLd

t∗Ld εd tRd

t∗Ld εd tRd

t∗Ld εd tRd

t∗Rd ϵR

t∗Rd ϵR

t∗Rd ϵR



(6.18)

This form of the contour Green’s function’s EOM is easily translated to a computational
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form. Optionally, one can express the contour Green’s functions with the matrix,

G =


Gc

LL Gc
Ld Gc

LR

Gc
dL Gc

dd Gc
dR

Gc
RL Gc

Rd Gc
RR

 . (6.19)

In this case, the unit matrix is the usual definition,

1 =


1

1

1

 . (6.20)

The coupled matrix equation of Eq. (6.15) must be solved consistently between the time-

derivative of both arguments [6], i.e.,

iℏ
d

dz
G(z, z′) = δ(z − z′)1+H(z)G(z, z′), (6.21)

−iℏ d

dz′
G(z, z′) = δ(z − z′)1+G(z, z′)H(z′). (6.22)

The computational procedure used in this work involves the trapezoidal rule, with details

found in Appendix D.6.

6.2.3 Derived Quantities

Once G(z, z′) has been found using Eqs. (6.21) and (6.22) for every z and z′ points of the

contour, one can separate the G(z, z′) into their equivalent time components G(t, t′) by their
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position on the contour,

G(z, z′) →

G(t+, t
′
+) G(t+, t

′
−)

G(t−, t
′
+) G(t−, t

′
−)

 . (6.23)

A handy relation is that each of these sectors correspond with the usual Green’s functions

(retarded, advanced, Keldysh, lesser, and greater) and these components,

GR(t, t′) = G(t+, t
′
+)−G(t+, t

′
−), (6.24)

GA(t, t′) = G(t+, t
′
+)−G(t−, t

′
+), (6.25)

GK(t, t′) = G(t−, t
′
+) +G(t+, t

′
−), (6.26)

G<(t, t′) = G(t+, t
′
−), (6.27)

G>(t, t′) = G(t−, t
′
+). (6.28)

Single-particle quantities, such as density of states, can be calculated from these usual

Green’s functions. For example, one should first transform the retarded GR(t, t′) Green’s

function into an average (physical) time tavg and relative time trel,

GR(t, t′) → GR(t+ t′/2, t− t′) = GR(tavg, trel), (6.29)

and then perform a Fourier transform on trel to obtain the frequency and time-dependent

density of states, and the corresponding spectral function,

GR(tavg, ω) =

∫
dtrel e

iωtrelGR(tavg, trel), (6.30)

A(tavg, ω) = − 1

π
Im
{
GR(tavg, ω)

}
. (6.31)
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Figure 6.3: The three-branch contour considered for the finite-temperate non-equilibrium
Green’s functions considered in this chapter.

Important to this work, one can define the occupation number of the j’th site using the same

time lesser Green’s function,

nj(t) = −iG<
jj(t, t+ δ), (6.32)

where δ is an infinitesimal time.

6.2.4 Temperature and Initial Conditions

To fully include temperature, one must extend the contour method of the prior sections, in

line with the Kadanoff-Baym formalism [7]. The new contour includes an imaginary time

term which accounts for all initial correlations, assumed to have equilibrated at an infinite

time in the past, and temperature effects through the variable β ≡ 1/kBT . The overall

contour is sketched in Fig 6.3. Accounting for this in the formalism involves computing the
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Green’s function for additional time point combinations along the new contour,

G(z, z′) →


G(t+, t

′
+) G(t+, t

′
−) G(t+, t

′
τ )

G(t−, t
′
+) G(t−, t

′
−) G(t−, t

′
τ )

G(tτ , t
′
+) G(tτ , t

′
−) G(tτ , t

′
τ )

 , (6.33)

where tτ is a time on the imaginary contour branch C3. The computational implementation

is the same as for the two-branch contour case, but extended now with imaginary times.

Discretizing the Green’s function requires some care [8, 9]. I have found that 1000 real time

steps and 100 imaginary time steps is sufficient to see non-linear behavior in the calculated

occupation number.

6.3 Results

I first start with the two-site model, where I investigate how the occupation number changes

as a function of time under non-equilibrium conditions. Because the Hamiltonian interactions

do not mix spin terms, I block diagonalize a single polarization and present the occupation

number results for a single spin channel. For the energy scales, I assume that the scale of

the hopping term between the two sites tLR sets the scale of the onsite energy of the sites,

i.e., ϵL = tLR. I then apply a symmetric bias on the chemical potentials of the left and right

site ϵL = −ϵR. For the units of the system, I set ℏ = 1, and so the timescale is chosen to be

on the units of inverse energy. The temperature is chosen to be on the order of the inverse

of the hopping term, β = 1/tLR. The results of the occupation number as a function of time

is shown in Fig. 6.4.

Next, I explore the three site model. The additional site gives us more bias options

to explore. The first option, shown in Fig. 6.5, is the linear energy level difference bias with

the site between the lead sites as a reference: ϵL = −ϵR and εd = 0 with symmetric hopping
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Figure 6.4: Occupation number of the left site (a) and the right site (b) in the two-site
biased model as a function of time.

Figure 6.5: Occupation number of the left site (a), center site (b), and right site (c) in the
three-site model with linear energy level differences, as a function of time.

to the center site tLd = tRd. Next is the so-called “armchair” bias, where the lead sites are

kept at the same chemical potential ϵL = ϵR, while the middle site is set lower than the leads

(e.g., through the use of a gate voltage) εd = 0. Again, the hopping terms are enforced to be

symmetric tLd = tRd. The change in occupation number with this bias is shown in Fig. 6.6.
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Figure 6.6: Occupation number of the left site (a), center site (b), and right site (c) in the
three-site model, with chemical potentials chosen in the armchair configuration.

Figure 6.7: Occupation number of the left site (a), center site (b), and right site (c) in the
three-site model, with asymmetric energy levels.

Asymmetric arrangements also lead to some interesting changes in the occupation

numbers of each site. I first use an asymmetric bias, where ϵL = εd and ϵR = 0, which shows

non-linear effects in Fig. 6.7. Finally, I explore the case when there are asymmetric hopping

terms, e.g., the central site is closer to one of the leads, while biasing the chemical potentials
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Figure 6.8: Occupation number of the left site (a), center site (b), and right site (c) in the
three-site model, with asymmetric hopping terms.

linearly. I set tLd = 1.5|ϵL| and tRd = 0.5|ϵR|, the results of which are shown in Fig. 6.8.

6.4 Discussion and Outlook

The results shown in Fig. 6.4 and Fig. 6.5 of the two-body and three-body linear bias

is expected. The occupation of one lead will oscillate opposite of the other lead as the

electron is transferred between them. In the absence of dissipative processes, the transfer

will continue indefinitely. This linear bias across three sites shows this behavior, with the

occupation number unchanging for the center site. This is because the same amount of

occupation number changing from one lead is compensated exactly by the other through the

influence of the symmetric hopping terms and symmetric position of the bias.

The behavior of the non-linear bias and hopping terms is interesting. In particular,

the armchair bias in Fig. 6.6 indicates that if one holds the center site below the chemical

potential, the site will experience partial charging cycles, akin to the Coulomb blockade

cycling without the full zero-to-one electron occupation change. The asymmetric leads in

Fig. 6.7 show nonlinear effects, and in the time range considered, do not appear to evolve
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towards an equilibrium occupation number. Similarly, the asymmetric hopping arrangement

in Fig. 6.8 results in asymmetric occupation versus time, and also does not appear to tend

towards equilibrium.

So far, I have neglected many-body effects. By introducing interactions (either elec-

tronic or spin), the EOM is no longer a closed equation. When taking these interactions

into account, solving for the Green’s function EOM of Eqs. (6.21) and (6.22) as done before

modifies the equations to include a many-body self energy ΣMB(z, z′′),

iℏ
d

dz
G(z, z′) = δ(z − z′)1+H(z)G(z, z′) +

∫
dz′′ΣMB[G](z, z′′)G(z′′, z′), (6.34)

−iℏ d

dz′
G(z, z′) = δ(z − z′)1+G(z, z′)H(z′) +

∫
dz′′G(z, z′′)ΣMB[G](z′′, z′). (6.35)

The many body self energy term is a functional of G, and so these equations must be solved

self-consistently. The form of this term is approximated for numerical work. In a first

approximation, for example, one can assume that ΣMB(z′′, z′) is known and only depends

on the uncoupled g(z′′, z′) Green’s functions, solved for the non-interacting case as has been

done in this work.

6.4.1 Extension to Onsite Spin Interactions

I provide a concrete example of how one could extend the results of this chapter, by including

an onsite Kondo interaction between two spin objects whose fields impact the central site.

The central region Hamiltonian is then changed to include the term,

HC =
∑
σ

εdd̂
†
σd̂σ +

1

2

∑
µµ′

(
J1Ŝ1 + J2Ŝ2

)
· d̂†µσ̂µµ′ d̂µ′ . (6.36)

I keep each spin term separate in anticipation of including interaction terms between them.

The addition of the two spin objects naturally brings about six new operators, enlarging the
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B vector,

B =

[
ĉLσ d̂σ ĉRσ Ŝ1χ Ŝ2χ

]
, (6.37)

where σ ∈ [↑, ↓] and χ ∈ [x, y, z].

As before, I solve for the commutation relations of each operator with the Hamilto-

nian. For the ĉ operators,

[
ĉα′σ′ , Ĥ

]
=
[
ĉα′σ′ , ĤTB

]
+

[
ĉα′σ′ ,

1

2

∑
µµ′

(
J1Ŝ1 + J2Ŝ2

)
· d̂†µσ̂µµ′ d̂µ′

]
(6.38a)

= (εα′ − µα′) ĉα′σ′ + tα′dd̂σ′ . (6.38b)

Performing the same procedure for the d̂ operator results in,

[
d̂σ′ , Ĥ

]
=
[
d̂σ′ , ĤTB

]
+

[
d̂σ′ ,

1

2

∑
µµ′

(
J1Ŝ1 + J2Ŝ2

)
· d̂†µσ̂µµ′ d̂µ′

]
(6.39a)

=
∑
α

(
t∗αdĉασ′ + εdd̂σ′

)
+

1

2

∑
µ

(
J1Ŝ1 + J2Ŝ2

)
· σ̂σ′µd̂µ. (6.39b)

Immediately one sees that because of the many-body interaction, the commutator results in

three-operator objects, rather than the two-operator averages considered in the prior model.

