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ABSTRACT

Low-resource and label-efficient machine learning methods can be described as the family of sta-

tistical and machine learning techniques that can achieve high performance without needing a

substantial amount of labeled data. These methods include both unsupervised learning techniques,

such as LDA, and supervised methods, such as active learning, each providing different bene-

fits. Thus, this dissertation is devoted to the design and analysis of unsupervised and supervised

techniques to provide solutions for the following problems: 1. Unsupervised narrative summary

extraction for social media content, 2. Social media text classification with Active Learning (AL),

3. Investigating restrictions and benefits of using Curriculum Learning (CL) for social media text

classification. For the first problem, we present a framework that can identify the viral topics over

time and provide a narrative summary for the identified topics in an unsupervised manner. Our

framework can provide such information with varying time resolution. For the second problem,

we present a strategy that conducts data sampling based on the local structures in the embedding

space of a large pretrained language model. The data selection for annotation is conducted for the

data samples that do not belong to a dominant set as these samples are less similar to the rest of the

data points, and accordingly, are more challenging for the model. This criterion is a compelling

technique that minimizes the need for large annotated datasets. Then for the third problem, we

consider similar data difficulty notions to study the impacts of learning from such a curriculum

to train models from easy samples first. This is opposite to the idea of active learning. However,

instead of learning from a small number of data and disregarding a substantial amount of informa-

tion, gradual training from easy samples leads to learning a trajectory to a better local minimum.

Our study includes curricula based on both heuristics and model-derived.
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CHAPTER 1: INTRODUCTION

Social media and microblogging platforms, such as Twitter and Facebook, provide a substantial

amount of publicly available real-time information regarding significant global events, specially in

the format of textual content [99]. As a result, the field of Natural Language Processing (NLP)

has observed the emergence of many AI-enabled solutions and systems related to social media

text analysis and mining. Machine learning development, however, is mostly focused on rich

standard scenarios where a large amount of high-quality annotated data is available for the training

of models, specially for data-hungry deep learning architectures [79]. Although a massive amount

of user-generated social media content is publicly available from social media platforms, such as

Twitter and Facebook, is cheap and many tools are designed to download such datasets, manual

annotations for only a small portion of such data can be obtained [1]. Similarly, many real-life

tasks and domains lack large-scale data for development and training [60].

Low resource and label-efficient machine learning methods and analysis can be described as the

family of statistical and machine learning techniques that can be trained in a label-efficient man-

ner, in which significant labeled data is not required for training [59, 58, 85, 1]. Although lack of

sufficient annotated data is the most common definition of low-resource setting for machine learn-

ing, other cases are analyzing low-resource languages such as threatened languages, non-standard

domains, non-standard and uncommon tasks, lack of unlabeled data, lack of auxiliary data, and

computational power limitations [58, 59, 60].

Research on low-resource scenarios and machine learning techniques and models designed specif-

ically for such settings are motivated by many factors, including the time-consuming process of

data annotation, labor inefficiency of the annotation process, and the cheap collection of sufficiently

large unlabeled data for most tasks [59]. Specifically, big data annotation is labor inefficient as ex-
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pert annotators with domain knowledge and expertise are expensive, whereas, cheap labeling is

possible through unskilled annotators with the consequence of low-quality and noisy labels [79].

As a result, using other sources has been of great interest in literature, such as using unlabeled data,

lexicon and grammar [99], extracting relations, parsing [135], defining manual heuristics [17], do-

main knowledge [75], general knowledge transfer learning by using embeddings and pretrained

models [1, 33], and transfer learning from related high-resource settings [1], and meta learning

[79].

Annotated datasets to study social media are extremely limited, but an extensive literature on this

topic exists. Among the most significant research areas in this field are the research on moderating

online social platforms to protect the users from deliberate misinformation, toxicity, cyberbullying,

and trolling, for instance, finding the indicator attributes [87, 29], preparing manually labeled

datasets for disinformation detection and public stances on such content [97], classifying offensive

language [123, 95], and toxicity type detection [38, 30, 152]. This is however, literature on the

limitations of current traditional and deep language models for social media analysis, as well as

the techniques to overcome their deficiencies with limited datasets are handful.

In the field of NLP, novel and revolutionary unsupervised techniques, such as Latent Dirichlet Al-

location (LDA) [10] was developed to tackle the problem of labeled data shortage. LDA considers

the co-occurrence of words in documents. This method is a statistical technique that discovers

the relevant structure and co-occurrence dependencies of words within a collection of documents

to capture the distribution of topic latent variables from the data. A substantial number of docu-

ment modeling techniques are later derived from the LDA method, such as the ones that exploit

additional sources of information to improve document modeling [155, 158]. Due to their unsu-

pervised nature, these research efforts enable training of general-purpose systems that can be used

for a variety of tasks and applications as strong classifiers [15].
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Despite the fact that unsupervised learning methods seem to be ideal as they do not require any

labeled data, there are lots of benefits in developing robust yet data-efficient supervised techniques,

including achieving higher accuracy and reliability. Therefore, labeled data scarcity has encour-

aged an extensive amount of work by the machine learning research community in order to develop

models that can generalize their learned knowledge from little labeled data. Examples of such re-

search areas are few-shot learning, transfer learning, and data selection for active learning.

Meanwhile, the development of pre-trained language models, such as Google’s BERT (Bidirec-

tional Encoder Representations from Transformers) architecture [32] and OpenAI’s GPT-3 (Gen-

erative Pre-trained Transformer) model [13], which are trained over massive examples of written

language has revolutionized the field of natural language understanding. Through knowledge shar-

ing, these pre-trained models allow using a small amount of labeled data for fine-tuning the model

for a downstream task [33], which makes these models ideal to be used with label-efficient learning

techniques.

1.1 Purpose of this Study

This work contributes to the research on machine learning methods for online social media textual

content by proposing both supervised and unsupervised learning techniques. This work examines

the efficiency and performance of the proposed methods via extensive analysis of the online social

media textual content, including social media content containing misinformation-and offensive

language. As the analysis and solutions designed for the detection of such content must tackle data

imbalance, labeled data shortage, noisy and poor labels, etc., investigating content related to these

domains are of our interest. Specifically, the purpose of this work is to:

I) Identify and investigate the emergence and virality of narratives around topical events in
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Twitter and detect significant recurrent topics via an LDA-based generative topic model;

II) Investigate the potential of maximally cohesive structures in the embedding space of a deep

language model (e.g. the BERT model) as the informative data selection criterion for fine-

tuning using active learning;

III) Investigate the benefits and restrictions of incorporating curricula in low-resource imbal-

anced scenarios and with active learning for text classification based on data structures in the

embedding space of a deep language model (e.g. the BERT model).

1.2 Research Questions

RQ.I) How LDA-based topic modeling can be used to identify the rise and fall of topic popularity

over time for social media textual data, which can be multimodal and sparse in time? We

further investigate: (a) lifetime attractiveness of topics using Shannon entropy; and (b) topic

summarization to extract narratives.

RQ.II) Does the structure of the embedding space of a deep pre-trained language model provide

information for data selection in active learning? Does data selection with this technique

lead to higher performance in comparison to other active learning techniques? We further

investigate: (a) the impact of increasing the number of trainable parameters, (b) maximum

allowed sequence length and padding, and (c) the initial clustering method.

RQ.III) Assuming the information on data difficulty can be derived from the structure of the em-

bedding space of a deep pre-trained language model, does applying a curriculum learning

method with such a notion of data difficulty improve the performance in fine-tuning a big

language model? We further investigate: (a) the performance of this method on both social

media and other text corpora; and (b) using simple heuristics determining text difficulty.
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In the following, each of the research goals discussed earlier is explained in detail and the con-

tributions made by this doctoral thesis are outlined. Further details on the specific methodology

related to each of these works are provided in Chapters 3, 4, and 5.

1.3 Probabilistic Modeling of Timestamped Social Media Data

As online social media and microblogging platforms are becoming the primary sources of real-time

information on significant events, and the difficulties associated with such a fast-changing environ-

ment, designing methods that can facilitate communicating the main underlying ideas seems to be

practical. A possible solution can be a narrative modeling framework that detects the topically-

related content associated with varying time intervals, and specially one that allows to identify the

periodic and recurrent stories associated with related events as each narrative may contain story

pieces from different times.

Although abundant timestamped textual data, particularly from social media platforms and news

reports are available for analysis, and that these datasets can contain multiple modalities across

time, analyzing the changes in the distribution of data over time have been neglected in literature

[145]. This is however modeling topics without considering the text-time relationship lead to

missing the rise and fall of topics over time, the changes in terms of correlations, and the emergence

of new topics and stories [40].

This work is interested in the design of a narrative modeling framework that matches the definition

of narrative in literature as: i) narrative summaries can be constructed from an ordered chain of

individual events with causality relationships amongst events, appeared within a specific topic; and

ii) the narrative sequence may report fluctuations over time relative to the underlying events [68];

as this design allows a story-like interpretation of the text, which is a must to imply a narrative

5



[106].

Although continuous-time topic models such as [145] have been proposed in the literature, topi-

cal models with continuous-time distribution cannot model many modes in time, which leads to

deficiency in modeling the fluctuations. Additionally, continuous-time models suffer from insta-

bility problems in the case of analyzing a multimodal dataset that is sparse in time. As studying

datasets related to time-series activities on online social media platforms necessitates resolving

multi-modality and sparsity, continuous-time topic models cannot accurately model the rises and

falls in the distribution of topics for these platforms.

Based on the aforementioned design goals for narrative modeling, this doctoral thesis introduces an

event-based narrative summary extraction framework that can identify topically-related narratives

from online social media textual data. The details on the design of this method are discussed in

Chapter 3. In our approach, topic discovery is influenced by both word co-occurrence and temporal

information, and the model captures topic recurrence as a result of long-range dependencies in

time. The significance of this framework is its capability to extract relevant sequences of text

relative to the corresponding series of events associated with the same topic over time.

To achieve probabilistic modeling of narratives over topical trends, we incorporate the compo-

nents of narratives including named-entities and temporal-causal coherence between events into

our design. The framework containing the probabilistic topic modeling and extractive text sum-

marization modules results in the unsupervised topic mining of narratives and to produce their

summaries. Furthermore, our design allows the identification of such distributions with varying

time resolutions, e.g., weekly or monthly. Via extensive analysis and comparison, we argue that

this design leads to the identification of topic distributions that also approximates the user activity

fluctuations over time.

Despite the existence of basic statistical methods to inspect the number of active individuals in
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a topic over time, recognizing the attractiveness of a topic within a time duration based on the

latent topic variable has not been investigated in literature. This doctoral work is interested in the

analysis of this factor and to deliberate its applications regarding the identified topics related to a

misinformation domain. The significance of such measurement is evident when speculating basic

statistical information, such as the number of involved individuals in a topic across time, is not

feasible as the dataset lack information regarding the number of individuals in the conversations

at their production time. Yet, in the case of existence of such information, hard assignments of

topics to textual data would be required to infer the attractiveness of topics across time. Whereas,

our method can reveal the statistical structure related to the topics within and across document

collections. Thus, Another contribution of this work is the introduction of this metric, called the

significance-dispersity trade-off (SDT), which is an entropic measure to compare the identified

topic distributions over time based on their lifetime attractiveness.

We evaluate our model on a large corpus of Twitter data, including more than one million tweets

related to a disinformation campaign.

1.4 Active Learning Strategy based on Maximally Cohesive Structures in the Embedding Space

Manually annotating a sufficiently large dataset for the training of a machine learning model is

expensive. However, for many tasks collecting a large unlabeled textual corpus is relatively cheap.

Additionally, big data storage and processing are costly. When dealing with the datasets that are

used for this doctoral thesis as well as other misinformation-related domains or toxic content, the

annotators may undergo extra discomfort as they get exposed to offensive and abusive content.

Hate speech is an example of such toxic content that can disturb the annotators. Additionally,

annotation mistakes and its difficulties might get intensified as the annotators need to process a

large amount of data. Furthermore, a higher probability of annotation bias for such datasets have
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been observed, i.g., bias toward some attributes and races [95, 24]. Thus, NLP methods that can

make the best use of significantly less labeled data points are of great interest. Active Learning

(AL) techniques can mitigate the issues associated with manual labeling and improve automatic

detection and classification when labeled training data is sparse [33].

The goal of active learning is to reduce the cost of labeling via using a small number of labeled

samples for training, and query the class labels for the most informative subset of the data samples

that are selected using an acquisition function. A practical active learning strategy must lead to the

selection of certain unlabeled data samples that can lead to the maximal reduction of the classifica-

tion error and variance. As a result, recently the field of natural language processing has observed

the development of many active learning approaches for different machine learning applications as

well as text classification [89, 165, 166] and toxicity detection [12].

The development of pre-trained language models, such as the BERT (Bidirectional Encoder Repre-

sentations from Transformers) architecture [32], which is trained in an unsupervised fashion using

a massive amount of textual data has enabled transfer learning in natural language processing. The

transformer architecture [142] moved the boundaries for language models and obtained the highest

performance across various tasks, and the BERT model built solely on transformers, shed light on

fine-tuning of a big neural language model for a downstream task using a small amount of data.

These NLP achievements simply can be exploited in low-recourse label-efficient techniques, such

as in active learning. Thus, the aim of this work is to present a novel pool-based active learning

method that uses the embedding space of pre-trained language models to minimize the annotation

cost and achieve high performance. The details on the implementation and setup of our proposed

model are explained in Chapter 4. This approach can be used for the fine-tuning of a large pre-

trained language model using an unlabeled corpus with minimum annotation cost. We introduce

a new criterion to select the most informative samples from a pool of unlabeled data points. For

that, we suggest exploiting unsupervised methods, such as clustering and dominant sets [109] for
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the training of deep language models using active learning. We propose finding the dominant sets

[109] of local clusters in the feature space of a deep pre-trained language model. As these sets

represent maximally cohesive structures in the data, they provide a notion of a cluster [14]. Ac-

cordingly, this method is also referred to as dominant set clustering. Using this technique, this

doctoral work suggests that the samples that are not strongly coherent with the clusters, which are

the ones that do not belong to any of the dominant sets, can be selected to be used to train the

model, as these points might provide more information to the model. These data samples are se-

lected in our method as they represent the boundaries of the local clusters and are more challenging

to be classified. This approach makes data selection to be as diverse as possible via enforcing an

equal number of samples to be selected from the non-dominant sets associated with each cluster.

When the selection of equal number of samples associated with each cluster is not possible, we

consider an adaptive cutoff value for the non-dominant sets. This method is extremely useful in the

case of substantial imbalance in the dataset under study, and thus, the potential of severe imbalance

in the size of identified clusters. We show that our method finds the edge cases in the feature space

of a pre-trained BERT model, which are also the data samples that are the most challenging to

the model. We additionally propose a hybrid strategy that allows us to incorporate the uncertainty

score in the later stages of selection when the uncertainty score is more reliable.

Dominant set clustering is non-parametric and its a sequential method that only uses a predefined

similarity matrix to find the cohesive structures in that space. Meanwhile, the number of classes

in a classification task can be used as a known parameter for an initial clustering before finding

the dominant sets in each cluster. We apply this method to allow parallelization of applying dom-

inant set identification for clusters, which makes our method more practical for large datasets.

Additionally, the preparation of pairwise similarity matrix for dominant set identification becomes

substantially faster in this case as the calculation of pairwise similarity takes O(n2) in the size of

the input. Thus, we divide the space by applying an initial clustering. As this approach does not
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have any parameters to be tuned, it is dataset-independent. By conducting extensive experiments

and analysis, we show that our proposed method can approximately achieve the same classification

accuracy as using full training data, with significantly fewer data points. Additionally, this method

achieves a higher performance in comparison to the state-of-the-art active learning strategies, while

also being robust to outliers in the data. Furthermore, our algorithm is able to incorporate conven-

tional active learning scores, such as uncertainty-based scores, into its selection criteria, referred

to as our hybrid strategy.

We show the effectiveness of our method on different datasets and using different neural network

architectures. We specifically show that our method outperforms the state-of-the-art uncertainty-

based methods in the early stages of selection when the uncertainty score extracted from the model

is not accurate. Via analyzing the results, we argue that an active learning task can be divided into

two distinct phases. In the early stages, unsupervised techniques such as employing pre-trained

models, clustering, and identifying the dominant sets outperform the supervised methods, e.g.,

uncertainty score extracted from the trained model. However, in the second phase, later stages of

selection, taking the model uncertainty into the account can improve the selection performance.

Such hybrid methods are not currently well-studied in the literature. Therefore, via the research in

this work, we are hopeful to stimulate further research on similar active learning strategies.

Our proposed active learning approach has the potential to mitigate the difficulties associated with

the annotation and classification of textual content, e.g. annotation cost and bias. Labeling offen-

sive and abusive content is particularly difficult, as it can cause discomfort and emotional distur-

bance for the human annotators. Via extensive experiments and analysis, we show that our method

is particularly practical in the classification of toxic language in online social media using a small

amount of labeled data. However, our method can be used in other fields as well to facilitate and

accelerate the development of AI research.

