
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2023 

Efficient Convolutional Neural Networks for Image Classification Efficient Convolutional Neural Networks for Image Classification 

and Regression and Regression 

Muhammad Tayyab 
University of Central Florida 

 Part of the Computer Sciences Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Tayyab, Muhammad, "Efficient Convolutional Neural Networks for Image Classification and Regression" 
(2023). Electronic Theses and Dissertations, 2020-. 1748. 
https://stars.library.ucf.edu/etd2020/1748 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd2020%2F1748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1748?utm_source=stars.library.ucf.edu%2Fetd2020%2F1748&utm_medium=PDF&utm_campaign=PDFCoverPages


EFFICIENT CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION
AND REGRESSION

by

MUHAMMAD TAYYAB
M.S Lahore University of Management Sciences, 2014

B.S Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, 2012

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2023

Major Professor: Abhijit Mahalanobis



© 2023 Muhammad Tayyab

ii



ABSTRACT

Neural networks have been a topic of research since 1970s and the Convolutional Neural Networks

(CNNs) were first shown to work well for hand written digits recognition in 1998 [56]. These early

networks were however still shallow and contained only a few layers. Moreover these networks

were mostly trained on a small amount of data in contrast to the modern CNNs which contain

hundreds of convolution layers and are trained on millions of images. However, this recent shift

in machine learning comes at a cost. Modern neural networks have extremely large number of

parameters and require huge amount of computations for training and inference. A 2018 study by

OpenAI [4] estimated that the compute requirements for training large models have been doubling

every 3-4 months. By comparison Moore’s law has a 2 year doubling period. Thus, computational

requirements have been surpassing the hardware capabilities very quickly. To address this issue,

we have not only developed methods for reducing the computational cost for convolution neural

networks, but also to enable them to train and continually learn in this framework.

Specifically we have developed a new approach for compression based on spectral decomposition

of filters, which replaces each convolution layer in the model with compact low-rank approxima-

tions. In doing so, we are motivated by the observation that the original filters in a convolution

layer can be represented as weighted linear combinations of a set of 3D basis filters with one-

dimensional weight kernels. While compression is achieved by using fewer basis filters, we show

that these basis filters can be jointly finetuned along with the weight kernels to compensate for

any loss in performance due to truncation, and to thereby achieve state of the art results on both

classification and regression problems. We then, proposed using a minimum L1-norm regular-

izer to simultaneously train and compress the convolutional neural networks from scratch. Two

popular neural network compression methods are pruning and low rank filter factorization. Since

both of these methods depend on filter truncation, it is important for their success that the original
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filters are compact in the first place and the discarded filters contain little information. However

conventional methods do not explicitly train filters for this purpose so any deletion of filters also

discards useful information learned by the model. To address this problem we propose to train the

model specifically for compression from scratch. We show that unlike conventionally trained net-

works, models trained with our approach can learn the same information in a much more compact

fashion. Moreover the minimum L1 norm regularizer enables us to train the model for subsequent

compression by either filter factorization or by pruning, thereby unifying these two compression

strategies.

We also show that our compression framework naturally extends to allow continual learning,

where the model needs to learn continuously from new data as it becomes available. This intro-

duces a problem referred to as catastrophic forgetting where the model fails to preserve previously

learned information as it being trained on new data. We propose a solution which eliminates this

problem altogether while also needing significantly less FLOPs as compared to other continual

learning techniques.
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CHAPTER 1: INTRODUCTION

Motivation

It is commonly accepted that the first deep Convolutional Neural Network (CNN) was AlexNet

[54] released in 2012, and demonstrated significant performance improvement on Large Scale

Visual Recognition Challenge (ILSVRC), also referred to as ImageNet [47]. AlexNet contains

more convolution layers and parameters than previous shallow networks, and was trained on 1

million images in ImageNet dataset. However AlexNet changed the trend of using ”engineered”

or ”hand-crafted” features, and what followed was a revolution in machine learning. Over the last

decade researchers have proposed ever larger and deeper neural networks for speech, vision and

language problems, mostly based on data-driven learning using very large data sets.

This recent progress in machine learning comes at a cost. Modern neural networks have very large

number of parameters and need tremendous amounts of computations for training and inference.

A 2018 study by OpenAI [4] estimated that the compute requirements for training large models

have been doubling every 3-4 months. By comparison Moore’s law has a 2 year doubling period.

Although computing requirements are rapidly surpassing the hardware capabilities, the popularity

of large machine learning models has been driven by custom hardware that allows more operations

to be performed per second (GPUs and TPUs) and by researchers having to deal with financial cost

of doing so.
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Figure 1.1: Summary of contributions in each chapter in this dissertation. In Chapter 3 we intro-
duce our filter decomposition based method for compressing pretrained ConvNets. In Chapter 4
we show how this method can be extended for simultaneous learning and compression using group
L1 regularization. In Chapter 5 we apply filter decomposition to continual learning problem for
compressed continual learning and finally in Chapter 6 we describe our efficient crowd analysis
work.

Contributions

To address the computational cost of modern deep neural networks, we have developed a network

compression framework based on spectral decomposition of filters which replace each convolu-
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tion layer in the model with compact operations. Throughout this work we have measured the

performance of our methods using following metrics.

• Computation requirements: As discussed above reducing computations is our primary objec-

tive. We measure the number of Floating Point Operations (FLOPs) needed to do inference

on a single image for each model.

• Storage capacity: Another limitation of resource constrained devices is the storage capacity.

So we also attempt to reduce the number of parameters that need to be stored.

• Accuracy: We aim to achieve high accuracy with our compressed models. In fact we com-

press the model such that its accuracy remains comparable to the original model.

• Energy consumption: Reducing computation and storage automatically reduces the energy

consumption of the model. So where possible we have measured the energy saving achieved

by our compression method.

Other than a few exceptions we have not measured the inference time of our compressed mod-

els. This is because inference time depends on external factors (e.g hardware, choice of develop-

ment framework and exploitation of parallelism and so forth) which varies considerably from one

method to another, and therefore not comparable across all methods reported in the literature.