In this form, a new Green’s function is created, and the Green’s function equations are no
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longer closed, e.g.,

iℏ
d

dz
Gc

dσdσ(z, z
′) = δ(z − z′) + t∗LdG

c
Lσdσ(z, z

′) + t∗RdG
c
Rσdσ(z, z

′) + εdG
c
dσdσ(z, z

′)

− 1

2

∑
iµχ

i

ℏ

〈
T
(
JiŜiχ(z)σ

χ
σµd̂µ(z)d̂

†
σ(z

′)
)〉

(6.40a)

= δ(z − z′) + t∗LdG
c
Lσdσ(z, z

′) + t∗RdG
c
Rσdσ(z, z

′) + εdG
c
dσdσ(z, z

′)

−
∑
iµχ

Ji
2
σχ
σµ

i

ℏ

〈
T
(
Ŝiχ(z)d̂µ(z)d̂

†
σ(z

′)
)〉

(6.40b)

= δ(z − z′) + t∗LdG
c
Lσdσ(z, z

′) + t∗RdG
c
Rσdσ(z, z

′) + εdG
c
dσdσ(z, z

′)

+
∑
iµχ

Ji
2
σχ
σµG

c
Siχdµ;dσ

(z, z′), (6.40c)

where Gc
ab;c(z, z

′) is the new three-operator Green’s function. This is the source of the many-

body self-energy term in Eqs. (6.34) and (6.35). If one continues the procedure with this

new Green’s function, one will derive an infinite set of equations. Similarly, one can derive

the Green’s functions for the spin-spin correlations, using the Ŝ1χ and Ŝ2χ commutators,

[
Ŝi′χ′ , Ĥ

]
=
[
Ŝi′χ′ , ĤTB

]
+

[
Ŝi′χ′ ,

1

2

∑
µµ′

(
J1Ŝ1 + J2Ŝ2

)
· d̂†µσ̂µµ′ d̂µ′

]
(6.41)

=
i

2

∑
µµ′mn

(
J1δi′1ϵ

χ′mnŜ1n + J2δi′2ϵ
χ′mnŜ2n

)
m̂ · σ̂µµ′ d̂†µd̂µ′ . (6.42)

The final equation of motion that needs to be solved has the form,

iℏ
d

dz
Gc

ij(z, z
′) = δ(z − z′)

〈{
Bi(z), B

†
j (z

′)
}〉

− i

ℏ

〈
T
(
[Bi(z),H]B†

j (z
′)
)〉

, (6.43)
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where,

G =



Gc
LL Gc

Ld Gc
LR Gc

LS1
Gc

LS2

Gc
dL Gc

dd Gc
dR Gc

dS1
Gc

dS2

Gc
RL Gc

Rd Gc
RR Gc

RS1
Gc

RS2

Gc
S1L

Gc
S1d

Gc
S1R

Gc
S1S1

Gc
S1S2

Gc
S2L

Gc
S2d

Gc
S2R

Gc
S2S1

Gc
S2S2


, (6.44)

and where the Gij blocks are no longer equal size, as they take on the dimension of the spin

for each operator. One can introduce approximations to truncate the number of new Green’s

functions that one must solve for in Eq. (6.40c), for example, by considering a mean-level

theory. A comparison of contact-spin exchange interaction in the time-domain could then

be made to the results of Chapter 5 to establish the applicability of static versus transient

pictures for these type of models.

As mentioned in Chapter 1, there exists other numerical NEGF codes that can tackle

the tripartite spin problem. One code that I have helped develop is the TimeESR code

https://github.com/qphensurf/TimeESR. TimeESR is derived from the NEGF formalism

and is applied to the quantum master equation scheme [10, 11]. This allows one to probe low-

temperature transport features for a variety of interactions under applied fields, like those

relevant to scanning tunneling microscopy (STM) on exchange-coupled magnetic atoms. In

the next chapters, I utilize other numerical implementations of ab initio codes (including an

NEGF code) to explore two examples of novel quantum systems that may be a precursor to

the tripartite systems described in this thesis.
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CHAPTER 7: COMPARISON OF EXCITATION ENERGIES

AND STATES IN QUBIT CANDIDATE H-BN VB- PREDICTED

BY DENSITY FUNCTIONAL THEORY AND QUANTUM

DEFECT EMBEDDING THEORY

(Adapted from Eric D. Switzer, Christian Vorwerk, Volodymyr Turkowski, Duy Le, Giulia

Galli, and Talat S. Rahman, "Comparison of Excitation Energies and States in Qubit Can-

didate h-BN VB
– Predicted by Density-Functional Theory and Quantum Defect Embedding

Theory." In preparation (2023))

7.1 Introduction

Considerable effort is underway to find new and improved solid-state qubits, e.g., spin qubits

derived from defects in bulk hexagonal boron nitride (h-BN) [1–6]. h-BN is a van der Waals

material that has desirable insulating properties when used as a substrate for 2D materials [7].

Progress has been made in developing qubits from defected h-BN, namely the boron vacancy

(h-BN VB
– ) [8]. Recent experimental work has found that coherence times of up to 4 µs are

possible for h-BN VB
– using a strong continuous microwave field, making it a competitive

candidate compared to qubits made of nitrogen-vacancy centers in nanodiamonds [6].

To characterize the defects, theoretical work has focused on identifying the excita-

tion properties of h-BN VB
– . Density matrix renormalization group and Kohn-Sham (KS)

density-functional theory (DFT) have been used to characterize optically detected magnetic

resonance for single-sheet h-BN VB [9]. Group theory analysis and DFT has also been

used to characterize single-photon emission for several types of vacancies in 2D h-BN [10].

Coupled cluster theory, DFT, time-dependent DFT (TDDFT) and complete-active-space

self-consistent field methods were used to describe ODMR for single-flake h-BN VB [11].
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Our study furthers this research by calculating the excitation energies using quantum

defect embedding theory (QDET) [12] for the qubit h-BN VB
– , using KS wave functions

obtained from traditional DFT using Quantum Espresso [13, 14] at the GGA PBE and

GGA HSE exchange-correlation functional level incorporating van der Waal corrections and

calculations. In this work, we characterize the ground state energies and symmetries of the

defect geometry. Our results show that the choice of functional leads to significant differences

in point-group symmetry labels and energetic ordering of defect states for the spin polarized

system. We also show that the choice of functional level dictates the overall energy range

of transitions as calculated by QDET. We find that QDET predicts singlet-triplet splittings

of the fourth and fifth excitations, and the sixth and seventh excitations, at 23 meV and 25

meV for the PBE level of theory. We also find that the HSE level of theory gives splittings

of 22 meV and 2 meV for these singlet-triplet pairs.

The chapter is organized as follows. First in Section 7.2, we describe the DFT and

QDET method and relevant computational parameters. In Section 7.3.1, we present our

results on the electronic ground state. In Section 7.3.2, we show our calculated QDET

excitation states. Finally, in Sections 7.4 and 7.5, we present an analysis of the excitation

types and a future outlook for using QDET to characterize excitations.

7.2 Methodology

7.2.1 DFT Computational Details

Our first-principles calculations were carried out using Quantum Espresso [13, 14]. Exchange

and correlation effects were included at the generalized gradient approximation (GGA) level

for two separate simulations: one using the PBE [15] and the other using the HSE [16,

17] potentials. For the GGA PBE calculations, we used the revised van der Waal density

functional [18]. For GGA HSE, we used van der Waal Grimme D3 semi-empirical corrections
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Figure 7.1: Schematic of the h-BN VB
– supercell used in this work. Green: Boron, silver:

Nitrogen, black: charged Boron vacancy

[19] and the Gygi-Balderesch scheme to handle divergences of the Coulomb integral [20]. Both

spin polarized and spin-unpolarized calculations were carried out. The single-electron wave

functions were expanded in a plane-wave basis using the SG15 optimized norm-conserving

Vanderbilt (ONCV) scalar relativistic pseudopotentials [21, 22], a kinetic energy cutoff of 85

Ry, and charge density cutoff of 340 Ry.

To simulate an isolated defect in the h-BN bulk structure, we used a cubic 239 atom

supercell built from an orthorhombic 4-atom unit cell with a Boron atom removed. A

schematic of the defected structure is shown in Fig. 7.1. The relaxed cell dimensions were

12.89 Å x 12.41 Å x 13.49 Å for the structure using the HSE potential, and 13.03 Å x 12.54

Å x 13.10 Å for the structure using the PBE potential. The k-point sampling of the total

energy was restricted to the Γ point of the Brillouin zone. The tolerance of the self-consistent

loops was set to 10−7 Ry. Relaxation of generated structures was achieved when all force

components were smaller than 3 × 10−4 Ry/Bohr, and the estimated energy error between

relaxation steps was less than 10−4 Ry. To simulate the charged defect, a total charge of −e
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per supercell and a net magnetic moment of −2 µB per supercell was enforced during the

relaxation procedure.

7.2.2 QDET Details

QDET belongs to a classic of techniques, named embedding theories, which are designed to

solve for the electronic structure of a region of interest surrounded by an environment [12, 23–

27]. QDET specifically describes a condensed system in which the electronic excitations occur

within a small active subspace of the full Hilbert space of the system [12]. The active region

is taken in the dilute limit, i.e., the supercell representing the system is large enough to

ensure that the active space in neighboring images do not interact with each other. This

active space is represented by an orthogonal set of functions, typically a restricted set of the

Kohn-Sham (KS) Hamiltonian states ψKS
i (x) describing the solid. One may select the active

orbital space in calculations of defects in solids by manually identifying orbitals induced by

the defect. We use the following localization function to identify these orbitals,

L(ψKS
i ) =

∫
V

dx
∣∣ψKS

i (x)
∣∣2 , (7.1)

where the integration volume is chosen to include the defect and at most is bounded by the

volume of the supercell, and thus L ∈ [0, 1]. We define the active space for the defect by

choosing orbital that have an L value larger than a chosen threshold.