10



1.5 Curriculum Learning and its Application to Active Learning

In the area of machine learning, curriculum learning was first proposed by [7] and found that the

exclusion of difficult samples and noisy data in the early training stage is beneficial, such as faster

convergence and achieving better local minima. Due to the difference in the difficulty levels of

the examples from any dataset, extensive research has investigated methods to identify the easy

samples from the difficult ones and to arrange them as a curriculum for the training of a model

[7]. Curriculum learning is in contrast with introducing the data to the model without any order.

Some literature in this area of research suggest that the learning process can achieve remarkable

improvements when using a curriculum [150]. As a result of gradually increasing the difficulty

of the training samples over the training epochs, the model can take a better learning trajectory

and avoid local minima. However, relatively little attention is devoted to this topic in the area of

natural language processing. Examples of difficulty in language are sophisticated reasoning such

as negation, lengthy text, and different types of rare words, including misspellings, abbreviations,

and scientific and literary words.

Language model pre-training using large-scale unlabeled data and fine-tuning for downstream

tasks have recently drawn a lot of attention in the field of natural language processing and under-

standing [157, 118, 119] and have led to state-of-the-art results across different tasks. This is the

result of learning universal language representations using large-scale unlabeled data. However,

the application of a curriculum in the finetuning stage of big language models [78, 153, 100] has

not been investigated for different tasks and conditions [150]. The work of [153] is the first study

that investigated the scale of impact of using curriculum learning in the NLP field. Specifically, the

experiments using different datasets and testing on varying tasks in this paper show that finetuning

transformer-based architectures can benefit from applying such a technique. Yet, the challenge in

this area of research is defining the difficulty and noise to exclude such data in the early stages of
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training, such that this difficulty evaluation remains consistent across tasks and datasets.

Curriculum learning aims to consider the level of difficulty of data samples and train the model with

the easier data points first to improve the efficiency of training [51]. In recent studies, curriculum

learning has been shown to be a practical technique to fine-tune deep pre-trained language models

for a wide range of tasks related to natural language understanding [153] and information retrieval

[110]. Although some studies have considered designing a curriculum-learning algorithm based

on predefined difficulty measures, such as the length of input paragraphs for question answering

[115], such methods might not be generalizable to a different task, as they can be very dataset-

dependent and problem-dependent. Additionally, a defined difficulty level by human judgment

might not reflect the same level of difficulty and meaning for a deep language model [153].

Active Learning (AL) [27] and Curriculum Learning (CL) [7, 51] are two closely related disciplines

in machine learning. In fact, active learning is anti-curricula. Despite the existence of individual

studies on the investigation of each of these techniques for a specific task or the analysis of a

dataset, little information is known on the impact of each at different stages of training or fine-

tuning a deep model [150] and specially, a deep language model. Additionally, a handful of studies

have investigated the incorporation of the learning from a curricula into data selection for active

learning [66]. While active learning goal is to minimize the number of required labeled data

via smart data selection according to an informativeness score, curriculum learning can sort the

training data based on some difficulty criterion.

As we are interested in the application of curriculum learning for the classification of social media

textual data, we must pay attention to the problems related to this field, including short text, data

imbalance, and lack of annotated data. In chapter 4, we address these issues by proposing an active

learning method that outperforms state-of-the-art active learning techniques for the task of social

media hate speech classification. In chapter 5, we further investigate the impact of data imbalance
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on the difficulty of samples, but this time for the problem of curriculum learning.

1.6 Statement of Contributions

This doctoral work in general contributes to the fields of machine learning, natural language pro-

cessing, online social media analysis, statistical modeling, and deep learning. Specifically, the

expected contributions of this work are:

I) presenting a novel unsupervised learning and generative probabilistic modeling method by

presenting an approach that is practical in the modeling and summarization of significant

topical events in online social media;

II) introducing an innovative entropic measure for the comparison of topics based on the iden-

tified topic distributions over time and quantifying the significance of the narrative activities

and recurrence of a topic via employing the Shannon entropy;

III) introducing a new data selection and active learning technique for multi-class classification,

and specially, for text classification, by presenting a non-parametric and adaptive strategy

using an informativeness criterion for data selection based on the dense structures in the

embedding space of a large language model, e.g. the BERT model;

IV) providing evidence on the benefits and restrictions of curriculum learning strategies, which

aim to improve performance and speedup convergence. This method aims to further mitigate

the difficulties associated with the classification of textual content.
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1.7 Statement of Originality
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CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter, we provide an overview of the areas related to this doctoral thesis. We review the

basic concepts and terminologies that are used in the next chapters.1

2.1 Analyzing Online Social Media Textual Content

Social media and microblogging platforms, such as Twitter and Facebook, allow their users to

freely and publicly express their opinions. Connecting billions of people across the world from

different ethnicity, race, religion, and nationality has resulted in the propagation of massive flow of

information across these environments. As a result, they are becoming the primary sources of real-

time content regarding the ongoing socio-political events, including the United States Presidential

Election in 2016 [35], and natural and man-made emergencies, such as the COVID-19 pandemic

[26].

Due to this massive amount of information, it is extremely challenging to obtain relevant infor-

mation on significant events [8, 44], distinguish between high-quality content and disinformation

[56, 99, 120], understand and follow activities around different opinions within a polarized domain

[43], or in general, analyze and model graphs of online social media to predict future relations

[98]. Besides the threat of deliberate misinformation on online platforms, the spread of offensive

language and hate speech is shown to plague society and cause violence. An example of such an

incident is the spread of anti-Muslim information on Facebook that led to the 2019 massive vio-

lence in Sri Lanka. As a result, there is an unprecedented necessity of moderating these platforms

to protect the users from disinformation, toxicity, cyberbullying, and trolling [87].

1Portions of this chapter is reprinted, with permission, from ©2020 ACM [105] https://doi.org/10.1145/
3372923.3404790.
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In response to the urgency of developing practical techniques to monitor online platforms, recently

a substantial amount of research publications are focused on the analysis of online social media

textual content. Examples of such efforts are finding the indicator attributes [87, 29], preparing

manually labeled datasets for toxicity type classification and detection [38, 30, 152], preparing

datasets for fact-checking and rumor detection [161], developing machine learning models and

systems for offensive language detection [123, 95] and misinformation [131], topic modeling [80]

and event detection [82], automatic summarization techniques that help to grasp the main ideas

from online social media data [138], investigating whether the offensive language on social media

is targeted at an individual or group [6, 160], as well as developing methods and techniques that

improve the performance and efficacy of the mentioned models on different tasks by considering

a priority instead of uniform training data selection, such as in Active Learning (AL) [37] and

Curriculum Learning (CL) [20].

The problem of hate speech, toxic, and offensive language in general, is admittedly one of the

major issues in online social media. Therefore, detecting and monitoring the propagation of such

content has been a priority for social media companies. Studying the diffusion dynamics of content

in online social media has revealed that hateful content spread much faster and farther than non-

hateful content, reaching to significantly larger audience [87]. This has motivated many social

media companies to moderate such content to prevent its potentially disastrous consequences [38].

Literature on offensive language and hate speech have shown that automated detection of hate

speech is not a trivial task, as lexical detection methods cannot easily distinguish between hate

speech and other instances of offensive language [29]. This signifies the need for high-quality

datasets containing different instances of offensive language, as well as developing better methods

of annotation and detection of cyberhate [160, 16, 148]. For example, employing syntactic fea-

tures has been shown to be useful to improve the identification of the targets and intensity of hate

speech [16, 48, 134, 147]. In this thesis, our focus is on the development of low-resource machine
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learning methods to mitigate the difficulties around data annotation and improve the efficacy of the

convergence of deep language models. Our proposed methods and results are presented in the next

chapters. We show that when a supervised setting is desired, the number of annotated samples can

be reduced significantly without reducing the performance.

2.2 Narrative Analysis

Narratives can be found in all day-to-day activities. The fields of research on narrative analysis

include narrative representation, coherence and structure of narratives, and the strategies, aim, and

functionality of storytelling [94]. From a computational perspective, narratives may relate to topic

mining, text summarization, machine translation [141], and graph visualization. The latter can be

achieved via using directed acyclic graphs (DAGs) to demonstrate relationships over the network

of entities [49]. Narrative summaries can be constructed from an ordered chain of individual events

with causality relationships amongst events, that appeared within a specific topic [68]. The narra-

tive sequence may report fluctuations over time relative to the underlying events. Additionally, the

story-like interpretation of the text is a must to imply a narrative [106].

Since social media have been admitted as a component of today’s society, many studies have

investigated narratives in social media content [45, 106, 144]. These narratives contain small auto-

biographies that have been developed in personal profiles and cover trivial everyday life events.

Other types of narratives appearing in social media platforms consist of breaking news and long

stories of past events [106]. Some types of narratives, such as breaking news, result in the emer-

gence of other narratives related to the predictions or projections of events in the near future [45].

This literature views social media conversation cascades as stories that are co-constructed by the

tellers and their audience and are circulating amongst the public within and across social media

platforms. Moreover, the events have been considered as the causes of online user activity that can
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be identified via activity fluctuations over time [4, 106]. Developing appropriate tools for social

media narrative analysis can facilitate communicating the main ideas regarding the events in large

data.

2.3 Statistical Topic Modeling

From the field of machine learning and data mining, topic modeling refers to the utilization of hi-

erarchical probabilistic models that can help with the discovery and annotation of documents with

thematic information [8]; e.g., to discover word patterns that reflect the underlying topics in a set

of document collections [3]. In contrast to earlier efforts in the field of information retrieval to find

short descriptions of document collections, e.g., the term frequency-inverse document frequency

(tf-idf) and latent semantic indexing (LSI) [31], topic models reveal the statistical structure within

and across document collections and lead to significant data compression [22, 8]. A detailed review

of topic modeling methods and varying considered features are provided in [143, 3].

The most commonly used approach to topic modeling is Latent Dirichlet Allocation (LDA) [10,

54]. LDA is a generative probabilistic model with a hierarchical Bayesian network structure that

can be used for a variety of applications with discrete data, including text corpora [69]. Using

LDA for topic mining, a document is a bag of words that has a mixture of latent topics [10]. The

generative probabilistic procedure of LDA, in which a multinomial variable z for each topic is

selected for each word w in a given document d, can be described as follows:

I. For each topic z, draw T multinomials φz from a Dirichlet prior β ;

II. For each document d, draw a multinomial θd from a Dirichlet prior α;

III. For each word wdi in d:
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Variable Descriptions Symbol

Number of topics T
Number of documents D
Number of word tokens in document d Nd
Multinomial distribution of topics for document d θd
Multinomial distribution of words for topic z φz
Topic of the ith token in document d zdi
ith word token in document d wdi

Table 2.1: LDA symbols and definitions

(a) draw a topic zdi from multinomial θd;

(b) draw a word wdi from multinomial φzdi;

The list of symbols and their descriptions can be found in table 2.1. The model parameterization

is as below:

θd |α ∼ Discrete(α)

φz|β ∼ Discrete(β )

zdi|θd ∼ Multinomial(θd)

wdi|φzdi ∼ Multinomial(φzdi)

(2.1)

In LDA-based methods, the calculation of the posterior probability p(φ ,θ ,z|w) is intractable to

compute. Among the proposed solutions to approximate the posterior distribution and maximize

the log-likelihood of the data are variational inference [10] and fast collapsed Gibbs sampling

[116]. The Gibbs sampling method is a selection-based approximation technique using a Markov

Chain to estimate the posterior probability. Instead, variational methods change the inference

problem to optimization [8].

19



Many advanced topic modeling approaches have been derived from LDA, including Hierarchical

Topic Models [53] that learn and organize the topics into a hierarchy to address a super-sub topic

relationship. Considering a tree, an L-dimensional Dirichlet is used to draw a vector of topic

proportions for a root-to-leaf path with length L. Then, the words are generated along this path

from a mixture of topic proportions. Thus, all topics in the same path belong to the same root topic.

A hierarchical approach that can identify related events is well-suited for analyzing social media

and news stories that contain rich data over a series of real-world events [136].

Modularity is a big advantage of generative methods as it can allow combining different models,

each capturing varying probability distributions from the underlying data [52]. As a result, many

research papers examined this via combining a mixture or product of models. For instance, the idea

of word co-occurrence in LDA is extended in [36] for article categorization as a model of words in

scientific paper abstracts along with their bibliography sections. Another example is the generative

composite method proposed in [52], which combines a topic model with a Hidden Markov Model

(HMM) to capture long-range semantic dependencies as well as short-range syntactic dependen-

cies. In [88], LDA and author topic models are combined to allow topic as well as role discovery

in social networks via modeling social network authors and their topic of interest simultaneously.

Many research articles developed ways to relax the time exchangeability assumption of LDA,

which presumes all documents in the corpus are timely interchangeable and their order is not im-

portant. The assumption about the time of documents in the collection is specially not accurate

when the dataset is collected over a long period of time [143]. In this regard, topic models over

time with continuous-time distribution [145] and dynamic topic models [9] are developed in order

to capture the rise and falls of topics within a time range. Dynamic topic models divide the data

into slices based on the time of the documents, e.g., annually, and assume the topics in each time

slice to be evolved from the previous slice. In this method, an evolving state model is used to

chain the parameter of topics, and thus, allows modeling sequences of random variables by hav-
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ing sequences of linked topic models. The continuous-time distribution method and its variations,

such as topics over time [145], are designed by combining Bayesian networks with homogeneous

Markov processes. Topics over time allows topic-time assignment given a word in a document,

while the time of all words within a document are equal. Designing this method with a Beta distri-

bution for timestamps of the documents leads to discovery of isolated temporal patterns, as in high

peaks or U shapes. No other time patterns can be discovered with this method. This is because top-

ical models with continuous-time distribution cannot model many modes in time, which leads to

deficiency in modeling the fluctuations. Additionally, continuous-time models suffer from instabil-

ity problems in the case of analyzing a multimodal dataset that is sparse in time. The assumptions

in the design of such methods seem to be valid for some datasets, such as for scientific and news

articles, which is what have been used frequently for the evaluation of these models. However,

as studying datasets related to time-series activities on online social media platforms necessitates

resolving multi-modality and sparsity, continuous-time topic models discussed above cannot accu-

rately model the rises and falls, as well as the appearance of new topics in the distribution of topics

for these platforms.

As social media textual data is usually comprised of short pieces of text, topic models that focus

on word co-occurrence in short documents may fail to accurately identify the topics and the words

that belong to them. As a result, many methods have been proposed specifically for short text topic

modeling, such as considering word co-occurrences instead of modeling documents [156], and

creating “pseudo-documents” [90]. The model proposed in [156] addresses the problem of sparsity

of word co-occurrence in short text by considering a biterm design, in which any two distinct terms

in a short piece of text create a biterm. In the case of social media data document aggregation to

prepare pseudo-documents, hashtag co-occurrence for Twitter data and author-based aggregation

seem to be practical methods [137]. However, the time information of the data will be lost in such

aggregations. In this doctoral work, we discuss a novel probabilistic method for the analysis of
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topics in online social media considering the timestamps of the textual content. Via analysis and

explanation, we show how our design settles the constraints and limitations of the prior works. The

details on the proposed techniques and analysis are available in the next chapters of this doctoral

thesis.

2.4 Deep Pre-trained Language Models for Low-Resouce Settings

Deep Neural networks have revolutionized the field of machine learning, including natural lan-

guage processing and language understanding. The most prominent recent development in this

field is the introduction and application of Transformer-based architectures with attention mecha-

nism [142], which identifies the global as well as local dependencies between an input sequence

and the output. This architecture is based entirely on the attention mechanism. The attention mech-

anism is an interpretable technique introduced to sequence modeling to capture crucial dependency

information required to perform a task regardless of the distance in the sequences of dependent ele-

ments. Before this achievement, the dominant methods gaining the highest performance and state-

of-the-art results on varying tasks related to language modeling and understanding were Recurrent

Neural Networks (RNNs) [127, 126], Long Short-Term Memory (LSTMs) [133, 61, 83, 19, 50],

and Gated Recurrent Unit RNNs [21, 25, 18, 61]. Although transformer-based models with per-

taining have revolutionized the field of natural language modeling and understanding in general,

we discuss why these techniques are specifically significant to be applied in low-resource settings.