Rest of this dissertation is organized as follows. We review the literature on network compression

and previous works by other researchers in Chapter 2.

In Chapter 3 we explain our filter decomposition based neural network compression approach. We

are motivated by the observation that the original filters in a convolution layer can be represented as

weighted linear combinations of a set of 3D basis filters with one-dimensional weight kernels. The

coefficients of these weight kernels represent the spectra of the filters in the basis in which they

3



are represented. While compression is achieved by using fewer basis filters, we show that these

can be jointly finetuned along with the weight kernels to compensate for any loss in performance

due to truncation, thereby achieving state of the art results.

In Chapter 4 we propose a minimum L1-norm regularizer based approach to simultaneously train

and compress the convolutional neural networks from scratch. Two popular neural network com-

pression methods are pruning and low rank filter factorization. Since both of these methods depend

on filter truncation, it is important for their success that the original filters are compact in the first

place and the discarded filters contain little information. However conventional methods do not

explicitly train filters for this purpose so any deletion of filters also discards useful information

learned by the model. To address this problem we propose to train the decomposed model specifi-

cally for compression from scratch. We show that our approach allows networks to ”self compress”

while learning the same information as conventional networks in a much more compact fashion.

Moreover the choice of regularizer enable us to train the model for subsequent compression by

either filter factorization or by pruning.

In Chapter 5 we show that our compression framework naturally extends to the continual learning

problem. In continual learning, the learning algorithm does not have access to all training data at

once. Therefore, the model needs to learn continuously from data as it becomes available. This

introduces a problem referred to as catastrophic forgetting where model fails to preserve previously

learned information as it being trained on new data. We propose a solution which eliminates

catastropic forgetting while also requiring significantly less FLOPs as compared to other methods.

In Chapter 6 we study an application of our compression method for regression based crowd analy-

sis framework. First, we propose a novel approach to crowd counting, density map estimation and

localization of people in a given crowd image. Our approach for crowd-counting stems from the

observation that these three problems are very interrelated - in fact, they can be decomposed with
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respect to each other. Counting provides an estimate of the number of people / objects without

any information about their location. Density maps, which can be computed at multiple levels,

provide weak information about location of each person. Localization provides accurate position

information, nevertheless, it is extremely difficult to estimate directly due to its very sparse na-

ture. Therefore, we propose to estimate all three tasks simultaneously, while employing the fact

that each is special case of another one. Density maps can be ‘sharpened’ till they approximate

the localization map, whose integral should equal to the true count. Subsequently, we employ a

compression scheme based on low-rank filter decomposition, aimed at reducing the Floating Point

Operations (FLOPs) without compromising the model’s accuracy.
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Figure 1.2: AlexNet to AlphaGo Zero: A 300,000x increase in compute. Y-axis denotes the
number of operations required to train a model and account for the number of examples in the
dataset as well as the the number of epochs model is trained for. A petaflop/s-day consists of
performing 1015 neural net operations per second for one day, or a total of about 1020 operations.
[4]
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CHAPTER 2: LITERATURE REVIEW

Neural Network Compression

Low-rank approximations: Our work relates to a class of techniques that rely on low-rank ap-

proximations to represent the convolution filters. Previous works [45, 20, 81, 118, 50] have demon-

strated excellent gains by exploiting linear subspace representation, but with relatively shallow

networks. Wen et. al. [105] add extra gradients in back-propagation step to learn correlated filters,

while Alvarez et. al. [3] train the regular CNNs to have low rank by constraining the nuclear norm

of the filter matrix. Li et. al. [59] directly optimize the multiply-accumulate (MAC) operations via

constrained optimization. Network weights are decomposed and then a binary masking variable is

used to denote whether a particular singular value and the corresponding singular vectors are used

in low-rank approximation. CaP [75] combines low rank factorization and pruning, by cascading

the low rank projections of filters in the current layer to those in the next layer. Idelbayev et. al.

[41] compresse the CNN by constraining the rank of filters. Trained Rank Pruning (TRP) [109]

combines the channel wise low rank compression with spatially separable compression. Idelbayev

et. al [41] solve rank selection problem with a mixed discrete-continuous optimization jointly over

the rank and numerical values of the filters.

Pruning: Although not directly related to our work, filter pruning is probably the earliest explored

research directions for compression and efficient implementation of CNNs. L. Cun et al. [18] and

Hassibi et al. [27] showed that second derivative of the loss can be used to reduced the number

of connections in a network. This strategy not only yields an efficient network but also improves

generalization. These early pruning techniques were mostly applicable for training the network

from scratch. More recently however there has been growing interest in pruning redundancies

from a pre-trained network. Han et al. [26] proposed a compression method which aims to learn
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not only weights but also the connections between neurons from the training data. In contrast,

Srinivas et. al. [98] proposed a data-free method to prune neurons instead of the whole filters.

Chen et al. [15] proposed a hash based parameter sharing strategy which in turn reduces storage

requirements.

Li et. al. [60] propose removing entire filters instead of individual weights using L1 norm to

determine the unimportant filters. Channel Pruning [33] uses a LASSO regression based method

to reduce parameters and accelerate CNNs. Zhao et. al. [120] uses variational Bayesian scheme to

estimate channel saliency which is then used for pruning. Neuron Importance Score Propagation

(NISP) [114] applies feature ranking techniques to measure the importance of each neuron in the

final response layer, and formulates network pruning as a binary integer optimization problem for

removing neurons in earlier layers. Discrimination-aware Channel Pruning (DCP) [121] choose

channels which contribute to discriminative power of the model. AutoML for Model Compression

(AMC) [34] propose a framework for model compression which leverage reinforcement learning

to provide the model compression policy. Molchanov et. al. [77] [76] use Taylor series expansion

to estimate the contribution of a neuron (filter) to the final loss and iteratively removes those with

smaller scores.