Utilizing the Born-Oppenheimer and non-relativistic approximation, the effective

many-body Hamiltonian of the chosen active space is defined as,

Ĥ =
∑
ij

tij â
†
i âj +

1

2

∑
ijkl

vijklâ
†
i â

†
j âlâk, (7.2)

where tij is the effective one-body interaction strength, vijkl the effective two-body interaction
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strength, âi is the annihilation operator for the i’th active space orthogonal wave function

ϕi(x), and the sum is over all orthogonal wave functions in the active space. The vijkl elements

are taken to be the matrix elements of the partially screened static Coulomb potential,

screening the bare Coulomb potential v with the active space reduced polarizability χR
0 ,

vijkl =
[
WR

0 (ω = 0)
]
ijkl

, (7.3)

where,

WR
0 (ω = 0) = v + vχR

0W
R
0 (ω = 0). (7.4)

The reduced polarizability χR
0 is calculated by first computing the KS polarizability χ0, and

then subtracting out the active space polarizability χA
0 , which is simply the KS polarizability

projected onto the active space. Within the random-phase approximation, the active space

polarizability is given by,

PA
0 (x1,x2;ω) =

∑
i

∑
j

(
fAψKS

v

)
(x1)

(
fAψKS

c

)
(x1)

×
(
fAψKS

c

)
(x2)

(
fAψKS

v

)
(x2)

×
(

1

ω − (εj − εi) + iη
+

1

ω + (εj − εi) + iη

)
. (7.5)

Here fA is the active space projector
∑

k |ϕk⟩ ⟨ϕk|, εi is the i’th KS eigenvalue, the sum

over v is over occupied states, and the sum over c is over unoccupied KS states. Once the

reduced polarizability is found, the Dyson equation Eq. (7.3) is solved, and one obtains the

vijkl elements. Because the definition of the two-body elements involves contributions of the

Hartree and exchange correlations energies, which are also included in the calculations of the

KS energies and states, the elements contain so-called double counting terms. The correction

139



Table 7.1: Symmetry labels for the defect levels at the PBE and HSE functional level (D1
to D5) for each spin channel (↑ and ↓). Labels belong to the C2v point-group symmetry.

Level PBE (↑) PBE (↓) HSE (↑) HSE (↓)
D1 b1 b1 b2 b1
D2 b1 b1 b2 b2
D3 b2 b2 b1 a1
D4 a1 a1 b1 a1
D5 b2 b2 b2 b2

is removed in the calculation of the single-body terms,

tij = HKS
ij − tdouble-count

ij , (7.6)

where HKS is the KS Hamiltonian. The method to calculate and remove the double-counting

from the tij elements can be found in the literature describing the computational implemen-

tation [12, 26]. The QDET calculations and diagonalization of the many-body Hamiltonian

were carried out using the WEST code [28], yielding the many-body eigenspectrum.

7.3 Results

7.3.1 Ground State Calculations

First we find the energy levels of the PBE structure, as shown in Fig. 7.2. The defect levels

for the PBE level are identified by analyzing the charge density maps in Fig. 7.4 and 7.4,

and the localization function in Fig. 7.8. We similarly plot the defect energy levels at the

HSE functional level in Fig. 7.3. We plot the charge density of the spin up channel for PBE

in Fig. 7.4, and HSE in Fig. 7.5. We plot the other spin channel in Fig. 7.6 and Fig. 7.6.

Visual analysis of the charge density allows us to ascribe the symmetry label for the local

point-group symmetry C2v, with results shown in Table 7.1. Using the localization function
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Figure 7.2: Energy diagram for the VB
– structure at the PBE functional level with defect

orbitals labeled. The zero of the energy is the maximum non-defect band energy in the spin
up channel. The spin up channel is colored blue, while the spin down channel is colored
orange. Gray energy levels are unoccupied levels.

as determined by QDET for the spin polarized calculation with radius of half the interlayer

distance, centered about the center of the defect and with a threshold of 0.1, we find five

localized orbitals that are within the band gap of bulk h-BN in the PBE functional level.

Though a localized level exists below the five considered in this work for one of the spin

channels, we find that this orbital’s energy is situated at a similar value to bulk bands. We

assume that this level will most likely not contribute to spin excitations.
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Figure 7.3: Energy diagram for the VB
– structure at the HSE functional level with defect

orbitals labeled. The zero of the energy is the maximum non-defect band energy in the spin
up channel. The spin up channel is colored blue, while the spin down channel is colored
orange. Gray energy levels are unoccupied levels.

7.3.2 QDET Excited States

The same localization function and threshold is used as the spin-polarized case, and is shown

in Fig. 7.9. We determine that only five levels belong to the localized defect, supporting the

defect level identification of the spin-polarized case. QDET uses a spin-unpolarized mean-

field starting point to reduce spin contamination in the generation of the parameters for the

effective Hamiltonian. The orbital energies of both functional levels are shown in Table 7.2.
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Figure 7.4: Charge density of the five defect bands at the PBE functional level for the spin
up channel, as described in the text. (a)-(e) are maps in the a cell direction, and (f)-(j)
are in the c cell direction. The phase of wave function contributed to the charge density is
colored green and yellow.

Table 7.2: Defect Kohn-Sham (KS) orbital energies of the PBE and HSE spin-unpolarized
structures (D1 to D5) and energy of the first bulk-like conduction band. The orbital energies
are taken with respect to the energy of the maximum non-defect band, similar to the spin
polarized case.

Level PBE KS Energy (eV) HSE KS Energy (eV)
D1 0.442 0.487
D2 0.448 0.518
D3 0.452 0.528
D4 1.429 2.532
D5 1.484 2.570
CB 4.220 6.446

The many-body excited states are then calculated using the five defect states. The first eight

excitation energies are given in Table 7.3. Last, we inspect the two-spin channel, five-state

Slater determinant per spin channel, state for each excitation. We define the nomenclature

for the state as |χD1, χD2, χD3, χD4, χD5⟩ where χi ∈ {0, ↑, ↓, ↑↓}, with a total occupation

of 4 electrons in each channel. The results are given in Table 7.4.
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Figure 7.5: Charge density of the five defect bands at the HSE functional level for the spin
up channel, as described in the text. (a)-(e) are maps in the a cell direction, and (f)-(j) are
in the c cell direction.

Table 7.3: Excitation energies and spin multiplicity of the first eight excitations for the PBE
and HSE structures, measured with respect to the ground state (GS) energy. The ground
state multiplicity is also given.

Excitation Number Spin Multiplicity PBE Energy (eV) HSE Energy (eV)
GS 3 0.000 0.000
1 1 0.694 2.099
2 1 0.734 2.153
3 1 1.428 -
4 3 3.789 3.761
5 1 3.812 3.783
6 3 3.901 3.889
7 1 3.926 3.891

7.4 Discussion

We first find that the defect energy levels shift significantly between PBE and HSE spin

polarized calculations. The band gap is 4.189 eV and 5.841 eV for PBE and HSE respectively,

when the defect orbitals identified later in this discussion are neglected, and are thus with
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Figure 7.6: Charge density of the five defect bands at the PBE functional level for the spin
down channel, as described in the text. (a)-(e) are maps in the a cell direction, and (f)-(j)
are in the c cell direction. The phase of wave function contributed to the charge density is
colored green and yellow.

Table 7.4: Excitation states in the |χD1, χD2, χD3, χD4, χD5⟩ nomenclature for the ground
state and first four excitations of the PBE structure as calculated by QDET.

Excitation Number State
GS 0.707 |↑↓, ↑↓, ↑↓, ↑, ↓⟩ − 0.707 |↑↓, ↑↓, ↑↓, ↓, ↑⟩
1 0.719 |↑↓, ↑↓, ↑↓, ↑↓, 0⟩ − 0.695 |↑↓, ↑↓, ↑↓, 0, ↑↓⟩
2 0.707 |↑↓, ↑↓, ↑↓, ↑, ↓⟩+ 0.707 |↑↓, ↑↓, ↑↓, ↓, ↑⟩
3 0.695 |↑↓, ↑↓, ↑↓, ↑↓, 0⟩ − 0.719 |↑↓, ↑↓, ↑↓, 0, ↑↓⟩ −

0.015 |↑↓, ↑↓, 0, ↑↓, ↑↓⟩ − 0.016 |↑↓, 0, ↑↓, ↑↓, ↑↓⟩ −
0.015 |0, ↑↓, ↑↓, ↑↓, ↑↓⟩

4 0.230 |↑↓, ↑↓, ↑, ↑↓, ↓⟩+0.014 |↑↓, ↑↓, ↑, ↓, ↑↓⟩−0.482 |↑↓, ↑, ↑↓, ↓, ↑↓⟩−
0.462 |↑, ↑↓, ↑↓, ↓, ↑↓⟩ − 0.230 |↑↓, ↑↓, ↓, ↑↓, ↑⟩ −

0.014 |↑↓, ↑↓, ↓, ↑, ↑↓⟩+ 0.483 |↑↓, ↓, ↑↓, ↑, ↑↓⟩ − 0.463 |↑↓, ↓, ↑↓, ↑, ↑↓⟩

respect to the valence band maximum of the bulk KS orbitals. Including the defect states,

the gap is 3.551 eV for the spin up channel and 1.822 eV for the spin down in the PBE

functional. It is 6.072 eV for the spin up channel and 4.263 eV for the spin down channel for

the HSE functional. These define the KS same-spin excitations.
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Figure 7.7: Charge density of the five defect bands at the HSE functional level for the spin
down channel, as described in the text. (a)-(e) are maps in the a cell direction, and (f)-(j)
are in the c cell direction.

Figure 7.8: Localization function for selected Kohn-Sham orbitals for the (a) spin up and
(b) spin down channel, at the PBE functional level. The threshold guideline is shown (red
dashed). Filled circles represent filled orbitals, while empty orbitals are not filled.
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Figure 7.9: Localization function for selected Kohn-Sham orbitals for the unpolarized PBE
functional level calculation, used as the basis for the QDET excitation calculation. The
threshold guideline is shown (red dashed). Filled circles represent filled orbitals (2 electrons),
gray-filled orbitals are partially filled orbitals (1 electron), while empty orbitals are not filled.

The first two KS spin-flip excitations, where an electron is promoted from the defect’s

highest occupied molecular orbital (HOMO) to the opposite spin channel defect’s lowest

unoccupied molecular orbital (LUMO), at the PBE functional level are 3.678 eV for spin

up HOMO to spin down LUMO, and 1.695 eV for spin down HOMO for spin up LUMO.

The corresponding HSE functional level spin-flip excitations are at 5.475 eV and 4.860 eV,

respectively. In this way, based solely on the ground-state electron density and the predicted

conduction bands, the lowest energy excitation would be a spin flip transition from the spin

up HOMO to the spin down LUMO at the PBE level of theory. At the HSE level, the lowest

energy excitation would be a same-spin excitation in the down channel.

We note that there are common trends of the defect levels in both levels of theory.
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The first two defect levels in both spin channels are nearly degenerate. In addition, the spin

down channel’s unoccupied defect levels are nearly degenerate. This behavior is replicated

in the non-spin polarized calculations given in Table 7.2.