In resource-poor scenarios, the requirement of substantial labeled data has dampened the domi-

nance of deep sequential models, such as LSTMs, RNNs, and GRUs, over traditional statistical

methods. Having a large amount of annotated data may not be possible in many cases, such as

for many low-resource languages. Even for high-resource languages such as English, the acquisi-

tion and preparation of high-quality labels for a sufficiently large amount of data can be extremely

22



challenging for some tasks and domains. Furthermore, resources for storing and processing a large

amount of textual data and training a deep language model are costly. Additionally, contextual in-

formation to learn the dependencies directly from the input sequence might be missing or short. In

the case of analyzing online social media data, despite the existence of a growing volume of user-

generated content and the necessity to moderate these platforms to protect users from disturbing

information, the annotation procedure is even more burdensome. For example, data that contain

content with toxicity, cyberbullying, and trolling can be mentally and emotionally taxing for hu-

man annotators. Besides the annotation cost, such datasets are usually extremely imbalanced and

the labeling efforts may lead to mistakes, such as enduring bias toward some attributes and races

[95, 24]. These domains are sometimes also referred to as non-standard domains or tasks. Due to

the importance of this area of research, a substantial amount of work has been conducted to find

the indicator attributes [87, 29], preparing manually labeled datasets on sensitive content such as

toxicity type classification and detection [38, 30, 152], and the development of machine learning

models and systems for offensive language detection [123, 95]. Thus, NLP methods that can make

the best use of significantly less labeled data points and models with little training computational

cost are of great interest. Many techniques have been developed to mitigate the challenges around

large annotated datasets, such as language pre-training, self and paired training, semi-supervised

methods, few-shot learning, transfer learning, and active learning.

Using pre-training techniques has been common in text analysis and mining for many years.

Among the proposed approaches, continuous bag of words, skip grams [92], Word2Vec [93],

Global Vectors for Word Representations (GloVe) [111], FastText [72], Embeddings from Lan-

guage Models (ELMO) [113], GPT-3 (Generative Pre-trained Transformer) [118, 13], and BERT

(Bidirectional Encoder Representations from Transformers) [32] are the most popular. The output

of such techniques is a high-dimensional vector representation with local or global contextual in-

formation by learning such relations in a unidirectional or bidirectional manner, including complex
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relationships such as syntax and semantics. Language pre-training enables transfer learning as the

general knowledge learned from a massive amount of unlabeled textual data can be used for a new

task.

After the appearance of deep language models and pre-training and finetuning techniques, many

research papers focused on employing such methods using different datasets on varying NLP tasks

and releasing the pretrained models for public access. The pre-training stage uses unlabeled data to

initialize the parameters of the deep base model such that in the finetuning stage for a downstream

task, a few parameters need to be slightly updated. In [114] and [118] traditional unidirectional

language models are used for the pre-training stage, for instance, left to right or right to left models

that result in the attention of each token to the token either on its left or right. The well-known Ope-

nAI’s GPT [118] and GPT-3 [13] models have unidirectional auto-regressive architectures in which

the context of each token is the result of attention to the previous token and its context. However,

the context-sensitive features, in this case, might not be fully captured. Furthermore, unidirec-

tional language modeling limits the process of pre-training as well as introduces constraints for

fine-tuning. The ELMO model [113] extends unidirectional language modeling to bidirectional

via concatenation of the representations. However, it does not provide a representation as in deep

bidirectional models and it is rather known as a feature-based method.

Instead of using traditional unidirectional language models and concatenating the representations,

BERT [32] is pre-trained jointly on two tasks in an unsupervised manner: 1. Masked Language

Modeling (MLM) [139], and 2. Next Sentence Prediction (NSP). This bidirectional pre-training

method relaxes the restrictions of unidirectional language models. Bidirectional pre-training is

specially reported to be crucial in tasks such as question answering, where the contextual informa-

tion from both directions is of great concern [32]. In MLM, via randomly masking a percentage of

the token sequences the model learns to predict the masked tokens by exploiting contextual infor-

mation in both left and right directions for all layers. BERT is pre-trained with 15% token masking.
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The idea behind NSP is to capture the relationships between 2 sequences by training the model to

predict the next sentence. Employing this technique specially benefits tasks such as question an-

swering and natural language inference. Finetuning the transformer-based language models such

as BERT can be end-to-end, training the task-specific layers only, or training selective parameters

such as cross-attention parameters [46]. Finetuning is not expensive as training, however, each

of these techniques might have benefits for specific tasks and data domains. Specially, when the

dataset for a downstream task has a small size, finetuning can lead to overfitting and catastrophic

forgetting [32, 46]. Thus, it is suggested to perform finetuning for only a small number of epochs

(2-4 epochs in most literature) to avoid such effects. BERT uses the exact transformer architecture

with multi-head self-attention introduced in [142].

In sequential models such as LSTM and RNN, sequential training procedure for long documents

and big data is challenging as for sequential computation, such as in RNNs, the hidden state of each

part of the input sequence (token) needs to be calculated based on the hidden state of the previ-

ous token. The transformer-based architecture [142] overcame this challenge by enabling parallel

computation of all hidden representations of tokens. This is inspired by the high performance of

using attention mechanism [76, 108] such that stacking many self-attention and fully connected

layers, leads to computing a representation of the input sequence according to the position of each

part of the input to the rest. As a result of overcoming the problem of sequential computation,

the transformer architecture is widely used for pre-training by applying the techniques discussed

above and using a massive amount of unlabeled data. It has been reported that this technique is

effective across different tasks related to natural language processing when little labeled data is

used for fine-tuning the deep pre-trained language models. As the base layers are initialized via

pre-training, the small annotated data is observed to be sufficient to train a task-specific layer on

top of the BERT model [32].

Figure 2.1 depicts the transformer model architecture using BERT model as the base for the task of
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text classification. BERT uses [CLS] and [SEP] tokens as special symbols for the model showing

the beginning of the sequence and the separators, for example separating questions from answers.

The final hidden state of the [CLS] token can be used for the task of classification as it aggregates

the representations for all tokens in the sequence. However, it is also common to use all final

hidden states of tokens with a pooler layer and feed that to dense layers for classification instead

of only the final hidden state of the [CLS] token as is depicted in Figure 2.1.

Figure 2.1: The overall architecture of a text classifier with a BERT-base model (number of layers
L=12, hidden size H=768, number of self-attention layers A=12, number of parameters=110M) to
extract the contextual representations of the tokens for the task of text classification. The [CLS]
token shows the beginning of input sequences. This figure shows when all final hidden states of
tokens are used for classification instead of only the final representation of the [CLS] token.

Data parallelization and improving computational efficacy of the BERT model led to analyzing

long sequences of text and to recognize global dependencies between the input and the output

by reducing this required process to a constant number of operations [142]. As discussed earlier,

transformers are encoder-decoder architectures that are built entirely from stacked self-attention
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layers and fully connected layers. The self-attention mechanism results in obtaining a representa-

tion of a sequence by making relations between an input and an output sequence. The process by

the attention mechanism can be simply defined as mapping a query (Q), and a key-value (K −V )

pair vector to an output vector that itself can be calculated via a weighted sum over the values as:

Attention(Q,K,V ) = so f tmax(
QK⊺
√

dk
)V, (2.2)

where dk is the dimension of the K vector. A multi-head attention mechanism is then achievable

by a linear projection of h concatenated vectors, which are the output of h attention heads. Each

of these attention heads apply a scaled dot-product attention function and the process is performed

in parallel. The attention functions receive h different learned projections of queries, keys, and

values as input. As a result of learning from different representations, the multi-head self-attention

enables attending to varying information at different positions.

As a result of knowledge sharing available from the explained pre-training techniques introduced

in BERT, a small amount of labeled data for fine-tuning the BERT model for a downstream task

can be sufficient to achieve a high-performance [33]. This can be accomplished by adding only a

single output layer to achieve state-of-the-art results across varying tasks. The discussed features

of pre-trained language models, specially BERT, make them ideal to be used with low-recourse

label-efficient techniques, such as with active learning.

In this doctoral thesis, we aim to show how pre-trained language models can be used to minimize

the annotation cost, while achieving high performance for the task of text classification of social

media data. We investigate this by studying pre-trained language models with active learning

and curriculum learning. The details on the implementation and analysis of our approaches are

provided in the next chapters.
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2.4.1 Active Learning

Active Learning (AL) refers to the process of efficient selection of the most informative data when

the data is plentiful, but the labels are scarce [129]. Active learning techniques can mitigate the

issues associated with manual labeling and improve automatic detection and classification when

labeled training data is sparse [33]. The goal of active learning is to

i) reduce the cost of labeling via using a small number of labeled samples for training, and

ii) query the class labels for the most informative subset of the data samples that are selected

using an acquisition function.

The best active learning strategy successfully selects certain unlabeled data samples from the distri-

bution of available data, such that using this data portion for training leads to the maximal reduction

of the classification error and variance. Thus, a wealth of work has been made on the development

of various active learning approaches for different machine learning applications [42, 63], and

particularly for text classification [89, 165, 166] and specially, for toxicity detection [12].

Main approaches of active learning can be categorized into methods based on uncertainty scores

such as minimum margin (least confidence) [81, 125] and Bayesian active learning (Monte Carlo

dropout) [41, 42], the entropy of class predictions [62], prediction disagreement in ensemble-based

settings such as Active-Decorate [91], expected gradient length [70], expected loss value [84], and

representation-based methods such as Core-Set [128] which aims to select samples that cover the

learned representation space. The work of [129] provides a thorough summary of active learning

techniques before the advancement of deep neural networks. The development of deep neural

networks resulted in deep active learning techniques that are trained in batches instead of single

data queries in classic AL [41]. A survey of advancements in deep AL is presented in [122].
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Uncertainty-based AL techniques use the classification probabilities extracted from the model as

the informativeness criterion with the hope that selecting samples in this way leads to a lower

model uncertainty. The main intuition behind uncertainty-based active learning methods is that

if the model is uncertain about a sample, it likely lies near the decision boundary of the classes.

Thus, knowing its label can help the classifier to better estimate the decision boundary. However,

when the classifier is trained on only a few samples, or even no samples at all, the uncertainty score

obtained from it is not a reliable metric. In other words, the classifier does not yet know what it

does not know. Also, the diversity-based techniques, which select samples that cover the feature

space or select from the dense regions of the space can lead to suboptimal performance, as many

of the selected data points can be redundant and less informative. On the contrary, literature report

the highest performance scores for the uncertainty-based AL methods, such as Bayesian AL [41],

for a relatively large query size or in later cycles [47].

Because of the high chance of bias in sampling with such methods, many AL techniques have been

developed that query samples that best represent the unlabeled data, usually via finding the cluster

structure of the data [28]. These methods rely extensively on the quality of the initial unsupervised

method. Despite the existence of many clustering techniques, graph-theoretic clustering methods,

such as spectral clustering, dominant sets [109], and Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) [74] achieve higher performance than k-means in the discovery of

the clusters of arbitrary shapes, and are more robust to noise and outliers. Among these methods,

dominant sets clustering [109] has the lowest computational complexity.

In this doctoral thesis, we exploit unsupervised methods such as clustering and dominant set

clustering[109] for the training of deep language models using active learning. The work of [64]

also uses unsupervised techniques, such as dominant set and spectral clustering for active learning.

However, it is not designed to be applied to the training of a deep model, where the data needs to be

processed in batches. The authors find that spectral clustering and dominant sets complement each
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other and using them hierarchically and exclusionary can boost active learning. However, their

method uses heuristics to filter the data in multiple steps and build high-quality clusters, which

necessitates a substantial amount of labeled data to build “pure” initial clusters. These clusters are

later used for the clustering of unlabeled data. Finally, the nature of their algorithm is sequential,

which is not practical for deep AL methods due to slow convergence and local optimization algo-

rithms. One-by-one data selection can be viewed as having the batch size of size one, which delays

convergence and is expensive.

Querying based on a hybrid strategy, e.g., using density information as well as the classification

margins is investigated in many research, including [103]. However, an ad hoc combination of such

measures can slow the convergence, and lead to suboptimal performance as a result of biased data

selection. Diversity-based sampling [65] was proposed to systematically combine informativeness

and representativeness measures such that the selected samples have the highest uncertainty scores

for both sets of labeled and unlabeled data. This method was designed as a binary classification

task and the selection mechanism is sequential instead of batch mode AL. Core-set strategy [128] is

a diversity-based technique that aims selecting samples that cover the feature space using a greedy

algorithm. Despite high diversity in selected samples, [33] reports low representatives scores and

slow convergence for this algorithm comparing to other techniques.

2.4.1.1 Active Learning for Natural Language Processing

Although a high volume of research on active learning exists, this topic has received little attention

in the field of natural language processing. The works of [132] and [33] present empirical analysis

of employing deep active learning strategies for natural language processing tasks. In [132], the

best performance across different tasks was achieved for Bayesian active learning based on dis-

agreement using the uncertainty scores from Dropout [41] or Bayes-by-Backprob [11] methods.
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An active learning approach for multi-label text emotion classification task is proposed in [73] that

uses a probabilistic distance between the expected label distribution and uniform distribution. The

main goal is to collect balanced data, when the pool of data is imbalanced. The task of named

entity recognition from clinical text using active learning has been studied in [149], which mod-

els the informativeness as well as the annotation cost. This approach was specifically designed

for scenarios where the labeling cost, e.g. time, for different samples is different. Therefore, an

estimation of the labeling cost was also taken into account for selection.

Zhang et al. [165] employed the embedding space of neural networks for word and sentence clas-

sification. The words or sentences that would potentially change the embedding function the most

are selected to be labeled. This is estimated by calculating the expected gradient length. How-

ever, recent advancements in pre-training the embedding function with extremely large unlabeled

datasets have eliminated the need for such consideration. For example, the application of active

learning for binary text classification with the BERT pre-trained model has been investigated in

[33], which provides prominent evidence that such pre-trained models are powerful tools for text

classification when combined with active learning strategies. Even for tasks other than text clas-

sification, the employment of pre-trained deep language models with a practical active learning

strategy seems to provide a promising direction via reducing the burden of manual labeling and

resulting in a strong performance across many diverse tasks.

In this thesis, we aim to introduce a scalable technique based on unsupervised learning to achieve

a general method for data selection and training of a model. The proposed methods and evaluation

results are discussed in detail in the next chapters.
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2.4.2 Curriculum Learning for Natural Language Processing

Similar to active learning, curriculum learning tries to consider a priority into using data samples

for training instead of uniform data selection [7]. However, dissimilar to active learning it usually

all the dataset instead of partial data, and in the order of increasing difficulty instead of selecting

the most challenging samples first [100]. The idea behind curriculum learning is inspired by the

learning process of humans, which is based on ordering the information to an easy to difficult

arrangement. Literature on this topic also refer to curriculum learning as gradual learning. For non-

convex functions such as deep learning methods, curriculum learning is reported to be a powerful

strategy for global optimization of the function [150].

The focus of literature on this topic is on understanding and defining difficulty across different

tasks. Applying curriculum learning with deep learning has provided evidence of faster training

convergence and obtaining a high-quality local optima [153, 150]. In the field of natural language

processing, examples of the most commonly used difficulty criterion are the frequency of rare

words [7] and length of input sequences (block size) [100]. Although this area of research is not

new, the number of research papers that have investigated the application of curriculum learning in

machine learning are very limited [150].

Well-known NLP models, such as GPT-3 [13] and T5 [119] are trained according to a curriculum.

However, this does not mean that such a technique can enhance the performance of deep language

models for any task and under any condition. As a result, further investigation of the conditions and

specific notions of difficulty for tasks related to natural language processing is necessary. The work

of [153] is the first study that investigated the scale of impact of using curriculum learning in the

NLP field. Specifically, their experiments using different datasets and evaluation on varying tasks

show that finetuning transformer-based architectures can benefit from applying such a technique.

Yet, the challenge in this area of research is defining the difficulty and noise to exclude such data
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in the early stages of training. Also, the application of a curriculum in the finetuning stage of

big pre-trained language models [78, 153, 100] has not been investigated for different tasks and

conditions [150], e.g., imbalanced short text data.

The available literature that is focused on the training and fine-tuning of deep pre-trained language

models based on curriculum learning is a handful. In recent studies, curriculum learning has

been shown to be a practical technique to fine-tune deep pre-trained language models for tasks

related to natural language understanding [153] and information retrieval [110]. Some studies have

considered designing a curriculum-learning algorithm based on predefined difficulty measures,

such as the length of input paragraphs for question answering [115]. However, such methods

might not be generalizable to a different task, as they can be very dataset-dependent and problem-

dependent. Additionally, a defined difficulty level by human judgment might not reflect the same

level of difficulty and meaning for a deep language model [153].

To identify the most difficult data sample, [7] associates the loss value of pre-trained models with

data difficulty. The work of [71] defines a difficulty score based on investigating the consistency

of a model in predicting the class label of an example in i.i.d. draws from the data. The work of

[140] relates difficult samples to the phenomenon of catastrophic forgetting and suggests the easy

samples to be identified as those that do not get forgotten by the model over the training procedure.

The impact of data imbalance on sample difficulty is investigated in [146] and this work suggests

a dynamic technique for the adjustment of strategy and weight of loss per batch.

