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ABSTRACT

The emergence of online collaboration platforms has dramatically changed the dynamics of human

teamwork, creating a veritable army of virtual teams composed of workers in different physical lo-

cations. The global world requires a tremendous amount of collaborative problem solving, primar-

ily virtual, making it an excellent domain for computer scientists and team cognition researchers

who seek to understand the dynamics involved in collaborative tasks to provide a solution that can

support effective collaboration. Mining and analyzing data from collaborative dialogues can yield

insights into virtual teams’ thought processes and help develop virtual agents to support collabo-

ration. Good communication is indubitably the foundation of effective collaboration. Over time

teams develop their own communication styles and often exhibit entrainment, a conversational

phenomenon in which humans synchronize their linguistic choices.

This dissertation presents several technical innovations in the usage of machine learning towards

analyzing, monitoring, and predicting collaboration success from multiparty dialogue by success-

fully handling the problems of resource scarcity and natural distribution shifts. First, we examine

the problem of predicting team performance from embeddings learned from multiparty dialogues

such that teams with similar conflict scores lie close to one another in vector space. We extract the

embeddings from three types of features: 1) dialogue acts 2) sentiment polarity 3) syntactic en-

trainment. Although all of these features can be used to predict team performance effectively, their

utility varies by the teamwork phase. We separate the dialogues of players playing a cooperative

game into stages: 1) early (knowledge building), 2) middle (problem-solving), and 3) late (cul-

mination). Unlike syntactic entrainment, both dialogue act and sentiment embeddings effectively

classify team performance, even during the initial phase.

Second, we address the problem of learning generalizable models of collaboration. Machine learn-
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ing models often suffer domain shifts; one advantage of encoding the semantic features is their

adaptability across multiple domains. We evaluate the generalizability of different embeddings to

other goal-oriented teamwork dialogues. Finally, in addition to identifying the features predictive

of successful collaboration, we propose multi-feature embedding (MFeEmb) to improve the gen-

eralizability of collaborative task success prediction models under natural distribution shifts and

resource scarcity. MFeEmb leverages the strengths of semantic, structural, and textual features of

the dialogues by incorporating the most meaningful information from dialogue acts (DAs), senti-

ment polarities, and vocabulary of the dialogues.

To further enhance the performance of MFeEmb under a resource-scarce scenario, we employ

synthetic data generation and few-shot learning. We use the method proposed by [7] for few-shot

learning from the FsText python library. We replaced the universal embedding with our proposed

multi-feature embedding to compare the performance of the two. For data augmentation, we pro-

pose using synonym replacement from collaborative dialogue vocabulary instead of synonym re-

placement from WordNet. The research was conducted on several multiparty dialogue datasets,

including ASIST, SwDA, Hate Speech, Diplomacy, Military, SAMSum, AMI, and GitHub.

Results show that the proposed multi-feature embedding is an excellent choice for the meta-training

stage of the few-shot learning, even if it learns from a small train set of size as small as 62 samples.

Also, our proposed data augmentation method showed significant performance improvement. Our

research has potential ramifications for the development of conversational agents that facilitate

teaming as well as towards the creation of more effective social coding platforms to better support

teamwork between software engineers.
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CHAPTER 1: INTRODUCTION

This chapter includes some content from the paper titled ”Enayet, A., & Sukthankar, G. (2021).

Learning a Generalizable Model of Team Conflict from Multiparty Dialogues. International Jour-

nal of Semantic Computing, 15(04), 441-460.”.

The aim of this dissertation is to introduce new techniques to predict collaborative task success

from the communication patterns between the team members. One key problem is detecting dis-

agreement or conflict between team members. To be most useful, an agent should be able to

identify the conflict at the early stages of the task in order to assist the team.

Conflict in teams can be classified as being relationship or task-oriented [113]. Relationship con-

flict arises from “interpersonal incompatibility among members, which typically includes tension,

animosity, and annoyance among members within a group” [43]. Our work centers on task conflict,

“disagreement among group members about the content of the tasks being performed, including

differences in viewpoints, ideas, and opinions” [43].

Ideally, conflict prediction should be done using a very short behavior sample: “thin-slicing”. Am-

bady and Rosenthal demonstrate that many types of social interactions remain sufficiently stable

that even a small sample is meaningful at predicting long term outcomes, the most famous appli-

cation of this theory being thin-slicing marital interactions to predict divorce outcomes [5, 6]. Jung

suggests that developing this capability would remove the need for developing continuous team

monitoring systems [46].

Another important desideratum is to be able to generalize models across team tasks in order to han-

dle the problem of resource scarcity. This dissertation investigates the generalizability of different

dialogue features in predicting task conflict. A generalizable model is better suited for domain
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adaptation scenarios in which the model is trained on multiparty dialogue data from one team task

and transferred to a different task. Embeddings are mechanisms for mapping high-dimensional

spaces to low-dimensions while only retaining the most effective representations, making it pos-

sible to apply machine learning on large inputs by representing them in the form of sparse vector.

Unfortunately, there is a paucity of high quality data on team communications. Thus it is bene-

ficial to learn generalizable embeddings that are applicable across multiple datasets. We seek to

learn embeddings that are less vulnerable to domain shift in collaborative dialogues to increase the

generalizability of performance prediction models.

Rather than developing specific measures for predicting future team conflict, we demonstrate that

an embedding grouping teams with similar conflict levels can be learned directly from the multi-

party dialogue. An advantage is that this approach avoids the necessity of collecting advance data

on team members, such as personality traits or training records.

Learning a generalizable embedding involves the identification of domain invariant features. We

compare the performance of three types of embeddings extracted from 1) dialogue acts, 2) senti-

ment polarity and 3) syntactic entrainment; these features were selected based on previous work

on team communications and group problem-solving. Dialogue acts capture the interactive pattern

between speakers in multiparty communication [35]. During dialogue act classification, utterances

are grouped according to their communication purpose. We believe that teams who frequently en-

gage in arguments have very different dialogue act sequences than teams who agree on the future

course of action.

Sentiment polarity measures the attitude or emotion of the speaker during conversation; it can

be used to detect disagreement. Entrainment is the natural tendency of the speakers to adopt

a similar style during a conversation, causing them to achieve linguistic alignment. There are

several types of entrainment including lexical choice [91], style [18], pronunciation [83], and many
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others [74]. Reitter and Moore demonstrated that syntactic entrainment, based on alignment of

lexical categories, can be used to predict success in task-oriented dialogues [91].

Good team communication exhibits all these characteristics: greater emphasis on problem solving

than arguing, positive sentiment, and communication synchronization [131]. In our research, we

primarily use the Teams corpus [61] which consists of player dialogue during a cooperative game.

One advantage of studying a clearly defined, time-bounded team task is that the dialogues can

be divided into teamwork phases: 1) early (knowledge building) 2) middle (problem solving) and

3) late (culmination). For thin-slicing, we seek to predict the team performance from the initial

teamwork stages. The Teams corpus includes team conflict scores, which measure the amount of

disagreement that occurred during gameplay. Our hypotheses are:

H1: an embedding leveraging dialogue acts will be useful for classifying team performance at all

phases since it directly detects utterances related to conflict (eristic dialogues).

H2: sentiment analysis will consistently reveal team conflict and thus be a good predictor of per-

formance.

H3: the entrainment embedding will be predictive when the entire dialogue is considered, but will

be less useful at analyzing early phases before entrainment has been established.

H4: embeddings based on sequences of dialogues acts will generalize well at predicting task con-

flict across datasets.

H5: dialogue structure patterns differ between different dialogue domains.

H6: leveraging the information from semantic, structural, and lexical features in predicting col-

laboration success can increase the generalizability of the embeddings even if learned from

a small set of samples.
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Problem Statement

The goal of this research is twofold: 1) we aim to design a technique that can proactively iden-

tify the task conflict between the collaborators to provide timely assistance, and 2) we want to

improve the generalizability of conflict prediction models under resource-scarce scenarios. This

study makes three research contributions towards these overarching goals.

Encoding team communication with embeddings: This study compares different methods of

predicting team conflict. The first approach is to generate embeddings from sequential utterance

patterns. In our experiments, the multiparty dialogue is converted either to a sequence of dialogue

acts or sentiments which is then used to generate the embedding. These embeddings represent

meaningful information about how the communication between the team members is evolving.

The second approach is to create an embedding that encodes entrainment relationships between

team members. To do this, we map the whole multiparty dialogue to a feature vector representing

entrainment in the teams by employing the method proposed by Rahimi et al. [89].

Conflict prediction during initial teamwork phases: During task completion, teams pass through

different cognitive phases, starting from brainstorming and completing with problem solving. We

compare the performance of different embeddings over teamwork phases: 1) knowledge discovery

2) problem solving and 3) culmination. We show that the sequential embeddings (dialogue act and

sentiment) perform well at predicting conflict even during early teamwork phases.

Generalizability across datasets: Supervised machine learning models trained on one dataset,

often do not perform well on unseen datasets; this phenomenon is called domain shift [104, 103,

122]. We test models learned on the Teams corpus on datasets gathered from software engineers

(GitHub issue comments) and military teams to provide intuition on the generalizability of the three

embeddings on unseen datasets. After identifying the generalizable features, we propose a method

4



to increase the generalizability of conflict prediction models on unseen collaborative dialogues by

leveraging the strength of those features.

Research Questions

This dissertation introduces a technique to predict the success of collaborative tasks from the com-

munication patterns between the team members. We compare different dialogue features that are

predictive of team conflict. Then we demonstrate the generalizability of the features under natural

distribution shifts and propose a method to improve the generalizability under resource scarcity

and natural distribution shifts. We aim to answer the following research questions:

• Which features of collaborative dialogue are more predictive of task conflict?

• Which features of the collaborative dialogue are more predictive of the task conflict at dif-

ferent dialogue stages?

• Which features of collaborative dialogues generalize well to other datasets?

• How can we improve the generalizability of task conflict prediction models under the re-

source scarcity problem?

• Is there any structural similarity between and within different dialogue domains?
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CHAPTER 2: RELATED WORK

This chapter includes content from the papers titled ”Enayet, A., & Sukthankar, G. (2020). A trans-

fer learning approach for dialogue act classification of github issue comments. Poster presented at

the 12th International Conference on Social Informatics.”, ”Enayet, A., & Sukthankar, G. (2023,

May). Improving the Generalizability of Collaborative Dialogue Analysis With Multi-Feature Em-

beddings. In Proceedings of the 17th Conference of the European Chapter of the Association for

Computational Linguistics (pp. 3533-3547).”, ”Enayet, A., & Sukthankar, G. (2022, June). An

Analysis of Dialogue Act Sequence Similarity Across Multiple Domains. In Proceedings of the

Thirteenth Language Resources and Evaluation Conference (pp. 3122-3130).”, and ”Enayet, A.,

& Sukthankar, G. (2021). Learning a Generalizable Model of Team Conflict from Multiparty

Dialogues. International Journal of Semantic Computing, 15(04), 441-460.”.

This chapter first presents previous work on team communication analysis. Then we review prior

work on the applications of dialogue act (DA) classification, sentiment analysis, and entrainment.

Finally we review the most commonly used embedding models and few-shot learning.

Team Performance Analysis

Team communication, both spoken or written, is a critical element of collaborative tasks and can

be studied in a variety of ways. Semantic analysis centers on the meaning of utterances, while

pragmatics involves identifying speech acts [11]; both analytic approaches are important and often

occur in parallel. In many studies of team communication, this analysis is arduously done through

hand coding the utterances.

Parsons et al. [85] contrast two different schemes to code utterances in team dialogues as part of
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their long term research goal of developing a virtual assistant for human teams. Their comparison

illustrates the benefits and problems of the Walton and Krabbe typology [119], which includes

categories for information-seeking, inquiry, negotiation, persuasion, deliberation, and eristic, but

does not consider the context in which the utterance occurs. The McGrath theory of group be-

havior [68] focuses on modes of operation: inception, problem-solving, conflict resolution, and

execution. When applying the McGrath theory of group behavior, utterance classification is modi-

fied by conversational context.

Sukthankar et al. also used an explicit team utterance coding scheme towards the problem of agent

aiding of ad hoc, decentralized human teams to improve team performance on time-stressed group

tasks [110]. Unlike teamwork studies, we do not specifically map individual utterances to team

communication categories but leverage dialogue act classification models to identify features that

are indicative of team conflict. Shibani et al. [106] discussed some of the practical challenges in

designing an automated assessment system to provide students feedback on their teamwork com-

petency: 1) dialogue pre-processing, 2) assessing teamwork chat text, and 3) classifying teamwork

dimensions. They evaluated the performance of rule-based systems vs. supervised machine learn-

ing (SVM) at classifying coordination, mutual performance monitoring, team decision making,

constructive conflict, team emotional support, and team commitment. Even with dataset imbal-

ance, the SVM model generally outperformed the hand coded rules. Our proposed method can

also be used to assist human teams by proactively warning them of deficiencies during the early

phases of team tasks, without the onerous data labeling requirements.

Other analytic techniques focus on linguistic coordination between speakers in groups. For in-

stance, Danescu et al. studied the effect of power differences on lexical category choices during

goal-oriented discussion [19]. This is one form of entrainment in which the speakers preferentially

select function-word classes used by other group members. In this dissertation, we use a dataset

(Teams corpus), that was created to study entrainment in teams [61]. Rahimi and Litman demon-
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strated a method for learning an entrainment embedding to predict team performance [89]; we use

a modified version of their technique to express syntactic entrainment. However since entrain-

ment develops over time, we compare the performance of entrainment at early vs. late task phases.

Furthermore, they only focused on syntactic/lexical features of utterances, not semantic.

Sentiment analysis has been applied to the study of group dynamics; for instance, researchers

have leveraged sentiment features to detect communities in social networks [101, 128]. Our work

demonstrates the utility of sentiment features towards predicting team conflict and show that the

sentiment-based embedding is useful during all teamwork phases. We rely exclusively on the

multiparty team dialogues; however there have been many attempts to predict team performance

using other types of multimodal features. TCdata, a team cooperation dataset, includes both audio

and video recordings of teams performing cooperative tasks [63]. Liu et al. explicitly extracted 159

features from team speaking cues, individual speaking time statistics, and face-to-face interaction

cues to predict team performance on this dataset.

Several studies [130, 81] have shown team member personality traits to be useful predictors of

conflict and team performance. Yang et al. used individual personality traits to predict the perfor-

mance of final year student project teams using neural networks [130]. Omar et al. developed a

student performance prediction model that included both personality types and team personality

diversity [81]. Even though these additional data sources can be highly predictive, they are rarely

available in real-world team scenarios, unlike multi-party dialogue which is often self-archived to

preserve organizational memory.
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Dialogue Act Patterns

There are many areas where DAs and DA sequences have been leveraged for natural language

understanding and communication analysis. Following is a brief literature review on applications

of DA and DA sequences.

Coreference resolution involves the identification of entities in dialogues that refer to each other.

Agrawal et al. [2] used dialogue acts as a semantic feature for coreference resolution in the human-

bot scenario. By exploiting the question-answer sequence, they resolved the coreference between

”it” and ”that.” They mapped the SwDA dataset classes to one of five classes: Statement, Opinion,

Question, Answer, and Other. The proposed approach showed an improvement of 24.8% in F1-

score.

Aberdeen and Ferro [1] utilize DAs for detecting misunderstandings in human-computer dialogues.

Their study identified some patterns, i.e. sequences of DAs, that are predictive of misunderstand-

ing. They also identified the correlation between user satisfaction and DAs.

Goo and Chen [35] proposed an abstractive dialogue summarization method that leverages the in-

formation provided by the dialogue act of the utterance to support the summary generation process.

Dialogue acts are one of the most effective ways to model inter-speaker interactions. The frame-

work has four main components: 1) dialogue history encoder, 2) dialogue act labeler, 3) attention

summary decoder, and 4) sentence gate. The dialogue act labeler uses an attention mechanism to

predict the DAs of each utterance of the dialogue. The input to each decoder’s hidden state is the

previous state, previous state output, and the context vector.

Frummet et al. [33] consider the special case of DA classification and focused on the information

need categories. They categorized user queries into 27 information need classes in the domain-

specific scenario. Their work demonstrated that questions that do not contain the grammatical
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structure of a question could be classified as a question based on the previous utterances. To

categorize information needs, they utilize the aforementioned information need categories as a

feature and the sequence IDs to predict the information need categories. The IDs represent the

position of information needed for the task. In addition to annotation, they applied a random forest

classifier on the data to predict the user’s information need. The motivation behind the study is to

make the conversational agent more aware of the need of the user.

Midgley and MacNish [69] introduced a method for discourse chunking, based on the tags of the

utterances. They further showed that the discourse chunking helps in the DA classification of the

utterances since some of the tags that appear in one chunk do not appear in another. Thus, the

chunk information help improves the accuracy of DA tagging.

Ravi and Kim [90] performed analysis on students’ online discussion to identify whether the con-

versation contains any unanswered questions. They applied speech classifier and rule-based thread

profiling techniques to determine the need for assistance. Their SA classifier was based on N-gram

features and SVM.

Lee et al. [59] designed a situational-based dialogue management system, which takes into account

the intention (DA) of the user, utterance of the user, history, and discourse to take action. The

proposed system uses predefined rules to analyze the current situation and take action.