Looking now to the symmetry of the orbitals, at the PBE level, the symmetry label

of each spin polarization channel is the same. For the HSE level, the symmetry labels are

different for the D1, D3 and D4 defect levels. In the PBE spin-unpolarized case, QDET

predicts a triplet ground state which results in two partially occupied defect orbitals, while

the bottom three defect orbitals are fully occupied. For the PBE excitations calculated by

QDET, there are two nearly degenerate singlet excitations (separated by a splitting of 40

meV), and then another singlet 694 meV higher. According to the results of Table 7.4, the

degenerate singlet states have almost even mixtures (1/
√
2) of two states. In particular,

the ground state and second excitation are opposite in phase. The PBE functional results,

however, appear to indicate that if one excites the system from the ground state to the

second excited state, there may be significant contamination of pumping to the first excited

state if one does not have fine-tuned control and resolution at the meV scale. The third

excitation larger excitation energy can be attributed to the mixing of states that promote

both electrons from one of the bottom three defect orbitals. This excitation, however, has a

low mixing coefficient (< 0.1).

The fourth excitation is the first triplet excitation. This excitation involves mixing

states that promote a single electron from one of the bottom three defect orbitals. The

triplet excitation is paired with a nearly degenerate singlet excitation (the fifth excitation),

leading to a singlet-triplet splitting of 23 meV. A similar singlet-triplet splitting is found for

the sixth and seven excitations, with the sixth excitation lying only 89 meV away from the

fifth excitation, and having a splitting of 25 meV.

The HSE excitation energies show a large contrast with the PBE ones. The first

two excitations occur at much larger energies, and have a slightly larger splitting of their
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degeneracy (54 meV). The third singlet transition, however, is missing, and instead the triplet

excitation occurs 1.608 eV larger. The singlet-triplet pairs are also found in the HSE results,

with splitting of 22 meV and 2 meV, respectively.

7.5 Summary and Conclusions

h-BN VB
– is a promising spin qubit. In this work, we have attempted to address the

challenge of characterizing the ground state energies and symmetries of the defect geometry.

Our results show that the choice of functional leads to significant differences in point-group

symmetry labels and energetic ordering of defect states for the spin polarized system. We

have shown that the choice of functional level dictates the overall energy range of transitions

as calculated by QDET. We have also shown that the many-body excitations exhibit a similar

pattern between the choice of functionals used in this paper. Last, we show that the singlet-

triplet splitting predicted by QDET is very small and may be difficult to experimentally

access. Work may be needed in the future to further characterize the many-body states

through time-dependent DFT methods.
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CHAPTER 8: ELECTRONIC TRANSPORT PROPERTIES OF A

GRAPHENE-SUPPORTED SPIN CROSSOVER FEBIPY

COMPLEX THROUGH GOLD ELECTRODES: AN AB INITIO

STUDY.

8.1 Introduction

There has been renewed investigation into the use of molecular complexes for spintronics:

solid state architectures that take advantage of both the spin and electronic degrees of

freedom. Spintronics are primarily made of metals and semiconductors, and they may offer

the ability to deliver greater efficiency in terms of power and performance [1, 2]. A class of

spintronic candidates, spin-crossover (SCO) molecules, appears to be an attractive option

due to their relatively easy fabrication and tailorable ligands. SCO molecules, often observed

within first-row transition metal complexes, are so called because of their ability to switch

between two or more defined total S spin states that are accessed upon application of light,

temperature, pressure, or magnetic field [3]. One example are Fe2+ complexes, which have

a diamagnetic low spin (LS) state and a paramagnetic high spin (HS) state. There are still

challenges that remain in order for SCO molecule-based spintronics to be competitive with

silicon-based devices, including desired electronic control and demonstration of high on/off

ratios [4].

The thin film Fe[H2B(Pz)2]2(bipy) SCO complex (referred to as “FeBipy”) has been

recently identified as a good candidate for nonvolatile voltage-controlled spin state switching

between its LS (S = 0) and HS (S = 2) states, and current measurements of spin state [4–7].

The spintronics operation for that film comes from exploiting the conductance-molecular spin

state relationship and high on/off ratios, which appear to persist even beyond room tempera-
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ture. There is a desire to predict the transport properties of SCO complexes such as FeBipy

in order to identify new electrode-SCO geometries to enhance on/off ratios, and a com-

plete picture of the conductance channels is missing. Quantum transport calculations have

been made for other iron(II) complexes, such as trans-bis(3-(2-pyridyl)[1,2,3]triazolo[1,5-

a]-pyridine)bis(isothiocyanato) which shows substantial HS/LS current ratios that may be

assisted from contributions of minority spin channel transmission [8].

In this chapter, I aim to characterize the transport properties of the FeBipy SCO

molecule using ab initio transport methods based on non-equilibrium Green’s functions. I

show that there is qualitatively similar behavior with experiments of FeBipy devices with the

transport predictions of the FeBipy SCO molecule connected to graphene supports, attached

to Au leads. I find that different spin channels play a role in the transmission, and comment

on future work aimed at uncovering a more quantitative picture.

The chapter is organized as follows. In Section 8.2 I describe the geometry of the

FeBipy complex connected to leads and computational parameters used to model transport

through the complex. I then present qualitative transport predictions in Section 8.3. In Sec-

tion 8.4, I show the correspondence with recent experiments around FeBipy SCO molecules,

and discuss the use of a more complete basis set to get better quantitative agreement with

experiment.

8.2 Methods

The geometry used in the simulation is shown in Fig. 8.1. I use both the LS and HS

geometries of the 59-atom Fe[H2B(Pz)2]2(bipy) SCO molecule relaxed with the ab initio

plane wave basis density functional theory (DFT) software Quantum Espresso [9, 10]. The

FeBipy SCO molecule is centered away from a 42-atom graphene layer placed 2.5 Å on either

side. The graphene layer is layered on top of a 4x4x1 Au layer with 3.4 Å separation. The
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Figure 8.1: Representation of the optimized unit cell for the LS system. Yellow: Au, Gold:
Fe, Light-Blue: N, Green: B, Brown: C, White: H.

4x4 in-plane periodicity is used to avoid artificial interactions between repeating images of

molecules due to the periodic boundary conditions. Defining the stacked direction as the

transport direction, the gold layer is repeated for four vertical layers, with an Au-Au bond

length of 2.897 Å. The graphene layer’s C-C bond length is 1.460 Å. The graphene layer is

used in this geometry because of its demonstrated trade-off between junction stability and

SCO switching capability [11], allowing the SCO-Au interface to possibility avoid unwanted

coupling effects [12].

I consider the effective 4L 4x4 Au layer structure as a bulk electrode to be used in the

ab initio DFT-based transport code TranSiesta [13–15], which utilizes the non-equilibrium

Green’s function method and the localized atomic orbital basis set DFT software Siesta

[15, 16]. The GGA PBE exchange-correlation functional is used [17], with the numerical

orbital SZP basis generated by Siesta for each element. An energy shift of 0.02 Ry is applied

to the basis set, with a mesh cutoff of 250 Ry. The complex contour contains 28 points

for the circle portion of the contour, and 10 points for the tail. The density matrix and

Green’s functions were converged self-consistently using the Γ point, while for transmission

calculations, a denser 2×2 k-point mesh was employed. Transmission and I-V characteristics
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Figure 8.2: Zero-bias transmission of the (a) LS (black) and HS (magenta) SCO transport
geometry. The transmission is spin-resolved (b) for majority (red) and minority (blue)
channels.

were extracted using TBTrans [14] and SISL [18].

8.3 Results

I first plot the transmission for both the LS and HS structures in Fig. 8.2. The results show

that for the HS structure, the majority versus minority transmission differs significantly.

Next, I perform transmission calculations at several bias points for both structures. The

resulting current, shown in Fig. 8.3, also shows differences based on spin state.
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Figure 8.3: Current versus voltage for the (a) LS (black) and HS (magenta) SCO transport
geometry. Current contributions are spin-resolved (b) for majority (red) and minority (blue)
channels.

8.4 Discussion

It is clear in Fig. 8.2 that the spin state of the SCO molecule impacts transmission signifi-

cantly. Within the range of 0 to -200 meV, there are sharp peaks in transmission that are

orders of magnitude different between the LS and HS states. The onset of different orbitals

within the bias window appears to correspond with jumps in current in Fig. 8.3. Looking

at each spin channel in both figures, there is a significant difference of transmission between

the majority and minority channel for the HS structure. Most of the current for the HS

structure comes from minority spin channel. This appears to be consistent with the results

of other Fe(II) complexes [8].

I note that the negative bias regime is not symmetric with the positive bias regime.
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The effective on/off ratio between the two spin states in that regime is small. In contrast,

the on/off ratio is found to be 24.015 for the V = 100 meV bias. Qualitatively, this matches

the behavior of different FeBipy thin film devices, such as the one considered in Ref. [5].

Quantitatively, the order of magnitude for both the onset of such a high on/off ratio and

the current is higher than the experimental result of Ref. [5]. This may be due to the basis

set chosen, as optimized based sets designed to mimic all-electron bulk results (like the one

in Ref. [19]) may give different quantitative results. The basis set dependency on calculated

transmission is well known for TranSiesta [20]. Simulations using an optimized basis set and

finer sampling of the density matrix and Green’s functions may result in a more quantitative

agreement. Work along this direction for the FeBipy SCO complex is ongoing.

8.5 Summary

In this chapter, I have qualitatively characterized the transport properties of the FeBipy SCO

molecule supported by graphene supports connected to Au leads using ab initio transport

methods for a small bias window. I have shown that there is similar behavior with experi-

ments of FeBipy devices with the transport predictions of both LS and HS geometries. The

calculated on/off ratio indicates that the FeBipy-graphene-Au complex is capable of large

on/off ratios, and it may be a viable candidate geometry for spintronic applications.
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CHAPTER 9: CONCLUSION AND OUTLOOK

In this thesis, I have explored the theoretical framework for tripartite spin systems that

contain spin exchange coupling and MA. The spin space, investigated in chapter 2 and 3 has a

rich structure which can be exploited for QIS applications. Connecting such a system to leads

in chapter 4 uncovered important information about spin interactions through conductance

measurements. Investigating the time-(in)dependent nature of representative toy models is

possible as shown in chapter 5 and 6, but a more thorough treatment of the spin terms in the

exchange-coupled tripartite system is needed. Finally, exploring qubit and other quantum

architecture candidates using ab initio methods in chapter 7 and 8 highlights some of the

challenges that need to be overcome in order to adequately characterize the more complicated

three-spin exchange+MA paradigm.