A number of methods scale the output of specific structures, such as neurons, groups or residual

blocks, to zero. Among these methods, Data Driven Sparse Structures (DDS) [40] introduces spar-

sity regularizations on scaling factors, and solve this optimization problem by a modified stochastic

Accelerated Proximal Gradient (APG) method. Slimming [69] imposes L1 regularization on the

scaling factors in batch normalization (BN) layers to force their output to zero. Gate Decorator

(GDN) is a global filter pruning method [112] which scales factors for the filters and use Taylor

expansion to estimate the change in the loss function caused by setting the scaling factor to zero.

This estimation is then for filter importance ranking
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Learning filter pruning criteria (LFPC) [31] introduces a differentiable pruning criteria to adap-

tively select the appropriate pruning criteria for different layers. Filter Pruning using High-Rank

feature map (HRank) [64] proposes to prune filters to produce the low-rank feature maps, and

to show that such filters contain less information. In local feature compression (LFC) [96], the

technique identifies pairs of highly correlated filters and makes then maximally correlated before

discarding one of them. ThiNet [70] observes that only a subset of channels in a layers input are

needed to approximate its output. They used this observation to compress the previous layer.

Quantization: Filter quantization has been also used for network compression. These methods

aim to reduces the number of bits required to represent the filters which can in turn lead to efficient

CNN implementation. Quantization using k-means clustering has been explored by Gong et al.

[24] and Wu et al. [107]. Similarly Vanhoucke et al. [101] also showed that 8-bit quantization of

the parameters can result in significant speed-up with minimal loss of accuracy. In contrast Han

et. al. [25] combined quantization with pruning. A special case of quantized networks are binary

networks, which use only one bit to represent the filter values. Some of the works which explore

this direction are BinaryConnect [16], BinaryNet [17] and XNORNetworks [82]. Their main idea

is to directly learn binary weights or activation during the model training.

Knowledge Distillation: Knowledge Distillation methods train a smaller network to mimic the

output(s) of a larger pre-trained network. Bucila et. al. [10] is one of the earliest works exploring

this idea. They trained a smaller model from a complex ensemble of classifiers without significant

loss in accuracy. More recently Hinton et. al. [35] further developed this method and proposed

a knowledge distillation framework, which eased the training of networks. Ba et. al. [6] is an

adaption of [10] which aims to compress deep and wide networks into shallower ones. Belagiannis

et. al. [8], Lin et. al. [66] and GAL [67] also used this idea to transfer knowledge from larger

networks to much shallower ones using adversarial loss.
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Lifelong Learning

A lot of research has been done on lifelong learning in recent years. We have followed Delange et

al. [19] to divide these methods into following groups based on the way they tackle forgetting of

the previously learned knowledge.

Network Expansion methods are most relevant to our proposed approach. These methods prevent

catastrophic forgetting by adding dedicated parameters for each new task to calculate the task

specific feature maps. However unconstrained parameter growth can very quickly overwhelm the

memory resources, so the rate of parameter growth is a matter of concern here.

Rusu et al. [87], Yoon et al. [111] and Jerfel et al., 2019 [46] proposed incrementally adding pa-

rameters to the model. Mallaya et al. [72] prune the previous tasks parameters before introducing

new task. Similarly, Wortsman et al., 2020 [106] presented a masking mechanism to train separate

sub-network for each task. Recently, Vinay et. al. [102] suggested adding several task specific

feature map transformation layers to the model which add a small number of additional parame-

ters. Miao et. al. [74] proposed a low rank sub-space based approach which decompose original

filters into a set of task specific atoms and shared coefficients. Task specific filters are obtained at

inference time by multiplying the shared coefficients with corresponding filter atoms.

Replay Methods assign a small memory to store a subset of previous task samples or train a gen-

erator model to synthesise pseudo-samples. These samples are then used to train the model along

with new task data to make sure that previously learned knowledge is retained. Storing samples

from previous tasks however raises privacy concerns which is a drawback of these methods.

Shin et al. [92] proposed training a generative model to produce samples for previous tasks. Rebuffi

et al. [83] stores a subset of exemplars per class, selected to best approximate class means in the

learned feature space. Rolnick et al. [86] suggest a sampling strategy to limit size of the memory
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buffer. Yan et al. [110] proposed combining the network expansion with a memory buffer to store

previous task samples.

Regularization-based methods avoid storing any samples and instead add a regularization term

to the loss function meant to prevent the drift in previous task’s loss landscape. These methods

need to carefully balance the plasticity vs stability of the model to make sure the new information

is ingested properly while also preventing catastrophic forgetting.

Li et al. [62] propose a knowledge distillation based technique, where previous task outputs are

used as the soft labels to mitigate forgetting and transfer knowledge. Kirkpatrick et al. [51] esti-

mate the Fisher information matrix which is used to identify the important parameters for previ-

ous tasks. Training algorithm then selectively penalizes changes to these parameters. Similarly,

Aljundi et al. MAS [2] suggest unsupervised importance estimation using gradient magnitude.

Finally, Titsias et al. [100] introduce Bayesian functional approach which avoids forgetting by

constructing an approximate posterior belief of previous tasks.

Crowd analysis

Crowd analysis is active an area of research with works tackling the three aspects of the problem:

counting-by-regression [88], [58], [43], [11], [103], density map estimation [58], [23], [116], [80],

[119] and localization [71], [85].

Earlier regression-based approaches mapped global image features or a combination of local patch

features to obtain counts [52], [13], [43], [14]. Since these methods only produce counts, they can-

not be used for density map estimation or localization. The features were hand-crafted and in some

cases multiple features were used [11], [43] to handle low resolution, perspective distortion and

severe occlusion. On the other hand, CNNs inherently learn multiple feature maps automatically,
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and therefore are now being extensively used for crowd counting and density map estimation.

CNN based approaches for crowd counting include [55], [116], [119], [79], [5]. Zhang et. al.

[116] train a CNN alternatively to predict density map and count within a patch, and then aver-

age the density map for all the overlapping patches to obtain density map for the entire image.