Kumar et al. [54] performed a detailed analysis on the utility of dialogue acts in the development

of a conversational model. They identified that both the discriminative and generative models

benefit from the DA information for response generation. They also introduced a Siamese-based

conversational model that leverages the strength of the conversation’s hierarchical structure and

DA information for the following utterance selection.

Schatzmann et al. [102] used DA information in the design of agenda-based simulator for training
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dialogue manager. They formalized the dialogue as a transition from one DA and state to another

at the semantic level. The agenda-based dialogue manager successfully simulated the real-world

dialogues and helped in learning the effective dialogue policy. The reported accuracy achieved

through the learned policy was around 90%.

Ultes et al. [118] present an open-source, multi-domain, statistical dialogues system PyDial to

support research in the field of dialogue systems. The internal architecture of the system utilizes

dialogue act features for language generation. The system’s main components are policy, language

generator, topic tracker, semantic decoder, and belief tracker. The belief tracker, policy, and sim-

ulator are domain-independent components, while the language generator and semantic decoder

have domain-dependent functionality.

Zhao et al. [134] identified negotiation as a reasoning and language generation problem. They

proposed a semi-automated negotiation dialogue system that automatically reasons about the con-

versation strategy and provides the user with linguistic choices to select their next utterance. The

negotiation model is composed of the task phase and the social phase. During the social phase,

both user and agent models have dialogue act sequences as part of the schema. They identified that

successful negotiation depends on reasoning, planning, and appropriate language to improve the

user’s mutual understanding and trust. They used five speech act categories to train the speech act

classifier; the main objective of the speech act classifier was to identify the agent task intention.

Bickmore and Schulman [10] defined a set of 109 dialogue acts and classified them into four cate-

gories. The classes represent the type of relationship agent and user share, i.e., 1) stranger/professional,

2) more than professional, 3) casual friends, and 4) close friends. Each DA represents the agent ac-

tion that he wants to participate in or not. The proposed an accommodation theory-based approach

to model the agent-user relationship.

Ahmadvand et al. [3] developed a Contextual Dialogue Act classifier (CDAC) model for the open-
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domain human-machine conversational agent. The CDAC employs m previous DAC predictions

and the current utterance embedding for DA classification of an utterance. The m controls the

length of context. The proposed method exploits the strength of the transfer learning approach by

training on human-human conversation (SwDA) and fine-tuning on human-machine conversation.

They collected 200 human-machine conversations during the Amazon Alexa Prize competition in

2018 and manually labeled them with the help of human annotators.

Griol et al. [37] simulated the user and agent to collect a dialogue corpus. The language generation

starts with giving equal probabilities to the possible responses. After completing the dialogue

session, the probabilities of the responses adopted during the session increase, and updated values

are used for the next session. Initial random selection is made based on the dialogues acts, which

represent the semantics of the task.

Montenegro et al. [75] identified the need for defining a DA taxonomy, that takes into account the

coaching goals, for a virtual coaching agent for the elderly. They emphasized that the coaching

agents are different from other task-oriented agents and open domain conversational agents. Defin-

ing a coaching goals-oriented taxonomy could improve the performance of the dialogue manager

of the coaching agent. They defined four types of labels: topic, intent, polarity, and entity labels.

The context of an utterance decides the topic label of the utterance.

Milhorat et al. [72] introduced a dialogue system for Erica, an Android robot. The objective

of Erica’s dialogue system is to make Erica converse in a more human-like way by embodying

features like backchannel, fillers, and turn-taking. The architecture of Erica is an integration of

four dialogue components: question-answering, statement response, backchannel, or proactive

initiator. Initially, the question-answering statement response components deal with the incoming

utterance by assigning a confidence score, and then the controller selects the response associated

with the highest confidence score. Both the parts compute confidence scores based on the dialogue
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act tagging. The SVM-based DA tagger classifies the dialogue as either question or non-question.

Ryan et al. [95] identified the labor-intensive nature of authoring branching dialogues and the lim-

itations it poses on the linguistic choices of the user. As an alternative to the branching approach,

they proposed a procedural approach to solving the problem by introducing a policy-based sys-

tem for dynamic dialogue selection. They employed dialogue moves, a variant of speech acts that

incorporates more fine-grained acts representing the low-level moves of the users. The dialogue

moves worked as a planning operator for achieving conversational goals.

Dialogue Act Classification

Webb et al. [126] used an n-gram model for the DA classification. They evaluated unigram, bigram.

trigram, and 4-gram models; based on the criteria of predictivity, they selected the n-grams as

cue phrases. The predictivity of a cue phrase represents how predictive the specific n-gram is in

detecting the DA. The highly predictive n-grams were then used for the classification.

Grau et al. [36] applied a naive Bayes classifier along with 2-grams and 3-grams on two different

corpora for dialogue act classification.

Ezen-Can et al. [30] proposed an unsupervised multimodel feature-based technique for the DA

classification of student dialogues. They employed lexical, dialogue-context, task, and posture

+ gesture-based features. The dialogue-context feature set includes the DA of the previous tutor

utterance.

Ezen-Can et al. [30] applied data mining based unsupervised DA classification approach on ed-

ucation domain, called Markov Random Field (MRF). They performed experiments on tutorial

dialogue corpus collected from an introductory Java programming project. MRF works similar to
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query likelihood clustering but also considers word ordering.

Chen and Di Eugenio [15] utilizes the multimodal corpus, including haptic action and pointing

gesture, to enhance the DA classification performance. In addition to multimodal features, they

also employed a dialogue game feature. The dialogue game feature incorporates a hierarchical

structure of dialogue and improves the performance significantly.

Li et al. [60] applied a dual-attention hierarchical RNN for the classification of dialogues. They

identified the significant conceptual relation between DA and topic and used topic identification as

an auxiliary task. They explained that while DA represents the social act, the topic defines the sub-

ject under consideration, directly related to the type of DA’s that could occur in the conversation.

Serafin and Di Eugenio [105] performed dialogue act classification using the feature LDA tech-

nique. They augmented an LDA vector with features such as the Part of Speech (POS) tag to assign

a DA tag to the utterance. This reduced the error rates up to 60% to 78%.

Tran et al. [115] employed a generative neural network model that defines a joint probability dis-

tribution over a sequence of DAs and utterances. The generator generates the current DA based on

the previous DA and current utterance and current utterance based on the current DA and previous

utterance.

Milajevs and Purver [71] presented an analysis over three different DA tagging modeling ap-

proaches, which include: 1) bag of word model, 2) word distribution-based model, and 3) ut-

terance order based modeling. They identified the limitations of a bag of word model and used

it as a baseline model. Their proposed models exploited the intra-utterance word order and word

co-occurrence information and performed significantly better than the bag of words approach.

Tran et al. [116] proposed a neural network-based approach, similar to hidden Markov model, that

uses the neural network’s probability distribution over current label as an input for the next step.
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Sentiment Analysis

Sentiment analysis plays an important role in revealing the emotional state and emotional changes

of the speaker involved in conversation [133]. This section gives a brief literature review of the

applications of sentiment classification.

Sun et al. [112] proposed a method for anomaly detection in conversation from the emotional

transition patterns of the speakers. The study provides a framework that combines the convolu-

tional neural network long short-term memory (CNN-LSTM) with a Markov chain Monte Carlo

(MCMC) to track the dynamic transition in the speaker’s emotional state. A similarity function

compares the speaker’s historical emotional transition tensor, i.e., normal transition tensor, with

the current emotional transitional tensor to identify the anomaly.

Fraser et al. [32] used sentiment analysis to enhance player engagement in role-playing video

games. The dialogue manager of the system uses the IBM Watson’s Tone Analyser and Persona’s

AIML patterns to identify the player’s emotional state and controls when and what information is

to provide to the player.

Wang et al. [120] performed sentiment classification on customer service dialogues. They proposed

a multi-task learning-based sentiment classification approach. They identified that using topic

modeling as an auxiliary task could improve the sentiment classification performance of Customer

Service dialogues. In addition, they employed an attention mechanism to learn context-aware

representations of the utterances.

Sentiment analysis has also been applied to mental health monitoring systems [94], restaurant

recommendation systems [111], movie recommendation systems [125], and E-commerce recom-

mendation systems [107]. Social media analysis is one of the most significant applications of sen-

timent analysis. Researchers have performed sentiment analysis on many social media platforms
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including Twitter [66, 121, 80, 98], Facebook [99, 93, 87, 39], and Instagram [109, 79].

Entrainment

Rahimi and Litman [89] proposed a graphical method to encode the entrainment between the team

members in multiparty dialogue. They identified that entrainment could predict good performance

and teamwork.

Flemotomos et al. [31] studied the relationship between entrainment and dominance in multiparty

communication dynamics. The study identified that the dominant speaker is less likely to adopt the

style of other members, while the least dominant speakers change their linguistic choices and align

them with dominant speakers. They applied a multimodal approach to measuring the entrainment.

Beňuš et al. [9] analyzed the correlation between prosodic entrainment and trust in human-computer

interaction. The study identified that females show more trust toward disentraining avatars.

Lubold [64] identified the importance of acoustic-prosodic entrainment in building rapport in spo-

ken dialogue systems. The study was performed on robotic learning companions and contributed

to developing an agent that can entrain to improve the student’s learning outcome and identified

the correlation between entrainment and learning outcome.

Embeddings

Embeddings are a mechanism for mapping a high-dimensional space to a low-dimensional one

while only retaining the most effective structural representations. They can be used as part of the

transfer learning process to mitigate the low availability of labeled language resources on various

NLP tasks. Some of the most popular embedding methods are Global Vectors for Word Rep-
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resentation (GloVe) [86], Universal Sentence Encoding (USE) [14], and Bidirectional Encoding

(BERT) [22] for sentence representation.

Global Vectors for Word Representation (GloVe)

Pennington et al. [86] proposed the GloVe model in 2014. It creates a word-level embedding that

leverages both the local context window and global matrix factorization methods. GloVe employs a

log-bilinear prediction-based technique that utilizes word-word co-occurrence statistics to identify

a meaningful structure and generate word-level embeddings.

Universal Sentence Encoders (USE)

In 2018, Google Research released a Universal Sentence Encoder (USE) model for sentence-level

transfer learning that achieves consistent performance across multiple NLP tasks [14]. There are

two different variants of the model: 1) a transformer architecture, which gives high accuracy at the

cost of high resource consumption and 2) a deep averaging network that requires few resources and

makes small compromises for efficiency. The former uses attention-based, context-aware encoding

sub-graphs for the transfer architecture. The model outputs a 512-dimensional vector. The deep

averaging network works by averaging words and bigram embeddings to use as an input to a deep

neural network. The models are trained on web news, Wikipedia, web question-answer pages,

discussion forums, and the Stanford Natural Language Inference (SNLI) corpus.

Bidirectional Encoder Representations from Transformers (BERT)

Also created at Google, BERT is the first model that was trained on both left and right contexts [22].

To achieve pre-trained deep bidirectional representation, it uses the masked model, which follows
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the cloze deletion task. This model is trained on Books Corpus and English Wikipedia corpus. The

code for BERT is available at https://github.com/google-research/bert. There

are two available flavors of BERT: 1)BERTBASE , and 2) BERTLARGE . BERTBASE has 12

transformer blocks, 768 hidden layers, 12 self-attention heads, and 110 million parameters. On

the other hand, BERTLARGE uses a fairly large network, with 24 transformer blocks, 1024 hidden

layers, 16 self-attention heads, and 340 million parameters.

Probabilistic Representation with Recurrent Neural Networks

Duran et al. proposed a probabilistic technique to represent utterances while using the LSTM

sentence model for dialogue act classification [24]. The probabilistic distribution of each word

in the corpus over DA categories provides the representation of the utterances. The model does

not incorporate contextual features at the discourse level. The set of keywords consisting of all

the words that occur above a threshold frequency is used to define a n × m matrix X, where

m is the number of categories, and n is the number of keywords. Each entry xij of the matrix

represents the probability of the tag j given the word i. Training code is available at https:

//github.com/NathanDuran/Probabilistic-RNN-DA-Classifier.

Few-Shot Generalizability

Triantafillou et al. [117] introduced a method that improves few-shot generalizability by making

use of multiple datasets in order to learn a universal template. Dvornik et al. [25] proposed Select-

ing from Universal Representations (SUR), which involves learning a multi-domain representation

by training multiple feature extractors. A multi-domain feature bank is used to select the most

relevant feature during the learning phase.
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Sauer et al. [100] introduced a method to distill knowledge from the few-shot model in which

both the student and teacher networks are prototypical networks, i.e., the samples are classified by

measuring the distance between the prototype representation of the class and the samples.

Few-shot generalizability is also an important area of research in the field of Computer vision.

Computer vision researchers have identified many techniques to improve the generalizability at

the meta-learning phase. Kozerawski and Turk [51] introduced Meta Binary Cross-Entropy (Meta-

BCE) and One-Class Meta-Learning (OCML), a few-shot one-class classification method to de-

tect out-of-distribution class in one-class and multiclass open-set problems scenarios. Meta-BCE

works by learning a rich one-class representation using binary cross-entropy loss in a meta-learning

setting. In this setting probability of any sample belonging to or not belonging to any specific class

only depends on the positive samples of the class without considering other classes. OCML works

by dynamically creating one-class neural network classifier for a new category. The transfer mod-

ule of OCML helps transform the feature vector of category c to the weight vector of category c

for the one-class classifier.

Dong et al. [23] introduced an adversarial-aware mechanism for few-shot image classification. A

robust embedding model is proposed to learn a representation that can effectively differentiate

between legitimate and adversarial examples. Jamal and Qi [42] introduce the Task-Agnostic

Meta-Learning (TAML) algorithm to improve the generalizability of the few-shot classification.

TAML learns an unbiased initial model by maximizing the entropy of the out labels. This prevents

the model from overperforming on specific tasks. [49] proposed a method to improve the few-

shot generalizability of the object detection method by extracting generalizable meta-features. The

feature learning module learns generalizable features from the base class, and then reweighting

module identifies the meta-features predictive of the novel class with the help of a few available

samples to generate a global vector.
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Das et al. [20] applied a contrastive learning approach while finetuning to achieve generalizability.

They use the unlabeled examples from the based class as distractors, and the generalizability is

achieved by contrasting the distractors and task-specific samples.
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CHAPTER 3: DATASETS

This chapter includes content from the papers titled ”Enayet, A., & Sukthankar, G. (2020). A trans-

fer learning approach for dialogue act classification of github issue comments. Poster presented at

the 12th International Conference on Social Informatics.”, ”Enayet, A., & Sukthankar, G. (2023,

May). Improving the Generalizability of Collaborative Dialogue Analysis With Multi-Feature Em-

beddings. In Proceedings of the 17th Conference of the European Chapter of the Association for

Computational Linguistics (pp. 3533-3547).”, ”Enayet, A., & Sukthankar, G. (2022, June). An

Analysis of Dialogue Act Sequence Similarity Across Multiple Domains. In Proceedings of the

Thirteenth Language Resources and Evaluation Conference (pp. 3122-3130).”, and ”Enayet, A.,

& Sukthankar, G. (2021). Learning a Generalizable Model of Team Conflict from Multiparty

Dialogues. International Journal of Semantic Computing, 15(04), 441-460.”.

This dissertation research was conducted using several different team communication datasets.

Following are the details of the datasets that are part of this study.

Multiplayer Board Games (Teams Corpus)

Teams contains 124 team dialogues from 62 different teams, playing two different collaborative

board games. The length of the dialogues varies from 291 to 2124 utterances. In addition to

collecting dialogue data, the researchers administered surveys of team level social outcomes. Team

social outcome scores include task conflict, relation conflict, and process conflict scores. All these

scores are highly correlated, and we are using process conflict z-scores to represent team conflict.

Table 3.1 shows the example from Teams dataset.
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Table 3.1: Teams Dataset Sample

Speaker Utterance DA Description
A Ok I’m going to sd Statement-non-Opinion
A shore up these two. sd Statement-non-Opinion
B Good move. ba Appreciation
A Then we got one and then I guess I

can also
sd Statement-non-Opinion

A Can I use my powers twice in one
play

sd Statement-non-Opinion

C Mm b Acknowledge (Backchannel)
B yes ny Yes answer

Software Engineering Teams (GitHub Issue Comments)

The GitHub social coding platform is specialized to support virtual teams of software developers

whose primary communication goal is to discuss new features and monitor software bugs. Our

assumption is that each software repository is maintained by a team and that the events associated

with the repository form a partial history of the team activities and social interactions. Within

GitHub’s issue handling infrastructure, users can report a bug or provide a feature request by

opening an issue.

We created a dataset from software engineering teams resolving issues on GitHub which we are

in the process of making publicly available at: https://drive.google.com/file/d/

17W3zeyN3EUJAMYTJVbDcPXmg6DQcqXT6/view. Table 3.2 shows the statistics of our cor-

pus. The length of the dialogues in our GitHub corpus varies from 2 to 207 utterances. Utterances

from the GitHub dialogues, unlike the Teams corpus, are combination of English language words,

special symbols, and code written in different programming languages. The average length of the

dialogues is 19. The number of speakers varies from 2 to 10. While collecting the dialogues, to

preserve the complex nature of the GitHub dialogue we didn’t place any limitation on the total

number of speakers and the length of the dialogue. Code blocks were removed if they appeared

separately in the dialogue but not if they appeared within the utterance.
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Table 3.2: Statistics of GitHub Issue Comments Dataset

#Dialogues # Utterances #Tokens #DA tags #Positive Samples #Negative Samples
50 981 13418 42 29 21

Table 3.3 shows the example from GitHub corpus. Since we lack post-task process conflict survey

scores from the team members, we manually labeled the dialogues as being high conflict or low

conflict using the following criteria:

1. The issue did not resolve successfully.

2. The question(s) of the team member(s) remained unanswered.

3. One or more team members did not understand the issue.

4. Lack of understanding or disagreement between the team members.

5. At least one team member did not agree with the suggested solution.

This criterion is based on Kalia et al’s [48] work on affective processes in teams. An affective

process represents the motivational and affective relationships between the members of the team.