As in this doctoral thesis, we are interested in the analysis of social media data for tasks such as text

classification, we must pay attention to the challenges related to such data, such as data imbalance,

lack of context in short text, and annotated data limitation. The problem of data imbalance for

curriculum learning can be tackled by oversampling from the minority class, downsampling from

the majority class, and adjusting weights for the loss function [34, 55, 86]. It must be noted
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that in this context, downsampling of the training data refers to selecting a small subset of the

majority class examples. Techniques such as oversampling and undersampling are not practical

when lacking prior knowledge on the classes. Additionally, oversampling can lead to overfitting

of the model as repetitive information is being fed to the model. Also, downsampling can lead to

losing a substantial amount of information that is required for the task under study. Dealing with

data imbalance in curriculum learning has been previously investigated in [146] and a dynamic

solution with batch-level strategy and loss weight adjustment was suggested.
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CHAPTER 3: PROBABILISTIC MODEL OF NARRATIVE OVER

TOPICAL TRENDS IN SOCIAL MEDIA: A DISCRETE-TIME MODEL

In this chapter we describe our framework for unsupervised narrative summary extraction for on-

line social media timestamped content.1 Recent advances in natural language processing (NLP)

in online social media are evidently owed to large-scale datasets. However, labeling, storing, and

processing a large number of textual data points, e.g., tweets, has remained challenging. On top of

that, in applications such as hate speech detection, labeling a sufficiently large dataset containing

offensive content can be mentally and emotionally taxing for human annotators. Thus, NLP meth-

ods that can make the best use of significantly less labeled data points and unsupervised practices

are of great interest as they require little to no labeled training data. As social media activities gen-

erate abundant timestamped multimodal data, many studies such as [23] have presented algorithms

to discover the topics and develop descriptive summaries over social media events. From the field

of machine learning and data mining, topic modeling refers to the utilization of hierarchical prob-

abilistic models to discover word patterns that reflect the underlying topics in a set of document

collections [3].

3.1 Our Framework

Here, we explain our proposed narrative framework. The framework comprises of 2 steps: I. Nar-

rative modeling based on topic identification over time; and II. extractive summarization from the

identified narratives.

To discover the narratives over topical events, first, we use our discrete-time generative narrative

1Portions of this chapter is reprinted, with permission, from ©2020 ACM [105] https://doi.org/10.1145/
3372923.3404790.
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model as an unsupervised learning algorithm to learn the distribution of textual contents from daily

conversation cascades. Then, we extract narrative summaries over topical events from sentences in

the time categories. This is achieved by sampling from the identified distribution of narratives and

performing sentence ranking. Narrative modeling and summarization steps are explained below in

separate subsections.

3.1.1 Topic Modeling to Identify Narratives

To model narratives, we design our topic model such that the discovered topics present a series of

timely ordered topical events. Accordingly, the topical events deliver a narrative covering distinct

events over the same topic. In this regard, we present Narratives Over Categorical time (NOC)2,

a novel probabilistic topic model that discovers topics based on both word co-occurrence and

temporal information to present a narrative of events. According to the topic-time relationship

explained above, we refer to the topics over time as narratives, topical events as events, and the

extracted timely ordered sentences of documents with a high probability of belonging to each

event as the extracted narrative summary. To fully comply with the definition of narrative, we

assume a causality relation between the conversation cascades in social media. However, we do

not investigate the causality relation across the conversation cascades or named-entities.

The differences between our narrative model with dynamic topic models [9], topic models with

continuous-time distribution [145], and hierarchical topic models [53, 117] include: not filtering

the data for a specific event, imposing sharp transition for topic-time changes with time slicing,

discovering topical events without scalability and sparsity issues, allowing multimodal topic dis-

tribution in time as a result of categorical time distribution, and allowing to select a time slicing

2The code for NOC is available at our GitHub repository on https://github.com/toktammm/Twitter_
Topics_over_Time
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Figure 3.1: The graphical model for NOC with Gibbs sampling.

size such that distinct topical events be recognizable. Additionally, categorical time distribution

enables discovering topical events with varying time resolution, for instance, weekly, biweekly,

and monthly. In contrary to dynamic topic modeling, this method does not requiring filtering the

documents to have an equal number of documents per time slice.

Time discretization brings the question of selecting the appropriate slicing size or the number of

categories that depend on the characteristics of the dataset under study. On the contrary, topi-

cal models with continuous-time distribution cannot model many modes in time. Additionally,

continuous-time models such as [145] suffer from instability problems if the dataset is multimodal

and sparse in time. Furthermore, categorical time enables discovering topic recurrence which re-

sults in identifying topical events related to distinct narrative activities, which is of our interest

in this work. Narrative activities in social media refer to the amount of textual content that is

circulating in online platforms over time, corresponding to a specific topic.

The generative process in NOC, models timestamps, and words per documents using Gibbs sam-

pling which is a Markov Chain Monte Carlo (MCMC) algorithm. The graphical model of NOC

is illustrated in Figure 3.1. As can be seen from the graphical model, the posterior distribution of

topics is dependent on both text and time modalities. This generative procedure can be described

as follows:
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I. For each topic z, draw T multinomials φz from a Dirichlet prior β ;

II. For each document d, draw a multinomial θd from a Dirichlet prior α;

III. For each word wdi in d:

(a) draw a topic zdi from multinomial θd;

(b) draw a word wdi from multinomial φzdi;

(c) draw a timestamp tdi from categorical ψzdi;

where the timestamps tdi for words wdi in each document d are identical. The list of symbols and

their descriptions can be found in table 3.1. The model parameterization is as below:

θd |α ∼ Discrete(α)

φz|β ∼ Discrete(β )

zdi|θd ∼ Multinomial(θd)

wdi|φzdi ∼ Multinomial(φzdi)

tdi|ψzdi ∼ Categorical(ψzdi)

(3.1)

In this model, Gibbs sampling provides an approximate inference instead of exact inference. To

calculate the probability of topic assignment to word wdi, we first need to calculate the joint proba-

bility of the dataset as P(zdi,wdi, tdi|w−di, t−di,z−di,α,β ,ψ) and use chain rule to derive the prob-

ability of P(zdi|w, t,z−di,α,β ,ψ) as below, where −di subscript refers to all tokens except wdi:

P(zdi|w, t,z−di,α,β ,ψ) ∝ (mdzdi +αzdi −1)

×
nzdiwdi +βwdi −1

∑
V
v=1(nzdiv +βv)−1

p(tzdi ∈ bk)
(3.2)
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Variable Descriptions Symbol

Number of topics T
Number of documents D
Number of unique words V
Number of word tokens in document d Nd
Multinomial distribution of topics for document d θd
Multinomial distribution of words for topic z φz
Categorical distribution of time for topic z ψz
Topic of the ith token in document d zdi
ith word token in document d wdi
Timestamp for ith word token in document d tdi
Time category for timestamp associated with a token bk
jth sentence of document d sd j

Table 3.1: NOC symbols and definitions

where nzv refers to the number of words v assigned to topic z, mdz refers to the number of word

tokens in document d that are assigned to topic z, and bk represents the kth time slice. The details

on the Gibbs sampling derivation can be found in subsection 3.1.3. After each iteration of Gibbs

sampling, we update the probability of p(tzdi ∈ bk) as follows:

p(tzdi ∈ bk) =
1
K

K

∑
k=1

I(tzdi ∈ bk) (3.3)

where I(.) is equal to 1 when tzdi ∈ bk, and 0 otherwise.

3.1.2 Narrative Summary Extraction

We employ the discovered probabilities of topics over documents, θ , probabilities of words per

topic, φ , and probabilities of topics per time category, ψ to perform sentence ranking. This rank-

ing allows extracting the sentences with the higher scores of belonging to each topic. This is
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achieved via performing weighted sampling on the collection of documents based on the prob-

abilities of topics per time category ψ and draw D documents from θ . The weighted sampling

leads to drawing more documents from the time categories bk with a higher ψ as this time slices

contain more documents related to the topic z. Each document contains a sequence of sentences

(s1,s2, . . . ,sJ) ∈ d from the aggregated conversation cascades per day. Information on the aggre-

gation of conversation cascades and document preparation can be found in section 3.2.1.

Since the social media narrative activity over a topic evolves from the circulation of identical or

similar textual content in the platform, the content involves significant similarity. For instance,

the Twitter conversation cascades include replies, quotes, and comments, where replies and quotes

duplicate the textual content. Therefore, we applied Jaro-Winkler distance over the timely ordered

sentences and dismissed the sentences with similarity above 70%, while keeping the longest sen-

tence. After removing redundant text as described earlier, we calculate the probability of each

sentence s j by measuring the sum of the probabilities of topics for words wdi ∈ s j. Then, we

select the sentences with the highest accumulative probability of words w per topic z. Summary

coherence was induced as suggested in [5] by ordering the extracted sentences according to their

timestamps such that the oldest sentences appear first. The results of the extracted summaries are

provided in Chapter 3.5.

3.1.3 Gibbs Sampling Derivation for the Discrete-Time Narrative Model

Starting with the joint distribution P(w, t,z|α,β ,ψ), we can use conjugate priors to simplify the

equations as below:
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P(w, t,z|α,β ,ψ) = P(w|z,β ) p(t|ψ,z) P(z|α)

=
∫ D

∏
d=1

Nd

∏
i=1

P(wdi|φzdi)
T

∏
z=1

p(φz|β )dΦ

D

∏
d=1

Nd

∏
i=1

p(tdi|ψzdi)

×
∫ D

∏
d=1

( Nd

∏
i=1

P(zdi|θd) p(θd|α)
)

dΘ

=
∫ T

∏
z=1

V

∏
v=1

φ
nzv
zv

T

∏
z=1

(
Γ(∑V

v=1 βv)

∏
V
v=1 Γ(βv)

V

∏
v=1

φ
βv−1
zv

)
dΦ

×
∫ D

∏
d=1

T

∏
z=1

θ
mdz
dz

D

∏
d=1

(
Γ(∑T

z=1 αz)

∏
T
z=1 Γ(αz)

T

∏
z=1

θ
αz−1
dz

)
dΘ

×
D

∏
d=1

Nd

∏
i=1

p(tdi|ψzdi)

=
(

Γ(∑V
v=1 βv)

∏
V
v=1 Γ(βv)

)T(Γ(∑T
z=1 αz)

∏
T
z=1 Γ(αz)

)D D

∏
d=1

Nd

∏
i=1

p(tdi|ψzdi)

×
T

∏
z=1

∏
V
v=1 Γ(nzv +βv)

γ(∑V
v=1(nzv +βv))

D

∏
d=1

∏
T
z=1 Γ(mdz +αz)

γ(∑T
z=1(mdz +αz))

,

(3.4)

where P and p refer to the probability mass function (PMF) and probability density function (PDF),

respectively. The conditional probability P(zdi|w, t,z−di,α,β ,ψ) can be found using the chain rule

as:

P(zdi|w, t,z−di,α,β ,ψ) =
P(zdi,wdi, tdi|w−di, t−di,z−di,α,β ,ψ)

P(wdi, tdi|w−di, t−di,z−di,α,β ,ψ)

∝
P(w, t,z|α,β ,ψ)

P(w−di, t−di,z−di|α,β ,ψ)

∝
nzdiwdi +βwdi −1

∑
V
v=1(nzdiv +βv)−1

(mdzdi +αzdi −1) p(tdi|ψzdi)

∝ (mdzdi +αzdi −1)
nzdiwdi +βwdi −1

∑
V
v=1(nzdiv +βv)−1

p(tzdi ∈ bk)

(3.5)

The probability of p(tdi ∈ bk) can be measured as follows:
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p(tzdi ∈ bk) =
1
K

K

∑
k=1

I(tzdi ∈ bk), (3.6)

where I(.) is equal to 1 when tzdi ∈ bk, and 0 otherwise.

3.1.4 Proposed Metric: Analyzing Lifetime Attractiveness of Topics with Shannon Entropy

The topic attractiveness to social media users can be investigated by basic statistical methods as

a measure of the length of conversation cascades, the number of initiated textual content, and the

number of unique users performing an activity relative to the underlying topic. The user activity

fluctuations for timestamped data may contain activity bursts that are illustrative of significant

events. Similarly, the generation and propagation of textual content within an online platform can

illustrate the narrative activity relative to the events over time, where a burst represents a significant

narrative activity. Additionally, the recurrence of a topic can be considered as an attractiveness

measure for the associated topic.

In this regard, we propose the significance-dispersity trade-off (SDT) metric to compare the iden-

tified narratives against each other. SDT measures the lifetime attractiveness of the identified

narratives based on the distribution of narratives over topical events. The significance of such

measurement is evident when speculating the number of involved individuals in a topic is not fea-

sible as the dataset lack information regarding the number of individuals in the conversations. The

proposed metric quantifies the significance of the narrative activities and recurrence of a topic via

employing the Shannon entropy for the discovered narrative distributions. The intuition behind the

SDT score is that the value of the entropy is maximum when the probability distribution is uniform.

On the contrary, this value is minimum if the distribution is a delta function. This is visualized in

Figure 3.2.
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Figure 3.2: A visualization of SDT for different entropy values using γ = 0.5. The SDT values for delta,
uniform, and periodic distributions are marked on the graph.

We define dispersity of a categorical time topic distribution as a measure of the dispersion of the

time categories. Based on this definition, SDT score of topic z can be obtained as:

SDTz = Hγ(Hmax −H)1−γ , (3.7)

where H is the Shannon entropy for the categorical distribution of time for topic z:

Hz =−
K

∑
k

pzlog2 pz, (3.8)

Hmax = log2(K),

and K refers to the number of time slices in the distribution.

We rely on this intuition that social media topics with high lifetime attractiveness are significant and

recurrent. However, the probability distribution imposes a trade-off on the two. The parameter γ
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Variable Descriptions Symbol

Entropy of topic z Hz
Number of time slices K
Weighted geometric mean γ

Table 3.2: SDT symbols and definitions

provides a weighted geometric mean of H and Hmax−H that enables promoting either significance

or recurrence, dependent on the application under study. A larger value of parameter γ promotes

dispersity for SDT score, and a smaller amount of this parameter promotes mode significance. The

bounds for the SDT score are:

SDTi =


0 if H = 0 & γ! = 0

0 if H = Hmax & γ! = 1

γγ(1− γ)1−γHmax if H = γHmax & 0 < γ < 1

(3.9)

where H = 0 occurs when the distribution under study is uniform, and H = Hmax relates to delta

distribution.

Since the time categorical distribution of our narrative model allows many modes in time, recurrent

narratives can be identified. Additionally, the narrative activity fluctuations can be modeled using

categorical time distribution in topic analysis. The results presented in the next chapter suggest that

SDT score can be used to identify the narrative with higher lifetime attractiveness in a timestamped

dataset.

The evaluation of the proposed technique, choice of parameters, and details on the dataset are

provided next.
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3.2 Experiments and Results

We conduct extensive analysis to investigate the performance of the proposed narrative summary

extraction framework. The investigated dataset, experiments, and results are presented next.

3.2.1 Dataset Description

To analyze topical events and provide narratives, we investigate the Twitter dataset on the domain

of White Helmets of Syria over a period of 13 months from April 2018 to April 2019. This dataset

was provided to us by Leidos Inc1 as part of the Computational Simulation of Online Social Behav-

ior (SocialSim)2 program initiated by the Defense Advanced Research Projects Agency (DARPA).

We analyze more than 1,052,000 tweets from April 2018 to April 2019.

For the investigated Twitter dataset, Figure 3.3 demonstrates the daily number of user activities

and the number of unique users who are involved in these activities, which can help to obtain a

better understanding of the data, as well as determining the number of topics. It can be observed

that some essential events triggered the burstiness of the specific Twitter cascades at specific times

that can be considered as the topics in this dataset. We manually investigated these specific times

and mark these events on this figure.

To prepare the model inputs, we filter the tweets from the non-English text. Then, we clean up

the data by removing usernames, short URLs, as well as emoticons. Additionally, we remove the

stopwords, perform Part of Speech (POS) tagging, and Named Entity Recognition (NER) on each

tweet using Stanford Named Entity Recognizer3 model. Using the NER tool, we extract persons,

1https://www.leidos.com/
2https://www.darpa.mil/program/computational-simulation-of-online-social-behavior
3https://nlp.stanford.edu/software/CRF-NER.html
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Number of tweets
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1

1 - Douma chemical attack (source: New York Times 04/08/18)

2 - Trump's Syria aid freeze hits 'White Helmets' rescue workers (source: 
ABC News 05/04/18)

3 - Syrian White Helmets evacuated to Jordan through Israel (source: CBC 
News 07/22/18)

4 - The Russia-backed campaign to link the volunteer rescuers with al-
Qaida exposes how conspiracy theories take root: ‘It’s like a 
factory’ (source: The Guardian 12/18/18)

5 - Air strikes kill at least 9 civilians in Syria's Idlib - White Helmets (source: 
TRT 12/23/18)

2

3

4,5

Figure 3.3: Daily number of user activities (black line) and unique user involved (red line). Via
manual investigation, titles of the news possibly related to the bursts in Twitter cascades are de-
tected. These news titles are marked with green dashed line.3

locations, and organizations and removed all pseudo-documents that do not contain named entities

similar to [90]. Furthermore, We remove the tweets shorter than 3 words.