Lebanoff and Idrees [55] introduce a normalized variant of the Euclidean loss function in a deep

network to achieve consistent counting performance across all densities. The authors in [119] use

three-column CNNs, each with different filter sizes to capture responses at different scales. The

count for the image is obtained by summing over the predicted density map. Sindagi and Patel [95]

presented a CNN-based approach that incorporates global and local contextual information in an

image to generate density maps. The global and local contexts are obtained by learning to classify

the input image patches into various density levels, later fused with the output of a multi-column

CNN to obtain the final density map. Similarly, in the approach by Sam et al. [89], image patches

are relayed to the appropriate CNN using a switching mechanism learnt during training. The inde-

pendent CNN regressors are designed to have different receptive fields while the switch classifier

is trained to relay the crowd scene patch to the best CNN regressor.

For localization in crowded scenes, Rodriguez et al. [85] use density map as a regularizer during

the detection. They optimize an objective function that prefers density map generated on detected

locations to be similar to predicted density map [58]. This results in both better precision and

recall. The density map is generated by placing a Gaussian kernel at the location of each detection.

Zheng et al. [71] first obtain the density map using a sliding window over the image [58], and

then use integer programming to localize objects on the density maps. Similarly, in the domain of

medical imaging, Sirinukunwattana et al. [97] introduce spatially-constrained CNNs for detection

and classification of cancer nuclei.
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CHAPTER 3: LEARNING SPARSE REPRESENTATIONS

Introduction

While there has been a tremendous surge in convolutional neural networks and their applications in

computer vision, relatively little is still understood about how information is learned and stored in

the network. This is evidenced by the fact that many approaches exist for compressing a network

after it has been trained such as pruning weights [18, 27], and low rank approximations of filters

[20, 45, 81]. It is clear that CNNs do not need to explicitly use a large number of coefficients, and

can be substantially compressed before they are deployed.

Low-rank approximation methods often represent a bank of filters in a given layer using the de-

composition shown in Figure 3.1. The basic idea is that P original filters can be approximated as

weighted linear combinations of Q intermediate filters, where Q < P . Instead of applying the

original filters, the input data is first processed using the intermediate filters, followed by a set of

1D convolutions that recombines their outputs to obtain the final result. We refer to this structure in

Figure 3.1 as the BasisConv layer. Compression results from the fact that the number of interme-

diate filters Q required for this approximation is less than the number of original filters P . Various

different cost functions have been proposed for optimizing the intermediate filters and the weights

of linear combination to prevent loss of performance due to compression, including formulations

that directly approximate the original filters and their outputs at each layer.

One of the key challenges is determining the optimum choice of Q, which is the rank for each layer

of the network. Existing methods either select Q arbitrarily, or perform exhaustive searches to find

values of Q that enhance both compression and performance [41]. We are motivated by observation

that if the intermediate filters are linearly independent, then the rank of the decomposition can be
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MxNxL
MxNxPP filters, of size

DxDxL each
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Conventional
Convolution 

Layer

Basis Convolution Layer

Figure 3.1: We propose to compress the network by replacing each convolution layer (top) in a
CNN with the basis convolution layer (bottom). Q basis filters are initialized with the top ranked
eigen vectors of P filters in original convolution layer, with Q < P.

automatically reduced by simply minimizing the L1-norm of the 1D weight vectors to encourage

sparsity in their values. We will show that this decreases the eigen-values associated with the

singular value decomposition of the equivalent original filters, and Q simply emerges as the number

of non-zero eigen-values.

Based on this observation, an optimum low-rank version of the BasisConv layer is obtained by

using the Q non-redundant eigen-vectors (i.e. those corresponding to non-zero eigenvaleus) as the

intermediate filters, and the corresponding coefficients as the 1D weight vectors. If the intermediate
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filters form a basis set, then the weights of linear combination represent the spectra of the spatial

filters in that basis. Furthermore, these basis filters and spectral weights can be easily fine-tuned to

recover any performance loss due to compression. Our approach does not seek to approximate the

original filters or their responses, but directly finds a sparse set of basis filters and spectral weights

that maximizes overall performance of the compressed network.

Figure 3.2 shows the main steps of the proposed approach. First, the original filters are extracted

from the layers of the pretrained network (also referred to as ConvNet). The eigen-decomposition

of these filters are used to initialize the BasisConv layers. To reduce the rank of the decomposition,

the model is then finetuned while simultaneously minimizing the L1-norm of the 1D weight vec-

tors. After convergence, the intermediate filters may no longer form a basis, but the sparsity of the

weights directly reduces the rank of the approximation. This is exploited in Step 2 where the inter-

mediate filters and sparse weights are transformed again into a new basis set and spectral weights.

The drop in the corresponding eigen-values of the decomposition enable us to retain fewer basis

filters thereby making Q small. Finally, the truncated basis set and the spectral weights are jointly

fine-tuned to maximize the performance of the compressed network. The details of the proposed

method will be described in Section 3.

We refer to our proposed method as Sparse Spectral Representation and Fine Tuning (SSRFT). In

addition to its algorithmic and structural simplicity, a key difference between conventional meth-

ods for compression using low-rank approximation and ours is that filters are learned via sparse

representation in a compact basis set. This is reminiscent of compressive sensing where the idea

of sparse representation is key to the recovery of signals from compressive measurements. As

we will show, SSRFT dramatically reduces the number of filtering operations and filter storage

requirements, without notable drop in performance. To be clear, our method does not sacrifice the

4D tensor structure of the filter banks. While linear combination using spectral weights is cleverly

implemented as a 1D convolution, this is not a rank-1 assumption, nor is it approximating a higher
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Figure 3.2: Schematic diagram of our compression framework.

order tensor by a 1D quantity.

Our contributions in this chapter are as follows. i) We introduce a novel method, Sparse Spectral

Representation and Fine Tuning (SSRFT), for optimizing and compressing convolutional neural

networks (CNNs) by learning filters via sparse representation in a compact basis set. ii) We address

a key challenge in CNN compression – determining the optimal rank for each layer of the network

– by automatically reducing the rank of decomposed layer through minimization of the L1-norm

of the 1D weight vectors. iii) We evaluate our method for compression and accuracy on both

classification and object detection problems.