A challenge not completely addressed in this thesis is how to realize the three-spin

model Hamiltonian in experiment. Such an experiment is needed in order to confirm the

theoretical results presented so far, such as the DJ resonance conditions in chapters 2 and

3. There are several experimental setups that one could use for inspiration. For example,

it’s been recently theorized that double quantum dots and the Pauli spin blockade can be

used to generate entangled states [1]. Effective multi-spin particle setups connected to a

transport channel have also been experimentally explored, such as magnetic molecule dimers

exchanged coupled to carbon nanotubes [2].

One possibility is the use of spin interferometry measurements using two molecular

channels placed on a substrate [3]. Each molecular channel hosts a current of mobile elec-

trons, which precess because of their interaction with the underlying molecular electronic

structure. The two channels controllable interact through a gate-enabled exchange interac-

tion, entangling the spin states of the mobile electrons. The polarization of the electrons of

each channel is then measured in a stochastic manner in order to build a confirmation of the
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entanglement state prior to measurement.

Another experimental possibility is the coherent manipulation of atomic spins [4]. In

the experiment, spin rotations have been achieved at the nanosecond timescale utilizing a

scanning tunneling microscope (STM). Control of an individual atomic qubit’s spin state has

shown to be possible using electron spin resonance (ESR) coupled with STM [5]. Utilizing

an anisotropy in the exchange coupling between atoms, in a manner similar to the conditions

pointed out in chapter 3, may enable generation of multi-partite entanglement.

Another challenge is the inherent need for time and probability-resolved read out of

the electron’s polarization when at the DJ resonance conditions in order to prepare the entan-

glement of the spin centers with MA. The relatively “long time” incoherence spin polarization

measurements that one could obtain in an experimental arrangement similar to chapter 4

do not appear to allow measurement of the resonances at the nanosecond scale. There has

been theoretical work on utilizing a delocalized ancillary electron (a planewave-like electron)

to address molecular spin centers [6], and experimental work is needed in order to validate

such an approach. On the other hand, efforts to address coherent quantum operations are

ongoing [7], for example with the achievement of ultra-fast manipulation of electron spin

qubits with gate operations on the order of pico- or nano-seconds [8].

Another aspect not addressed in this thesis is the accurate parameterization of spin

parameters so that one may find and use the resonance conditions of Chapter 3. There

has been much work in predicting MA energy for bulk systems using DFT, such as VFe2O4

[9]. The strategy to find a system’s MA using DFT requires comparison of the total energy

of the system as a function of the direction of the magnetic moment. This noncollinear

magnetism can be found in a variety of materials such as magnets at finite temperatures and

molecular magnets, so the extension of DFT to describe noncollinear materials should be

used. The noncollinear form of spin-DFT was formulated by Jürgen Kübler and co-workers

[10], where the exchange-correlation energy functional depends on a general magnetization
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density m(r) = µB

∑N
i ψ

KS
i (r)σψKS

i (r), where µB is the Bohr magneton, and σ is the Pauli

spin vector. This form removes the constraint of global collinearity, i.e., the global “up” and

“down” spin direction assumed in Eq. (1.18). A description of the noncollinear form of spin-

DFT and the approximations for Exc[n(r),m(r)] (namely the use of local reference frames

at each real-space point to describe the spin density), is outside the scope of this thesis. A

brief review of one of the latest methods can be found in Ref. [11].

Armed with noncollinear spin-DFT, one can use it to parameterize Heisenberg-like

spin interactions JijSi · Sj, and even parameterize a more general SiJSj for the coupling

tensor J. To obtain the tensor J and incorporate spin-orbit coupling within DFT, one must

turn to the relativistic Dirac equation in order to extend the inherently non-relativistic KS

Hamiltonian [12]. The three required changes to the KS Hamiltonian are straight forward: 1.

modify the electron momentum operator p to include the vector potential A(r)/c, where c is

the speed of light, 2. add scalar-relativistic mass-velocity correction terms, and 3. include the

spin-orbit interaction. Using Eq. (1.14), one compares calculations of different spin moment

orientations to obtain the components of the J coupling tensor for each atom. In practice,

this calculation requires care on the convergence of the DFT numerical parameters and

choice of functional, such as inclusion of strong correlation effects and how one determines

the “true” magnetic ground state.

By calculating the effective coupling tensor J, one automatically obtains the Jij terms

found in the Heisenberg-like spin Hamiltonian. The calculation of the characteristic times

for spin qubit operations (T1 and T2) can be calculated through the use of quantum bath

theory with coupled cluster expansion (CCE) and generalized CCE techniques, as has been

done in SiC qubits [13–15] and molecular qubits [16] using PyCCE [17].

Finally, work is underway to utilize NEGF-derived codes that describe the time-

dependent behavior of exchange-coupled tripartite systems. Codes that have been developed

to describe the dynamics of some of the aforementioned experimental realizations like STM

164



coupled with ESR [4, 5, 18, 19] show promise for systems in which the spin parameters

can be accurately determined experimentally. Other options, like time-dependent DFT [20]

explore time ranges such as femto- and nano-scale dynamics that may be inaccessible to

full NEGF methods. With these promising avenues of research, exchange-coupled tripartite

spin systems with MA appear to be inviting quantum architectures. It is my hope that the

contents of this thesis and the developed framework will inspire further exploration of these

systems.
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APPENDIX A: DERIVATION OF HOPPING TERM FROM A

TRANSFORMATION OF THE TWO IMPURITY ANDERSON

MODEL
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In this appendix, we derive the origin of the hopping term between the spin monomers

found in Chapters 2 and 3, and in the process show a derivation of the total Hamiltonian. We

first begin with a review of the two impurity Anderson model (TIAM), which is an extension

of the single impurity Anderson model [1]. The Hamiltonian of the TIAM model is,

H = Himp +Hband + Vband-imp, (A.1)

where, for simplicity, the impurity has only two accessible levels (one for each spin). The

first term is the impurity energy term,

Himp =
∑
iσ

ϵin̂diσ + Uin̂di↑n̂di↓ , (A.2)

where ϵi is the energy of impurity i ∈ {2, 3}, Ui is the Coulombic repulsion of that impurity,

n̂diσ = d̂†iσd̂iσ is the number operator of impurity i with state σ, and d̂†iσ/d̂iσ the second-

quantization creation/annihilation operators of that state, respectively. The second term

describes the electrons in a metal

Hband =
∑
kσ

ϵkĉ
†
kσ ĉkσ, (A.3)

where ϵk is the energy of the band k, and ĉ†kσ/ĉkσ create/annihilate an electron with wave

number k and spin σ in that band, respectively. The last term describes the coupling of the

bands to the impurities,

Vband-imp =
∑
ikσ

tikĉ
†
kσd̂iσ + h.c., (A.4)

where tik is the coupling constant. When one applies a generalized form of the Schrieffer-

Wolff transformation [2] to the TIAM model, one obtains a transformed Hamiltonian H′
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that can be separated into six terms,

H′ = H0 +H′
0 +Hdir +Hexch +Hpair-tunnel +Himp-imp. (A.5)

The first two terms are diagonal in the spin space of the impurities,

H0 = Himp +Hband, (A.6)

and,

H′
0 ≡ −

∑
ikσ

(
W ii

kk +
1

2
J ii
kkn̂d̂i−σ

)
n̂d̂iσ

, (A.7)

where the coupling constants are defined as,

W i′i
k′k ≡ 1

2
ti′k′t∗ik

(
1

ϵk′ − ϵi′
+

1

ϵk − ϵi

)
, (A.8)

J i′i
k′k ≡ ti′k′t∗ik

(
1

ϵk′ − ϵi′ − Ui′
+

1

ϵk − ϵi − Ui

− 1

ϵk′ − ϵi′
− 1

ϵk − ϵi

)
. (A.9)

The third term is the direct (spin-independent) interaction,

Hdir ≡
∑
ikk′

(
W ii

k′k +
1

4
J ii
k′k

(
Ψ̂†

i Ψ̂i

))(
Ψ̂†

k′Ψ̂k

)
, (A.10)

where the following generalized creation/annihilation operators have been defined,

Ψ̂k ≡

ĉk↑
ĉk↓

 , (A.11)

Ψ̂i ≡

d̂i↑
d̂i↓

 . (A.12)
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The fourth term is the Kondo exchange interaction

Hexch ≡ −
∑
ikk′

J ii
k′k

(
Ψ̂†

k′
σ̂

2
Ψ̂k · Ψ̂†

i

σ̂

2
Ψ̂i

)
= −

∑
ikk′

J ii
k′k

(
Ψ̂†

k′ŜΨ̂k · Ψ̂†
i ŜΨ̂i

)
. (A.13)

The fifth term is the pair-tunneling interaction where two electrons or two holes are created

at once.

Hpair-tunnel ≡
1

4

∑
ikk′σ

J ii
k′kĉ

†
k−σ ĉ

†
k′σd̂iσd̂i−σ + h.c. (A.14)

The last term does not appear when one transforms the single-impurity Anderson model,

Himp-imp ≡ −1

2

∑
i ̸=j

∑
kσ

(
W ij

kk +
1

2
J̃ ij
σ

)
d̂†iσd̂jσ + h.c., (A.15)

where,

J̃ i′i
σ ≡ ti′kt

∗
ik

(
n̂d̂i′−σ

ϵk − ϵi′ − Ui′
+

n̂d̂i−σ

ϵk − ϵi − Ui

−
n̂d̂i′−σ

ϵk − ϵi′
−

n̂d̂i−σ

ϵk − ϵi

)
. (A.16)

This term represents a second-order hopping between sites mediated by the conduction elec-

tron levels. In other words, it represents an electron hopping away from one impurity into

the conduction band, followed by an electron hopping from the conduction band to the sec-

ond impurity. The first two terms of the transformed Hamiltonian adjust the energy level

of the system, and can be incorporated to redefine the energy levels. The third term can be

absorbed into the bands, and the fifth term can be neglected because it is energetically un-

favorable in this second-order treatment. There are two surviving terms, namely the Kondo

exchange interaction and impurity-impurity interaction terms, that describe the transformed
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TIAM model, which we call the two-site Kondo model,

H2K ≡ Hexch +Himp-imp. (A.17)

This model can be generalized to larger spin for the impurities. First, a simple notation

change is made,

Ψ̂†
k′ŜΨ̂k ≡ Ψ̂†

k′S1Ψ̂k, (A.18)

and then the spin sum over σ is expanded to a sum over all µ spin degrees of freedom in the

impurities of any spin S,

H2K = −
∑
i,k,k′

J ii
k′k

(
Ψ̂†

k′S1Ψ̂k · Ψ̂†
i ŜiΨ̂i

)
− 1

2

∑
i ̸=j

∑
k,µ

(
W ij

kk +
1

2
J̃ ij
µ

)
d̂†iµd̂jµ + h.c. (A.19)

In order to isolate the spin space of this model, the momentum index k is dropped,

H2K = −
∑
µ,µ′,i

J iiŜi · d̂†µ,iσ̂µ,µ′ d̂µ′,i −
1

2

∑
i ̸=j

∑
µ

(
W ij +

1

2
J̃ ij
µ

)
d̂†iµd̂jµ + h.c. (A.20)

The constants can then be redefined, e.g., JKi ≡ −2J ii and tµ,ij = −1/2(W ij + J̃ ij
µ /2), so

that,

Hthree-spin =
1

2

∑
µ,µ′,i

JKiŜi · d̂†µ,iσ̂µ,µ′ d̂µ′,i +
∑
µ

tµ,23d̂
†
µ,2d̂µ,3 + h.c. (A.21)

Finally one can see that the problem in spin space is now constructed of interactions between

three spin operators: Ŝ1, Ŝ2, and Ŝ3, and a hopping term. Assuming that the hopping term
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is independent of the spin of the impurities, tµ,23 = t ∀ µ, one finds,

Hthree-spin = HK +Ht, (A.22)

where,

HK =
1

2

∑
µ,µ′,i=2,3

JKiŜi · d̂†µ,iσ̂µ,µ′ d̂µ′,i, (A.23)

and,

Ht =
∑
µ

{
td̂†µ,2d̂µ,3 + h.c.