Anywhere on the same page where the float appears

As Twitter maintains a maximum allowed character limit of 280 characters, collected tweets lack

context information and have very low word co-occurrence. We tackle the challenge of topic

3This Figure is reprinted, with permission, from ©2020 IEEE/ACM [99] https://doi.org/10.1109/
ASONAM49781.2020.9381386.
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modeling on short-text tweets and to include plentiful context information by preparing pseudo-

documents for our model inputs via aggregating daily root, parent, and reply/quote/retweet com-

ments in each conversation cascade. We maintain the order of the conversation according to the

timestamps associated with each tweet. This text aggregation method results in preparing pseudo-

documents rich in context and related words with a daily time resolution. We use the pre-processing

phase output as the model input pseudo-documents, referred to as documents in this paper. The

results for this model is provided in section 3.2.4.

3.2.2 Performance Measurements

3.2.2.1 Coherence Metric

The identified narratives can be evaluated using effective evaluation metrics for topic models. Ac-

cordingly, we calculate pointwise mutual information [101] to measure the coherence of a topic z

as follows:

Cohz =
2

K(K −1) ∑
j<k⩽K

log
p(w j,wk)

p(w j)p(wk)
, (3.10)

where K is the number of most probable words for each narrative, p(w j) and p(wk) refer to the

probabilities of occurrence for words w j and wk, and p(w j,wk) represents the probability of co-

occurrence for the two words in the collection of documents.

3.2.2.2 Significance-Dispersity Trade-off

The Significance-Dispersity Trade-off (SDT) score is a measurement that we proposed. We de-

fined dispersity of a categorical time topic distribution as a measure of the dispersion of the time
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categories for the identified topics. Based on this definition, SDT score of can be calculate as:

SDTz = Hγ(Hmax −H)1−γ , (3.11)

where H is the Shannon entropy for the categorical distribution of time for topic z. The parameter γ

provides a weighted geometric mean of H and Hmax−H that enables promoting either significance

or recurrence. A larger value of parameter γ promotes dispersity for SDT score, and a smaller

amount of this parameter promotes mode significance.

3.2.3 Experiment Setup

In this work, we report results with bi-weekly categorical time resolution. To determine the val-

ues for hyper-parameters α and β and to investigate the sensitivity of the model to these values,

we repeated our experiment with symmetric Dirichlet distributions using values α ∈ [0.1,0.5,1],

β ∈ [0.01,0.1,0.5,0.8,1]. We observed that the model did not show significant sensitivity to the

values of these hyper-parameters. Thus, we fix α = 1 and β = 0.5, both as symmetric Dirichlet

distributions. We initialize the hyperparameter ψ in 2 ways for comparison: I. random initializa-

tion (model referred as NOCR); and II. based on the probability of user activity per time category,

illustrated in Figure 3.6, (model referred as NOCA).

To estimate the number of topics for our experiments, we first visualize the tweets’ hashtag co-

occurrence graph. We measure the graph modularity to examine the structure of the communities

in this graph. We observe the highest modularity score of 0.41 using modularity resolution equal

to 0.85. Figure 3.4 illustrates a downsampled version of this graph, where each color represents a

modularity class. The edges of the graph are weighted according to the number of hashtags’ co-

occurrence in the document collection. Our modularity analysis suggests that few distinct hashtag
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Figure 3.4: The hashtag co-occurrence graph for twitter dataset on the domain of White Helmets of Syria
for a period of 13 months, from 2018 to 2019. This graph represents a down-sampled version of the hashtag
co-occurrence for this data for the sake of visualization.

communities exist. Additionally, the dataset under study contains tweets associated with a single

domain. As a result, we assume the number of topics to be relatively low. To choose an appropriate

number of topics, we repeated LDA with the number of topics as T ∈ [4, . . . ,20] with increments

of size 1. We evaluated the cv coherence of topics identified by LDA and observed the highest

coherence score for T = 5 and T = 6, respectively. Thus, we report our experimental results using

these values.

As discussed in 3.1.2, we employ the discovered probabilities of topics over documents, θ , proba-

bilities of words per topic, φ , and probabilities of topics per time category, ψ to perform sentence

ranking to extract a summary for topics, such that sentences with the higher scores of belonging

49



to each topic appear in the topic summaries. We apply weighted sampling on the collection of

documents based on the probabilities of topics per time category ψ and draw D documents from θ .

Summary coherence was induced as suggested in [5] by ordering the extracted sentences accord-

ing to their timestamps such that the oldest sentences appear first. Table 3.5 in the 3.2.4 section

contains the extracted narrative summaries for 5 topics for a sample run.

3.2.4 Results

As mentioned earlier, the discovered topics by NOC present a series of timely ordered topical

events. Thus, the topical events deliver a narrative covering distinct social media events over the

same topic. Figure 3.5 demonstrates the generated narrative distributions with NOC, where the

hyperparameter ψ was randomly initialized (referred to as NOCR). In this figure, the vertical

axis represents the empirical probabilities of the topics. This figure represents that the identified

narratives by our model are distinct from each other and the collapsed distribution of all narratives

approximates the distribution of social media user activity over time.

Below we compare our model with LDA and TOT[145] based on the coherence score achieved for

both methods. TOT is a probabilistic topic model over time with Beta distribution for time. Table

3.3 displays the average coherence score measured across the discovered topics by LDA, TOT, and

NOC. For NOC, we investigate initializing the parameter ψ with random and user activity-based

initialization, referred to as NOCR and NOCA, respectively. We consider K = 500 most probable

words from each topic. This comparison suggests that the narratives identified by NOC are more

coherent than the identified topics by LDA, with an improvement in coherence of about 35%.

The observed improvement compared with TOT was about 27%. Additionally, initializing the

hyperparameter ψ in NOC using the distribution of user activity improves the narrative coherence

by about 3%.
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(a)

(b)

Figure 3.5: The distribution of extracted topics and user activity over time: a) The distribution of
user activity over time is depicted by black, followed by the 5 distribution of the extracted topics,
using NOCR; b) The collapsed distribution of the 5 extracted topics. The vertical axis represents
the empirical probabilities of the topics.
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Figure 3.6: The distribution of user activity over time. Comparing this figure with Fig. 3.5 suggest
that the distribution of extracted topics approximates the distribution of user activity over the same
time period.

Model LDA TOT NOCR NOCA

T = 5 5.980 6.36 7.95 8.23
T = 6 5.546 5.99 7.75 7.98

Table 3.3: The comparison of coherence scores for 4 models:

Table 3.4 provides a comparison for the SDT scores measured for the 5 identified narratives, using

varying values of γ . The illustration of the distribution of the extracted narratives can be seen in

Figure 3.5a. We can clearly see in this figure that narratives 1 and 3 have the highest dispersity.

On the contrary, narratives 4 and 2 have the highest significance. We compare SDTi for narrative

i with the number of user activity associated with narrative z. The results suggest that SDT score

can be used to identify the narrative with higher lifetime attractiveness in a timestamped dataset.

In our experiments, this is achieved for topic 1 when the value of γ is greater than or equal to 0.7.

As it can be seen, this topic is associated with the highest user activity count, reported in the same

table.
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Topic / Narrative z = 1 z = 2 z = 3 z = 4 z = 5

γ = 0 1.59 2.90 2.39 3.21 2.75
γ = 0.4 2.08 2.40 2.36 2.36 2.40
γ = 0.7 2.54 2.08 2.33 1.87 2.16
γ = 1 3.11 1.80 2.31 1.49 1.95

User Activity 353,280 317,686 244,674 247,895 175,343

Table 3.4: The comparison of SDT scores for 5 topic narratives:

3.3 Conclusion

In this chapter, we addressed the problem of narrative modeling and narrative summary extraction

for social media content. For this, we investigated the Twitter dataset on the domain of White

Helmets of Syria over a period of 13 months from April 2018 to April 2019. This dataset was

provided to us as part of the Computational Simulation of Online Social Behavior (SocialSim) pro-

gram initiated by the Defense Advanced Research Projects Agency (DARPA), under grant number

FA8650-18-C-7823.

We presented a narrative framework consisting of I. Narratives over topic Categories (NOC), a

probabilistic topic model with categorical time distribution; and II. extractive text summariza-

tion. The proposed narrative framework identifies narrative activities associated with social media

events. Identifying topics’ recurrence and significance over time categories with our model al-

lowed us to propose significance-dispersity trade-off (SDT) metric. SDT can be employed as a

comparison measure to identify the topic with the highest lifetime attractiveness in a timestamped

corpus. Results on real-world timestamped data suggest that the narrative framework is effective

in identifying distinct and coherent topics from the data. Additionally, the results illustrate that the

identified narrative distributions approximate the user activity fluctuations over time. moreover,

informative, and concise narrative summaries for timestamped data are produced.
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Topics Keywords Summary

Topic 1

Terrorist, Idlib,
Civilian, Child,
City, Attack,
Aleppo, Rescue,
Weapon, Killed

WhiteHelmets Syria News: One child was injured in the north of
Aleppo. Their aim is to save lives in war zones inside Syria. Has credi-
bly substantiated 336 uses of ChemWeapons in Syria 98% of attacks by
Assadallies. These are the WHITE HELMETS or Syria Civil Defense
as our US Dept of State calls them!! Russian airstrikes killed two men
and one baby in DMZ areas RussianWarCrimes.

Topic 2

Chemical, At-
tack, Douma,
Video, Idlib,
Staged, Boy,
War, Child,
Witness

Remember first they said the video including the pics of the chlorine
cylinder was fake. Whitehelmets One America News Pearson Sharp
Visits Hospital in Douma Where White Helmets Filmed Chemical At-
tack Hoax Multiple Eyewitness Doctors Say No Chemical Attack Took
Place Syria. This is the video evidence of the airstrike on Zardana an
Idlib town controlled by Very expensive camera on the helmet of the
WhiteHelmets rescuer. White Helmets making films of chemical attacks
with children in Idlib.

Topic 3

Chemical, At-
tack, Douma,
Terrorist, Fake,
Child, Propa-
ganda, Video,
Russian, Russia

From the fabrication of the plays of the chemist and coverage of the
crimes of terrorism to the public cooperation with the Israeli army the
white helmets. They are holding children! Another chemical attack is
imminent its all they’ve got left! 4 dead including two children and more
than 50 wounded mostly women and children. Love the White Helmets
propaganda almost as untruthful as the BBC.

Topic 4

Israel, Terrorist,
Idlib, Chemical,
Attack, Life,
Rescue, Russian,
People, Al Qaeda

WHITE HELMETS ARE PREPARING CHEMICAL ATTACK ON
CITIZENS AGAIN! Those are basically just members of Al Qaeda Al
Nusra right? The Al Qaeda smear is deliberate propaganda. Its war
crime only If US intervenes in Kashmir Kashmir will be liberated like
Raqqan with a dozen US bases having Thaad missiles aimed at China
and with AlQaeda WhiteHelmets taking out children’s organs of Kash-
miris.

Topic 5

Funding, Freeze,
Trump, Terrorist,
Group, Chemi-
cal, Attack, Idlib,
Civilian, News

Trumps USA has built a rationale for its public that it will need to sup-
port rebels in holding on to a large chunk of Syria. I wonder how it is
possible that criminal associations such as WhiteHelmets and the Syrian
Human Rights Observatory can make the world go round as they want
by influencing the policies of world leaders. U.S. freezes funding for
Syrias White Helmets. White helmets are terrorists. Former Head of
Royal Navy Lord West on BBC White Helmets Aren’t Neutral They’re
On The Side Of The Terrorists.

Table 3.5: Identified representative keywords and topic summaries (narratives).

The summaries provided here are the results for a sample run of the proposed narrative framework and do
not reflect authors’ personal opinions.
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Further improvement of the narrative framework can be achieved via incorporating the causality

relation cross the social media conversation cascades and social media events into account. Other

future directions are identifying topical hierarchies and extract summaries associated with each

hierarchy.
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CHAPTER 4: DOMINANT SET-BASED ACTIVE LEARNING FOR TEXT

CLASSIFICATION AND ITS APPLICATION TO ONLINE SOCIAL

MEDIA

In this chapter, we describe our active learning method for social media text classification. The

growing volume of online publicly available user-generated content has encouraged an enormous

amount of research on the design and application of natural language processing techniques using

online social media datasets [6, 96, 57]. Recent advances in natural language processing (NLP),

including research on online social media analysis and mining are evidently owed to large-scale

datasets, deep language models with attention mechanisms, and transferring of general knowledge

via per-training. However, labeling, storing, and processing a large amount of textual data, e.g.,

tweets, which is required for training deep language models has remained challenging. On top

of that, manually analyzing textual data that contains rumors, misinformation, hate speech and

bullying, etc. to label a sufficiently large dataset can be mentally and emotionally taxing for human

annotators. As a result, a substantial amount of recent NLP research is focused on techniques that

can make the best use of significantly less amount of labeled data.

Active learning refers to the process of efficient selection of the most informative data when the

data is plentiful, but the labels are scarce [129]. Active Learning (AL) techniques can mitigate the

issues associated with manual labeling and improve automatic detection and classification when

labeled training data is sparse [33]. The best active learning strategy successfully selects certain

unlabeled data samples from the distribution of available data, such that using this data portion for

training leads to the maximal reduction of the classification error and variance.

Although this area of research is not new, very few research papers are focused on applying active

learning for natural language, defining data informativeness for contextual data, and investigating
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the potential of popular data selection techniques on low-quality data, such as imbalanced data that

misses context. This doctoral thesis is specifically focused on extremely imbalanced data, which

is a common issue in research on many social media datasets, e.g., spam detection, social bot

detection, and hate speech classification [95, 24]. Thus, we evaluate our proposed technique using

two common social media datasets related to hate speech classification and show that our method

consistently achieves a higher performance in comparison to the state-of-the-art active learning

strategies. We show the effectiveness of our method on different datasets and using different neural

network architectures.

4.1 Our Framework

Here, we explain our proposed active learning method. The framework comprises of 2 main steps

that occur in every cycle of active learning: I. extracting feature vectors that are rich with contex-

tual information and general language knowledge using deep pre-trained language models as the

embedding function; and II. identifying the non-dominant samples of clusters and use them for

fine-tuning the language model.

We are interested in pool-based active learning [89], in which an acquisition function is used to

query the label of a small set of selected samples. In this method, the model is initially trained

using a small set of labeled data. Then, according to an informativeness criterion, the acquisition

function selects a few data points to query their labels from the oracle. For a model M (x;θ), pool

data Dpool , and input x ∈ Dpool , the acquisition function a(x,M ) is defined as:

x∗ = arg max
x∈Dpool

a(x,M ).

The most informative samples are drawn from the pool and added to the training set by repeating

57



the above step. For instance, investigating the uncertainty of the model as the informativeness

criterion is a common approach for many active learning acquisition functions, with the hope that

selecting samples based on such criterion leads to a lower model uncertainty. In this work, we

use various acquisition functions for comparison with the proposed strategy, which are provided in

section 4.2.3.

Recent advancements in the development of pre-trained language models, such as Google’s BERT

(Bidirectional Encoder Representations from Transformers) architecture [32] and OpenAI’s GPT-3

(Generative Pre-trained Transformer) model [13] have revolutionized the field of natural language

processing and deep learning. As these models are trained over massive examples of written lan-

guage, they can be easily fine-tuned for a downstream task using a small amount of labeled data

[33]. Accordingly, employing these models in active learning is ideal and leads to the reduction of

cost and burden of manual labeling, without loss of generalizability and performance across many

diverse tasks.

We discuss and investigate our proposed active learning strategy for the task of social media text

classification. Our goal is to find the smallest set of training samples that leads to the maximal

reduction of the classification error and variance. As we are interested in the application of this

strategy to text classification, we exploit the feature vectors from the BERT model to calculate the

informativeness scores using our proposed acquisition functions described below. Since the BERT

model is pre-trained over a huge amount of data points and can provide us with high-quality feature

space, even before supervised fine-tuning, it is an ideal candidate for tasks such as active learning.

4.1.1 Dominant Set Clustering and its Applications

Despite the existence of many clustering techniques, graph-theoretic clustering methods [130, 124,

112], such as spectral clustering, dominant sets [109], and Density-Based Spatial Clustering of Ap-
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plications with Noise (DBSCAN) [74] achieve higher performance than k-means in the discovery

of the clusters of arbitrary shapes, and are more robust to noise and outliers. Among these methods,

dominant sets clustering [109], which refers to strongly coherent subsets of local clusters [109],

has the lowest computational complexity.

We propose to exploit dominant sets into informative data selection for active learning. However,

our work is not the first study that employs dominant or non-dominant sets for machine learning

and classification, nor the first study that investigates these sets for active learning. In fact, domi-

nant sets are widely used for different applications and tasks. The work of [14] provides a review

of methods that have adopted dominant sets, as well as the extensions of this algorithm. A related

work on the exploitation of dominant sets for active learning is [64], which also uses both spectral

clustering and dominant sets to find the outliers for label investigation. However, this work is not

designed to be used for the training of deep models. The dissimilarities to this doctoral work are

discussed in the next part.