Method

As depicted in Figure 3.2, SSRFT has two key steps: i)learning a sparse representation for the

original filters that inherently favors rank reduction and compression, and ii) joint optimization of
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the basis and spectral weights to maximize the performance of the compressed network. Given

a pretrained model, we replace its convolution layers with BasisConv modules. The components

of these modules, (i.e. intermediate filters) are then fine-tuned while minimizing the L1 norm of

the linear combination weights. We will show that this decreases the non-zero eigen-values of the

decomposition, which ultimately favors rank reduction and compression.

In step 2, we re-transform the intermediate filters and weights into a new set of basis filters and

spectral weights, and compress the network by eliminating eigen-vectors with eigen-values close

to zero. Based on the optimization in step 1, most of the network’s knowledge is concentrated in

a few basis filters and rest can be truncated without significant loss in performance. Finally we

fine-tune the basis space and the corresponding spectral weights to optimize the performance of

the compressed network.

Consider the fundamental convolution operation in any given layer of a convolutional neural net-

work depicted on the top in Figure 3.1. Assume that an input block of data x(m,n, l) (such as the

activations or output of the previous layer) is convolved with a set of P filters hk(m,n, l), k =

1. . .P , where each filter is of size D ×D × L. The output yk(m,n) can be expressed as

yk(m,n) = x(m,n, l) ∗ hk(m,n, l), 1 ≤ k ≤ P (3.1)

where ∗ represents the convolution operation. The bottom of Figure 3.1 shows how the same output

can be obtained using two successive convolution stages. Here, we assume that the filters can be

expressed as a weighted sum of Q linearly independent functions fi(m,n, l), such that

hk(m,n, l) =

Q∑
i=1

wk(i) · fi(m,n, l) (3.2)
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where wk(i) are the weights of linear combination. Using this representation, the output can be

expressed as

yk(m,n) =

Q∑
i=1

wk(i) · [x(m,n, l) ∗ fi(m,n, l)], 1 ≤ k ≤ P (3.3)

The key observation is that the Q intermediate convolution terms zi(m,n) = x(m,n, l)∗fi(m,n, l)

need to be computed only once, and they are common to all P outputs yk(m,n). These can be

stacked together to form the 3D intermediate result z(m,n, i) while the weight can be treated as

1×1×Q filter wk(i). Therefore, the outputs yk(m,n) are simply the convolution of the two terms,

i.e

yk(m,n) = wk(i) ∗ z(m,n, i), 1 ≤ k ≤ P (3.4)

We refer to this construct as BasisConv when fi(m,n, l), 1 ≤ i ≤ Q, form a basis, and the model

obtained by replacing all convolution layers with this module is called BasisNet. In practice, we

also introduce a batch normalization operation in Eq. 3.4 to improve convergence so that the output

is given by

y′k(m,n) = wk(i) ∗BN [z(m,n, i)], 1 ≤ k ≤ P (3.5)

Here BN is the batch normalization layer which is applied to the batch dimension of z.

Step 1: Sparse Representation and Matrix Conditioning

Our goal is to learn a sparse representation of the original filters in a linear subspace that favors

rank reduction and compression. To achieve this, we define the LD2 × 1 dimensional vector hk

as a vectorized representation of hk(m,n, l), and the matrix H = [h1 h2 ... hP ] with hk as its
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columns. We also define the LD2 × 1 dimensional vector fi as a vectorized representation of the

intermediate filters fi(m,n, l). We then construct the matrix F = [f1 f2 ... fQ0 ], where Q0 is the

initial number of intermediate filters prior to compression. Finally, we define the 1D weight vectors

wk = [wk(1) wk(2) ... wk(Q0)]
T , 1 ≤ k ≤ P . The relation between the original and intermediate

filters is simply given by H = FW, where W = [w1w1 ... wP ]. Thus, the columns of H are

represented as linear combinations of the columns of F, weighted by the elements of W

To promote sparsity during learning, the cost function is modified as follows. Assume that there

are B layers in BasisNet. Denoting the layer by the superscript j , we introducing sparsity in Wj

while fine-tuning both Fj and Wj , 1 ≤ j ≤ B by minimizing

Ltask +
α

B

B∑
j=1

 1

P j ·Qj
0

P j∑
k=1

|wj
k|

 (3.6)

Here Ltask is the task specific loss function that the network was originally trained with. Further-

more, P j and Qj
0 represent the number of original and intermediate filters, respectively, in the j-th

layer. Essentially, the second term in Eq. 3.6 computes the average L1 norm of all 1D weight

vectors in the model and α is the weight given to this term in the overall loss function. After con-

vergence, many elements wj
k will zero or very small. This increases the condition number of the

matrix of filters, and thus favor rank reduction in Step 2.

For the purposes of simplicity, we drop the supercript j with the understanding the following hold

for all layers. For each layer, we initialize F by setting it columns equal to the eigen-vectors of

HHT denoted by ϕi, 1 ≤ i ≤ LD2. Although F is not required to be a orthonomal matrix, this

provides a good choice of linearly independent vectors at initialization. We arbitrarily choose

the first Q0 eigen-vectors, P ≤ Q0 ≤ LD2, so that at initialization F0 = [ϕ1, ϕ2, ..., ϕQ0 ], and

W0 = FT
0H. After convergence, we denote the intermediate filters and sparse weights obtained at
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the end of Step 1 by F1 and W1 (for each layer).