}
. (A.24)

Spin interactions between the impurities and other dynamics can be included, like magnetic

anisotropy, to obtain the total Hamiltonian used in Chapters 2 and 3,

H = HH +HK +HA +Ht. (A.25)

A.1 List of References

[1] P. W. Anderson, Physical Review Letters 17, 95 (1966).

[2] J. R. Schrieffer and P. A. Wolff, Physical Review 149, 491 (1966).
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B.1 Derivation of Steady-State Current for the Generalized Master Equation

To obtain the density matrix equations and transition rates of our GME model, we express

the coupling terms of V as products of the lead and central region operators. We designate

an index notation that tracks all combinations of different ĉ and d̂ operators,

V =
∑
i

tiF̂iQ̂i, (B.1)

where F̂i refers to a possible form of the ĉ operator, Q̂i refers to a possible form of the d̂

operator, and ti is the coupling constant for that combination.

In this form, the correlators are defined [1],

Γ+
mkln = − 1

ℏ2
∑
ij

titj ⟨m|Qi|k⟩ ⟨l|Qj|n⟩

×
∫ ∞

0

dt e−iωlnt ⟨Fi(t)Fj⟩ , (B.2)

Γ−
mkln = − 1

ℏ2
∑
ij

titj ⟨m|Qj|k⟩ ⟨l|Qi|n⟩

×
∫ ∞

0

dt e−iωmkt ⟨FjFi(t)⟩ , (B.3)

with the Q operators acting on the Fock spin space of the central region, on the system

eigenstates m, k, l, and n with eigenenergies Em, Ek, El, and En, respectively. The leading

contribution of the transition rates from central region eigenstate n to m (corresponding to
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sequential tunneling) is then,

Wn′n = Γ+
nn′n′n + Γ−

nn′n′n

=
2π

ℏ
∑
iNN ′

∣∣∣ ⟨n′N ′|tiF̂iQ̂i|nN⟩
∣∣∣2 ⟨N |ρleads(0)|N⟩

× δ (EN − EN ′ − ℏωn′n) , (B.4)

where ωn′n ≡ (En′ −En)/ℏ, and the system eigenstates have been expanded in terms of the

combined lead N ′, N and central region n′, n eigenstate indices. Because of the form of

V , the only non-zero Wn′n elements are those from a charged to an uncharged state or vice

versa (i.e., Wuiuj
= Wcicj = 0 ∀ i, j). The damping factor has the form,

γn′n =
∑
m

[
Γ+
n′mmn′ + Γ−

nmmn

]
− (Γ+

nnn′n′ + Γ−
nnn′n′). (B.5)

This is simplified by redefining γmm′ as is done in Ref. [2] to the form of Eq. (4.16) in the

main text.

Finally, clarifying the diagonal versus the off-diagonal terms of the system density

matrix, one obtains,

ρ̇nn(t) =
i

ℏ
[ρ(t),H0]nn +

∑
m,n ̸=m

ρmm(t)Wnm

− ρnn(t)
∑

m,n ̸=m

Wmn, (B.6)

ρ̇n′n(t) =
i

ℏ
[ρ(t),H0]n′n − γn′nρn′n(t). (B.7)

The equation for the dynamics of ρ(t) is given by the Pauli master equation for the diagonal

elements, while the off-diagonal elements contain the decoherence of the system with the

surrounding reservoir.

176



As mentioned in the main text, in order to produce relevant predictions from the

generalized master equation, we look at a time range in which the overall relaxation time

due to transitions is much longer than the decay of the off-diagonal elements. Because of

the time range concerned, limt→τ ρ̇n′n(t) = 0, and so,

ρn′n(t) =
i

ℏγn′n
[ρ(t),H0]n′n . (B.8)

Substituting the central region and leads Hamiltonian into Eq. (B.7), one obtains closed

equations for the off-diagonal density matrix elements. The off-diagonal terms in the same

charge sector, i.e., n, n′ ∈ {u0, u1} or n, n′ ∈ {c0, c1}, are,

ρn′n(t) =
Hn′n (ρn′n′(t)− ρnn(t))

Hn′n′ −Hnn − iℏγn′n
. (B.9)

Inserting this result into the generalized master equation’s diagonal elements, and noting

that γnn′ = γn′n, results in,

ρ̇n′n′(t) = Γn′n (ρnn(t)− ρn′n′(t))

+
∑

m,n′ ̸=m

ρmmWn′m − ρn′n′

∑
m,n′ ̸=m

Wmn′ , (B.10)

where the Lorentzian decoherence factor is defined as,

Γn′n =
|Hn′n|2

ℏ2
2γn′n

(Hn′n′ −Hnn)
2 /ℏ2 + γ2n′n

. (B.11)

The quantity γ2n′n can now be interpreted as the broadening factor of the Lorentzian, and

the peak of the Lorentzian is maximized if Hn′n′ = Hnn. We point out that while the n′n

elements in Eq. (B.10) are constrained to the same charge sector, the sums over the index m

include only those terms that connect different charge sectors, with the form Wuicj and Wcjui
.
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This means that the transition rates between any of the different levels between different

charge states should be accounted for, if not forbidden by transition rules (e.g., through spin

conservation). The transition rates from an uncharged eigenstate uj to charged eigenstate

ci is derived to be,

Wciuj
=
∑
ασ

Wασ
ciuj

, (B.12)

where,

Wασ
ciuj

=
2π

ℏ
νασ|tασ|2

∣∣ ⟨ci|ĉ†ασ|uj⟩∣∣2
×
∫

dED(E)fα(∆E
(i,j)
N+1,N + E). (B.13)

In the rate equation, D(E) ≡ Dασ(E)Dασ(∆ij + E), and the zero of the chemical potential

is measured against the zero of the charged sector. The reverse process has a similar form,

Wασ
uicj

=
2π

ℏ
νασ|tασ|2| ⟨ui|ĉασ|cj⟩|2

×
∫

dED(E)
(
1− fα(∆E

(j,i)
N+1,N + E)

)
. (B.14)

These rates are further simplified by assuming that transport primarily occurs with electrons

near the Fermi level of the leads, and so we assign the tunneling rate wασ = 2π|tασ|2D(Ef )/ℏ.

Inserting these results along with the steady-state case assumption allows us to obtain

closed equations of the density matrix elements. The derived density matrix elements using
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Eq. (B.10) are,

ηρu0u0 = Wc0u1 (Wu0c0 (Γc0c1 +Wu0c1 +Wu1c1) + Γc0c1Wu0c1)

+Wc1u1 (Γc0c1 (Wu0c0 +Wu0c1) +Wu0c1 (Wu0c0 +Wu1c0))

+ Γu0u1 (Γc0c1 (Wu0c0 +Wu0c1 +Wu1c0 +Wu1c1) + (Wu0c0 +Wu1c0) (Wu0c1 +Wu1c1)) ,

(B.15)

ηρu1u1 = Wc0u0 (Γc0c1 (Wu1c0 +Wu1c1) +Wu1c0 (Wu0c1 +Wu1c1))

+Wc1u0 (Γc0c1 (Wu1c0 +Wu1c1) +Wu1c1 (Wu0c0 +Wu1c0))

+ Γu0u1 (Γc0c1 (Wu0c0 +Wu0c1 +Wu1c0 +Wu1c1) + (Wu0c0 +Wu1c0) (Wu0c1 +Wu1c1)) ,

(B.16)

ηρc0c0 = Wc0u0 (Wc0u1 (Γc0c1 +Wu0c1 +Wu1c1) +Wc1u1 (Γc0c1 +Wu0c1) + Γu0u1 (Γc0c1 +Wu0c1 +Wu1c1))

+Wc0u1 ((Γc0c1 +Wu1c1) (Wc1u0 + Γu0u1) +Wu0c1Γu0u1)

+ Γc0c1 (Γu0u1 (Wc1u0 +Wc1u1) +Wc1u0Wc1u1) , (B.17)

and,

ηρc1c1 = Wc0u1 (Γc0c1 (Wc0u0 + Γu0u1) +Wc1u0 (Γc0c1 +Wu0c0))

+ Γu0u1 (Γc0c1Wc0u0 + (Wc1u0 +Wc1u1) (Γc0c1 +Wu0c0 +Wu1c0))

+Wc1u1 (Wc0u0 (Γc0c1 +Wu1c0) +Wc1u0 (Γc0c1 +Wu0c0 +Wu1c0)) , (B.18)

where η is a normalization constant.
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B.2 Plots of Conductance For No Applied Magnetic Field

Figure B.1: Differential conductance G as a function of bias voltage and gate voltage for
antiferromagnetic J23. The correspondence of plot labels to numerical parameters can be
found in the main text.

B.3 Plots of Conductance With an Applied Magnetic Field

B.4 List of References

[1] K. Blum, Density Matrix Theory and Applications (Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012).
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Figure B.2: Differential conductance G as a function of bias voltage and gate voltage for
ferromagnetic J23. The correspondence of plot labels to numerical parameters can be found
in the main text.