They evaluated dyadic communication between team members including 1) responses to ques-

tions, 2) responses to directives, 3) responses to requests, 4) responses to commissives and 5)

responses to informatives. The team member’s response (taking the required action) to the other

team member’s directives and requests is an example of positive evidence indicating low conflict.

The absence of the response counts as negative evidence. Response to the informatives, questions,

and commissives is an example of neutral evidence.

Military Dataset

We also used Kalia et al.’s military team communication dataset [48] which contains 22 chats from

20 chat rooms. The chats are communication from simulation activity (SIMEX). The average
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Table 3.3: GitHub Dataset Sample

Speaker Utterance DA Description
m1 I’m following up on this SO question as no one else has. The comments

recommend posting a feature request here.
sd Statement-non-

Opinion
m1 I have an R package on github. This R package has C++ dependencies

which I include in a src.
sd Statement-non-

Opinion
m1 The correct way I would normally do this (outside of R) is create sub-

modules within the github repo which could link to the correct commits
as dependencies.

sd Statement-non-
Opinion

m1 So the checking for empty or unneeded directories causes the errors
because the submodules are interpreted as empty subdirectories. There-
fore it cannot find the necessary dependencies and I’ll run into a fatal
error upon build

sd Statement-non-
Opinion

m1 Yes one way to solve this is to physically put the dependencies within
the R package. That does defeat the purpose of submodules though
which are very useful.

aa Agree/Accept

m1 It appears using the following argument works: sd Statement-non-
Opinion

m1 The problem with this is this isn’t default behavior. I’m nervous
about getting dozens of github issues from users who randevtools ::
install git(”reponamepackagename”) and didn’t read the fine
print in the README

sd Statement-non-
Opinion

m1 Is there a better way? qy Yes-No-Question
m1 What is the standard method of releasing R packages as a github repo

using submodules?
qw Wh-Question

m2 FWIW there is a on-going PR for installing github repo with submod-
ules in#103. When it is done it may answer your use case.

sv Statement-
opinion

m3 I would recommend using subtrees instead of submodules which will
just work for users without any additional tooling.

sd Statement-non-
Opinion

m3 As of 0927172 remotes now automatically detects submodules and in-
stalls them as needed.

sd Statement-non-
Opinion

number of speakers in their corpus is 15, which is larger than the other two datasets. The length

of the dialogue varies from 55 to 1027 utterances. Table 3.4 shows example utterances from the

military dataset and their dialogue act classification. This dataset also contains post-event survey

reflecting qualitative measures of team performance. Kalia et al. [48] used the meaning of the

messages from broadcast communication to evaluate how the team process measures change with

time; we use the post-event survey results to annotate the whole teamwork chat as being high or

low conflict.
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Table 3.4: Military Dataset Sample

Speaker Utterance DA Description
m1 it says 34 cdr is talking in bde room. sd Statement-non-

Opinion
m1 bandit 6 came in pretty quiet in bde room sd Statement-non-

Opinion
m2 roger b Acknowledge

(Backchannel)
m3 are we atlking this T72 spotted by B Co 2-44 IVO 12SWG 61768

89877?
qy Yes-No-Question

m2 not tracking this one. sd Statement-non-
Opinion

m3 2-44 taking small arms fire in and around Airfield West, and from OBJ
5.

sd Statement-non-
Opinion

m3 WPNs CO 2-44 engaging tech vechicle IVO 12SWG 61794 90137 and
7 dismounts

sd Statement-non-
Opinion

m1 CTRP 100%. sd Statement-non-
Opinion

m2 roger c trp . sd Statement-non-
Opinion

ASIST Dataset

The Artificial Social Intelligence for Successful Teams (ASIST) dataset was developed to analyze

how well an artificial intelligence system can predict and infer the action of an individual in a three

member team. The dataset contains communication between the team members completing an

Urban Search and Rescue task in the Minecraft environment. In addition to collecting dialogue

data, the researchers administered surveys of team level social outcomes. The dataset contains

team process scores. We manually use team process z scores to classify teams into high conflict

and low conflict teams. We apply analysis on 113 dialogues; Table 3.5 shows an example from the

ASIST dataset and their DA classification.
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Table 3.5: ASIST Dataset Sample

Speaker Utterance DA Description
E000302 this is green sd Statement-non-

opinion
E000302 this is green no questions thank you sd Statement-non-

opinion
E000303 this is blue no questions sd Statement-non-

opinion
E000301 and it’s ready sd Statement-non-

opinion
E000303 blue is ready sd Statement-non-

opinion
E000302 green is ready sd Statement-non-

opinion
E000303 how to do a question qw Wh-Question
E000303 can you overwrite your team’s markers or no qy Yes-No-Question
E000303 a teammate’s markers sd Statement-non-

opinion
E000301 drednaw b Acknowledge

(Backchannel)

SwDA

SwDA is one of the most popular public datasets for DA classification. It consists of 1155 human-

to-human telephone speech conversations 1. The dataset is tagged using 42 tags from the SwDA-

DAMSL tagset, which is a subset of Dialogue Act Markup in Several Layers (DAMSL) categories

[4]. A more detailed description of SwDA-DAMSL is provided by [47] 2. Table 3.6 shows the

example from the SwDA dataset.

SAMsum

SAMsum is a chat dialogue dataset which consists of Messenger, Whatsapp, and WeChat conversa-

tion, written and created by linguists. The dataset contains 16,369 dialogues which include 14,732

train, 819 test, and 818 validation dialogues [34]. Table 3.7 shows the example from SAMSum

1https://github.com/cgpotts/swda

2https://web.stanford.edu/˜jurafsky/ws97/manual.august1.html
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Table 3.6: SwDA Dataset Sample

Speaker Utterance DA Description
A I don’t, I don’t have any kids. sd Statement-non-Opinion
A I, uh, my sister has a, she just had a

baby,
sd Statement-non-Opinion

A he’s about five months old sd Statement-non-Opinion
A and she was worrying about going

back to work and what she was go-
ing to do with him and –

sd Statement-non-Opinion

A Uh-huh. b Acknowledge
A do you have kids? qy Yes-No-Question
B I have three. na Affirmative non-yes Answer
A Oh, really? bh Backchannel in question form

Table 3.7: SAMSum Dataset Sample

Speaker Utterance DA Description
Hannah Hey do you have Betty’s number? qy Yes-No-Question
Amanda Lemme check . sd Statement-non-Opinion
Amanda Sorry can’t find it. sd Statement-non-Opinion
Amanda Ask Larry . sd Statement-non-Opinion
Amanda He called her last time we were at

the park together .
sd Statement-non-Opinion

Hannah I don’t know him well . sd Statement-non-Opinion
Amanda Don’t be shy he’s very nice . sv Statement-opinion
Hannah If you say so. . b Acknowledge (Backchannel)
Hannah I’d rather you texted him . fc Conventional-closing
Amanda Just text him. ad Action-directive
Hannah Urgh. Alright . b Acknowledge (Backchannel)
Hannah Bye . fc Conventional-closing
Amanda Bye bye fc Conventional-closing

Dataset.

AMI (DialSum)

DialSum, a subset of the AMI meeting corpus, contains 24,193 total dialogues, divided into 7,024

train, 400 test, and 400 validation instances. It is a subset of the AMI meeting corpus with the

topic descriptions as abstractive summaries. The AMI meeting corpus contains transcriptions of

100 hours of meeting recordings 3. Table 3.8 shows the example from AMI (DialSum) dataset.

3https://github.com/MiuLab/DialSum
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Table 3.8: DialSum Dataset Sample

Speaker Utterance DA Description
well i suppose that’s our that’s that’s
our design that we’ve got . so

sd Statement-non-Opinion

yeah . b Acknowledge (Backchannel)
yeah yeah . b Acknowledge (Backchannel)
well that’s that’s uh ba Appreciation
okay so project evaluation . sd Statement-non-Opinion
we have under twelve euros fifty . sd Statement-non-Opinion
project process how do we think
that went ?

sd Statement-non-Opinion

are we happy ? qy Yes-No-Question

Diplomacy Betrayal

Diplomacy dataset consists of communication between online users playing the Diplomacy strate-

gic board game. The dataset contains games with different outcomes: half of which ended in

betrayal and half ended in friendship 4. Table 3.9 shows the example from Diplomacy Betrayal

dataset.

Hate Speech

Hate Speech dataset consists of utterances extracted from the posts of white supremacist forum.

The sentences of the posts are annotated to reflect the presence or absence of Hate Speech 5. Table

3.10 shows the example from Hate Speech dataset.

4https://sites.google.com/view/qanta/projects/diplomacy

5https://github.com/Vicomtech/hate-speech-dataset
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Table 3.9: Diplomacy Betrayal Dataset Sample

Speaker Utterance DA Description
turkey ’Hello Italy whats up what are your

thoughts on austria and France?
qw Wh-Question

italy Hi Turkey! Im sorry that Ive been
so slow to get in touch. Kind
of a rough day for me to begin a
game as I e been pretty swamped.
Things are clearing up now, and I
appreciate you reaching out to me.
¡EOS¿So far I have notes from Aus-
tria and Russia being pretty cagey
and non-committal. Perhaps that is
just the life of Italy? Nobody re-
ally has me in their plans?¡EOS¿I
dont really know what Im going to
do yet, so if you have ideas, or you
have a use for me, please let me
know. Id basically be delighted to
work with anyone who really wants
to work with me. (No sign yet that
this includes anyone at all)

sd Statement-non-Opinion

italy Hey Turkey 2014 any interest in
working together? Im trying to
think of ideas, but Id just like to
know first if you have interest, and
then we can work out a plan if you
do.

sd Statement-non-Opinion

italy Any thoughts, Turkey? qo Open-Question
turkey Sure we can work together austria

would be the most likely candidate
for us to maul

sd Statement-non-Opinion

Table 3.10: Hate Speech Dataset Sample

Speaker Utterance DA Description
Thank you for posting your story . fc Conventional-closing
I think you should write a book as
well .

sv Statement-opinion

I ’ve always considered teaching as
one of the professions I would like
to get into , but not in a neighbour-
hood like that ... never. kids like
that disgust me .

sd Statement-non-Opinion

And the sad thing is the white stu-
dents at those schools will act like
that too .

sv Statement-opinion

I guess I ’ll just stick to home-
schooling my kids , when and if I
have them ...

sd Statement-non-Opinion
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CHAPTER 4: TRANSFER LEARNING BASED DIALOGUE ACT

CLASSIFIER

This chapter includes contents and figures from the paper titled ”Enayet, A., & Sukthankar, G.

(2020). A transfer learning approach for dialogue act classification of github issue comments.

Poster presented at the 12th International Conference on Social Informatics.”.

Analyzing the dialogue between team members can yield important insights into the performance

of virtual teams. As a part of this dissertation, we present a transfer learning approach for perform-

ing dialogue act (DA) classification on the dialogues of the virtual teams. DA classification is the

process of identifying the speaker’s intent, and it plays an essential role in the semantic analysis of

dialogues. Since no large labeled corpus of virtual teams communication is available, we collect

utterances from GitHub issue comments and employ transfer learning for the DA classification of

GitHub issue comments. Transfer learning enables us to leverage standard dialogue act datasets to

label collaborative dialogues. We compare the performance of word and sentence level encoding

models, including Global Vectors for Word Representations (GloVe), Universal Sentence Encoder

(USE), and Bidirectional Encoder Representations from Transformers (BERT). This helps us de-

velop and identify a DA classification model under resource scarcity scenario. Being able to map

the issue comments to dialogue acts is a helpful stepping stone towards understanding cognitive

team processes. We use the best performing model for our collaborative dialogue analysis.

GitHub

GitHub is a social coding platform where people collaborate virtually to propose solutions related

to various software related issues. Software engineering requires a tremendous amount of collabo-
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rative problem solving, making it an excellent domain for team cognition researchers who seek to

understand the manifestation of cognition applied to team tasks. Mining data from social coding

platforms such as GitHub can yield insights into the thought processes of virtual teams. We treat

GitHub as our test case to identify a high-performing transfer learning based DA classification

model. Previous work on issue comments [38, 77, 82] has focused on emotional aspects of team

communication, such as sentiment and politeness. Our aim is to map issue comments to states in

team cognition such as information gathering, knowledge building and problem solving. To do this

we employ dialogue act (DA) classification, in order to identify the intent of the speaker.

Dialogue act classification has a broad range of natural language processing applications, including

machine translation, dialogue systems and speech recognition. Semantic-based classification of

human utterances is a challenging task, and the lack of a large annotated corpus that represents class

variations makes the job even harder. Compared to the examples of human utterances available in

standard datasets like the Switchboard (SwBD) corpus and the CSI Meeting Recorder Dialogue

Act (MRDA) corpus, GitHub utterances are more complex.

We perform the DA classification of GitHub issue comments by harnessing the strength of transfer

learning, using word and sentence level embedding models fine-tuned on our dataset. For word-

level transfer learning, we have used GLoVe vectors [86], and Universal Sentence Encoders [14]

and BERT [22] models were used for sentence-level transfer. we present a comparison of the

performance of various architectures on GitHub dialogues in a limited resource scenario. One

of our contributions is our publicly available dataset of annotated issue comments. In the field

of computational collective intelligence, where people collaborate and work in teams to achieve

goals, dialogue act classification can play a vital role in understanding human teamwork.
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Background (GitHub)

Unlike general purpose communication platforms such as Twitter and Facebook, GitHub is spe-

cialized to support virtual teams of software developers whose primary communication goal is to

discuss new features and monitor software bugs. It facilitates distributed, asynchronous collabora-

tions in open source software (OSS) development. Code development, issue reporting, and social

interactions are tracked by the 20+ event types. Our assumption is that each software repository

is maintained by a team and that the events associated with the repository form a partial history of

the team activities and social interactions.

GitHub has an open API to collect metadata about users, repositories, and the activities of users

on repositories. Developers make changes to the code repository by pushing their content, while

GitHub tracks the version control process. Any GitHub user can contribute to a repository by

sending a pull request. Repository maintainers review pull requests, discuss possible modifications

in the comments, and decide whether to accept or reject the requests. GitHub also supports passive

social media style interactions such as following repositories or developers. Within GitHub’s issue

handling infrastructure, users can report a bug or provide a feature request by opening an issue.

Issue closure rates thus reflect the speed with which teams resolve problems and can be used as a

measure of team performance.

Related Work (GitHub)

Issue resolution has been viewed by many researchers as a rich source of information about the

emotional health of the team and how it affects the software development process [41]. Kikas et

al. demonstrated a model for predicting issue lifetime that included a single feature aggregating

textual comment information [50]. Several studies have employed sentiment analysis [38, 77, 82]
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and topic modeling [123] to study GitHub issue comments. Ortu et al. conducted a large study

on communication patterns in which they measured politeness and emotional affect in issue com-

ments; their aim was to understand how contribution levels modulate communication patterns [82].

Murgia et al. demonstrated a machine learning classifier for identifing love, joy or sadness in issue

comments [77]. An empirical study of issue comments conducted by Guzman et al. [38] showed

that the sentiment expressed in issue comments varies based on day of week, geographic dispersion

of the team, and the programming language. Yang et al. addressed the more practical question of

the relationship of issue comment sentiment and bug fixing speed [129].

We aim is to study the team cognition aspects of collaborative problem solving using dialogue

act classification. Unlike topic modeling or sentiment analysis, dialogue act classification has not

been extensively applied to GitHub data. However, Saha et al. [96] proposed a deep learning

approach for the dialogue act classification of Twitter data. A convolutional neural network was

used to create the classifier, along with hand-crafted rules. Seven classes were included: statement,

expression, suggestion, request, question, threat, and other. In contrast, our work is done using a

transfer learning approach and a significantly larger set of classes.

Prior to deep learning, statistical approaches such as hidden Markov models, have been used for

dialogue act classification. The HMM represents discourse structure, with dialogue acts as states.

Stolcke et al. demonstrated such a model that combined prosodic, lexical, and collocational cues

[108]. Chen et al. proposed the CRF-Attentive Structured Network (CRF-ASN) framework to

exploit the CRF-attentive structure dependencies along with end-to-end training [17].

We presents a transfer learning approach for dialogue act classification that is used to compensate

for our small dataset. To do this, we learn an embedding from a larger dataset.
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Table 4.1: Dataset Statistics

Dataset Categories #Utterances #Tokens
SwDA 42 200,052 19K
GitHub 42 859 10,131

Datasets

For our study, we collected a dataset of issue comments from GitHub and hand annotated them

using a standard dialogue act tagset, DAMSL (Discourse Annotation and Markup System of La-

beling), to facilitate the transfer process. The tagset is available at https://web.stanford.

edu/˜jurafsky/ws97/manual.august1.html. Our test set consists of 859 instances

from more than 50 GitHub issues.