Effect of Sparsity on Matrix rank and eigen-values

To show that introducing sparsity into W can lower the rank of H, we write HHT = Φ∆ΦT ,

where the columns of Φ are the eigenvectors ϕi, and the ∆ is a diagonal matrix whose diagonal

elements are the corresponding eigenvalues λi. Since HHT = FWWTFT , it follows that

rank(FWWTFT ) = rank(Φ∆ΦT ) = rank(∆) (3.7)

Using the fact that rank(FWWTFT ) = rank(FW), we obtain

rank(∆) = rank(FW) = min[rank(F), rank(W)] (3.8)

Since the rank of F and W are Q0 and P respectively, and since P ≤ Q0, we arrive at

rank(∆) = rank(W) (3.9)

Ideally, the goal is to minimize rank(W ). However, it has been shown [22] that for symmetric

positive definite matrices, surprisingly good results are obtained by minimizing the trace in lieu of

the rank. Heuristically, the non-convex rank objective can be replaced with the sum of the eigen-

values (which is the dual of the spectral norm) and minimized. Now let γi, 1 ≤ i ≤ n, be an

eigenvalue of WTW. Since the trace of symmetric matrix is equal to the sum of its eigenvalues,

we note that
n∑

i=1

n∑
j=1

w2
ij =

n∑
i=1

γi (3.10)
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Since
√∑n

i=1

∑n
j=1 w

2
ij ≤

∑n
i=1

∑n
j=1 |wij|, we obtain

√√√√ n∑
i=1

γi ≤
n∑

i=1

n∑
j=1

|wij| (3.11)

Therefore, minimizing the right hand side of Eq 3.11 minimizes an upperbound on the sum of

the eigen-values of WWT . This forces many of the eigen-values γi to become very small or

go to zero, which also increases the condition number of W. Since the rank of W is now easily

reduced by simply eliminating the eigenvectors associated with these trivial eigenvalues, we con-

clude (based on Eq 3.9) that this process also reduces an upper bound on the rank of H as well as

its decomposition FW.

Step 2: Compression and Spectral Fine-tuning

Given the intermediate filters and sparse weights obtained in Step 1, our goal is now to compress

the network by discarding redundant basis filters, thereby making Q small. This is a key step in

the process which governs the trade-off between compression and accuracy. We can either retain

smaller number of intermediate filters in each layer to achieve more compression at the cost of

lower model accuracy, or we can sacrifice the compression in favour of accuracy by allowing Q

to be larger. Fortunately, the optimization in Step 1 makes this trade easier by inducing a sharper

roll-off in the eigenvalues, and increasing the number of eigenvectors that can be safely discarded.

After Step 1, the eigenvectors ϕi and eigenvalues λi of H1 = F1W1 are recomputed for each layer.

The eigen-values are then sorted are in descending order, and the first Qt eigenvectors are selected
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Figure 3.3: Comparison of the normalized cumulative sum of eigenvalues (denoted by S in Equa-
tion 3.12) for the filters trained with sparsity in Step 1 (red curve), and those of the original baseline
network (blue curve). X-axis represents the eigenvalue number, while the y-axis the corresponding
value of S. It is clear that imposing sparsity on W results in a more compact representation, and
fewer eigenvectors are needed for the red curve to reach 100%. compared with the blue curve.

such that the normalized cumulative sum

S =

∑Qt

i=1 λi∑LD2

i=1 λi

(3.12)

is equal to a preset threshold t between 0 and 1, while the remaining LD2−Qt+1 eigenvectors are

discarded. The value of Qt in each layer depends on the the decay of the eigenvalues in that layer.

The intermediate filters of the compressed network are re-initialized as F2 = [ϕ1, ϕ2, ..., ϕQt ], and

the 1D weight vectors as W2 = FT
2H1

Having thus compressed the network, our goal is to now re optimize its performance by fine-tuning

F2 and W2. However, to ensure that the intermediate filters remains a basis set, the network is fine-
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tuned to minimize

Ltask + η
B∑
l=1

Jl (3.13)

where Ltask is the task specific loss the original network was trained with, and Jl for the l-th layer

is defined as

Jl =
δ

Qtl

Qtl∑
i=1

(1− fil
T fil)

2 +
2(1− δ)

Qtl(Qtl − 1)

Qtl∑
i=1

Qtl∑
j=i+1

(fil
T fjl)

2 (3.14)

Here, Qtl is the number of intermediate filters fil in the l-th layer, and δ is a positive number

between 1 and 0. The first term in Jl causes the L2 norm of fil, i = 1...Qtl to be as close to unity as

possible, while the second term ensures the filters remain orthogonal. The parameter δ can be set

to 0.5 to equally emphasize both term, or selected as necessary to balance the trade-off between the

two terms. Finally η is a constant that balances the two components of the overall cost function in

Equation 3.13. The final optimized basis filters and spectral weights obtained after the convergence

of Step 2 are denoted by Fopt and Wopt

It is easy to show that if the columns of F form a basis, then WWT = ∆ is a diagonal matrix and

P∑
k=1

wk(i)
2 = λi, and

P∑
k=1

wk(i)wk(j) = 0 (3.15)

Therefore the convergences of each element of wk is statistically uncorrelated with the behavior

of the other elements, which implies that the corresponding eigen vector also contributes to the

overall learning process in an uncorrelated manner.
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Estimated Computational Reductions

Depending on the values of P and Qt, the proposed compression scheme lead to substantial reduc-

tion in the number of multiplication operations. Specifically, let O represents the number of multi-

plications for one convolution operation (between x(m,n, l) and either hk(m,n, l) or fi(m,n, l)).

If the size of the filters is D × D × L, and the size of the input data is M × N × L, It is easy to

show that O = LD2(M −D+1)(N −D+1). Therefore, multiplications required in Eq. (3.1) is

A = PO = PLD2(M −D + 1)(N −D + 1) (3.16)

while multiplications required to obtain output of Eq (3.4) is

B = QtLD
2(M −D + 1)(N −D + 1)+

PQt(M −D + 1)(N −D + 1)

= Qt[L
2 + P ](M −D + 1)(N −D + 1)

(3.17)

We see that the ratio of the two is

A

B
=

PLD2(M −D + 1)(N −D + 1)

Qt[LD2 + P ](M −D + 1)(N −D + 1)

=
PLD2

Qt[LD2 + P ]

(3.18)

Thus, as long as LD2 >> P , the number of multiplications will be reduced by a factor close to

P/Qt (i.e. the ratio of the the original number of filters and the number of basis filters used). This

condition is generally true since the dimensionality of the filters is greater than the total number of

filters. As an example, consider a typical case where D = 5, L = 100, and P = 50. Then LD2

=2500, which is much larger than P . Therefore for most realistic case, the condition LD2 >> P
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is readily satisfied, and the compression ratio can be predicted by P/Qt. If in some rare instances

this is not satisfied, compression ratio will depend on the collective rank of the filter set, and is

therefore a data dependent quantity.