4.1.2 Active Learning Using Non-Dominant Set (NDS)

In this doctoral thesis, we first, identify the local clusters of data in feature space and for each

cluster detect the most similar set of points, i.e., the dominant set. The samples that do not belong

to the dominant set of any of the clusters are the least similar samples to their corresponding

clusters, and therefore the most challenging to classify. Furthermore, these samples are more likely

to lie on the decision boundary. Thus, we can collect these informative samples without needing

a classifier. Figure 4.1 illustrates an overview of the steps of the proposed method for a toy 2D

feature space and 3 classes. Dominant set clustering is non-parametric and is a sequential method

that only uses a predefined similarity matrix to find the cohesive structures in that space. We use

the number of classes in our classification task as a known parameter for an initial clustering before
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Figure 4.1: Overview of the proposed NDS active learning framework for a toy 2D feature space with
3 classes. At each active learning cycle, an embedding function (e.g., pre-trained BERT) maps the input
onto the feature space. Then, spectral clustering is used to cluster the extracted feature vectors. For each
cluster, the dominant samples are identified by measuring the sample-cluster similarity. Finally, samples are
selected randomly from the non-dominant set and labeled by an annotator. The selected samples represent
the structure of the data well and most likely lie near the decision boundaries.

finding the dominant sets in each cluster. We assume that with little domain knowledge the number

of classes must be known. Also, applying this method allows parallel dominant set identification

across clusters, which makes it more practical for large datasets.

Here, we explain NDS in detail, which is a feature similarity-based active learning approach. Our

selection strategy starts with spectral clustering of the feature vectors for the pool of unlabeled

data to obtain a set of K clusters C1 . . .CK based on a pairwise local feature similarity score (e.g.

Euclidean distance), where K is equal to the number of classes in our classification problem. Al-

though this is not an entirely realistic assumption, we suppose in an “ideal case” the model can

provide a feature space that contains the same number of clusters as the classification problem (K).

We extract a dominant set from each cluster Ck by constructing an undirected edge-weighted graph

Gk(Vk,Ek,wk) with no self-loops. Vk and Ek represent the set of vertices and edges per cluster

Ck, and neighborhood relationships define the existence of edges. ai j
k = wk(i, j) refers to the edge

weight between feature vectors i and j if (i, j) ∈ Ek, and ai j
k = 0 otherwise. In other words, the ver-

tices in the graph Gk represent the samples in the kth cluster and the edges represent the distance
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Variable Descriptions Symbol

Model M
Pool of training data for selection D
kth cluster Ck
Set of vertices for cluster k Vk
Set of edges for cluster k Ek

Table 4.1: NDS-AL symbols and definitions

between the samples. The proper distance function depends on the embedding function. In our

experiments, where we employ BERT, Euclidean distance is used.

To find the similarity of a sample i to its corresponding cluster Ck, we can assign each vertex i

in the cluster a non-negative value zi, representing the participation of the vertex in the cluster.

The larger the zi the more corresponding node is associated with the cluster. If zi = 0, then the

sample i is not associated with the cluster. This is a common way to represent the nodes in a

cluster in classical graph-theoretical approaches [130, 124, 112] and a central quantity in dominant

set identification [109]. The participation value zi,∀i ∈ Vk can be found by solving the following

optimization problem:

min z⊺WKz

subject to zi ≥ 0

∑
i

zi = 1,

(4.1)

where z is a vector containing z1,z2, . . . and Wk is a matrix containing the pairwise distances

wk(i, j). Similar to [109], we can use the replicator dynamics optimization technique, which is

an evolutionary game theory approach, to extract zi associated with each node in the cluster. Using

this optimization algorithm, the similarity of vertex i with respect to the cluster k is obtained. We

follow the procedure in [109] that suggests to divide the samples into dominant and non-dominant
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samples using the median of the obtained positive similarity scores of each cluster as a cutoff

for the sample-cluster similarity (parameter zi). This means that half of the points with non-zero

participation are considered as the dominant set.

Using this pairwise clustering and dominant set extraction method, it is expected that the identified

dominant sets represent the highly compact structures within the embedding space, and thus, be-

long to the same class. We believe that using the embedding space of a pre-trained language model

such as BERT is crucial to obtain clusters with a low amount of noise. With these assumptions, the

non-dominant sets within each cluster Ck contain more interesting samples for active learning as

they hold less similarity to these maximally cohesive clusters. Accordingly, NDS concentrates on

these sets from the pool data. To maximize the diversity over the embedding space and therefore

the classes, we uniformly sample an equal number of data points from the non-dominant set of

each cluster. Algorithm 1 shows the steps of the proposed NDS algorithm.

Algorithm 1 Selection Using NDS
Require: A pool of unlabeled data points Dpool , number of samples to be selected m, number of

classes K, an embedding function, and a distance function.
Output: Selected samples for annotation.
1: Embedding: Extract the feature vectors corresponding to all the points x ∈ Dpool using the

embedding function.
2: Clustering: Extract the clusters C1, . . . ,CK using spectral clustering

for k = 1, · · · ,K
3: Calculate the pairwise distance matrix Wk
4: Calculate the sample-cluster similarity z using (4.1)
5: Calculate the threshold as τ = median(z[z > 0])
6: Randomly select m

K samples with zi ≤ τ

end

4.1.2.1 Incorporating Uncertainty into NDS

Although uncertainty-based methods such as variation ratio [39] and Bayesian AL [42] are widely

used for active learning, these sampling strategies are known to have a higher tendency to the
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selection of outlier samples in the early cycles [33]. As the size of training data increases in

the later active learning cycles, the uncertainty-based methods are able to provide more reliable

uncertainty scores.

On the contrary, we show that NDS is an effective method in the early sampling cycles as it selects

the most critical samples from the pool. After a few active learning cycles, and specially, in the

case of extremely imbalanced datasets, NDS can run out of the non-dominant set pool to select

from. This is because the previously sampled training data is removed from the pool in every

iteration, which results in the shrinkage of clusters. In such a scenario, we can increase the size of

the non-dominant set by increasing the threshold of the dominant-set detection. As the model has

learned more challenging examples at this point, the drawback of modifying this threshold can be

the selection of redundant examples.

We can also extend our approach via proposing NDS+, which is a compound sampling strategy that

benefits from both NDS and uncertainty-based methods. We can think of NDS as a random selec-

tion with equal weights over the non-dominant sets while setting the weight of dominant samples

to 0. Considering a uniform distribution over each of the identified per cluster non-dominant sets,

the linear combination of NDS and uncertainty-based approaches becomes possible. To investigate

the impact of such compound strategy on the classification performance, we simply define NDS+

with a smooth transition such that only NDS is used in the very early cycle, and the uncertainty

scores influence the drawing procedure of samples in the later stages. Let ΦU ∈ [0,1] be an un-

certainty measure, e.g. minimum margin, the hybrid sampling weight for NDS+ can be defined

as:

αΦNDS +(1−α)ΦU ,

where ΦNDS is the NDS sampling weights as defined above and α is a parameter that regulates the

relative effect of NDS selection versus the uncertainty-based strategy. The value of parameter α
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initially starts from 1, the impact of uncertainty score can be gradually increased by reducing the

parameter α over the cycles of active learning.

The evaluation of the proposed technique, choice of parameters, and details on the dataset are

provided next.

4.2 Experiments and Results

4.2.1 Dataset Description

To evaluate the effectiveness of the proposed approach, we conduct our analysis using two datasets

that we will briefly describe in this section. We refer the reader to the provided source citations for

further details.

I) The abusive language Twitter dataset [38] contains the abusive, hateful, spam, and normal

classes. The class sizes are 22,766, 4,496, 13,996, and 53,560, respectively. This dataset has

been referred to as the Twitter-abusive dataset in our study.

II) The second dataset that we use in this work is the Wikipedia Talk Labels: Personal At-

tacks[152], which belongs to the Wikipedia Detox Research Project. In this study, we refer

to this dataset as Wiki-attack. This dataset contains comments from Wikipedia talk pages,

and is annotated for binary classification of attack versus normal classes. The class sizes are

10,792 and 61,174, respectively.

To prepare the model inputs for both datasets, first, we follow the text normalization procedure in

[102]. We remove the emojis from the text corpus. Then, we replace the URLs with the special

token “HTTPURL". For the Twitter dataset, we also replace the usernames with the special token
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“@USER". For the Wiki-attack text data, we remove the special tokens “TAB_TOKEN" and

“NEWLINE_TOKEN". The data preparation procedure for the Wiki-attack dataset is the same as

in [151]. Next, we use the BERT tokenizer to convert the text inputs to sequences of tokens. The

train and test sets for the Twitter-abusive dataset are determined via randomly splitting this dataset

with the ratio of 8:2. We used the predefined train and test splits for the Wiki-attack dataset.

4.2.2 Performance Measurements

4.2.2.1 Precision, Recall, F1 Score

We evaluate our model based on the achieved F1 score, which itself is a function of precision and

recall scores. The precision score is defined as:

Precision =
TruePositive

TruePositive+FalsePositive
(4.2)

The recall value is obtainable by:

Recall =
TruePositive

TruePositive+FalseNegative
(4.3)

And finally, the F1 score can be calculated as:

F1Score = 2× Precision×Recall
Precision+Recall

. (4.4)
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4.2.3 Acquisition Functions

Here, we briefly review some of the most common acquisition functions in active learning litera-

ture. This work is interested in the pool-based active learning [89], in which an acquisition function

is used to query the label of a small set of selected samples. As discussed earlier, the model is ini-

tially trained using a small set of labeled data. Then, according to an informativeness criterion, the

acquisition function selects a few data points to query their labels from the oracle. The most infor-

mative samples are drawn from the pool and added to the training set. We use various acquisition

functions for comparison with our proposed strategy, which are reviewed below:

I. Random Acquisition (baseline): This function selects data points uniformly at random from

the pool of the unlabeled data.

II. Bayesian AL (Monte-Carlo Dropout): Proposed in [41], this method is an uncertainty-based

AL strategy in which the class probability for each sample is approximated via calculating

the average over N inference cycles using Monte Carlo Dropout.

Bayesian-AL =
1
N ∑

n
p(y = c|x,θn)

The authors in [41] use Variation Ratios [39] as the acquisition function for their Bayesian

AL strategy, defined as:

VarRatio(x) = 1−max
y

p(y = c|x,θ),

in which larger values indicate a higher uncertainty score. Intuitively, the less probable our

most probable class is, the more uncertain we are about the class of the sample.

III. Minimum Margin: Proposed in [125], this approach is also an uncertainty-based acquisition
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function, which is more appropriate for a multiclass scenario. This function evaluates the

uncertainty as the difference between the two most probable predictions as:

MinMargin(x) = p(y = c1|x,θ)− p(y = c2|x,θ),

where classes c1 and c2 have the first and the second highest prediction scores.

IV. Core-Set: Proposed in [128], this method selects central samples using a greedy algorithm

by minimizing the distance between data points and their nearest centers to lead to covering

the entire learned feature space.

4.2.4 Model Configuration and Training Details

To map the inputs to a feature space, we use the BERT-base architecture, which is known to

capture the global as well as local context of text data. For a fair comparison with the state-of-

the-art models, we use the IBM’s low resource text classification toolkit1 and add our approach

to it as a new acquisition function. We use two different BERT-base architectures to conduct the

experiments for text classification: i) the pre-trained BERT-base model 4.2, and ii) the pre-trained

BERT-base model with 3 additional self-attention layers followed by a GRU layer 4.3. In the

rest of this chapter, we refer to these architectures as BERT and BERT-GRU, respectively. The

implementation details of BERT-GRU follow the setting used in [2]. The additional self-attention

layers for this architecture contain 8 heads, and the GRU layer outputs a 512-dimensional feature

vector. We investigate this architecture to examine the effect of extra attention layers and a larger

number of parameters for different AL methods. A single dense layer as the classification head has

been used for both architectures.

1https://github.com/IBM/low-resource-text-classification-framework
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Figure 4.2: The overall architecture of a text classifier with a BERT-base model (number of layers
L=12, hidden size H=768, number of self-attention layers A=12, number of parameters=110M) to
extract the contextual representations of the tokens for the task of text classification. This figure
shows when all final hidden states of tokens are used for classification instead of only the final
representation of the [CLS] token.

Using the feature vectors from the last hidden layer of the BERT-base model, each text input

x is converted to a word embeddings F ∈ RS×d , where d = 768 refers to the dimension of the

embedding space, and S is the maximal sequence length of the text inputs. Similar to [33], we use

S = 100, and learning rate of 2× 10−5. We use draw size of 30, and batch size of 64 across all

the experiments. However, due to memory constraints for the larger model we use S = 50. The

same setting is used to train the two architectures using both datasets, exempting the number of

training epochs, and initial training size. We choose to run all the experiments using the draw size

of 30 as we noticed that a smaller draw size than this value can lead to high standard deviations and

challenge the comparisons of the AL methods. The models were trained for e ∈ {5,10} number of

epochs. However, we observed a reduced performance in terms of F1 score and recall of all active
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Figure 4.3: The overall architecture of a text classifier with a BERT-base model and 3 additional
self-attention layers (each layer having 8 heads) followed by a GRU layer, and the classification
head.

learning methods for the the BERT architecture when using 10 training epochs. This was specially

noticed when the Wiki-attack dataset was used for training. On the contrary, higher performance

scores were achieved for BERT-GRU using 10 training epochs. Thus, we report the experimental

results using different epoch sizes for the two architectures.

We follow the imbalanced-practical setting in [33] for the initial training data preparation, which is

suggested to avoid unstable BERT runs for extremely imbalanced scenarios, i.e., when the size of

one class is less than %15 of the others. In this setting, the annotation budget is 100, performed on

100 random samples. Additionally, a simple (imperfect) heuristic, i.e., a query based on a frequent
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pattern observed in the data, is used to retrieve examples from the class with the smallest size.

Also, domain knowledge can be used to prepare such queries. A random sample of 100 retrieved

examples, which are expected to belong to the class with the smallest size are then added to the

training data without the need for annotation. Similar to [33] we use the query [[A-Z]!]] that refers

to containing an upper case word that follows by an exclamation mark (e.g., IDIOT!). The training

sets of each dataset are used as the initial pool for data selection and label querying.

4.2.5 Active Learning Details

After the initial training iteration, we use the model from the last training epoch for the evaluation

with the test set, as well as the calculation of informativeness metrics by the acquisition functions.

To evaluate the performance of the proposed approach, we perform comparative analysis using

different active learning strategies, details of which are provided in the 4.2.3 section. The minimum

margin uncertainty scores are calculated via conducting one forward pass. However, the Bayesian

AL uncertainty scores are obtained by averaging over 10 forward passes with an additional dropout

unit with parameter 0.2, added before the fully-connected layer, as proposed in [41]. Lastly, NDS

and NDS+ use the learnt embedding space of the BERT model to discover the non-dominant sets

associated with each cluster. We use the published code by [33] with the default values for the

greedy Core-Set method.

As mentioned before, NDS and NDS+ methods use a cutoff parameter, which determines the

dominant versus non-dominant sets of each cluster. This can become problematic when the size

of identified non-dominant sets per associated class goes below m
k . We experienced this issue

specially with extremely imbalanced data. Thus, we consider an adaptive cutoff value by increasing

this parameter whenever the size of non-dominant set pools is less than m
k . In our experiments, we

multiply the cutoff value by 10 until the size of the non-dominant set per cluster is sufficient for
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sampling. An observation for NDS+ was that incorporation of the uncertainty scores postponed

increasing the cutoff value to later AL cycles, and in some runs even prevented it.

After the calculation of the informativeness scores for the pool of training samples, m number of

training inputs are drawn randomly from the pool of interest for each strategy. We use the minimum

margin uncertainty scores for NDS+, and initially use α = 1. This parameter is gradually decreased

by 2% at each active learning cycles. We did not tune this parameter. Instead, this value is selected

based on the number of AL cycles in our experiments, such that the draw of examples in the last

cycle get influenced almost equally by NDS and uncertainty-based strategies. Next, the drawn

samples are added to the training set, the models are reset, and the new set of training inputs are

used to train a new model. The explained procedure continues until a total of 500 training samples

are selected and used for the training of the models. We conduct 10 runs for each experiment

setting, and report the average of the performance scores per active learning strategy (Figure 4.4).

4.2.6 Results

In this section, we report the results of our proposed AL methods, NDS and NDS+, in comparison

to random selection, minimum margin [125], Bayesian AL with variation ratio [42], and Core-Set

[128] acquisition functions using BERT and BERT-GRU architectures.

4.2.6.1 Does random selection from the non-coherent structures of the embeddings space of a

deep language model for active learning improve performance over other methods?

What is the impact of increasing the number of parameters by choosing a larger model?