The models were trained using the Switchboard Dialogue Act Corpus (SwDA) dataset. SwDA is

one of the most popular public datasets for DA classification. It consists of 1155 human-to-human

telephone speech conversations. The dataset is tagged using 42 tags from the DAMSL tagset. Table

4.1 shows the statistics of both test and train datasets. Table 3.6 shows examples from the SWDA

training dataset. Table 3.3 shows examples from our GitHub issue comment dataset. From these

examples, it is clear that this is a challenging transfer learning problem.

Method

Treating our dialogue act classification as a transfer learning problem enables us to leverage em-

beddings learned on a dataset that is over 200 times larger than our test dataset. We created and

evaluated several different dialogue act classification pipelines using five different architectures and

four different word and sentence-level embedding models. Figure 4.1 illustrates the differences in
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architecture between our five models.

Probabilistic Representation with Recurrent Neural Networks

Duran et al. proposed a probabilistic technique to represent utterances while using the LSTM

sentence model for dialogue act classification [24]. The probabilistic distribution of each word in

the corpus over DA categories provides the representation of the utterances. The model does not

incorporate contextual features at the discourse level. The set of keywords consisting of all the

words that occur above a threshold frequency is used to define a n ×m matrix X, where m is the

number of categories, and n is the number of keywords. Each entry xij of the matrix represents the

probability of the tag j given the word i. Training was accomplished using code downloaded from

https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier.

GloVe + LSTM

We use glove.6b.100d.txt downloaded from https://nlp.stanford.edu/projects/glove/

to train our model on the SwDA dataset. The model consists of input, embedding, LSTM, and one

dense layer with 42 output labels and a softmax activation function.

Universal Sentence Encoder (USE)

Results were obtained using the USE model from TensorFlow Hub, after fine-tuning on the SwDA

dataset. The code to load the USE model is available at https://tfhub.dev/google/

universal-sentence-encoder/1. We chose the USE Transformer-based Architecture

model with three dense layers and a softmax activation function.
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Figure 4.1: Architecture Diagrams for (i) Probabilistic Representation with RNN (ii)
GloVe+LSTM (iii) Universal Sentence Encoder (USE) (iv) USE+LSTM (v) Bidirectional Encoder
Representations from Transformers (BERT) Architectures
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USE+LSTM

We also combined the Universal Sentence Encoder with an LSTM. This model consists of Input,

Embedding, Convolution, LSTM, and one Dense output layer.

Bidirectional Encoder Representations from Transformers (BERT)

As proposed by [22], we append a single dense layer to BERT. Our implementation was created

using the Python TensorFlow-Bert module.

Evaluation

Table 4.2 shows the performance of all five architectures. Universal Sentence Encoder had the best

performance on the GitHub issue comments, with a test accuracy of 50.71% which is 6% more than

the accuracy achieved using the probabilistic representation of sentence. The other three models

showed significantly lower performance than USE, lagging by almost 10%. The probabilistic

representation of sentence approach exhibited the highest validation accuracy of 76.9% which is

significantly higher than USE which had a validation accuracy of 69.5%. The well-known BERT

model had a validation accuracy of 71.5%, but had a low test accuracy.

It is instructive to examine the performance differences between the best (USE) and second best

(probabilistic representation). Figure 4.2 shows the confusion matrix of the classification results

obtained using the USE model, and Figure 4.3 shows the confusion matrix of the probabilistic

representation method. In both cases the most confused tag pair is sd (statement-non-opinion) & sv

(statement-opinion). USE correctly classified 91.71% of the sd occurrences, while the probabilistic

representation method only classified 76% correctly. On the other hand USE classified 38.98% sv
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Figure 4.2: Confusion Matrix: Universal Sentence Encoder (all classes)

utterances correctly while the probabilistic representation method classified 50% of them correctly.

Table 4.3 shows the Precision, Recall, & F1 Score of our best performing architecture. In Table

4.3, support represents the number of occurrences of each tag in the GitHub dataset. USE failed

to classify the third most frequent tag i.e. ad (action directive) in the test dataset. The average
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Figure 4.3: Confusion Matrix: Probabilistic representation+LSTM. This illustration only includes
classes with the largest support. The classes shown are: sv=statement-opinion, sd=statement non-
opinion, aa=agree/accept, b=acknowledge, and %=abandoned.
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Table 4.2: Training, validation & test accuracy of all the models

model acc val acc test acc(GitHub)
GloVe+LSTM 0.5089 0.5195 0.3714
Prob+LSTM 0.7672 0.7694 0.4412

USE 0.7247 0.6951 0.5071
USE+LSTM 0.3841 0.4257 0.4074

BERT 0.7151 0.7151 0.4063

precision of USE over all tags is 53%. The average recall is 51%, and the average F1 score is

42%. A difference of only 2% between precision and recall shows that the results of the model are

consistent. BERT is one of the newest models for transfer learning; however our results show that

fine-tuning BERT doesn’t improve performance much in comparison to the Universal Sentence

Encoder. Prior work has shown that BERT does not benefits as much from fine-tuning as other

embeddings [132].

Identification of Best Performing Model

As a part of our study, we demonstrate a dialogue act classification system for GitHub issue com-

ments. Due to the lack of publicly available training sets of formal teamwork dialogues, we formu-

lated the problem as a transfer learning task, using both sentence-level and word-level embedding

models to leverage information from the SwDA dataset. One of the significant contributions of

our work is identifying the embedding model that performs best on issue comments. We used

GloVe, probabilistic representation, USE, and BERT embedding to train five different models.

USE showed the best performance with an accuracy of 50.71%.
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Table 4.3: Precision, Recall, & F1 score of all the tags (USE)

Tag Precision Recall F1 score Support
sd 0.51 0.92 0.66 350
b 0.11 0.20 0.14 5
sv 0.47 0.39 0.43 119
% 0.00 0.00 0.00 4
aa 1.00 0.05 0.09 21
ba 0.67 0.21 0.32 29
qy 0.80 0.66 0.72 61
ny 0.00 0.00 0.00 6
fc 0.04 0.50 0.07 2
qw 0.48 0.58 0.52 19
nn 0.00 0.00 0.00 1
bk 0.00 0.00 0.00 0
h 0.00 0.00 0.00 16

qyd̂ 0.50 0.17 0.25 6
bh 0.00 0.00 0.00 1
q̂ 0.00 0.00 0.00 2
bf 0.00 0.00 0.00 14

fo o fw ¨ by bc 0.00 0.00 0.00 0
na 0.00 0.00 0.00 4
ad 0.67 0.02 0.04 108
2̂ 0.00 0.00 0.00 1

bm̂ 0.00 0.00 0.00 0
qo 1.00 0.03 0.06 31
qh 0.00 0.00 0.00 0
ĥ 0.00 0.00 0.00 0
ar 0.00 0.00 0.00 1
ng 0.00 0.00 0.00 2
br 0.00 0.00 0.00 0
no 0.00 0.00 0.00 23
fp 1.00 0.83 0.91 6
qrr 0.00 0.00 0.00 0

arp nd 0.00 0.00 0.00 0
t3 0.00 0.00 0.00 0

oo co cc 0.00 0.00 0.00 18
aap am 0.00 0.00 0.00 2

t1 0.00 0.00 0.00 0
bd 0.00 0.00 0.00 0
ĝ 0.00 0.00 0.00 0

qwd̂ 0.00 0.00 0.00 0
fa 1.00 0.14 0.25 7
ft 0.00 0.00 0.00 0

avg / total 0.53 0.51 0.42 859
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CHAPTER 5: TEAM PERFORMANCE WITH EMBEDDINGS FROM

MULTIPARTY DIALOGUES

This chapter includes contents and figures from the papers titled ”Enayet, A., & Sukthankar, G.

(2021, January). Analyzing team performance with embeddings from multiparty dialogues. In

2021 IEEE 15th International Conference on Semantic Computing (ICSC) (pp. 33-39). IEEE.”

and ”Enayet, A., & Sukthankar, G. (2021). Learning a Generalizable Model of Team Conflict

from Multiparty Dialogues. International Journal of Semantic Computing, 15(04), 441-460.”.

This chapter describes our procedure for computing embeddings using doc2vec [58], an unsuper-

vised method that is used to create a vector representation of the team dialogue. We compare the

performance of different possible inputs to doc2vec: 1) dialogue acts, 2) sentiment analysis, and

3) syntactic entrainment.

Table 5.1: Dataset Statistics

Dataset #Utterances #Tokens
SwDA 200,052 19,000

Teams Corpus 110,206 573,200

Figure 5.1: Dialogue Act Classifier Architecture.
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Dialogue Acts

Dialogue acts can be created from the semantic classification of dialogue at the utterance level to

identify the intent of the speaker. A transfer learning approach was used to tag utterances of the

Teams corpus using the DAMSL (Discourse Annotation and Markup System of Labeling) tagset.

Figure 5.1 shows the architecture of our dialogue act classifier, which was constructed using the

Universal Sentence Encoder; we selected USE for its ability to achieve consistently good per-

formance across multiple NLP tasks [14]. There are two different variants of the model: 1) a

transformer architecture, which exhibits high accuracy at the cost of increased resource consump-

tion and 2) a deep averaging network that requires few resources and makes small compromises

for efficiency. The former uses attention-based, context-aware encoding subgraphs of the transfer

architecture. The model outputs a 512-dimensional vector. The deep averaging network works by

averaging words and bigram embeddings to use as an input to a deep neural network. The mod-

els are trained on web news, Wikipedia, web question-answer pages, discussion forums, and the

Stanford Natural Language Inference (SNLI) corpus, and are freely available on TF Hub.

We selected the USE Transformer-based Architecture model with three dense layers and a soft-

max activation function. Figure 5.1 shows the architecture of our DA classification model, which

achieves a validation accuracy of 70%.

The model was fine-tuned using the Switchboard Dialogue Act Corpus (SwDA) dataset. SwDA is

one of the most popular public datasets for DA classification. It consists of 1155 human-to-human

telephone speech conversations, tagged using 42 tags from the DAMSL tagset. Table 5.1 shows

the statistics of both SwDA and the Teams corpus.

Table 3.6 shows examples from the SwDA training dataset, and Table 3.1 shows examples from

Teams corpus. Each team dialogue generates a unique sequence where each element of the se-
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quence represents the dialogue act of the corresponding utterance. This sequence of dialogue acts

is then used as an input to doc2vec algorithm to create the embedding.

Sentiment Analysis

Another option is to represent the team dialogue as a series of changes in the emotional state of

the team. This can be done by applying sentiment analysis to the individual utterances. Sentiment

analysis is the task of predicting the emotion or attitude of the speaker; we are using the TextBlob

python implementation [114] to determine sentiment polarity of each utterance in the dialogue. The

polarities are float values which lies between -1 and 1 representing negative, positive and neutral

sentiment. For each team the unique sequence of these polarities is used as input to doc2vec,

where each element of the sequence represents the polarity of the corresponding utterance. This

representation encodes transitions in the emotional state of the team across the duration of the task.

Entrainment

Entrainment is one form of linguistic coordination in which team members adopt similar speaking

styles during conversation. Here we evaluate the performance of a syntactic entrainment embed-

ding based on Rahmi and Litman’s [89]’s work that encodes the propensity of subsequent speakers

to make similar lexical choices. Eight lexical categories were used: noun (NN), adjective (JJ), verb

(VB), adverb (RB), coordinating conjunction (CC), cardinal digit (CD), preposition/subordinating

conjunction (IN), and personal pronoun (PRP) . To calculate the entrainment between two speakers

we follow the method proposed by Danescu et al. [19] shown in Equation 5.1. Entc(x, y) is the

entrainment of speaker y to speaker x, c is the lexical category, eyxc represents the event where

speaker y utterance immediately follows the speaker x utterance and contains c, ecx is the event
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when utterance (spoken to y) of speaker x contains c.

Entc(x, y) = p(
eyxc

ecx
)− p(eyxc) (5.1)

The NLTK part-of-speech (POS) tagger was used to tag all the utterances with their respective lex-

ical categories. A directed weighted graph was generated for each dialogue linking speakers with

positive entrainment. The structure of this graph encodes the entrainment relationships between

team members. To translate the graph into a feature representation, six graph centrality kernel

functions were applied to represent each node of the team graph. Table 5.2 describes the kernel

functions: (1) PageRank (2) betweenness centrality (3) closeness centrality (4) degree centrality

(5) in degree centrality (6) Katz centrality. To create the final team representation, the vectors of

individual nodes were averaged, and doc2vec was applied to create the embedding. With eight

lexical categories and six kernel functions, the length of the feature vector is 48. This method

corresponds to the Kernel version of Entrainment2Vec [89] and achieves comparable performance

when applied to the whole dialogue.

Our implementation is slightly different from that of [89] and [19] in two aspects. First, we are

using the NLTK POS tagger to assign lexical categories to the utterances instead of using LIWC-

derived categories. Second, we are using six graph kernel algorithms instead of ten. The POS

tagging reflects the sentence’s syntactic structure; we have carefully selected the POS categories

that are consistent with the conventional English part of speech categories used by [89] and [19].

While calculating the entrainment, we do not consider the actual word and its context; therefore,

this embedding only captures syntactic features, not semantics.
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Table 5.2: Entrainment Kernel Functions

Kernel Function Description
PageRank Ranks the node based on the quality and

number of incoming links
Betweenness centrality Measures the centrality of the node based

on the shortest paths (measures informa-
tion flow)

Closeness centrality Reciprocal of the sum of the length of the
shortest paths between the node and the
rest of the graph (measures efficiency of
information spread)

Degree centrality Number of incoming and outgoing en-
trainment connections

In-degree centrality Number of incoming entrainment connec-
tions only

Katz centrality Measures the number of walks between
two nodes, reflecting its relative influence
on neighbors.

Doc2vec

Le and Mikolov [58] introduced doc2vec as an unsupervised learning algorithm to generate dis-

tributed vector representations of text of arbitrary size; it is inspired by the word2vec model [70].

They proposed two different models for learning numerical representations of text: 1) Distributed

Memory Model of Paragraph Vectors (PV-DM) 2) paragraph vector with a distributed bag of words

(PV-DBOW).

Distributed Memory Model of Paragraph Vectors (PV-DM) uses both word vectors and para-

graph vectors to predict the next word. It attempts to learn paragraph vectors that can predict the

word given different contexts sampled from the text. The context size is a tuneable parameter, and

a sliding window of arbitrary context size generates multiple context samples. Doc2vec works by

averaging these word vectors and paragraph vectors to predict the next word. It employs stochastic

46



gradient descent to learn word and paragraph vectors. The resultant paragraph vectors serve as

a feature vector of the corresponding paragraph and can be used as an input to machine learning

models like SVM and logistic regression.

Paragraph vector with a distributed bag of words (PV-DBOW) ignores the context words and

attempts to predict randomly selected words from the paragraph. At each iteration of stochas-

tic gradient descent, it classifies a randomly selected word from the sampled text window using

paragraph vectors.

Instead of using doc2vec on the raw team dialogues, doc2vec was applied to the output of the

dialogue act classifier, sentiment analysis, and syntactic entrainment. This procedure enables us to

disentangle the contribution of different elements of team communication at predicting conflict.

Datasets

This analysis includes results from three datasets: 1) multiplayer cooperative board games (Teams

corpus) [61]; 2) software engineering teams (GitHub issue comments); and 3) military team com-

munications [48]. We test the generalizability of the embeddings learned on the Teams corpus on

the two datasets collected from software engineering and military teams. The Teams corpus is the

most complete dataset since it is the only one that contains post-task process conflict ratings.

We initially apply our proposed methodology on the Teams corpus dataset collected by Litman

et al. [61]. We are using process conflict z-scores to represent team conflict. Jehn et al. have

identified that low process conflict scores indicate good team performance and vice versa [44]. To

study the problem of early prediction of team conflict, we divide each dialogue into three equal

sections that correspond to the knowledge-building, problem solving, and culmination teamwork

phases. Our final classification dataset consists of 12 patterns per dialogue, which are generated
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from applying the three methods (semantic, sentiment, syntactic) to the whole time period, as well

as the initial, middle and final segments.

We test the generalizability of the learned models on software engineering teams (GitHub issue

comments) and military team communications.

Experimental Setup

Teams were divided into low and high conflict teams based on their process conflict z-scores, and

classification accuracy was measured. Doc2vec was used to generate the vector representation

of all the patterns. Doc2vec comes in two different flavors: 1) Distributed Memory Model of

Paragraph Vectors (PV-DM) and 2) Distributed Bag of Words version of Paragraph Vector (PV-

DBOW). Table 5.3 shows the comparison of PV-DM & PV-DBOW when applied to the complete

dialogue. The main difference between PV-DM and PV-DBOW is, unlike PV-DBOW, PV-DM

keeps track of the context while encoding. The high performance of PV-DM on DAs and sentiment

patterns, compared to PV-DBOW, confirm that the sequences contain meaningful information. Our

results show that the performance difference of the PV-DM and PV-DBOW using the dialogue act

and sentiment embeddings are statistically significant (p < .01). The difference of the PV-DM

and PV-DBOW using the entrainment embedding is not statistically significant (p=0.754). PV-DM

gives consistent performance across all the three features sets, making it a better candidate for

detailed analysis. Through extensive experiments, we identified that PV-DM with epoch size of 5,

negative sampling 5, and window size 10 works best for our setting. By default, we only report

results for PV-DM.