The architecture shown in Figure 3.1 not only reduces the filter storage and multiplications re-

quired for each convolution layer, but is also amenable to spectral fine-tuning where the number of

learnable parameters is substantially reduced. Recall that number of learnable parameters in the

original filters is LD2. Since there are P such filters, the total number of original learnable param-

eters is PLD2. However, the total number of ”learnable” parameters for BasisConv is Q(LD2+P )

(depicted in Figure 3.1 as a Q basis filters with LD2 parameters and P one-dimensional filters of

length Q). Therefore, the reduction in the number of learnable parameters is PLD2/Q(LD2+P ).

If LD2 >> P , the number of learnable parameters are also reduced by a factor of P/Q.

Experiments

Data Sets and CNN Architectures: We evaluated our method’s performance by compressing

various CNN models designed for image classification and detection. We used three well known

image classification architectures; VGG [93], Resnet [28] and Densenet [38]. For object detection

we used YOLOv3 [84]. These network architectures have little in common from number of layers

and filters to the use of skip connections and loss function, but still our method applies to them

without any special modification. Additionally these architectures and their variants are widely

used for several applications across different industries so making them efficient have real world

benefits.

For evaluating classification models we performed most of our experiments on CIFAR10[53] and

ImageNet[47] datasets, while for some comparissons we have used MNIST[56], SVHN[78] and
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Figure 3.4: The proposed approach drastically reduces the number of filters required to achieve
S = 0.8 for the various layers of the VGG16 (a) and RenNet56 (b) networks. The yellow curve
shows the original number of filters, while the red and blue curves show the number of filters
obtained with and without the optimization in Step 1.
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CIFAR100[53]. For object detection we have used MS-COCO [68] dataset. Following is a brief

description of these datasets.

• MNIST [56] contains 28× 28 gray scale images divided two sets of 60,000 training and and

10,000 test samples.

• SVHN [78] contains 32 × 32 colored images divided two sets of 73,257 training and and

26,032 test samples.

• CIFAR10 and CIFAR100 [53] are both image classification datasets and contain 60,000 col-

ored images each, of 32 × 32 pixel resolution. CIFAR10 has 10 object classes while CI-

FAR100 has 100 classes.

• ImageNet [47] contains 1.28 million training images and 50,000 test images for 1000 classes.

• MS-COCO [68] is an object detection dataset. It contains 117263 training and 5000 valida-

tion images.

Evaluation Criteria: The widely used metrics for comparing model’s compression are number of

trainable parameters and number of Floating Point Operations (FLOPs). As noted in [9] there are

some ambiguities in how these metrics are used because different papers have their own definitions.

In an effort to remove any ambiguity we define FLOPs as number of multiply operations in the

convolution layers of the model, while the number of parameters include all trainable parameters

in the network. Finally the percent reduction in both metrics (denoted by %↓) is defined as 100 ∗

(1− Compressed
Original

).
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Table 3.1: Results on CIFAR10.

Method FLOPs ↓% Params ↓% Acc. %
ResNet-56

Zhao et. al. [120] 20.30 20.49 92.26
Li et. al. [60] 27.60 13.70 93.06
NISP [114] 43.61 42.60 93.01
DCP [121] 47.01 70.32 93.81

CP [33] 50.00 - 91.80
AMC [34] 50.00 - 91.90
CaP [75] 50.20 - 93.22

GBN [112] 60.10 53.50 93.43
LFPC [31] 52.90 - 93.24
FPGM [30] 52.60 - 93.49
HRank [64] 50.00 42.40 93.17
GAL [67] 60.20 65.90 91.58
BasisNet 61.00 56.39 93.34

ResNet-110
Zhao et. al. [120] 36.44 41.27 92.96

Li et. al. [60] 38.60 32.40 93.30
NISP [114] 43.78 43.25 93.35
CaP [75] 50.10 - 94.14

LFPC [31] 60.30 - 93.79
FPGM [30] 52.30 - 93.85
HRank [64] 58.20 59.20 93.36
GAL [67] 48.50 44.80 92.74

Idelbayev et. al. [41] 62.69 - 93.38
BasisNet 61.18 57.95 93.56

VGG-16
Zhao et. al. [120] 39.10 73.34 93.18

Li et. al. [60] 34.20 64.00 93.40
DCP [121] 65.03 93.58 94.57
HRank [64] 65.30 82.10 92.34
GAL [67] 45.20 82.20 93.42

Slimming [69] 51.00 88.50 93.80
Idelbayev et. al. [41] 65.63 - 93.88

BasisNet 67.99 83.96 93.81
DenseNet-40

Zhao et. al. [120] 44.78 59.67 93.16
HRank [64] 61.00 53.80 93.68
GAL [67] 71.40 75.00 93.23

Slimming [69] 55.00 65.20 94.35
BasisNet 60.74 55.35 93.59
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Results on CIFAR10

For CIFAR10 dataset we evaluated our method on four different models. These are ResNet-56,

ResNet-110, VGG-16 and DenseNet-40. These networks were trained for 60 epochs in Step 1,

and for approximately 200 epochs in Step 2 with an initial learning rate of 0.01. As shown in

Table 3.1, for ResNet-56 and ResNet-110 our method achieves almost 61.0% FLOPs reduction

with 93.34% and 93.56% classification accuracy respectively, which is better then recent methods

like GAL [67] and Hrank [64] both in terms of network compression and accuracy. Comparing

with other methods our framework achieves highest FLOPs reduction with slightly worse accuracy.

Similarly for VGG-16 out method outperforms both [67] and Hrank [64] by compressing the model

to achieves 68% FLOPs reduction with 93.8% classification accuracy. Finally for DenseNet-40

our compressed model achieves performance and compression comparable to the other pruning

methods.