To answer this question, we investigate the classification F1 scores of the proposed approaches,

NDS and NDS+, versus state-of-the-art active learning methods. The reported scores in Figure 4.4
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(a) (b)

(c) (d)

Figure 4.4: (a) and (b) are the average classification F1 scores for the Twitter-Abusive dataset using BERT
and BERT-GRU, respectively. Similarly, (c) and (d) are the average F1 scores for the Wiki-attack dataset
using BERT and BERT-GRU, respectively.

are the average of the classification F1 scores over 10 training runs using 2 different architectures

and 2 different datasets. (a) and (b) report the results using abusive language Twitter dataset

[38], and (c) and (d) are for the Wikipedia talk labels: personal attacks dataset [152]. From the

figures, it is evident that the two proposed sampling strategies that concentrate on the dominant

sets consistently outperform other AL methods.
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It can be observed in Figure 4.4 that the uncertainty-based AL methods, Bayesian AL and mini-

mum margin, fall behind the random and dominant set-based strategies in the first few AL cycles,

observed for both architectures. This is in contrast with the results and analysis of uncertainty-

based methods reported in [33], which can be due to selecting a larger number of samples per AL

cycle in that paper. However, the results related to the Core-Set strategy is similar to the reported

imbalanced-practical scenario in [33]. An observation that is consistent with literature is that as the

size of training data grows, all methods manage to produce more reliable scores, and thus, discover

more critical samples for training. Thus, a superior technique is the one that performs better in the

early cycles. The performance of the core-set approach, which is a diversity-based method, does

show the same drop as for the uncertainty-based methods in the early AL cycles, which is also

reported in [33]. This technique has reported to perform well for the convolutional neural network

architectures [128].

On the contrary, the two non-dominant set-based methods, NDS and NDS+, seem to select the

critical samples for training, even in the early AL cycles. This difference is more significant when

comparing different AL methods to fine-tune the model with smaller number of parameters, as

shown for the BERT architecture (Figure 4.4. (a) and (c)). Rather, the three additional self-attention

layers, as well as the GRU layer in BERT-GRU lead to compensation for the shorter input size and

the deficiency of the selection strategies, with the cost of higher computational complexity ((Figure

4.4. (b) and (d))). Further comparison of the obtained results for BERT versus BERT-GRU also

suggests that the additional layers in BERT-GRU result in more stability and less fluctuations that

can be interpreted as having a higher robustness to noise. specially, the performance of all strategies

in the early AL cycles is improved using this architecture. This makes the comparison of different

methods more challenging.

Another important factor to discuss about the non-dominant set-based strategies is that the sizes

of non-dominant sets shrink over AL cycles with this technique, resulting in a smaller pool of
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samples for selection in the next iterations. This is specially a concern when using an extremely

imbalanced dataset. Accordingly, the compound strategy that exploits an independent score, such

as model uncertainty scores, can achieve superior results over the long run. This is noticeable

from the obtained results reported for NDS+ in Figure 4.4. Specially, our results represent the

superiority of this method for later AL cycles as expected. However, the results in Figures 4.4.

(a)-(d) also suggest competing performance for the two dominant set-based methods in early and

middle AL cycles. In later cycles, NDS+ seems to take advantage from both NDS and uncertainty-

based selection methods, observed consistently over 10 runs and across the experiments. However,

we did not investigate the samples that are being selected using each of these strategies in this

hybrid method.

Acknowledging the sharp decline in the F1 scores associated with the uncertainty-based and Core-

Set (diversity-based) strategies in the early AL cycles, the significance of using non-dominant sets

for the selection pool becomes evident. Our extensive analysis and comparison of the proposed

methods with other AL approaches using two different text classification corpus, and two deep ar-

chitectures suggest that randomly selecting from the non-dominant set associated with each cluster

is a powerful strategy to reduce the labeling cost and effort. That being said, further improvements

can be achieved via considering a joint strategy, as reported for NDS+.

4.2.6.2 How does the length of data inputs and padding affect the performance of different

active learning methods?

To answer this question, we need to look at this problem from different aspects. First, the datasets

that are studied in this research have short text. Even in many related research on using active

learning for language processing such as [33] and [159] that experiment on long texts, the sequence

length is set as s = 100 and s = 128, respectively. This is partially because of memory constraints.
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This constraints results in choosing a smaller batch size if the sequence length is high, and thus,

a slower convergence. Second, when the input sequences have short length and we set a high

maximum sequence length s, we are increasing the padding size. Although we are masking the

padded sequences and the attention mechanism ignores the padded tokens, many research have

found that excessive padding deteriorates the performance of deep models and slows convergence

[154], including for transformer architectures [162]. To overcome this problem, many research

papers apply smart batching, which groups inputs according to their length and pads them to the

maximum length in the mini-batch [121]. This method has achieved a substantial convergence

speed-up on both CPUs and GPUs. The work of [121] reports this speed-up as 89% and 48% for

CPUs and GPUs, respectively.

In this doctoral thesis, we approach this problem by using the BERT architecture discussed ear-

lier, and evaluating the same active learning strategies considering the same parameters as in the

previous experiment, except for the length of the input sequences (s). We repeat the experiments

for new sequence lengths of s = {64,128} and compare the performance scores with the s = 100

reported earlier. Again, we report the classification F1 scores of different active learning strate-

gies. The results can be found in Figure 4.5, which are the average of the classification F1 scores

over 10 training runs using the BERT architecture evaluated on 2 different datasets. (a) and (b)

report the results using abusive language Twitter dataset [38], and (c) and (d) refers to the results

for the Wikipedia talk labels: personal attacks dataset [152] dataset. From the figures, it is evident

that using s = 64 significantly worsens the results for all active learning strategies and challenges

comparing different methods for both datasets. Using such a short sequence length leads to losing

a substantial amount of information that the deep model requires to learn, and thus, the classifica-

tion score decreases. Not learning the class features leads to model instability and high uncertainty

[33], which affects the performance of all data selection strategies. We do observe noticeable im-

provement for different active learning methods in the early cycles when setting the sequence max
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(a) (b)

(c) (d)

Figure 4.5: (a) and (b) are the average classification F1 scores for the Twitter-Abusive dataset using BERT
architecture with maximum sequence length of s = 128 and s = 64, respectively. Similarly, (c) and (d)
are the average F1 scores for the Wiki-attack dataset using BERT architecture with the maximum sequence
lengths of s = 128 and s = 64, respectively.

length as s = 128 vs 100. This observation is specially evident for the Wiki-Attacj dataset that

contains lengthier data versus Twitter-Abuse. But, the results in the later active learning cycles

for both detests seem to be similar to those when the sequence length is set as 100. Investigating

higher values of sequence length is not possible in this research due to memory constraints.
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4.2.6.3 What is the impact of conducting initial spectral clustering versus other clustering

techniques for non-dominant set-based active learning?

To answer this question, we investigate the performance of NDS using 3 different clustering meth-

ods: spectral clustering, K-means, and K-medoids. After these 3 clustering methods, the non-

dominant set of each cluster are extracted in the same way as discussed earlier. We conduct exper-

iments using all the parameters the same as the first experiment and repeat the evaluation of NDS

using spectral clustering vs K-means and K-medoids.

The results of this experiment can be found in Figure 4.6, which are the average of the classification

F1 scores over 10 training runs using the BERT architecture evaluated on 2 different datasets. (a)

reports the results using abusive language Twitter dataset [38], and (b) refers to the results for the

Wikipedia talk labels: personal attacks dataset [152] dataset. From theses figures, it is evident that

using spectral clustering before non-dominant set extraction for active learning outperforms the

other clustering techniques. This can be because spectral clustering has been frequently reported

as more powerful than K-means in the discovery of the clusters of arbitrary shapes, and is are more

robust to noise and outliers [67, 74].

4.3 Conclusion

The task of labeling offensive and abusive content is difficult, as it can cause discomfort and emo-

tional disturbance in the human annotators. Thus, we focused on a new criterion for active learn-

ing to select the most informative samples from a pool of unlabeled data points. Our proposed

approach has the potential to mitigate the difficulties associated with the annotation, and classifi-

cation of textual content, e.g., annotation cost and bias, even in imbalanced scenarios. We showed

the effectiveness of our approach via conducting extensive analysis on text classification of toxic
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(a) (b)

Figure 4.6: (a) and (b) are the average classification F1 scores using the BERT architecture and show the
impact of initial clustering algorithm, evaluated on the Twitter-Abusive and Wiki-Attack datasets, respec-
tively.

language and hate speech in online social media data, using only a small amount of labeled data.

These datasets are extremely imbalanced by nature and have short text, and thus, many common

techniques fail to perform well in such scenarios. We leverage pretrained language models and

unsupervised techniques to detect the local clusters in the embedding space and select the samples

that are not strongly coherent with the cluster, i.e., the non-dominant set. Specially, our method

significantly outperforms the state-of-the-art AL techniques in the early AL cycles in which the

number of annotated samples are limited.

We also propose a hybrid algorithm that is able to incorporate the uncertainty score into its decision

criteria. The results and analysis using this technique suggest that an active learning task can be

divided into two distinct phases. In the early stages, unsupervised techniques such as employing

pre-trained models, clustering, and identifying the dominant sets outperform the supervised tech-

niques, e.g., uncertainty score extracted from the trained model. However, in the second phase,
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later stages of selection, taking the model uncertainty into the account can improve the selection

performance. Such hybrid methods are not currently well-studied. The proposed method can be

considered parameter-free, as we did not fine-tune for any values, used the default or suggested

settings in the literature, and all of the parameters for the architectures were shared across all

methods.

We also showed that increasing the size of the model and training a larger number of parameters on

a downstream task with active learning significantly improves the performance of different active

learning strategies. We further showed that for short text such as social media textual data, choos-

ing a larger sequence length and increasing the padding size for the training of a deep language

model, such as BERT, does not have a significant impact on the performance. This observation

was consistent for different active learning strategies. However, a very small sequence length can

result in losing critical information that is required for the training of a model. As a result, it is

vital to set this parameter wisely.

This doctoral thesis also reported the results of using different clustering techniques before the

extraction of dominant and non-dominant sets for active learning data selection. We showed that

spectral clustering followed by non-dominant set extraction achieves the best results for text clas-

sification. Still, additional experiments are needed on the effect of data imbalance, the number

of clusters, size of transition parameter (α) in NDS+, and using different feature similarity scores

instead of the Euclidean distance, such as the Mahalanobis distance.
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CHAPTER 5: APPLICATION OF CURRICULUM LEARNING INTO

TEXT CLASSIFICATION OF ONLINE SOCIAL MEDIA DATA:

BENEFITS AND RESTRICTIONS

The introduction of Curriculum Learning (CL) to the field of machine learning was first suggested

in [7], which shows performance improvements. The results showed that the exclusion of difficult

samples and noisy data in the early training stage is beneficial, such as faster convergence and

achieving better local minima. Due to the difference in the difficulty levels of the examples from

any dataset, extensive research has investigated ways to identify the easy samples from the difficult

ones and to arrange them as a curriculum for the training of a model [7]. Some literature in this

area of research suggest that the learning process can achieve remarkable improvements when

using a curriculum [150]. However, relatively little attention is devoted to this topic in the area

of natural language processing. Examples of difficulty in language are lengthy text, short text that

lacks context, rare words, and sophisticated reasoning such as negation.

As we are interested in the application of curriculum learning for the classification of social media

textual data, we must pay attention to the problems related to this field, including annotated data

limitation and data imbalance. In the previous chapter, we addressed these issues by proposing

an active learning method that outperforms state-of-the-art active learning techniques for the task

of social media hate speech classification. In this chapter, we further investigate applying similar

unsupervised techniques, but this time as part of designing a curricula to fine-tune a pre-trained lan-

guage model. We investigate the impact including benefits and drawbacks of different curriculum

learning methods for the classification of online social media data.

The problem of data imbalance for curriculum learning can be tackled by oversampling from the

minority class, downsampling from the majority class, and adjusting weights for the loss function.
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It must be noted that in this context, downsampling of the training data refers to selecting a small

subset of the majority class examples.

Based on our findings from Chapter 4 we assume that deep pre-trained language models, such as

the BERT model [32], can be used as a powerful mapping function for the short-text social media

data to achieve high-dimensional contextual vector representations of such data. Our last assump-

tion is regarding the dominant and non-dominant sets [109], which is also from the findings of the

previous chapter. We assume that the non-dominant set of each cluster contains the more chal-

lenging samples, and the dominant set of each cluster contains the easy samples for the language

model as they are most likely located within the decision boundaries of the classifier. We exploit

this idea to design our curricula and provide comparisons with other methods.

5.1 Our Framework

Here, we explain our proposed curriculum learning method. The framework comprises of 2 main

steps: I) extracting feature vectors that are rich with contextual information and general language

knowledge using deep pre-trained language models as the embedding function; and II) identify-

ing the dominant and non-dominant samples of clusters, and sorting based on their difficulty to

fine-tune the language model. Briefly, this is performed via randomly selecting from the dominant

samples and shift the difficulty to the selection of non-dominant samples.

Our CL approach uses BERT [32], which is the most influential pre-trained language model that

achieved state-of-the-art results on a wide range of tasks related to natural language processing.

The output of the model, which is being used for sequence classification, is the pooled representa-

tion of all contextual vector embeddings for each token position.

For a target task, let Dpool be the pool of examples for training, and M be the language model
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that is being trained to fit Dpool . Here, we explain how we assign a difficulty score di to every

example i ∈Dpool . We denote d as the difficulty level corresponding to training data. In the second

stage, based on d the pool data Dpool is organized into a sequence of N ordered learning stages

{Sd1 , ...,SdN} with an easy-to-difficult order, resulting in the final curriculum where the model will

be trained on.

5.1.1 Difficulty Evaluation

Although applying heuristics such as the length of textual data, frequency of rare words, and depth

of dependency tree seem reasonable for data difficulty analysis, these techniques might not be gen-

eralizable to different tasks. Also, what human judgment might find difficult might not necessarily

be challenging for a deep language model. As a result, we believe that the difficulty score of a sam-

ple as its intrinsic property should be decided by the model itself. Examples of such measurements

are accuracy, F1 score, and different types of model uncertainty.

In chapter 4 we compared different acquisition functions for data selection in active learning.

As the objective in active learning is minimizing the annotation effort, we decided to ignore the

dominant sets of each cluster and assumed that they share the same class labels as their surrounding

data samples that lie farther from the dense parts of each cluster, i.e., non-dominant sets. This

assumption may not be necessarily valid and may hurt the performance of a model, specially,

when we have the annotation budget or have access to the labels, which is the case in curriculum

learning. Even if this assumption stands true, disregarding dominant sets from the training data

may lead to losing a substantial amount of information that might be required for the model to

learn the class features. Thus, we design our curriculum strategy with the same assumptions that

dominant sets of each cluster are easier samples to learn by the model and non-dominant sets are

more challenging. We compare this curriculum with the methods discussed earlier.
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To evaluate the difficulty of the samples, we first, apply a clustering method. Then, we need to

identify the local clusters of data in feature space and for each cluster detect the most similar set of

points, i.e., the dominant set. To find the similarity of a sample i to its corresponding cluster Ck, we

can assign each vertex i in the cluster a non-negative value zi, representing the participation of the

vertex in the cluster. The larger the zi the more corresponding node is associated with the cluster.

If zi = 0, then the sample i is not associated with the cluster. This is a common way to represent the

nodes in a cluster in classical graph-theoretical approaches [130, 124, 112] and a central quantity

in dominant set identification [109]. The participation value zi,∀i ∈Vk can be found by solving the

following optimization problem:

min z⊺WKz

subject to zi ≥ 0

∑
i

zi = 1,

(5.1)

where z is a vector containing z1,z2, . . . and Wk is a matrix containing the pairwise distances

wk(i, j). Similar to [109], we can use the replicator dynamics optimization technique, which is

an evolutionary game theory approach, to extract zi associated with each node in the cluster. Using

this optimization algorithm, the similarity of vertex i with respect to the cluster k is obtained. Al-

though in the previous chapter we suggested to divide the samples into dominant and non-dominant

samples using the median of the obtained positive similarity scores of each cluster as a cutoff for

the sample-cluster similarity (parameter zi), here we choose a smaller size for this parameter and

gradually increase it over the epochs. Although this parameter needs to be tuned, we do not in-

vestigate this in our study and will leave it for future work. Instead, we heuristically choose the

25th percentile for the first curriculum learning step and increase this parameter with the size of 25

percent in each next steps. The 100th percentile means that all cluster data is now considered as

the cluster dominant set. This leads to having four difficulty levels for curriculum learning.

The clustering is performed once. However, the identification of dominant and non-dominant
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sets are being repeated each time we modify the cutoff parameter zi. According to the size of

parameter zi in each curriculum learning step, the dominant samples are identified. The samples

that do not belong to the dominant set of any of the clusters are the least similar samples to their

corresponding clusters, and therefore are more challenging to classify. We use the number of

classes in our classification task as a known parameter for an initial clustering before finding the

dominant sets in each cluster. We assume that with little domain knowledge the number of classes

must be known. The differences of our curriculum learning with the NDS active learning method

discussed in the previous chapter are as follows:

I. Instead of spectral clustering, here we use K-medoids clustering;

II. Instead of setting the dominant/non-dominant set cutoff parameter zi as the median of the

obtained positive similarity scores of each cluster, we choose 25th percentile at first and

gradually increase it;

III. Every time we change the cutoff parameter for the dominant and non-dominant set iden-

tification, we repeat this step. Then, the training data is selected from the new identified

dominant set and the model is retrained;

IV. The data selection strategy is opposite to what we discussed for NDS (section 4.1.2), as

we must select the least challenging data first and increase the difficulty via adding training

samples from the non-dominant sets.