We evaluated the performance of both logistic regression and the support vector machine (SVM)

classifier on the full dialogue (shown in Table 5.4). SVM clearly performed better than logistic re-
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Table 5.3: Doc2Vec Comparison

PV-DBOW PV-DM
Accuracy F1-Score Accuracy F1-Score

Dialogue Act 57.89 58.25 68.42 68.77
Sentiment 55.26 55.48 78.94 77.53
Entrainment 55.26 55.04 60.52 60.77

Table 5.4: Comparison of Supervised Classifiers

Logistic Regression SVM
Accuracy F1-Score Accuracy F1-Score

Dialogue Act 63.15 63.15 68.42 68.77
Sentiment 71.05 70.86 78.94 77.53
Entrainment 63.15 63.15 60.52 60.77

gression using the dialogue act and sentiment embeddings. Logistic regression seemed to perform

better on entrainment compared to the SVM. We report the detailed comparison of the two clas-

sifiers by incrementally increasing the length of the dialogues in Section 6. To remain consistent

with the previous work [89], SVM was used for the teamwork phase comparison.
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CHAPTER 6: EXPERIMENTAL EVALUATION OF HYPOTHESIS H1-H4

Results on Teams Corpus

This chapter includes contents and figures from the papers titled ”Enayet, A., & Sukthankar, G.

(2021, January). Analyzing team performance with embeddings from multiparty dialogues. In

2021 IEEE 15th International Conference on Semantic Computing (ICSC) (pp. 33-39). IEEE.”

and ”Enayet, A., & Sukthankar, G. (2021). Learning a Generalizable Model of Team Conflict

from Multiparty Dialogues. International Journal of Semantic Computing, 15(04), 441-460.”.

Table 6.1 presents the classification accuracy of the three embeddings on the whole dialogue.

SVM exhibits the best classification accuracy of 78.94% on sentiment based vectors, followed

by dialogue act based vectors. Figure 6.1 visually illustrates the effects of different embeddings.

By plotting the vectors in 2d using t-Distributed Stochastic Neighbor Embedding (TSNE), we can

observe the formation of two clusters, representing teams with high social outcomes and low social

outcomes in the dialogue act and sentiment vectors, whereas the entrainment ones are intermixed.

Table 6.1 shows the accuracy of the conflict classifier across the duration of the games. The

sentiment classifier achieved the best accuracy when the whole dialogue was used and exhibited

consistent performance across all team phases. The dialogue act embedding was the best at the

Table 6.1: Accuracy by Team Phase

Phase Dialogue Act Sentiment Entrainmemt
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Whole 68.42 68.77 78.94 77.53 60.52 60.77
Initial 71.05 71.35 65.78 62.84 42.10 42.42
Middle 73.68 73.31 65.78 59.18 47.36 46.78
End 68.42 68.68 71.05 71.19 60.52 60.32
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Figure 6.1: t-SNE representation of vectors in 2D, where ’S’ represents the teams with low process
conflict scores and ’U’ represents the teams with high process conflict scores. Both sentiment (left)
and dialogue act embedding (right) show a better class separation than entrainment (center). Note
that the axes have no explicit meaning.

initial phase, making it a good choice for the “thin-slice” problem of rapidly diagnosing teamwork

health from a small sample of utterances. Syntactic entrainment lagged behind the sentiment and

semantic analysis, but performance improved during the final phase. Note that each phase was

analyzed separately, rather than cumulatively.

For statistical testing, we generated 30 results for each phase using each embedding. Since some of

the result distributions (Figure 6.2) failed the D’Agostino-Pearson normality test, the Kolmogorov-

Smirnov test was used for significance testing. The performance differences between each pair

of embeddings were statistically significant (p < 0.01). However the differences between the

initial and end phase results for the sentiment and entrainment embeddings were not significant

(Table 6.2). Semantic and sentiment based vectors outperformed the syntactic entrainment vectors

at the classification task across all phases.

Preliminary results (Table 5.4) showed that entrainment vectors perform slightly better when used

with logistic regression than with SVM. To further analyze the finding and test our third hypothe-

ses (H3), we check the embeddings’ performance as the dialogue progresses. For this purpose, we

divide the dialogues into 20 phases. Starting from the first phase of the dialogue, we incrementally
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Figure 6.2: Distribution of embedding results for initial and final teamwork phases for dialogue
acts (left), sentiment (middle) and entrainment (right)

Table 6.2: Comparison of approaches during the initial (knowledge dis-
covery) and culmination (final) phases

Knowledge Discovery Culmination
min max min max p-value

Dialogue Act 0.552632 0.710526 0.473684 0.684211 2.48e-05
Sentiment 0.526316 0.657895 0.500000 0.710526 0.455695

Entrainment 0.4210 0.4210 0.394737 0.605263 0.594071

increase the dialogue’s length by adding the next phase into it. This is different from testing on

knowledge building phase, problem-solving phase, and culmination phase, where while training

and testing on any specific phase, we did not include utterances from previous phases. Figure 6.3

shows the trend of classification performance of the different embeddings with both logistic re-

gression and SVM classifiers as the dialogue progresses. Results showed that both sentiment and

dialogue act embeddings dominant across the whole timeframe. The results also reject H3 by

showing that the entrainment performance does not improve as the dialogue progresses.
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Figure 6.3: Conflict prediction accuracy of different embeddings on the Teams corpus as the dia-
logue progresses. The classifiers (SVM and logistic regression) using the entrainment embedding
(green and gray lines) perform consistently worse across the whole dialogue.

Results on Dataset Generalization

One of our research goals is to create team communication embeddings that generalize well across

datasets, since there are few team communication datasets and some of them are extremely small.

To evaluate generalizability, we apply our pre-trained models (dialogue acts, sentiment, entrain-

ment) on the GitHub issue comments and military dialogues.

Table 6.3 shows the performance of the different embeddings on the GitHub issue comments. The

dialogue act embedding outperforms the other ones under both classifiers and achieves a compa-

rable performance to the original dataset. The dialogue act embedding also outperforms sentiment

on the small military team communication dataset (Table 6.4). Unfortunately, the pre-trained en-

trainment embedding completely failed on this problem. One issue with the military dataset is

that it features significantly larger teams (15 members on average) than the Teams corpus (3-4

members). We believe that graph based entrainment measures do not generalize well across larger

53



Table 6.3: Performance on GitHub Issue Comments Dataset

Logistic Regression SVM
Dialogue Act 66.00 68.00

Sentiment 58.00 60.00
Entrainment 42.00 42.00

Table 6.4: Performance on Military Teams Dataset

Logistic Regression SVM
Dialogue Act 100.00 100.00

Sentiment 90.00 60.00
Entrainment - -

graphs since the kernel measures are very dependent on graph size. Also the length of dialogues

in GitHub issue comments is short compared to the Teams corpus; many team members only have

one utterance in a dialogue. The small number of utterances from a team member doesn’t facilitate

effective computation of entrainment.

Improving Conflict Detection Performance

Our long-term goal is to create a proactive assistant agent that can rapidly detect team conflicts

using the dialogue act embedding. To do this, we want to maximize the F1-score of the high conflict

class (unsuccessful teams). Fine-tuning the model on the target dataset is one way to improve the

pre-trained model’s performance on the target dataset. Due to the small size of the Teams corpus,

we do not use an extensive deep learning model; to analyze the performance of the classifier when

samples from the target dataset are used for training along with the actual training corpus, we add

five high conflict dialogues from the GitHub issue comments dataset to the training dataset. This

is not possible to do with the military dataset which lacks good examples of conflict. We have
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intentionally selected a minimal number of samples from the target dataset to avoid cheating the

generalizability check. Table 6.5 shows the comparison of F1-scores of the individual classes when

the dialogue act embedding is trained with and without supplemental high conflict examples. The

GitHub dataset contains 50 dialogues, of which we are using 5 dialogues for training and 45 for

testing. Incorporating GitHub high conflict samples in training the dialogue act embedding also

improved the accuracy of the low conflict class. We were able to use a similar approach to boost

the performance of the sentiment embedding, but the final performance remained lower than the

dialogue act embedding.

Table 6.5: Performance on GitHub Issues Dataset With vs. Without High Conflict Training Exam-
ples

SVM Classifier
Accuracy (overall) Low Conflict (F1-Score) High Conflict (F1-Score)

Without 68.88 80.00 30.00
With 73.33 81.00 54.00

Logistic Regression Classifier
Accuracy (overall) Low Conflict (F1-Score) High Conflict (F1-Score)

Without 71.11 81.00 38.00
With 75.55 84.00 52.00

Conclusion

This study presents an evaluation of different embeddings for predicting team conflict from mul-

tiparty dialogue. Embeddings were extracted from three types of features: 1) dialogue acts 2)

sentiment polarity 3) syntactic entrainment. Results confirm the effectiveness of both sentiment

(H2) and dialogue acts (H1). However, experiments failed to confirm that classification based on

syntactic entrainment signficantly improves over time (H3). Although there are many other ways to

measure linguistic synchronizaton, it seems less promising for integration into an agent assistance
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system. The dialogue act embedding is strong during the initial phase making it a good candidate

for diagnosing the health of team formation activity. A continuous team monitoring agent assistant

system might do better with sentiment analysis, assuming training data availability.

The highly specialized nature of the team communication produced by software engineering and

military teams make them excellent candidates to evaluate the learned embeddings. We test models

trained on the Teams corpus on these other datasets. The dialogue act embedding generalized

better than sentiment and entrainment on real-world datasets from software engineers and military

teams (H4). Results show that fine-tuning on the target dataset improves performance. Sentiment

embeddings show some potential but seem more promising when trained and tested on the same

corpus. Due to its usage of graph kernels, the entrainment feature vector is highly dependent on

consistent team sizes and did not generalize well on either corpus.

56



CHAPTER 7: AN ANALYSIS OF DIALOGUE ACT SEQUENCE

SIMILARITY

ACROSS MULTIPLE DOMAINS (H5)

This chapter includes contents and figures from the paper titled ”Enayet, A., & Sukthankar, G.

(2022, June). An Analysis of Dialogue Act Sequence Similarity Across Multiple Domains. In

Proceedings of the Thirteenth Language Resources and Evaluation Conference (pp. 3122-3130).”.

As a part of this dissertation, we also analyse how dialogue act sequences vary across different do-

mains in order to anticipate the potential degradation in the performance of learned models during

domain adaptation. This chapter presents the detail of our proposed method and the findings.

Introduction

Transfer learning is commonly used in natural language processing to compensate for paucity of

data; a machine learning model can often be trained on a single large source dataset and then fine-

tuned for smaller target datasets. Unfortunately many machine learning models perform poorly

when exposed to domain shifts, distributional differences between source and target datasets. Stud-

ies have shown that, unlike machine learning algorithms, humans are more robust to these natural

distribution shifts [73].

In this dissertation, we focus on the problem of learning models for discourse analysis that gen-

eralize across different communication settings. Discourse is often represented as a sequence of

dialogue acts (DAs) where each DA represents the functional purpose of the utterance in the con-

versation (e.g., statement, question, agreement). Dialogue modeling systems not only analyze the
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content of the utterance, but also the context of neighboring dialogue acts to track conversational

state; for instance, agreement dialogue acts often follow questions. Due to differences in the lin-

guistic features of training and test data, natural distribution shifts may occur [53]. In dialogue

models that rely on the context of utterances, we hypothesize that differences in DA patterns will

affect model performance.

This study presents a methodology for predicting the potential degradation in the performance of

learned models during domain adaptation. Our analysis shows that dialogue sequences from re-

lated domains possess similar n-gram frequency distributions. This similarity can be quantified by

measuring the average Hamming distance between subsequences drawn from different datasets.

We analyze the similarity of the dialogue acts across eight different datasets: SwDA, AMI (Dial-

Sum), GitHub, Hate Speech, Teams, Diplomacy Betrayal, SAMsum, and Military (Army). These

datasets represent many types of discourse including collaboration, formal discussion, strategic

planning, and social media exchanges. Rather than evaluating performance on a specific dialogue

modeling task, we evaluate the suitability of embeddings learned from DA sequences for discrimi-

nating between discourse from different datasets. Our experiments demonstrate that when dialogue

acts sequences from two datasets are dissimilar they lie further away in embedding space, making

it possible to train a classifier that is robust to data perturbations, such as random deletion and tag

swapping. Our objective is to provide intuition on the transferability of learned models that utilize

dialogue act patterns to make predictions; our research findings have implications for many critical

applications including conversational agents, question answering systems, role identification, and

speech recognition.
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Related Work

Dialogue act sequences have been leveraged for a variety of NLP tasks such as coreference res-

olution [2], misunderstanding detection [1], abstractive summarization [35], discourse chunking

[69], information need classification [33], and conversational models [54]. Example applications

include situational-based dialogue management systems [59], agenda-based simulators for training

dialogue managers [102], semi-automated negotiation [134], and dynamic dialogue selection [95].

Dialogue act classifiers tag each utterance with a label according to a taxonomy of conversational

functions. Many dialogue act classification techniques make use of the labels of the surrounding

utterances such as the Contextual Dialogue Act classifier (CDAC) [3], n-gram models [126, 36],

and unsupervised multimodal feature-based techniques [30]. Neural architectures [116] are com-

monly employed for dialogue act classification including the dual-attention hierarchical RNN [60]

and generative models [115].

However, there is little work on the problem of measuring similarity between two dialogues. Lavi

et al. (2021) introduce a method ConvEd to calculate the similarity between two conversations to

support the retrieval of relevant customer service interactions for chatbots. ConvEd measures the

edit distance between the two conversations by counting the insertion, deletion, and substitution

operations required to align the two conversations. Unlike our work, ConvEd measures similarity

by calculating an embedding over the original utterances, rather than the dialogue act tags.

Researchers have developed techniques for efficient computation of document similarity [26], node

similarity [92], entity resolution [16], and query expansion [62], Many of the proposed approaches

exploit word embeddings for the computation of similarity [26, 92, 15, 62]. We use Doc2Vec

[58], a variant of Word2Vec [70], since we are interested in document level (dialogue) embeddings

rather than word level. The Distributed Memory Model of Paragraph Vectors (PV-DM) model
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of Doc2Vec generates embeddings by sampling context windows of user-defined sizes from a

paragraph and preserving the most meaningful information contained in the sequences present in

those context windows. The next section describes our methodology for quantifying the similarity

of dialogue act sequences.

Methodology

A DA classifier was used to extract sequences of dialogue acts from sets of dialogues. Our analysis

was performed on eight datasets that span a rich cross-section of human social interactions. In the

following sections, First we present the frequency distribution of the dialogue act n-grams. Then

we introduce our proposed similarity measure for predicting generalizability performance: the

percentage of zero Hamming distance subsequences of fixed window size drawn from different

datasets.

We contrast this method to one of the most commonly used methods of calculating document sim-

ilarity, a Doc2Vec embedding. This type of embedding is often used as a basis for other dialogue

modeling tasks. We measure the cosine similarity of discourse using the embeddings obtained

through Doc2Vec. Then we study how effective the embedding is at discriminating between di-

alogue instances drawn from different datasets, using a discriminative distance method. Binary

classifiers are trained to classify the dataset from a DA sequence represented in the Doc2Vec

embedding; using the learned models, we identify the most confusing pairs of datasets for a

binary classifier. We show that the most confusing datasets are typically collected within the

same communication context and are highly similar according to both the dialogue act n-gram

and Hamming distance analysis. These confusing pairs are strong candidates to be compati-

ble domain adaptation source and target tasks. We have made the dataset of dialogue act se-

quences collected from different communications settings available at https://github.com/
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ayeshaEnayet/DAC-USE (under DomainShift).

Dialogue Act Classification

First we apply our Universal Sentence Encoder (USE) based DA classification model, trained on

the SwDA dataset, to tag the utterances of all the datasets. We use the SwDA-DAMSL tagset avail-

able at https://web.stanford.edu/˜jurafsky/ws97/manual.august1.html. USE

is itself trained on a variety of datasets, including discussion forums, and it exhibits a good per-

formance on a variety of NLP tasks [14]. The code and details for the DA classification model

are available at https://github.com/ayeshaEnayet/DAC-USE. We selected the USE

based model due to its ability to generalize effectively across dialogue (discussion) datasets. The

test accuracy of our classification model is 72%, and validation accuracy is 70% which is compa-

rable to most of the DA classification approaches. The DA classifier does not consider surrounding

utterances to predict the tag of the current utterance; classification is performed solely on the basis

of the information present in the embedding of a single utterance.

The DA classifier takes a sequence of utterances as its input and returns the sequence of DAs, where

each DA corresponds to one utterance. Table 7.1 shows the top three most frequent unigrams,

bigrams, trigrams, 4grams, and 5grams of the datasets used in this analysis. There is some overlap

in the DA n-grams across all datasets; for instance sequences of sd (statement-non-opinion) are

common across all datasets.