[2] G. González and M. N. Leuenberger, Physical Review Letters 98, 256804 (2007).
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Figure B.3: Differential conductance G as a function of gate voltage and transverse applied
magnetic field for ferromagnetic J23. The correspondence of plot labels to numerical param-
eters can be found in the main text.
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Figure B.4: Differential conductance G as a function of gate voltage and transverse applied
magnetic field for antiferromagnetic J23. The correspondence of plot labels to numerical
parameters can be found in the main text.
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APPENDIX C: EQUILIBRIUM GREENS FUNCTIONS FOR AN

ELECTRON EXCHANGE COUPLED WITH TWO SPIN

IMPURITIES
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C.1 Double-Delta First Quantization Green’s Function Solution

From Eq. 5.6, I solve for G(0, x′) and G(x0, x′) by setting x ∈ {0, x0}. One obtains,

G(0, x′) =
G0(0, x

′) + J2G0(0, x0)G(x0, x
′)

α1(0)
, (C.1)

where,

αi(x) = 1− JiG0(x, x). (C.2)

and

G(x0, x
′) =

[
G0(x0, x

′) +
J1G0(x0, 0)G0(0, x

′)

α1(0)

] [
α1(0)

α2(x0)α1(0)− J1J2G0(x0, 0)G0(0, x0)

]
,

(C.3)

Reinserting this result back into Eq. (5.6),

G(x, x′) = G0(x, x
′) +

J1G0(x, 0)G0(0, x
′)

α1(0)

+ γ

(
J1J2G0(x, 0)G0(0, x0)G0(x0, x

′) +
J2
1J2G0(x, 0)G0(0, x0)G0(x0, 0)G0(0, x

′)

α1(0)

+ J2α1(0)G0(x, x0)G0(x0, x
′) + J1J2G0(x, x0)G0(x0, 0)G0(0, x

′)

)
,

(C.4)

where,

γ = [α2(x0)α1(0)− J1J2G0(x0, 0)G0(0, x0)]
−1 . (C.5)
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Defining the new terms,

βi(x) =
1

Ji
−G0(x, x), (C.6)

λ = [β2(x0)β1(0)−G0(x0, 0)G0(0, x0)]
−1 , (C.7)

and inserting into Eq. (C.4), one obtains,

G(x, x′) = G0(x, x
′) +

G0(x, 0)G0(0, x
′)

β1(0)

+ λ

(
G0(x, 0)G0(0, x0)G0(x0, x

′) +
G0(x, 0)G0(0, x0)G0(x0, 0)G0(0, x

′)

β1(0)

+ β1(0)G0(x, x0)G0(x0, x
′) +G0(x, x0)G0(x0, 0)G0(0, x

′)

)
, (C.8)

Note that the first two terms on the right-hand side of this Green’s function looks like the

Green’s function for a single delta function.

C.2 Double-Delta Lippmann-Schwinger Solution

Starting from Eq. (5.13), and inserting the double-well potential for anisotropic strength J ,

ψ(0) =
ψ0(0) + J2G

r
0(0, x0)ψ(x0)

J1βr
1(0)

, (C.9)

where I have defined,

αr
i (x) = 1− JiG

r
0(x, x) (C.10)

βr
i (x) =

1

Ji
αr
i (x) =

1

Ji
−Gr

0(x, x). (C.11)

Comparing to the Green’s function solution, one can perform the following starting from the

Green’s function formalism,
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1. Substitute any Green’s function that contains x′ (i.e., G(α, x′) and G0(α, x
′)) with its

wave function counterpart: ψ(α) and ψ0(α).

2. Substitute any other G0(x, y) with Gr
0(x, y).

Using this substitution method, one finds,

ψtwo-delta(x) = ψone-delta(x) + ψcorrections(x), (C.12)

where,

ψone-delta(x) = ψ0(x) +
Gr

0(x, 0)ψ0(0)

βr
1(0)

, (C.13)

ψcorrections(x) = λ

(
Gr

0(x, 0)G
r
0(0, x0)ψ0(x0) +Gr

0(x, x0)G
r
0(x0, 0)ψ0(0)

+ β1(0)G
r
0(x, x0)ψ0(x0) +

Gr
0(x, 0)G

r
0(0, x0)G

r
0(x0, 0)ψ0(0)

β1(0)

)
, (C.14)

and,

βi(x) =
1

Ji
−Gr

0(x, x), (C.15)

λ = [β2(x0)β1(0)−Gr
0(x0, 0)G

r
0(0, x0)]

−1 . (C.16)

Now I analyze the behavior as x→ ∞. The free Green’s function becomes,

lim
x→∞

Gr
0(x, x

′) =
2m∗

ℏ2
1

2ik
eikxe−ikn̂x·x′

(C.17)

In our case, n̂x = −n̂x′ , and so for the cases of the retarded free Green’s function that is
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outside an integral over x′ or x, I obtain,

lim
x→∞

Gr
0(x, x

′) =
2m∗

ℏ2
1

2ik
eikx. (C.18)

Because a general solution is desired, I begin by assuming the general form of the free-electron

Green’s function. I then impose the initial condition of,

ψ0(x) = eikx, (C.19)

and define both,

ck ≡
m∗

ikℏ2
, (C.20)

γi ≡
Jim

∗

ikℏ2
= Jick, (C.21)

to obtain for the one-delta function potential,

ψone-delta(x) = eikx +
γ1

1− γ1
eik|x|. (C.22)

For the corrections,

ψcorrections(x) = λ

(
eik(|x|+|x0|+x0) + eik(|x−x0|+|x0|) +

(
1

γ1
− 1

)
eik(|x−x0|+x0) +

γ1
1− γ1

eik(|x|+|2x0|)
)
,

(C.23)

where,

λ =

[(
1

γ1
− 1

)(
1

γ2
− 1

)
− e2ik|x0|

]−1

. (C.24)
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APPENDIX D: NON-EQUILIBRIUM GREENS FUNCTION

MODEL FOR TIGHT-BINDING TRIPARTITE SPIN SYSTEMS
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D.1 Fermion Operator Algebra

The important fermion operator anticommutator rules are stated,

{ck, c†q} = ckc
†
q + c†qck = δkq, (D.1)

{ck, cq} = {c†k, c
†
q} = 0. (D.2)

These rules naturally lead to the operator commutator rules,

[ck, c
†
q] = {ck, c†q} − 2c†qck = δkq − 2c†qck (D.3)

[ck, cq] = −2cqck (D.4)

[c†k, c
†
q] = −2c†qc

†
k. (D.5)

One can extend the prior result to a product of three creation operators,

[
ci, c

†
jck
]
=
[
ci, c

†
j

]
ck + c†j

[
ci, ck

]
(D.6a)

=

({
ci, c

†
j

}
− 2c†jci

)
ck + c†j

({
ci, ck

}
− 2ckci

)
(D.6b)

=

(
δij − 2c†jci

)
ck − 2c†jckci (D.6c)

= δijck. (D.6d)

190



D.2 Spin Operator Algebra

The spin operator rules are also stated for general spin S,

(
S+
)†

= S− (D.7)(
S−)† = S+ (D.8)[

S+
β , S

−
β′

]
= δββ′2ℏSz

β (D.9)[
Sz
β, S

±
β′

]
= ±δββ′ℏS±

β′ (D.10){
S+
β , S

−
β′

}
=
[
S+
β , S

−
β′

]
+ 2S−

β′S
+
β = δββ′2ℏSz

β + 2S−
β′S

+
β , (D.11){

Sz
β, S

±
β′

}
=
[
Sz
β, S

±
β′

]
+ 2S±

β′S
z
β = ±δββ′ℏS±

β′ + 2S±
β′S

z
β. (D.12)

It is interesting to note the action of the conjugate transpose operation on the Cartesian

spin operators for any spin S,

(
Sx
β

)†
=

[
1

2

(
S+
β + S−

β

)]†
= Sx

β , (D.13)

(
Sy
β

)†
= −

[
i

2

(
S+
β − S−

β

)]†
= Sy

β, (D.14)

(
Sz
β

)†
=

[
1

2ℏ
(
S+
β S

−
β − S−

β S
+
β

)]†
= Sz

β. (D.15)

For the Cartesian spin operators, the commutator relation for any spin S is more easily

obtained,

[
Sl
β(t), S

m
β′(t)

]
= δββ′iℏ

∑
n

ϵlmnSn
β (t). (D.16)
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In the case when calculating the commutator relation of a spin vector S with another spin

operator, one obtains,

[
Sl
β(t),Sβ′(t)

]
=
∑
m

[
Sl
β(t), S

m
β′(t)

]
m̂ (D.17a)

= δββ′iℏ
∑
mn

ϵlmnSn
β (t)m̂, (D.17b)

where m̂ is the direction of the vector component, and not an operator. The anticommutator

relation for any spin S is then,

{
Sl
β(ti), S

m
β′(ti)

}
=
[
Sl
β(ti), S

m
β′(ti)

]
+ 2Sm

β′(ti)S
l
β(ti) = iℏδββ′

∑
n

ϵlmnSn
β (ti) + 2Sm

β′(ti)S
l
β(ti).

(D.18)

The following anticommutator is true for the Cartesian representation of the spin operators,

{
Sl
β(ti), S

m†
β′ (ti)

}
=
[
Sl
β(ti), S

m†
β′ (ti)

]
+ 2Sm†

β′ (ti)S
l
β(ti) (D.19a)

= iℏδββ′

∑
n

ϵlmnSn
β (ti) + 2Sm

β′(ti)S
l
β(ti). (D.19b)

and thus for three spin operators for any spin S,

[
Sl
β(t), S

m
β′(t)Sn

β′′(t)
]
=
[
Sl
β(t), S

m
β′(t)

]
Sn
β′′(t) + Sm

β (t)
[
Sl
β′(t), Sn

β′′(t)
]

(D.20a)

= δββ′iℏ
∑
p

ϵlmpSp
β(t)S

n
β′′(t) + δβ′β′′iℏ

∑
p

ϵlnpSm
β (t)Sp

β′′(t) (D.20b)

= iℏ
∑
p

(
δββ′ϵlmpSp

β(t)S
n
β′′(t) + δβ′β′′ϵlnpSm

β (t)Sp
β′′(t)

)
. (D.20c)
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In the special case when m = n = z and β′ = β′′, this relation becomes,

[
Sl
β(t), S

z
β′(t)Sz

β′(t)
]
= iℏ

∑
p

(
δββ′ϵlzpSp

β(t)S
z
β(t) + ϵlzpSz

β(t)S
p
β′(t)

)
(D.21a)

= iℏ
(
δly
[
δββ′Sx

β(t)S
z
β(t) + Sz

β(t)S
x
β′(t)

]
− δlx

[
δββ′Sy

β(t)S
z
β(t) + Sz

β(t)S
y
β′(t)

])
.