We choose to use K-medoids despite the fact that we previously observed lower performance for

K-means and K-medoids for our active learning method when compared to spectral clustering.

K-medoids and K-means are less powerful in the discovery of the clusters of arbitrary shapes and

when outliers and noise exist. Yet, in chapter 4, compared these methods with spectral clustering

and observed that the performance of these methods can improve under specific conditions. In
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NDS, we are dealing with the most dense part of the clusters and K-means and K-medoids have

found to effectively identify dense cluster shapes, where all members of each cluster are in close

proximity to each other (in the Euclidean sense). Also, in 4 we showed that the clustering technique

matters the most in the early cycles of active learning when the training data size is small. In

curriculum learning all the dataset is being used for training. Thus, the performance of different

clustering techniques was observed to be much closer as the size of training data increases, we

substitute spectral clustering with K-medoids to speedup our approach. In this chapter. All the

other steps of identifying the dominant and non-dominant sets remain the same as section 4.1.2.

Next, we sort the data based on the discussed difficulty evaluation method. The result is arranging

the training data Dpool to a sequence of N different ordered learning difficulties d as {Sdi : d =

1, ...,N} having an easy-to-difficult order.

5.1.2 Gradual Training

We use the same architecture discussed in chapter 4, referred to as the BERT architecture for the

experiments in this chapter. We train the model step-by-step based on different difficulty levels. In

our experiments, we choose the 25th percentile for the first curriculum learning step and increase

this parameter with the size of 25 percent in each next step. In the last step, all cluster data

is considered to be added to the training data. This leads to having N = 4 difficulty levels for

curriculum learning. In this study, we have not investigated different values for this parameter.

This is decided based on similar values in related research. We first train the model for one epoch

with the difficulty level of one. Then, in the next epoch we retrain the model using data with

difficulty levels one and two. We continue this process until the training data include the first to

the last difficulty levels.
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5.2 Experiments and Results

5.2.1 Dataset Description

To evaluate the effectiveness of the proposed approach, we conduct our analysis using five datasets

that we will briefly describe in this section. We refer the reader to the provided source citations for

further details.

I) The abusive language Twitter dataset [38] contains the abusive, hateful, spam, and normal

classes. The class sizes are 22,766, 4,496, 13,996, and 53,560, respectively. This dataset has

been referred to as the Twitter-abusive dataset in our study.

II) The second dataset that we use in this work is the Wikipedia Talk Labels: Personal At-

tacks[152], which belongs to the Wikipedia Detox Research Project. In this study, we refer

to this dataset as Wiki-attack. This dataset contains comments from Wikipedia talk pages,

and is annotated for binary classification of attack versus normal classes. The class sizes are

10,792 and 61,174, respectively.

III) The third dataset is the Covid-CQ stance Twitter dataset [97] that contains the favor, against,

and neutral labels as the stances toward the use of “chloroquine” and “hydroxychloroquine”

for the treatment or prevention of Covid-19. The class sizes are 6,841, 4,685, and 2,848,

respectively. In this study, we refer to this dataset as Covid-CQ.

IV) The fourth dataset is the IMDb subjectivity data [107] which contains 5000 subjective and

5000 objective review snippets from the IMDB website. This dataset does not include re-

views shorter than 10 words.

V) The last dataset is the AG news corpus [163], which contains news articles on the web.

This dataset has 127,600 samples and 4 classes of World, Sports, Business, and Sci/Tech
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regarding categorized news articles from more than 2000 news sources.

The procedure of data preprocessing is the same for all datasets. To prepare the data, first, we

follow the text normalization procedure in [102]. We remove the emojis from the text corpus.

Then, we replace the URLs with the special token “HTTPURL". For both of the Twitter datasets,

we also replace the usernames with the special token “@USER". For the Wiki-attack text data, we

remove the special tokens “TAB_TOKEN" and “NEWLINE_TOKEN".

We use the BERT tokenizer to convert the text inputs to sequences of tokens. The train and test sets

for the Twitter-abusive, Covid-CQ, and IMDb subjectivity datasets are determined via randomly

splitting these datasets with the ratio of 8:2. We used the predefined train and test splits for the

Wiki-attack and AG News datasets.

5.2.2 Commonly Used Curricula in NLP

We compare our method with the following commonly used curricula in the field of natural lan-

guage processing:

1. Sequence Length: This method is simply a criterion based on the number of words in a

sequence. We refer to this method in the experiments as SL. The training data for this

criterion should be arranged as lengths from short to long;

2. Average Word Frequency Rank: This method ranks the words based on word frequencies

across the dataset, and calculates the average rank for each input sequence. The order of

training data difficulty, in this case, is sorting the sequences containing the most to the least

frequent words [164, 77]. in this work, we refer to this method as WFR.
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5.2.3 Model Configuration and Training Details

To map the inputs to a feature space, we use the BERT-base architecture, which is known to capture

the global as well as local context of text data. A single dense layer as the classification head has

been used. Using the feature vectors from the last hidden layer of the BERT-base model, each text

input x is converted to a word embeddings F ∈RS×d , where d = 768 refers to the dimension of the

embedding space, and S is the maximal sequence length of the text inputs. We use S = 100, the

learning rate of 2×10−5, and the batch size of 64.

5.2.4 Results

In this section, we report the results of our proposed curriculum learning method, in comparison

to different strategies. The results are provided and discussed for each research question.

5.2.4.1 Does applying a curriculum learning-based algorithm based on the local structures of

the embedding space of a language model improve finetuning a deep language model for

text classification? Does this technique outperform using simple heuristics for text

difficulty?

To answer this question, we conduct experiments using five different datasets introduced earlier and

provide the results for difficulty criteria of sequence length and rare words in inputs in comparison

to our suggested curriculum arrangement method. Below we discuss the investigated strategies:

1. Random using all data (Random_All): sequence of randomly ordered samples. This is the

same as applying no curricula and instead, using all the training datasets for some number

of epochs to fine-tune the language model. Here, we train the model for 4 epochs.
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2. Random: sequence of randomly selected samples without a curriculum, but using the same

size of training data at each step as in the curriculum learning method. Here, for N = 4 levels

of difficulties, we randomly select 25% of the data for training and add an additional 25% in

each next step to have {Sd1, ...,SdN}.

3. Sequence Length (SL): ordering the training data from the shortest to the lengthiest input

sequences. After sorting the data in this way, to have N = 4 levels of difficulty we select 25%

of the data for training and add an additional 25% in each next step to have {Sd1, ...,SdN}.

4. Word Frequency (WFR): ordering the training data from sequences with the highest to lowest

average word frequency rank [164, 77]. After sorting the data in this way, to have N = 4

levels of difficulty we select 25% of the data for training and add an additional 25% in each

next step to have {Sd1 , ...,SdN}.

5. Dominant Set (DS): according to the value of cutoff parameter zi in equation 5.1, find the

dominant set of each cluster and aggregate them. This is Sdi with difficulty level di. Add the

randomly ordered aggregated data to the sequence of training data {S}. Repeat this step for

every value of cutoff parameter zi and add the new data to the end of ordered training data.

We provide the classification F1 scores of the proposed technique for the mentioned strategies

above. The reported scores are available in Figure 5.1, which shows the evaluation of three cur-

ricula versus two baselines. The figures are the average performance of different methods over 10

runs of curriculum learning.

The flat line shows the performance of the BERT-base model for 4 epochs using all the training data

available to the model without a curriculum. The training phases are from 1 to 4 for all methods,

in each, 25 percent of the sorted data samples are added to the training set. As a result, it is not fair

to compare the Random-All case that refers to the performance of the model trained over 4 epochs
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(a) (b)

(c) (d)

(e)

Figure 5.1: Average classification F1 scores for 10 runs of curriculum learning and increasing the difficul-
ties within 4 phases to Fine-tuning the BERT-base model.
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with the other techniques in the first 3 epochs of curriculum learning. Instead, the performance

of Random-All can be compared with the scores achieved by other methods for the final difficulty

level.

From the results, it is evident that not all curriculum learning methods outperform the Random

case (Yellow line), in which 25 percent of data is randomly selected and added to the training set.

Specifically, using the sequence length as the curriculum learning criterion performs worth than the

Random case as well as the rest of the methods, and for all of the investigated datasets. The low

performance of the Sequence Length (SL) strategy can be because all these investigated datasets

contain short sequences of data. Also, the maximum sequence length for the BERT model is set

as 100 tokens, meaning that the rest of the tokens in lengthier sequences are ignored. Additionally,

using SL method to sort the difficulty of short text might not be practical as the shortest sequences

may lack critical information and even be more challenging to the model. Instead, such a technique

can be useful for other tasks such as question answering, in which a short answer can be easier to

the model than a lengthy one.

Another important observation from all five figures is that the Random case consistently performs

worth than the Random-All base case, which uses all the training data for all 4 training epochs.

This was expected as the initial randomly selected training data (25 percent) may be biased toward

a class or contain noise. Such data is being used for a single training epoch and thus, the model

would not be able to learn critical features from such limited data. The result is a low performance

that is probably associated with poor local minima. As the choice of data affects the learning

trajectory of the model, the impact from the initially randomly selected data seems to remain even

when the training data size increases and the model is retained on the new data. In contrast, it can

be seen from all figures that having all the training data available to the model as the standard case

(Random-All) can cancel the influence of poor data selection.
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The WFR method and DS outperform the other techniques for all datasets. Still, WFR, which

orders and selects input sequences according to the frequency of the words that appear in the

sequence does not achieve a higher performance than the Random-All base case. Again, it must

be noted that the BERT-base model is trained for 4 epochs on all available training data, which can

lead to a more stable model. The WFR method shows having more significant improvement over

other criteria for the Covid-CQ, IMDb, and AG News. This is not surprising as these three datasets

contain vocabularies that are less frequent in ordinary language. On the contrary, less number of

rare words were observed in the Twitter-abuse and Wiki-attack datasets. As a result, WFR, which is

a heuristic difficulty evaluation method designed by human judgment does not seem to generalize

across different datasets. But, WFR might be a more powerful strategy for curriculum learning

when the dataset contains uncommon terminologies, such as in literary and scientific language.

This technique specifically shows improvements over Random-All case for Covid-CQ, IMDb, and

AG News datasets.

Our proposed curriculum method (DS) consistently beats the other methods for all investigated

datasets. This is the case of selecting the data samples that lie closer to the center of clusters and

gradually increasing the cutoff parameter that splits the data into dominant versus non-dominant

samples of each cluster. As the difficulty of samples in this method is being assessed directly

by the model instead of human judgment and assumptions, this method is more generalizable

across different datasets. A notable observation is that our method substantially outperforms other

criteria in the early phases of curriculum learning. This can be justified as the importance of data

selection criterion when little data is being used for the training of a deep language model, as a

better set of training data can lead the model to the direction of the optimal solution and speedup

the convergence, which are the goal of curriculum learning.
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5.3 Conclusion

In this chapter, we focused on the task of text classification using curriculum learning, which

considers a difficulty criterion for training samples and trains the model using easy data first. We

proposed a difficulty criterion that directly comes from the model instead of simple heuristics.

Via conducting analysis on five different general and social media datasets, we showed that such

a technique is generalizable across datasets and improves the classification performance of the

model.

In our analysis, we observed that applying curriculum learning techniques in comparison to the

standard case when all training data is available to the model does not necessarily improve the text

classification performance when fine-tuning language models. Before the final phase of curriculum

learning, the model is trained on partial data in each step. As a result, the choice of difficulty

criterion is of great importance. The consequence of poor difficulty evaluation and using initial

training data that includes uninformative, short, and noisy samples, is a performance decline in

comparison to a standard training case. The cause of performance deterioration can be getting

stuck in a local minimum, overfitting, etc. This can be specially observed in figures 5.1b, 5.1c, and

5.1d for the Random selection method. In these figures, the performance score drops in the later

phases of curriculum learning despite the increase in the size of training data.

Although considering simple heuristics such as the length of sequence inputs, seems to be a rea-

sonable difficulty method, these criteria may not be generalizable to different datasets and tasks.

In our analysis, we showed that as social media textual data is intrinsically short, the application

of such a technique does not provide benefits to text classification, but drawbacks. Despite testing

our proposed method with imbalanced datasets such as Wiki-attack, Twitter-abuse, and Covid-CQ,

we observed that our method is consistently superior to other techniques. This is also the case in

experiments with balanced datasets.
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Still, additional experiments are required to further investigate the impact of curriculum learning

on text classification of short imbalanced data. Among the important research questions, investi-

gating the correlations of selected data using different curricula can provide substantial information

to understand the reasons behind the similarity and dissimilarity of performance scores for vary-

ing difficulty evaluation criteria. Also, studying the correlations of selected data for curriculum

learning versus active learning in the early and late phases is important. Another future work

is comparing the proposed dominant set-based difficulty criterion with other curriculum learning

techniques, such as data difficulty arrangement based on the depth of sequence dependency tree

and the sentence score from the GPT2 language model.
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CHAPTER 6: CONCLUSION

This doctoral work is focused on the importance of designing low-recourse machine learning tech-

niques for natural language processing, and specifically, for online social media textual content.

Low-recourse approaches can be defined as techniques that do not require a substantial amount

of labeled data or resources for the training of machine learning methods. Unsupervised learning

methods do not require the label information of any data points, and accordingly, are one of the

focuses of this doctoral work. However, as supervised techniques can provide lots of additional

benefits, such as a higher reliability and performance, this work also proposes techniques that can

be used with minimal annotation cost, as well as techniques to facilitate training of deep models.

An important factor that interests us for the research presented in this doctoral thesis is the develop-

ment of deep pre-trained language models, such as the BERT (Bidirectional Encoder Representa-

tions from Transformers) architecture which is solely designed based on transformers in a stacked

concatenated fashion referred to as multi-head self attention. Such method is a powerful technique

that can be fine-tuned for a downstream task using small amount of labeled data and achieve the

state-of-art results via knowledge sharing and attention mechanism. As a result, this doctoral work

investigates ways to exploit the structure of BERT vector embeddings to design a data selection

criterion for active learning and a data difficulty criterion for curriculum learning.

We presented the design of a label-efficient low-recourse technique for online social media by

proposing a topic modeling framework that can extract topics around significant events, as well as

providing topic summaries. We showed that our framework identifies narrative activities associated

with social media events. Although conversation cascades created by commenting on an original

post, re-sharing, or quoting, these activities are not necessarily related to the original post. Also, it

is frequently observed that the information on the context and story are missing. We believe that if
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the information on the causal relations of the social media events is known, further improvement

of the narrative framework can be achieved via incorporating such relation across the social media

conversation cascades and social media events into account.

We investigated the problem of social media data annotation and provided an active learning solu-

tion to select and annotate informative data. The objective is to achieve high performance using a

small amount of labeled data. As social media corpus usually have short text and lack context, we

used the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model as a

mapping function to convert the text to high dimensional vector representations with general lan-

guage knowledge and contextual information. In this study, we present a new criterion to select the

most informative samples from a pool of unlabeled data points. Our proposed algorithm detects the

local clusters in the embedding space and selects the samples that are not strongly coherent with

the cluster, i.e., the non-dominant set. Additionally, we studied the impact of increasing the num-

ber of trainable parameters by adding additional attention layers and showed that different active

learning methods achieve better performance when training a larger model comparing to BERT-

base. We also propose a hybrid algorithm that is able to incorporate the uncertainty score into its

decision criteria in the later stages of selection. Our results and analysis suggest that an active

learning task can be divided into two distinct phases. In the early stages, unsupervised techniques

such as employing pre-trained models, clustering, and identifying the dominant sets outperform

the supervised methods, i.e., uncertainty score extracted from the trained model. However, in the

second phase, later stages of selection, taking the model uncertainty into the account can improve

the selection performance. Such hybrid methods are not currently well-studied.

Finally, in this thesis we investigated the benefits and drawbacks of finetuning pre-trained language

models according to a curricula. Curriculum learning approaches training machine learning mod-

els with easy-to-difficult training data. This can be viewed as the opposite of active learning as the

most informative data selection for active learning can be considered as selecting the most chal-
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lenging data samples and ignoring the easy data. For this reason, active learning is also referred

to as anti-curricula. Although these methods are the opposite of each other, still both can provide

benefits due to having different objectives. In curriculum learning, the model is being retrained

over and over on the easy samples, and in each step, more and more difficult samples are added to

the training data. In our curriculum learning study, we employed the BERT model to enrich short-

text social media data to high dimensional vector representations with general language knowledge

and contextual information and to define a curricula based on the structures in the embedding space

of the BERT model. Our proposed difficulty analysis criteria is a distance-based method and we

consider the data samples that lie closest to the center of clusters as the easiest samples for the

language model. Again, we used dominant sets and adjust a cutoff parameter that controls the

participation of every data sample in such dense region of every cluster. Different difficulty levels

in our method are available by gradually increasing this cutoff parameter. The results is having a

criterion that comes directly from the model rather than human judgment and heuristics such as

text length.

We believe that this doctoral thesis provides promising research and results for low-resource ma-

chine learning scenarios such as social media text analysis and classification.
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