Datasets

Datasets were selected to represent a cross-section of communication domains including social me-

dia exchanges, collaboration, formal discussion, telephonic conversation, and strategic dialogues.
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Table 7.1: N-gram frequency distribution: top three most frequent unigrams, bigrams, trigrams,
4grams, 5grams of all the datasets. Sequences of sd (statement-nonopinion) are common across
all datasets. The most frequent tags in this table are sd: Statement-non-opinion, b: Acknowl-
edge, %: Uninterpretable, sv: Statement-opinion, ad: Action-directive, qy: Yes-No-Question, fc:
Conventional-closing, qh: Rhetorical-Questions.

Dataset Unigrams Bigrams Trigrams 4grams 5grams
Teams (sd),(b),(%) (sd,sd),(sd,b),(b,sd) (sd,sd,sd),

(sd,sd,b),
(sd,b,sd)

(sd,sd,sd, sd),
(sd,sd,sd,sd),
(sd,sd,sd,b)

(sd,sd,sd,sd, sd),
(sd,sd,sd,sd,b),
(sd, sd,sd,b,sd)

GitHub (sd),(sv),(ad) (sd,sd),(sd,sv),(sv,sd) (sd,sd,sd),
(sv,sd,sd),
(sd,sd,ad)

(sd, sd, sd, sd),
(sd, sd, sd, ad),
(sv, sd, sd, sd)

(sd, sd, sd, sd, sd),
(sd, sd, sd, sd, ad),
(sd, sv, sd, sd, sd)

Army (sd),(qy),(%) (sd,sd),(qy,sd),(sd,qy) (sd,sd,sd),
(sd,sd,qy),
(qy,sd,sd)

(sd, sd, sd, sd),
(sd, sd, sd, qy),
(qy, sd, sd, sd)

(sd, sd, sd, sd, sd),
(qy, sd, sd, sd, sd),
(sd, sd, sd, sd, qy),

SAMsum (sd),(sv),(fc) (sd,sd),(sv,sd),(sd,sv) (sd,sd,sd),
(sd,sv,sd),
(sv,sd,sd)

(sd, sd, sd, sd),
(sd, sd, sv, sd),
(sd, sv, sd, sd)

(sd, sd, sd, sd, sd),
(sd, sd, sd, sv, sd),
(sd, sd, sv, sd, sd)

Hate Speech (sd),(sv),(fc) (sd,sd),(sv,sd),(sd,sv) (sd,sd,sd),
(sd,sv,sd),
(sv,sd,sd)

(sd, sd, sd, sd),
(sd, sd, sv, sd),
(sd, sv, sd, sd)

(sd, sd, sd, sd, sd),
(sd, sd, sd, sd, qh),
(sd, sd, sd, qh, sd)

SwDA (sd) (sv)(b) (sd, sd),(sd, b),(b, sd) (sd, sd, sd),
(sd, sd, b),
(sd, b, sd)

(sd, sd, sd, sd),
(sd, sd, sd, b),
(sd, sd, b, sd)

(sd, sd, sd, sd, sd),
(sd, sd, sd, b, sd),
(sd, sd, sd, sd, b)

AMI (sd), (b),(sv) (sd,sd),(b,sd),(sv, sd) (sd,sd,sd),
(b, sd,sd),
(sd, sv, sd)

(sd, sd, sd, sd),
(b, sd, sd, sd),
(sd, sv, sd, sd)

(sd, sd, sd, sd, sd),
(b, sd, sd, sd, sd),
(sd, sd, sd, sd, sv)

Diplomacy (sd),(sv),(qy) (sd,sd),(sv,sd),(sd,sv) (sd,sd,sd),
(sd,sd,sv),
(sv,sd,sd)

(sd, sd, sd, sd),
(sv, sd, sd, sd),
(sd, sd, sd, sv)

(sd, sd, sd, sd, sd),
(sd, sv, sd, sd, sd),
(sd, sd, sd, sd, sv)

Some of these datasets are quite large, but many are too small to support complex machine learning

models. Our analysis was performed on a balanced dataset with 50 randomly sampled dialogues

selected from each dataset, except for the Military dataset which only has 22 examples. A noisy

version of this dataset was also created by randomly deleting and swapping dialogue act labels

(see Section 7 for details). All the datasets contain dialogue in the English language. We perform

analysis on SwDA, AMI (DialSum), GitHub, Hate Speech, Teams, Diplomacy Betrayal, SAMsum,

and Military (Army).
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Sequence Similarity

The Hamming distance between two sequences is the number of positions where the sequences

have different values. We extract all the possible subsequences of lengths four and five from the

output of the DA classifier and calculate the Hamming distance between the sequences from all the

datasets. To score each sequence, we increment the count by one for every pair of subsequences

possessing a Hamming distance of zero. The similarity score between two dialogues is represented

as a percentage. The final similarity score between datasets is quantified by taking the average of

the scores.

Embeddings

Most machine learning models start by learning a lower dimensional representation of the data that

can be used by the NLP pipeline. Each discourse is initially represented as a sequence of dialogue

acts. Sequences of DAs are treated as documents, with the DAs forming the vocabulary of the

document. We apply Doc2Vec [58], a technique to learn paragraph vectors, to learn embeddings

from these sequences of dialogue acts. The Distributed Memory (DM) model of the Doc2Vec

was used because of its ability to generate embeddings by considering the context window of

varying sizes, as opposed to Distributed Bag of Word (DBOW) model, which does not consider

the context when learning embeddings. Our analysis was performed with the Doc2Vec function

from the Gensim library. We use PV-DM with epoch size of 5, negative sampling 5, and window

size 5. We then apply both the discriminative distance method and cosine similarity measures to

the embeddings.

Discriminative Distance: Discriminative distance was used to identify the most confusing dataset

pairs. We train a support vector machine (SVM) binary classifier on the embeddings learned from
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Doc2Vec; its aim is simply to identify the dataset. The most confusing pairs are the ones that

have similar embeddings. If the classifier exhibits a high accuracy, it means that the embedded

representation is sufficiently distinct to allow the classifier differentiate between the two datasets.

We evaluated the SVM with both a linear and non linear (radial basis function) kernel.

Cosine Similarity: Cosine similarity is a measure of similarity between two vectors calculated

by taking the cosine of the angles between two embeddings. We measure the cosine similarity

between the embeddings of all the datasets that we obtain through Doc2Vec.

Experimental Analysis

The datasets can be grouped by communication setting, with some datasets falling into multiple

categories. The Teams, GitHub, and Army datasets are collaborative dialogues gathered from

team communications. The SAMsum and Hate Speech datasets are social media exchanges. The

Diplomacy and Teams datasets were collected from game communication. GitHub also falls under

the social media category, but the dialogues in this dataset are more formal and goal-oriented than

SAMsum and Hate Speech. SwDA is a telephonic communication dataset composed of non-goal-

oriented discussion between two people. Diplomacy and Army are both good examples of strategic

planning. The AMI meeting and GitHub datasets are goal-oriented formal discussion. Table 7.2

provides an overview of our categorization.

Table 7.1 shows the result of our n-gram frequency distribution analysis and gives the top three

most frequent unigrams, bigrams, trigrams, 4grams, and 5grams of all the datasets. The most

frequent unigram, bigram, trigram, and 4gram in social media dialogues like SAMsum and Hate

Speech are the same. Also, the Yes-No question (qy) is one of the major categories in strategic

dialogues. The SwDA and AMI both have statement (sd), opinion (sv), and acknowledgment (b) as
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Table 7.2: Categorization of datasets.

Datasets Category
Teams, GitHub,
Army

Collaboration

SAMsum, Hate
Speech, GitHub

Social Media

SwDA Discussion
(informal/non-
goal-oriented)

Diplomacy, Army Strategic planning
Diplomacy, Teams Gameplay
AMI, GitHub Discussion

(formal/goal-
oriented)

frequently occurring categories in the discourse. Uninterpretable (%) is a prominent unigram in so-

cial media datasets. GitHub and Diplomacy datasets have bigram sequences in common; this may

occur in both datasets because members propose solutions to each other. Statement-non-opinion

(sd) and Statement-opinion (sv) are the most frequently occurring tags of formal dialogues (AMI

and GitHub). In addition to sv and sd, the most prominent unigram in GitHub is Action-directive

(ad) because, in these dialogues, the members suggest a course of actions to the other members to

solve problems. Similarly, in AMI corpus Acknowledge (b) is one of the most prominent tags.

Figure 7.1 shows the distribution of embeddings of all the datasets on a 2D plane. The distribu-

tion indicates that SwDA and Teams are clustered separately from other datasets and have unique

embeddings. On the other hand, the SAMsum, Hate Speech, and GitHub dataset embeddings (all

from the Social Media category) are intermixed and cover a large area. Social media dialogues

tend to have a similar dialogue flow. Diplomacy slightly overlaps with GitHub and is near the

Military dataset.

Figure 7.2 shows the classification accuracy of the SVM (with linear kernel) at distinguishing
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Figure 7.1: Projection of embeddings of datasets in 2D space. ami: AMI, g: GitHub, d: Diplomacy,
t:Teams, h: Hate Speech, s: SwDA, m: SAMsum, a: Military (Army).

Figure 7.2: Pairwise classification accuracy using SVM with linear kernel and the Doc2Vec embed-
ding. The classification task is simply to identify the dataset. ami: AMI, g: GitHub, d: Diplomacy,
t:Teams, h: Hate Speech, s: SwDA, m: SAMsum, a: Military (Army).
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between dialogue act sequences drawn from different datasets. Instances are represented using

the embedding illustrated in Figure 7.1. This shows that SwDA, Military (Army), and Teams are

linearly separable from almost all the datasets and exhibit a high classification accuracy. AMI,

Hate Speech, GitHub, and SAMsum have high error rates. On the other hand, Diplomacy lies in

between highly separable and inseparable datasets. AMI and GitHub, i.e., the formal discussion

datasets, showed a significant overlap with four out of seven datasets. The results also indicate

that even dialogues within the same domain may exhibit different communication patterns. The

Military and Teams dataset belong to multiple categories but have distinct communication patterns

from other datasets.

We validate our ML-based models against the non-ML-based similarity measures. Figure 7.3

shows the comparison of average percentage similarity between pairs of datasets, calculated using

Hamming distance, and binary classification accuracy, using the RBF kernel function. The results

show that a high similarity between two datasets leads to low binary classification accuracy. SwDA

is one of the standard datasets used for the DA classification task. Yet our results show that SwDA

is very different from other datasets, as can be observed in Figure 7.1, and gives the highest binary

classification accuracy when classified against other datasets. SAMsum showed the lowest binary

classification accuracy of 55% and 65% when tested with Hate Speech and Diplomacy. SAMsum

is one of the datasets which covered a large area in the 2D plane shown in Figure 7.1; it lies near

Hate Speech, GitHub, and Diplomacy.

Table 7.3 provides an analysis of the cosine similarities of the embeddings. It shows the top two

most similar and the least similar datasets for each dataset. The results are consistent with Figure

7.1 and the binary classification task (Figure 7.3), showing that SwDA and Teams are two of the

least similar datasets. SAMsum and Hate Speech demonstrate a high similarity with almost all

the datasets other than SwDA and Teams. SAMsum and Hate Speech are also the datasets that

exhibit the poorest binary classification accuracy (see Figure 7.3) and similar n-gram frequency
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Figure 7.3: The trend of binary classification accuracy (for the SVM RBF kernel) vs. average
percentage similarity (normalized in the illustration) using the Hamming distance of length 4 and
5 subsequences. Hamming distance similarity predicts poor classification accuracy at the dataset
discrimination task. This does not include the results for the Military dataset; its small test set gave
100% accuracy on all the datasets.

distributions (see Table 7.1) with one another. In general, social media datasets exhibit a high

degree of similarity.
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Table 7.3: The top two most similar and least similar datasets according to cosine similarity. The
cosine similarity for some cases is negative because it is calculated between the embeddings gen-
erated through Doc2Vec, not using TF-IDF.

Dataset Most Similar 2nd Most Simi-
lar

Least Similar

Army(a) h(0.4528) m(0.4494) s(-0.0526)
AMI(ami) h(0.4043) m(0.2880) s(0.0966)
Diplomacy(d) h(0.4511) m(0.4194) t(-0.0126)
GitHub(g) h(0.2753) d(0.2534) a(0.0285)
Hate(h) m(0.5281) a(0.4578) t(0.1062)
SAMSum(m) h(0.5352) a(0.4606) s(0.0409)
SwDA(s) h(0.1092) ami(0.1034) t(-0.0912)
Teams(t) ami(0.1464) h(0.1033) s(-0.0924)

Perturbation Analysis

Noise was introduced into the data by performing two perturbations: 1) random deletion and 2) tag

swapping. We randomly swap 10% of the tags of each dialogue and generate nine sequences per

dialogue. Similarly, we randomly delete 10% tags to generate nine sequences per sequence. This

data augmentation strategy is used to create larger but noisier datasets of dialogue act sequences.

We resample the datasets according to the size of the Military dataset and select 140 sequences

from each for analysis.

Figure 7.4 shows the comparison of binary classification accuracy with or without perturbation.

The results on the actual dataset vs. the perturbed one show large decreases in the classification

accuracy of some of the datasets due to the noise. Altering dialogue act patterns causes the dataset

to become similar to some of the other datasets. Figure 7.5 shows the distribution of synthetic

dataset embeddings on a 2D plane. Compared to the embeddings of the original dataset, synthetic

dataset embeddings of Diplomacy, Teams, and Army show a slight change in distribution and

decreased accuracy with some of the datasets. The formal discussion (AMI and GitHub) perturbed
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Figure 7.4: Comparison between the binary classification accuracy of synthetically perturbed data
(acc aug) and actual data (acc). ami: AMI, g: GitHub, d: Diplomacy, t:Teams, h: Hate Speech, s:
SwDA, m: SAMsum, a: Military (Army).

Figure 7.5: Projection of perturbed dataset embeddings in 2D space. ami: AMI, g: GitHub, d:
Diplomacy, t:Teams, h: Hate Speech, s: SwDA, m: SAMsum, a: Military (Army)
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datasets showed a greater decrease in classification accuracy than others.

Even in the presence of noisy data, the overall distribution of synthetic datasets embeddings, given

by Figure 7.5, is still similar to the embeddings of original datasets (see Figure 7.1). The learned

embedding is clearly robust to slight perturbations.

Discussion and Conclusion

This chapter presents a dialogue act similarity analysis across multiple communication domains

by calculating n-gram frequency distribution, Hamming distance, and the Doc2Vec embedding

between dialogue act sequences. It is clear that dialogue act sequences can differ greatly when col-

lected from different communication settings, but even dialogues collected from the same domain

can exhibit different communication patterns. The discourse is clearly dependent on the nature

and purpose of the conversation. Simple data augmentation techniques like random swap and ran-

dom deletion tend to alter the dialogue flow such that it becomes more similar to other dialogue

categories.

Among all the domains used for the analysis, social media datasets exhibited the highest degree of

similarity with one another. Models learned on non-goal oriented discussion do not show potential

to generalize well to goal-oriented task specific discussions, and vice versa. One of the most widely

used datasets, SwDA, does not exhibit discourse patterns similar to the other datasets used in our

analysis. Formal discussions seemed to follow a communication pattern that overlaps with other

datasets, and the models learned on these datasets showed a potential to generalize better.

The analysis indicates that the selection of appropriate source and target datasets is equally crucial

as developing efficient techniques to achieve generalizability in dialogue and discourse. Based

on our analysis, it is problematic to assume that machine learning models trained on one type
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of discourse will generalize well to other settings, due to contextual differences. We believe our

Hamming distance similarity measure can be used to anticipate potential degradation in the per-

formance of learned models during domain adaptation and to select compatible source and target

datasets.
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CHAPTER 8: MULTI-FEATURE EMBEDDING: A STEP TOWARDS

GENERALIZABLE CONFLICT PREDICTION MODEL (H6)

This chapter includes contents and figures from the paper titled ”Enayet, A., & Sukthankar, G.

(2023, May). Improving the Generalizability of Collaborative Dialogue Analysis With Multi-

Feature Embeddings. In Proceedings of the 17th Conference of the European Chapter of the As-

sociation for Computational Linguistics (pp. 3533-3547).”.

Conflict prediction in communication is integral to the design of virtual agents that support success-

ful teamwork by providing timely assistance. The aim of my dissertation is to analyze discourse

to predict collaboration success. Unfortunately, resource scarcity is a problem that teamwork re-

searchers commonly face since it is hard to gather a large number of training examples. To allevi-

ate this problem, this chapter introduces a multi-feature embedding (MFeEmb) that improves the

generalizability of conflict prediction models trained on dialogue sequences. MFeEmb leverages

textual, structural, and semantic information from the dialogues by incorporating lexical, dialogue

acts, and sentiment features. The use of dialogue acts and sentiment features reduces performance

loss from natural distribution shifts caused mainly by changes in vocabulary.

This chapter demonstrates the performance of MFeEmb on domain adaptation problems in which

the model is trained on discourse from one task domain and applied to predict team performance

in a different domain. The generalizability of MFeEmb is quantified using the similarity mea-

sure proposed by Bontonou et al. [13]. Our results show that MFeEmb serves as an excellent

domain-agnostic representation for meta-pretraining a few-shot model on collaborative multiparty

dialogues.
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Introduction

For many natural language processing applications, the ability to learn features that generalize

well across multiple datasets is a key desideratum [97]. This study introduces a new multi-feature

embedding, MFeEmb, that increases the generalizability of models learned from collaborative

multiparty dialogues. Dialogues are different from single-author documents in that, along with

textual information, they contain communication patterns that may serve as indicators of social

dynamics. Treating a dialogue as a mere text collection ignores valuable information. We advocate

exploiting implicit features present in multiparty dialogues that are less vulnerable to distribution

shifts resulting from task domain changes.