(D.21b)

D.3 Green’s Function Definitions

The total Green’s function G is a thermodynamic average of the product of two Heisenberg

operators ψ(1) and ψ(1′). The one-particle Green’s function is defined as,

G(1,1′) = − i

ℏ
〈
T
(
ψ(1)ψ†(1′)

)〉
, (D.22)

where T is the Wick time-ordering operator, designed to place the “earliest” operator on the

right-most side of the equation, and the “latest” on the left-most side [1],

T
(
ψ(1)ψ†(1′)

)
= ψ(1)ψ†(1′) for t1 > t1′ , (D.23a)

= −ψ†(1′)ψ(1) for t1 < t1′ . (D.23b)

The Green’s functions are expressed in coordinates 1 ≡ (x, t, σ) (or 1 ≡ (x, τ, σ) for com-

plex time τ as appropriate). It is often easier, especially when differentiating time-ordered

products, to introduce a more compact form of the Wick time-ordering operator,

T
(
ψ(1)ψ†(1′)

)
= θ(t1 − t1′)ψ(1)ψ

†(1′)− θ(t1′ − t1)ψ
†(1′)ψ(1) (D.23c)
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The two-particle Green’s function is defined as,

G(1,2,1′,2′) = − 1

ℏ2
〈
T
(
ψ(1)ψ(2)ψ†(2′)ψ†(1′)

)〉
, (D.24)

The lesser and greater Green’s functions are,

G<(1,1′) =
i

ℏ
〈
ψ†(1′)ψ(1)

〉
, (D.25)

G>(1,1′) = − i

ℏ
〈
ψ(1)ψ†(1′)

〉
, (D.26)

where the < and > notation remind one that for t1 > t1′ . To explore the connection of

observable to Green’s functions, first look at the number density,

⟨n(1)⟩ =
〈
ψ†(1)ψ(1)

〉
= −iℏG<(1,1), (D.27)

for particle density n(1). The reason why the lesser Green’s function is used is because of

the obfuscation,

⟨n(1)⟩ =
〈
ψ†(1)ψ(1+)

〉
= −iℏG(1,1+), (D.28)

where 1+ ≡ limε→0(x, t+ ε). One can then determine the connection with Green’s functions

and density matrices,

ρij(τ) = −iℏG<(1i(τ),1j(τ + ε)) (D.29)
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It is also useful to define two additional Green’s functions: the retarded and advanced, which

are given as

Gr(1,1′) = − i

ℏ
θ(t− t′)

〈{
ψ(1), ψ†(1′)

}〉
, (D.30)

Ga(1,1′) =
i

ℏ
θ(t′ − t)

〈{
ψ(1), ψ†(1′)

}〉
. (D.31)

It can be easily proven that with these definitions of the Green’s functions, the following

relation exists,

Gr −Ga = G> −G<. (D.32)

D.4 Non-Equilibrium Green’s Function

The non-equilibrium Green’s functions are defined along a contour [2]. Instead of using a

Wick time-ordering operator, one must now use a contour-ordered operator TC . Because it

is useful later, the additional Green’s functions, the causal (time-ordered) and anti-causal

(anti-time ordered) Green’s functions, are defined on the contour as,

Gc(1,1′) = − i

ℏ
θ(t1 − t1′)

〈
ψ(1)ψ†(1′)

〉
+
i

ℏ
θ(t1′ − t1)

〈
ψ†(1′)ψ(1)

〉
, (D.33)

Gc̃(1,1′) = − i

ℏ
θ(t1′ − t1)

〈
ψ(1)ψ†(1′)

〉
+
i

ℏ
θ(t1 − t1′)

〈
ψ†(1′)ψ(1)

〉
. (D.34)

195



D.5 Equation of Motion

To obtain the dynamics, one approach is to calculate the partial time derivative of the causal

Green’s function. Doing so for the electron operators as an example, one obtains,

∂Gc(1,1′)

∂t
= − i

ℏ
δ(t− t′)

〈
ck(t)c

†
q(t

′)
〉
− i

ℏ
θ(t− t′)

∂

∂t

〈
ck(t)c

†
q(t

′)
〉

− i

ℏ
δ(t′ − t)

〈
c†q(t

′)ck(t)
〉
+
i

ℏ
θ(t′ − t)

∂

∂t

〈
c†q(t

′)ck(t)
〉

(D.35a)

= − i

ℏ
δ(t− t′)

(〈
ck(t)c

†
q(t

′)
〉
+
〈
c†q(t

′)ck(t)
〉)

− i

ℏ
θ(t− t′)

(〈
∂ck(t)

∂t
c†q(t

′)

〉
+

〈
ck(t)

∂c†q(t
′)

∂t

〉)
(D.35b)

+
i

ℏ
θ(t′ − t)

(〈
∂c†q(t

′)

∂t
ck(t)

〉
+

〈
c†q(t

′)
∂ck(t)

∂t

〉)
(D.35c)

= − i

ℏ
δ(t− t′)

〈{
ck(t), c

†
q(t

′)
}〉

− i

ℏ

〈
T
(
∂ck(t)

∂t
c†q(t

′)

)〉
. (D.35d)

Next the equation of motion of the electron operators is,

iℏ
∂ck(t)

∂t
= [ck(t),H] , (D.36)

for a Hamiltonian H. Inserting this into the result of the time derivative of the causal Green’s

function, and multiplying by another factor of iℏ, one obtains,

iℏ
∂Gc(1,1′)

∂t
= δ(t− t′)

〈{
ck(t), c

†
q(t

′)
}〉

− i

ℏ
〈
T
(
[ck(t),H] c†q(t

′)
)〉
. (D.37)

As will be used later, the equation of motion is also needed for the retarded and
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advanced Green’s functions. For the former,

∂Gr(1,1′)

∂t
=

∂

∂t

(
− i

ℏ
θ(t− t′)

〈{
ck(t), c

†
q(t

′)
}〉)

(D.38a)

= − i

ℏ
δ(t− t′)

〈{
ck(t), c

†
q(t

′)
}〉

− i

ℏ
θ(t− t′)

〈{
∂ck(t)

∂t
, c†q(t

′)

}〉
(D.38b)

= − i

ℏ
δ(t− t′)

〈{
ck(t), c

†
q(t

′)
}〉

− i

ℏ
θ(t− t′)

〈{
− i

ℏ
[ck(t),H] , c†q(t

′)

}〉
, (D.38c)

and so,

iℏ
∂Gr(1,1′)

∂t
= δ(t− t′)

〈{
ck(t), c

†
q(t

′)
}〉

− i

ℏ
θ(t− t′)

〈{
[ck(t),H] , c†q(t

′)
}〉
. (D.39)

Performing the same on the advanced Green’s functions results in,

iℏ
∂Ga(1,1′)

∂t
= δ(t′ − t)

〈{
ck(t), c

†
q(t

′)
}〉

+
i

ℏ
θ(t′ − t)

〈{
[ck(t),H] , c†q(t

′)
}〉
. (D.40)

Repeating the same for the G< function (because the current through a device depends on

that function), one finds that the equation of motion is,

∂G<(1,1′)

∂t
=
i

ℏ
∂

∂t

(〈
c†q(t

′)ck(t)
〉)

(D.41a)

=
i

ℏ

〈
c†q(t

′)
∂

∂t
ck(t)

〉
(D.41b)

=
i

ℏ

〈
c†q(t

′)
−i
ℏ

[ck(t),H]

〉
, (D.41c)

which leads to,

iℏ
∂G<(1,1′)

∂t
=
i

ℏ
〈
c†q(t

′) [ck(t),H]
〉
, (D.42)
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D.6 Time Propagation using the Trapezoidal Rule for Green’s Functions

I state the numerical implementation of time propagation of a Green’s function that does not

contain a self-energy term, using the trapezoidal rule, the computational time step ∆t, the

Green’s function computational matrix G and the Hamiltonian matrix H. One first starts

with the equation of motion,

iℏ
dG

dt
= δ(t− t′)I+HG. (D.43)

Applying the trapezoidal rule,

G(t+∆t) = G(t) +
1

2

[
dG(t)

dt
+

dG(t+∆t)

dt

]
∆t

= G(t)− i

2ℏ
[δ(t− t′)I+HG(t) + δ(t+∆t− t′)I+HG(t+∆t)]∆t, (D.44)

= G(t)− i

2ℏ
[δ(t− t′) + δ(t+∆t− t′)] I∆t− i

2ℏ
H [G(t) +G(t+∆t)]∆t.

(D.45)

Solving for G(t+∆t),

(
I+

i

2ℏ
H∆t

)
G(t+∆t) = G(t)− i

2ℏ
[δ(t− t′) + δ(t+∆t− t′)] I∆t− i

2ℏ
HG(t)∆t,

(D.46)

so,

G(t+∆t) =

(
I+

i

2ℏ
H∆t

)−1 [(
I− i

2ℏ
H∆t

)
G(t) +

(
− i

2ℏ
∆t [δ(t− t′) + δ(t+∆t− t′)]

)
I

]
.

(D.47)
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Repeating the same procedure for t′,

−iℏdG
dt′

= δ(t− t′)I+GH, (D.48)

so,

dG

dt′
=

(
i

ℏ

)(
δ(t− t′)I+GH

)
. (D.49)

Again, applying the trapezoidal rule,

G(t′ +∆t′) = G(t′) +
1

2

[
dG(t′)

dt′
+

dG(t′ +∆t′)

dt′

]
∆t′

= G(t′) +
i

2ℏ
[δ(t− t′)I+G(t′)H+ δ(t− t′ −∆t′)I+G(t′ +∆t′)H] ∆t′,

(D.50)

= G(t′) +
i

2ℏ
[δ(t− t′) + δ(t−∆t′ − t′)] I∆t′ +

i

2ℏ
[G(t′) +G(t′ +∆t′)]H∆t′.

(D.51)

Solving for G(t′ +∆t′),

G(t′ +∆t′)

(
I− i

2ℏ
H∆t′

)
= G(t′) +

i

2ℏ
[δ(t− t′) + δ(t−∆t′ − t′)] I∆t′ +

i

2ℏ
G(t′)H∆t′,

(D.52)

so,

G(t′ +∆t′) =

[
G(t′)

(
I+

i

2ℏ
H∆t′

)
+

(
i

2ℏ
∆t′ [δ(t− t′) + δ(t−∆t′ − t′)]

)
I

](
I− i

2ℏ
H∆t′

)−1

.

(D.53)
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