This dissertation demonstrates the usage of MFeEmb on a communication analysis task: conflict

prediction. Teamwork research faces a challenge of resource scarcity since the human subjects

datasets are quite small (less than 100 samples), due to the difficulty of recruiting teams and the

time consuming nature of many group tasks. A variety of social phenomena have been investigated

within team communication research including entrainment [89] and emergent leadership [65].

Frequency of communication is not in itself a good predictor of team performance, but a meta-

analysis conducted by Marlow et al. [67] that drew upon data from 150 studies conducted on

9702 teams concluded that high quality communication is positively related to team performance

in many task domains. Conversely, process conflict, “disagreement among group members about

the content of the tasks being performed, including differences in viewpoints, ideas, and opin-

ions” [43], is usually negatively correlated with taskwork success.

Our aim is to be able to learn a model to classify process conflict from multiparty dialogues that

generalizes well across multiple tasks. We treat the task of conflict prediction as a binary classi-

fication task with high conflict and low conflict being the two classes; the ground truth used by

the conflict prediction model is measured using a post-task team process conflict survey. We con-
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sidered three collaborative problem-solving tasks: software engineering, search and rescue, and

cooperative gameplay.

Our proposed embedding, MFeEmb, leverages textual, structural, and semantic information from

the dialogues by incorporating vocabulary, dialogue acts, and sentiment features. Lexical embed-

dings such as word2Vec and BERT [22] show good performance across multiple NLP tasks on

in-domain test sets but are less robust to domain shift. Our experimental analysis identified that

dialogue acts and sentiment sequences are informative features that predict conflict reliably even

at the earliest stage of team problem-solving [28]; however classifiers constructed using these

features still experience lackluster transfer performance when applied to new datasets, particularly

when detecting high conflict examples [29].

To address this transfer problem, we propose the usage of MFeEmb, specifically as a meta-

pretraining representation to be used within a few-shot model. MFeEmb combines the strengths

of both domain-invariant and domain-specific features. This dissertation compares the generaliz-

ability potential of the MFeEmb embedding vs. standard word embeddings using inter-class and

intra-class based similarity measures, proposed by Bontonou et al. [13]. Then we evaluate the per-

formance of MFeEmb in a domain adaptation scenario in which the model is trained on discourse

from one task domain and used to predict conflict in a different domain. Our results show that:

1. MFeEmb demonstrates superior generalizability over other embeddings for collaborative

multiparty dialogues.

2. MFeEmb is an excellent representation choice for the meta-training stage of few-shot learn-

ing.

3. The domain adaptation performance of MFeEmb can be easily enhanced by task specific

synonym replacement.
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Background

Previous studies on group interaction tasks such as conflict prediction [89], disruptive talk de-

tection [84], group satisfaction [55], and task performance prediction [52, 78] have focused on

simply improving performance on in-domain datasets. Very little attention has been paid to the

problem of creating generalizable models for multiparty dialogue that can be used when training

data is scarce. The intelligent tutoring system community has empirically assessed the generaliz-

ability of common natural language representations, such as BERT and Linguistic Inquiry Word

Count (LIWC), across collaborative problem solving tasks [88], but without investigating methods

to improve generalizability.

In domain adaptation, the goal is to train a model on data from a source domain that performs

well on a test dataset drawn from a different target distribution. Common NLP tasks (e.g., part-

of-speech (POS) tagging and named entity recognition (NER)) have been tackled using techniques

including instance weighting [45] or explicitly identifying feature correspondences between the

domains [12]. An alternate approach is to learn a single representation that generalizes well across

multiple domains. This can be done using few-shot learning [124], one of the most widely used

approaches to dealing with resource scarcity. The traditional framework comprises meta-training

and meta-testing phases, where the aim of meta-training is to learn universal representations from

multiple domains.

Rather than seeking to learn the new representation entirely from data, our research exploits sim-

ilarities in dialogue act sequences and sentiment patterns commonly observed during successful

collaborative problem-solving.

Representation choice has been shown to place an upper bound on target domain performance [8].

Few shot frameworks such as Meta-pretraining then Meta Learning (MTM) [21] have assumed that
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word embeddings like BERT that are trained on large datasets are the best choice for task agnostic

pre-training. Bontonou et al. [13] introduced a method to quantify the generalizability of a few-shot

classifier under supervised, unsupervised and semi-supervised settings. We use their inter-class and

intra-class based generalizability measure to evaluate MFeEmb vs. simple word-based embeddings

under supervised classification scenarios. Our research demonstrates that MFeEmb is superior to

word embeddings as a meta- pretraining representation.

Methodology

This section describes our approach to learning a generalizable embedding from multi-party dia-

logues for conflict prediction. We discuss our datasets, introduce our embedding, and show how

our technique can be used in combination with data augmentation and few shot learning.

Datasets

Datasets collected from different collaborative problem-solving task domains were used in our

study of generalizability:

1. Teams corpus [61]: This dataset consists of dialogues from 62 teams playing a cooperative

board game in groups of three or four. Each team plays the game twice together. The

Teams corpus was originally created to study entrainment, a linguistic phenomena in which

teammates adopt similar speech patterns [89]. The Game1 dataset of Teams corpus contains

62 dialogues, 32 low conflicts, and 30 high conflict dialogues. The Game2 dataset of Teams

corpus contains 62 dialogues, 33 low conflicts, and 29 high conflict dialogues.

2. ASIST dataset [40]: This dataset consists of 67 teams of three people participating in a

simulated search and rescue task within the Minecraft game environment. Participants com-
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pleted two different missions that involved searching a map and triaging victims. The dataset

was collected by the ASIST project to stimulate the development of proactive assistant agents

for helping human teams. The dataset contains 113 dialogues, 58 low conflicts, and 55 high

conflict dialogues.

3. GitHub social coding dataset [27]: This dataset was mined directly from the GitHub social

coding platform. It consists of data from issue comments of teams developing open source

software over a period of months. Teams vary in size, and comments were harvested for 50

reported issues. The dataset contains 50 dialogues, 29 low conflicts, and 21 high conflict

dialogues.

Both the Teams and ASIST datasets contain post-task process conflict survey data for all teams,

which we divide into high and low conflict groups using their z-scores. For GitHub, process

conflict was scored according to issue resolution using the following heuristics to determine if

conflicts occurred:

1. Unsuccessful resolution of the issue.

2. Unanswered questions in the discussion.

3. Lack of understanding about the issue from one or more members.

4. Lack of understanding or disagreement between the team members.

5. Disagreement between the members about the proposed solution.

Multi-Feature Embedding (MFeEmb)

This dissertation introduces the MFeEmb embedding which is designed to capture the dialogues’

structural, semantic, and textual information for collaborative task success prediction. To represent

the structural information, we incorporate information from dialogue acts (DAs) of the utterances.

For semantics, the sentiment polarities of the utterances are used, although DAs capture both se-
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mantic and structural information. Textual information is extracted from the vocabulary of the

dialogues.

For the word embedding, we use both the Distributed Bag of Words and Dynamic Memory models

of Doc2Vec [57] to learn embeddings. Although there is only 28% vocabulary overlap between

the ASIST and Teams datasets and 35% overlap between the GitHub and Teams datasets, word

embeddings can help preserve high performance on the training dataset, while including structural

and semantic features makes the embedding more robust to domain shifts.

For the dialogue act (DA) embedding, we first map the sequence of utterances to a sequence of DAs

using our USE-DAC (Universal Sentence Encoder Dialogue Act Classifier, described in Chapter

4). The SwDA-DAMSL tagset was used to categorize dialogue acts. The TextBlob python module

was used to assign sentiment polarities ranging from -1 to 1 to each of the utterances.

To generate the embeddings, we use the Dynamic Memory model of Doc2Vec due to the small

vocabulary size of the sequences, which is limited by the number of DA tags and sentiment gra-

dations. The Dynamic Memory model leverages context when generating embeddings, thus pre-

serving information contained in these communication patterns. In contrast, the Distributed Bag of

Words model does not consider context when generating embeddings. For the few-shot results, we

also report results with pre-trained Word2Vec embeddings. First, we separately learn three embed-

dings from the sequence of DAs, sentiments, and utterances (text); the final MFeEmb embedding is

created either by concatenating the three embeddings or by using LSTMs to learn a concatenation

ensemble model (see Figure 8.1).
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Figure 8.1: Utterances are classified using the dialogue act classifier to produce a se-
quence of DAs and the sentiment classifier to produce a time series of sentiment polar-
ities. Along with the text data, these sequences are used to create MFeEmb using the
Dynamic Memory model of Doc2Vec. The few shot learning and data augmentation op-
tions are not shown in the figure.

Corpus-Based Feature Analysis

To understand the ramifications of our feature selections, we performed frequency distribution

analyses across the high conflict and low conflict classes of the Teams Dataset. This analysis

shows that the high conflict class has a high frequency of negative sentiment polarities compared

to the low conflict class and a comparable frequency of positive sentiment polarities compared to

the low conflict class (Figure 8.2).

In the dialogue act distribution, Statement-non-opinion (sd) is the most frequent tag in both classes.

The low conflict class has a high frequency of positive communication indicators like Appreciation

(ba), Conventional-closing (fc), and Thanking (ft) compared to the high conflict class. The high

conflict class contains a high frequency of bad communication indicators like Uninterpretable (%),

Hedge (h), Signal-non-understanding (br), and Apology (fa). Interestingly, high conflict classes

have a high frequency of all categories of questions compared to low conflict classes (see dialogue
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Figure 8.2: Sentiment polarity distribution of the high conflict vs. low conflict classes in
the Teams dataset

Figure 8.3: Dialogue Acts frequency distribution of the high conflict vs. low conflict
classes in the Teams dataset

act distributions and n-grams in Figure 8.3.

Looking at the vocabulary distribution, the high conflict class contains more profanity words than

the low conflict class, and there is no overlap between the profanity word lists of both classes.

The most frequent words in the high conflict dialogues that are in profanity list are: ’hell’, ’kill’,

’suck’, ’sucking’, ’shit’, ’strip’, ’stroke’, ’rectum’, ’xxx’, ’dick’, ’screwed’, ’retard’, ’ovary’, ’piss’,
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’lube’, ’junkie’. The most frequent words in the low conflict dialogues that are in the profan-

ity list are: ’booty’, ’pot’, ’carpet’, ’rum’, ’breasts’, ’pedophile’, ’urine’, ’thug’, ’screw’, ’jerk’,

’weed’, ’screwing’, ’shower’, ’stupid’.Our analysis reveals that there is value in all three types of

features (dialogue acts, sentiment polarity, and vocabulary) but that conflict prediction remains a

challenging classification problem.

Synthetic Datasets

To further improve generalization, we augment our training data with synthetic datasets generated

using synonym replacement, as proposed by Wei and Zou [127]. Our data augmentation strategies

are described below:

1. SynReplace: We augment Teams Game1 and Game2 by replacing the words with synonyms

drawn from WordNet.

2. ASISTReplace: We augment Teams Game1 and Game2 by replacing the words with only

the synonyms present in the ASIST dataset. First, we extract the vocabulary of the ASIST

dataset. During the replacement operation, we search for synonyms in WordNet and only

replace them with the synonyms present in the ASIST dataset’s vocabulary.

3. GitReplace: Similar to ASISTReplace, we generate our third dataset by replacing the words

with only the synonyms present in the GitHub dataset.

Four synthetic dialogues are generated for each dialogue of the Teams dataset after applying ran-

dom replacement on 10% of the words. Our intuition is that collaborative problem-solving domains

such as software engineering may contain a lot of task specific jargon, and even simple synonym

replacement techniques greatly facilitates generalization.

In our experiments, the basic synonym replacement did not significantly change the intent and
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Figure 8.4: Vocabulary overlap between original Game1, original Game2, and the Game2
adversarially generated dataset

sentiment of the utterances. To show the robustness of dialogue acts and sentiment sequences

towards data augmentation, we utilize TextAttack [76], a python package for adversarial attack

and data augmentation, to generate a Teams Game2 synthetic dataset. Word Swap by BERT-

Masked LM transformation was employed to generate synthetic examples from the Teams Game2

dataset. One synthetic example is generated per dialogue of the Game2 dataset. The synthetic

dataset contains ≈ 50% more unique words than original Game2 dataset (Figure 8.4). Hamming

distance was used to calculate the difference between the sequences of the Game2 original and

Game2 synthetic datasets. On average, the adversarial synthetic dataset only resulted in a 11%

change in DA sequences and 14% change in sentiment sequences.

Experimental Setup

The Teams corpus contains 124 team dialogues from 62 different teams, playing two different

collaborative board games. We use the Teams Game1 dataset with 62 total samples, divided into
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32 low and 30 high conflict samples, as our training dataset. The small training dataset ensures that

the experiments reflect the generalization performance under the resource scarcity scenario. Our

test datasets for evaluating domain adaptation are Teams Game2, GitHub, and ASIST. Obviously

the domain shift is the smallest between the Teams Game 1 and 2 datasets. We use the GitHub

and ASIST datasets to check the transferability of MFeEmb under domain shift. The model was

not fine-tuned before evaluating the performance on GitHub and ASIST. We selected these three

datasets for testing because they reflect different levels of transfer complexity, starting from the

least complex transfer problem, i.e., Teams Game2 dataset, to the most complex ASIST dataset,

based on the level of natural distribution shift (Figure 8.5). We evaluate our proposed MFeEmb

Figure 8.5: Vocabulary overlap between datasets.

under the following three experimental setups:

1. SVM and logistic regression classifiers to distinguish high conflict and low conflict classes.

2. LSTM concatenation ensemble.

3. Few-shot learning approach.

84



We benchmark MFeEmb against prior work on conflict prediction, other embedding choices, and

FsText, a few-shot model proposed by Bailey and Chopra [7]. Experiments were performed using

a 300-dimensional version of MFeEmb where the length of all the three embeddings is the same,

i.e., 100. We report the mean and standard devication of F1-Scores after 15 runs. For the SVM

and logistic regression classification experiments, we only report the results (mean F1-Scores) of

the best performing classifier. ’*’ denotes that logistic regression was the top performer, and ’+’

denotes cases where the SVM was the best.

SVM and Logistic Regression

After Doc2Vec is used to generate the three embeddings for each sample, the embeddings are

concatenated to create MFeEmb. We use both SVM and logistic regression to classify the instances

and report the result of the one that shows the highest accuracy. For DAs and sentiment sequences,

we always use the Dynamic Memory model (DM) of Doc2Vec.

Few-Shot Learning (FsText)

For few-shot learning, we use the method proposed by Bailey and Chopra [7] and available in the

FsText Python module. The training document for the meta-training stage of few-shot learning is

represented using a pre-trained word embedding (Word2Vec). In the case of more than one training

sample per class, the proposed method works by averaging each class’s vectors to calculate the

most effective class representative. Cosine similarity is used to measure the distance between the

test sample and each class representative, and the test sample is assigned the label of the class with

the highest similarity. We compare the generalizability of FsText (Original) with MFeEmb-based

FsText, by replacing Word2Vec embedding with MFeEmb during the meta-training stage.
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Concatenation Ensemble

Due to the small size of the training set, we apply the synonym replacement technique proposed

by Wei and Zou [127] to augment the training data. One hot encoding is used to encode DA,

sentiment polarities, and vocabulary to train the model. We train three different Bidirectional

LSTM models, one on each of DAs, sentiments, and word-based documents, and merge them to

create our MFeEmb based ensemble. Our Bidirectional LSTM models for each feature have an

embedding layer, an LSTM layer, one dropout layer, and one deep layer.

Baseline Models

We compare our proposed MFeEmb’s results with several baseline models that use the same binary

classification setup for conflict prediction. First, we show that MFeEmb performs competitively

against prior work on conflict prediction [28] using their proposed dialogue act only and sentiment

only embeddings. Note that our results are not directly comparable to what was reported in their

paper because we use a reduced training set thus we have reimplemented their embeddings.

We also compare MFeEmb to the commonly used BERT based embedding. We use the bert en unc-

ased L12 H768 A12 model available at TensorFlow Hub1 to develop our baseline classifier. The

model contains one dense layer, one dropout layer, a sigmoid activation function, Adam optimizer.

Due to the small size of the Game1 dataset we train the model on the synonym replaced Game1

dataset.

These independent baselines are compared against three implementation options for MFeEmb: 1)

MFeEmb with simple binary classifier (SVM or logistic regression), 2) MFeEmb concatenation

ensemble learned with LSTMs trained on the synonym replaced augmented dataset, 3) a variation

1https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4

86

https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4


of few-shot learning method (FsText) [7] in which the Word2Vec embedding is replaced with

MFeEmb during the meta-training stage. For training and testing, we concatenate all the utterances

of the dialogue into one single document and assign it to one of the classes depending on the

conflict score of the team.

Results

Figure 8.6: Performance of MFeEmb vs. other embedding choices from prior work.

Figure 8.7: Performance of MFeEmb with and without word embedding (WE).

This section presents results on the generalizability of MFeEmb under different experimental se-

tups.
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Similarity Based Evaluation

First we quantify the potential generalization of the representation using the similarity measure

proposed by Bontonou et al. [13]. The similarity measure is given by:

intra(c) =
1

k(k − 1)

∑
iyi=c

∑
j ̸=iyj=c

cos (fi, fj) (8.1)

inter(c, c̃) =
1

k2

∑
iyi=c

∑
j ̸=iyj=c̃

cos (fi, fj) (8.2)

similarity =
1

N

N∑
c=1

(intra(c)−max
c ̸=c̃

(inter(c, c̃))) (8.3)

where c is class, N is the number of classes, k is number of examples, f is the embedding, intra(c)

is cosine similarity within a class, and inter(c, c̃) is cosine similarity through classes c and c̃. The

final similarity score reflects the comparison of the intra(c) and inter(c, c̃). Intuitively it can be

seen that the score measures how the representation affects the data clustering within and between

classes.

We compare our proposed MFeEmb vs. a standard word embedding learned using the bag of word

model of Doc2Vec. Table 8.1 gives the result of the similarity-based analysis, juxtaposed with the

classification results. MFeEmb has a better similarity score and high classification performance,

compared to word-based embeddings indicating the high generalizability potential of MFeEmb.

Figure 8.8 shows the visualization of the two embeddings projected on a 2D plane.

MFeEmb Performance Summary

Figure 8.6 provides the overall comparison of MFeEmb vs. the benchmark embeddings. In the case

where minimal domain adaptation was required (testing classifiers on Teams2 that were trained on
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Figure 8.8: Comparison of the MFeEmb (left) and word embedding (right) distribution on the
2D plane. Multi-feature embedding showed better clustering, with most instances of one of the
classes occupying the lower left and the other occupying the upper right. On the other hand,
word embeddings are very intermixed. s: low conflict (successful dialogue), u: high conflict
(unsuccessful dialogue).

Teams1), the simple version of MFeEmb using a SVM classifier is the top performer and outper-

forms the embeddings used in other prior work on conflict prediction [28]. Our most consistent

model, MFeEmb with FsText, showed a significantly high F1-Score on high conflict class com-

pared to baseline models (see Table 8.2). Note that detecting the high conflict examples is more

valuable for practical implementations.

For the more complex domain adaptation scenarios (GitHub and ASIST), the best performance

was achieved using MFeEmb as a replacement for the Word2Vec embedding during the meta-

training phase of FsText on GitHub, and the concatenation ensemble showed significantly better

performance on the ASIST dataset. The vanilla MFeEmb generally performed comparably to the

concatenation ensemble using LSTMs on out of domain datasets. The latter showed a high standard

deviation compared to the former.

To analyze the importance of incorporating word embedding in MFeEmb, we compare the per-
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formance of all the experimental setups with and without word embedding (WE). For SVM &

Logistic regression (Basic) and FsText, we train the model on the Teams Game1 dataset, and for

concatenation ensemble, we train on the synonym replaced dataset. One of our main objectives in

incorporating the word embedding in MFeEmb is to maintain the performance on the in-domain

dataset, and results show that MFeEmb performed better with word embedding on the in-domain

dataset. For most transfer case setups, MFeEmb with word embedding either gave better or com-

parable mean F1 scores (Figure 8.7). The following sections present a more in-depth evaluation of

each experimental setup.

Table 8.1: Similarity-based generalizability analysis.

Word Emb MFeEmb
Teams Game2

similarity F1 score similarity F1 score
-0.067 0.470* -0.016 0.628+

GitHub
similarity F1 score similarity F1 score
-0.067 0.463* -0.017 0.501+

ASIST
similarity F1 score similarity F1 score
-0.067 0.348* -0.016 0.458+

SVM and Logistic Regression

Table 8.3 gives the results for the SVM and logistic regression classifiers. This paper presents a

thorough evaluation of the performance of different embedding choices (DM, DBOW).We also

evaluate the performance of different data augmentation methods (SynReplace, ASISTReplace,

and GitReplace).

Our proposed MFeEmb trained using Doc2Vec and classified using either SVM or logistic regres-
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sion performed better than the word-embedding baseline. Leveraging synthetic datasets yielded

significant performance improvements. In our most challenging resource-scarce scenario, where

we trained the model only on the Teams Game1 dataset, incorporating word embedding showed

better performance on the Teams Game2 and GitHub datasets, while the model performed better

on the ASIST dataset without word embedding (see Figure 8.7).

Table 8.2: Summary of high conflict class F1 scores

High Conflict Class Prediction Summary
Method GitHub ASIST

BERT SynReplace 0.431 0.347
DA only Team1 0.320* 0.311*
Senti only Team1 0.207* 0.300*
MFeEmb FsText Team1 0.564 0.478

Concatenation Ensemble Model

Table 8.3 gives the results for the LSTM-based concatenation ensemble model. The model showed

a better mean F1-score than the text-based LSTM model. We also trained the LSTM using syn-

thetic datasets generated using GitHub and ASIST vocabularies, which showed better performance,

specifically with the GitHub vocabulary dataset. The model performed significantly better on the

ASIST dataset compared to the other experimental setups.

Few-Shot Model (FsText)

The FsText baseline showed the best performance on Game2, but the performance degraded con-

siderably on the transfer task (GitHub and ASIST). FsText with the proposed MFeEmb exhibited

significantly better performance on the GitHub and ASIST datasets, specifically with ASIST vo-
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cabulary’s synthetic dataset. FsText with the proposed MFeEmb embedding also gave a compa-

rable performance on the Teams Game2 dataset. This demonstrates that MFeEmb is an excellent

representation for meta-pretraining a few shot model on collaborative multiparty dialogues even

when learned from a small dataset (see Table 8.3).

Using a synthetic dataset showed a performance improvement in all three experimental setups.

Generation of the synthetic dataset using the vocabulary of other collaborative tasks showed com-

paratively better performance on the transfer task. Even in the in-domain experiments, the Game1

Synthetic dataset, generated using collaborative task vocabulary, showed the best and comparable

performance on Game2 in all the experimental setups.

Results on Adversarially Generated Dataset

This section presents results on the adversarially generated dataset (Synthetic Game 2) created

using TextAttack2. Word Swap by BERT-Masked LM transformation was employed to generate

synthetic examples from the Teams Game2 dataset. One synthetic example is generated per dia-

logue of the Game2 dataset. The length of the synthetic Game2 dataset vocabulary is 6084, and

the length of the original Game1 dataset vocabulary is 3441. The number of words in the synthetic

dataset that are not in the original Game1 is 3904.

Figure 8.4 shows a high overlap between original Game1 and original Game2 compared to syn-

thetic Game2 and original Game1, but this does not affect the performance of MFeEmb (Basic),

and MFeEmb (Basic) gave a better performance on the synthetic dataset. On the other hand, the

performance of the BERT baseline decreased on the synthetic Game2 test set, with a high standard

deviation in mean F1 scores (see Table 8.4).

2https://github.com/QData/TextAttack
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Table 8.3: Detailed performance evaluation of MFeEmb.

SVM & Logistic Regression Results
Method Teams Game2

F1 score (std)
GitHub
F1 score (std)

ASIST
F1 score (std)

Baseline Doc2Vec dbow 0.465 (0.070)* 0.489 (0.080)* 0.425 (0.091)*
MFeEmb Team1 dbow 0.533 (0.068)* 0.437 (0.025)* 0.347 (0.002)*
MFeEmb Team1 dm 0.625 (0.0295)+ 0.495 (0.012)+ 0.473 (0.023)+
MFeEmb SynReplace 0.558 (0.035)+ 0.296 (0.025)* 0.318 (0.00)*+
MFeEmb GitReplace 0.676 (0.033)+ 0.409 (0.039)* 0.411 (0.041)*
MFeEmb ASISTReplace 0.675 (0.041)+ 0.537 (0.060)* 0.480 (0.042)*

Concatenation Ensemble Results
Baseline SynReplace 0.435 (0.048) 0.414 (0.104) 0.397 (0.081)
MFeEmb SynReplace 0.453 (0.044) 0.429 (0.122) 0.459 (0.044)
MFeEmb GitReplace 0.464 (0.044) 0.468 (0.098) 0.491 (0.054)
MFeEmb ASISTReplace 0.408 (0.075) 0.516 (0.100) 0.455 (0.059)

Few Shot Learning Results
FsText Baseline 0.689 (0.0) 0.330 (0.0) 0.338 (0.0)
MFeEmb Team1 doc2Vec 0.60 (0.028) 0.583 (0.045) 0.451 (0.025)
MFeEmb Team1 word2Vec 0.597 (0.041) 0.507 (0.063) 0.437 (0.027)
MFeEmb SynReplace 0.544 (0.021) 0.568 (0.031) 0.435 (0.037)
MFeEmb GitReplace 0.684 (0.033) 0.567 (0.041) 0.388 (0.266)
MFeEmb ASISTReplace 0.664 (0.042) 0.608 (0.034) 0.462 (0.053)

Table 8.4: MFeEmb results on the Game2 synthetic dataset generated using TextAttack.

Game2 Synthetic Dataset Results
Train Teams Game1 SynReplace

F1 score (std)
GitReplace
F1 score (std)

ASISTReplace
F1 score (std)

MFeEmb 0.654
(0.033)+

0.443
(0.046)*

0.617
(0.035)+

0.624
(0.055)+

BERT - 0.490
(0.061)

0.422
(0.037)

0.495
(0.044)
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Conclusion

This chapter introduces our proposed multi-feature embedding (MFeEmb), a combination of tex-

tual (words), structural (DAs), and semantic (sentiment, DAs) embeddings to reduce the perfor-

mance loss due to natural distribution shift. Experiments show that the multi-feature embed-

ding performs significantly better than sentence (BERT), dialogue act-only, sentiment-only, and

word embeddings. Our results demonstrate that MFeEmb is a superior representation for meta-

pretraining a few-shot model that works well across different collaborative problem-solving do-

mains.

Our proposed data augmentation strategy successfully resolved the domain shift problem caused by

task-specific vocabulary without perturbing the dialogue act and sentiment features. Experiments

with synthetic datasets show that synonym replacement with vocabulary drawn from a collabora-

tive task outperforms generic synonym replacement with WordNet. It improves both the transfer

accuracy and the test accuracy on the in-domain test set. Note that we did not fine-tune the mod-

els on the target datasets, i.e., GitHub and ASIST, and strictly report the model learned on the

Teams dataset. Only the vocabulary of these datasets was used to boost the performance; explicit

fine-tuning of the machine learning models could further improve the results.
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CHAPTER 9: CONCLUSION

Collaborative problem-solving is integral to the successful completion of almost all tasks. With the

advent of technology and online collaborative platforms like Microsoft Teams, GitHub, and Zoom,

the mode of collaboration is now hybrid as opposed to entirely in-person. Virtual collaboration has

its own challenges, sometimes leading to a conflict between the team members about the task being

performed. Virtual agents can help in this regard by providing timely assistance, but for that, there

is a need for proactive conflict detection in communication. First, this dissertation examines the

utility of three different embeddings that we generate from 1) DAs, 2) sentiment polarities, and 3)

entrainment on the task of proactive conflict detection. The experimental analysis shows that the

DA embedding is more predictive of conflict during the early stages of the dialogues, followed by

sentiment polarities which also show significant improvement over entrainment based embedding

proposed by Rahimi and Litman [89].

Our research aims at utilizing limited resources and improving the generalizability, and in this

regard, the first challenge we faced was developing a DA classification model with good transfer

capabilities. We started our research by identifying an embedding model that could perform well

under natural distribution shifts for the task of DA classification. We compared the performance of

BERT, USE, Glove, and Probabilistic Embedding models and identified that USE with three dense

layers gives the best transfer performance on the out-of-domain dataset. One of the contributions

of this research is our GitHub dataset that we extracted from GitHub issue comments to test the

transferability of the models.

Resource scarcity is a problem that most teamwork researcher face. The lack of resources to train

an extensive machine learning model hinders the development of collaborative dialogue analysis

models. Our second contribution is developing a method to improve the generalizability of the
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conflict prediction model under resource-scarce scenarios. This dissertation introduces a multi-

feature embedding (MFeEmb) to improve the generalizability of multi-party dialogue models un-

der resource scarcity. The MfeEmb combines the strength of domain invariant and domain-specific

features to improve generalizability.

For domain invariant features, we selected DAs and sentiment polarities since the vocabulary of

these is limited to the number of tags used to train the classifier. We tested the generalizability

of DA and sentiment on the out-of-domain datasets, and the results confirmed the utility of both

features. Other features that we considered are speaker switches and entertainment. We didn’t

choose speaker switches because the number of speakers is not fixed, varies from team to team,

and is not domain-invariant. On the other hand, entrainment completely failed the transferability

test. For domain-specific features, we select the textual feature of the dialogue, i.e., the vocabulary

of the dialogue.

We compared the performance of MFeEmb with DA-only, sentiment-only, BERT, and Few-shot

models. MFeEmb significantly performed better than the baselines. For Few-shot learning, we

compared the performance of the MFeEmb against the universal embedding and identified that

MFeEmb is an excellent alternative to universal embedding that requires a large amount of data to

train. MFeEmb performed significantly better than the universal embedding on the transfer task.

Third, to further improve the performance, we propose a data augmentation strategy, i.e., the gen-

eration of synthetic datasets using the vocabulary of the collaborative dialogues. This dissertation

comprehensively compares the performance of conflict prediction models trained on the synthetic

dataset generated using synonyms from WordNet with the synthetic dataset generated using syn-

onyms from collaborative dialogue vocabulary. Results show that our proposed method to generate

a synthetic dataset from vocabulary of collaborative dialogues significantly improves performance.

Fourth, this dissertation also proposes a method to measure the similarity between dialogue act
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sequences of different dialogue domains to identify the possible degradation in the performance of

the dialogue model due to natural distribution shifts.

This dissertation only reports results on the generalizability of MFeEmb on conflict prediction

tasks; MFeEmb may not perform as well on other communication analysis tasks. However, we

believe that modifying the features used in the embedding can address this problem. In future

work, we are interested in applying our embedding to new team communication analysis tasks

such as identifying emergent leadership.
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[20] Rajshekhar Das, Yu-Xiong Wang, and José MF Moura. On the importance of distractors

for few-shot classification. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9030–9040, 2021.

[21] Shumin Deng, Ningyu Zhang, Zhanlin Sun, Jiaoyan Chen, and Huajun Chen. When low

resource nlp meets unsupervised language model: Meta-pretraining then meta-learning for

few-shot text classification. arXiv preprint arXivi1908.08788, 2019.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[23] Junhao Dong, Yuan Wang, Jian-Huang Lai, and Xiaohua Xie. Improving adversarially

robust few-shot image classification with generalizable representations. In Proceedings of

100



the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9025–9034,

2022.

[24] Nathan Duran and Steve Battle. Probabilistic word association for dialogue act classification

with recurrent neural networks. In International Conference on Engineering Applications

of Neural Networks, pages 229–239. Springer, 2018.

[25] Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Selecting relevant features from a

multi-domain representation for few-shot classification. In European Conference on Com-

puter Vision, pages 769–786. Springer, 2020.

[26] Tamer Elsayed, Jimmy Lin, and Douglas W Oard. Pairwise document similarity in large

collections with mapreduce. In Proceedings of ACL-08: HLT, Short Papers, pages 265–

268, 2008.

[27] Ayesha Enayet and Gita Sukthankar. A transfer learning approach for dialogue act classifi-

cation of GitHub issue comments. CoRR, abs/2011.04867, 2020.

[28] Ayesha Enayet and Gita Sukthankar. Analyzing team performance with embeddings from

multiparty dialogues. In IEEE International Conference on Semantic Computing (ICSC),

pages 33–39, 2021.

[29] Ayesha Enayet and Gita Sukthankar. Learning a generalizable model of team conflict from

multiparty dialogues. International Journal of Semantic Computing, 15(04):441–460, 2021.

[30] Aysu Ezen-Can, Joseph F Grafsgaard, James C Lester, and Kristy Elizabeth Boyer. Classi-

fying student dialogue acts with multimodal learning analytics. In Proceedings of the Fifth

International Conference on Learning Analytics and Knowledge, pages 280–289, 2015.

[31] Nikolaos Flemotomos, Benjamin Ma, and Raghuveer Peri. Coordination or dominance? an

investigation of social dynamics in conversational entrainment. 2021.

101



[32] Jamie Fraser, Ioannis Papaioannou, and Oliver Lemon. Spoken conversational ai in video

games: Emotional dialogue management increases user engagement. In Proceedings of the

18th International Conference on Intelligent Virtual Agents, pages 179–184, 2018.

[33] Alexander Frummet, David Elsweiler, and Bernd Ludwig. Detecting domain-specific infor-

mation needs in conversational search dialogues. 2019.

[34] Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum cor-

pus: A human-annotated dialogue dataset for abstractive summarization. arXiv preprint

arXiv:1911.12237, 2019.

[35] Chih-Wen Goo and Yun-Nung Chen. Abstractive dialogue summarization with sentence-

gated modeling optimized by dialogue acts. In IEEE Spoken Language Technology Work-

shop (SLT), pages 735–742, 2018.

[36] Sergio Grau, Emilio Sanchis, Maria Jose Castro, and David Vilar. Dialogue act classification

using a bayesian approach. In 9th Conference Speech and Computer, 2004.
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