As discussed in Section 3 minimizing the L1-norm of the weights of linear combination promotes

sparsity in their values, which in turn forces the model to learn a compressible and compact rep-

resentations. This is demonstrated in Figure 3.3(a) for the different layers of the VGG16 network

used for obtaining the results in Table 3.1, while Figure 3.3(b) shows the same for some of the

layers of the ResNet56 network (also from Table 3.1). Specifically, the red curves show the rapid

rise of S as a function of the number of eigenvalues in the numerator of Equation 3.12 obtained at

the end of Step 1. Similarly, the blue curves represents the behavior of S based on the eigenvalues

associated with the original filters for the same layer of the network. Figure 3.4 compares the num-

ber of filters in the different layers of the original and compressed versions of the same VGG16

and ResNet56 networks. The number of filters in the compressed versions Qt was automatically

selected such that the ratio S was equal to 0.8. The red line represents the number of filters re-

quired to meet this criteria in each layer at the end of Step 1, while the blue line shows the same
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prior to optimization. The yellow line provides the original number of filters for comparison. The

reduction in the number of filters required in each layer is evident from these plots. In step 2, the

basis for these filters is further optimized for maximizing overall performance.

Results on ImageNet

VGG16: To evaluate our method’s performance on VGG16 for ImageNet the pre-trained model is

optimized in Step 1 for 60 epochs. The initial learning rate is 0.01 with step scheduler to reduce

it by a factor of 10 every 20 epochs. This sparsely trained model attained 71.9% and 91.7% top1

and top5 accuracy respectively while the baseline accuracy is 71.6% top1 and 90.4% top5. We

then discard the least important basis filters to obtain obtain three compressed models with 3x, 4x

and 5x speedup ratios, and optimize their performance in Step 2. The results of this experiment

are presented in Table 3.2. Compared with other methods our basis VGG16 achieves better Top-5

accuracy on all speedup ratios.

Table 3.2: Top-5 accuracy of VGG16 pretrained on ImageNet and compressed to 3x, 4x and 5x
speedup ratios.

Method 3× 4× 5×
Jaderberg et. al. [45] 87.6 80.2 60.2

Zhang et. al. (asym.) [118] 89.5 89.0 87.9
Zhang et. al. (asym. fine-tuned) [118] 89.9 89.6 88.9

CP (fine-tuned) [33] - 88.9 88.2
ELR [104] - 89.4 88.8
GDP [65] - 88.0 -

Li et. al. [60] - 81.3 67.9
DDS [40] - 88.2 -

Molchanov et. al. [77] - 84.5 -
Kim et. al. [50] - - 89.4

BasisNet 91.3 90.8 90.3

Resnet50: A pretrained Resnet50 was optimized in Step 1 with a starting learning rate of 0.1. This
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Table 3.3: Results for Resnet-50 pretrained on ImageNet.

Method FLOPs Params. Top-1 Accuracy Top-5 Accuracy
(%↓) (%↓) Baseline Compressed Baseline Compressed

Alvarez et. al. [3] 27.00 - 74.70 75.20 - -
SFP [32] 41.80 - 76.15 74.61 92.87 92.06

HRank [64] 43.77 36.67 - 74.98 - 92.33
TRP [109] 44.44 - 75.90 74.06 92.7 92.07
IMP [76] 44.99 44.53 76.18 74.5 - -
LFC [96] 49.60 - - - 92.2 91.4
CP [33] 50.00 - - - 92.2 90.8

ELR [104] 50.00 - - - 92.2 91.2
GDP [65] 51.30 - 75.13 71.89 92.3 90.71
DDS [40] 52.35 38.82 76.12 71.82 92.86 90.79

FPGM [30] 53.50 - 76.15 74.83 92.87 92.32
GBN [112] 55.06 53.4 75.85 75.18 92.15 92.41
DCP [121] 55.56 51.45 76.01 74.95 92.93 92.32
ThiNet [70] 55.83 51.56 72.88 71.01 91.14 90.02
AFD [37] 56.00 52.73 76.1 75.42 - -
LFPC [31] 60.80 - 76.15 74.46 92.87 92.04
GAL [67] 61.36 24.27 76.15 71.80 92.87 90.82

BasisNet-50 51.27 43.94 76.13 76.34 92.86 93.05
BasisNet-60 60.64 52.78 76.13 75.79 92.86 92.83

model with compact representation achieves 77.0% and 93.4% top1 and top5 accuracy respectively

while the baseline accuracy is 76.1% top1 and 92.9% top5. We then compress this model by

discarding the least useful filters to obtain two compressed models with 51.3% and 60.6% FLOPs

reduction. We refer to these models as BasisNet-50 and BasisNet-60 respectively. The performance

of these two version after Step 2 exceeds that of all others methods as shown in Table 3.3.

Comparisons with the well received previous methods like ThiNet[70], IMP[76], CP[33], FPGM[30],

GBN[112], LFPC[31] and HRank[64] show that our method achieves more network compression

with the better classification accuracy.

Resnet18: We train Resent18 with the same learning parameters as Resnet50 for the sparse-

training phase. This compact model achieves 70.6% and 89.65% top1 and top5 accuracy respec-
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Table 3.4: Results for Resnet-18 pretrained on ImageNet.

Method FLOPs Params. Top-1 Accuracy Top-5 Accuracy
(%↓) (%↓) Baseline Compressed Baseline Compressed

SFP [32] 41.80 - 70.28 67.10 89.63 87.78
LCNN [21] 34.60 - 69.98 66.33 89.24 86.94
AFD [37] 42.50 33.10 69.76 68.91 - -
AFD [37] 46.10 47.10 69.76 68.15 - -

FPGM [30] 41.80 - 70.28 68.41 89.63 88.48
DCP [121] 50.00 47.10 69.64 67.35 88.98 87.60

Sampling [63] 29.30 43.80 69.74 67.38 89.07 87.91
TRP [109] 44.44 - 69.10 65.46 88.94 86.48

BasisNet-40 43.45 41.77 70.66 69.58 89.65 89.25
BasisNet-60 62.10 59.11 70.66 67.57 89.65 88.21

Table 3.5: Results of network compression on object detection problem: We compressed 2 prede-
fined variants of YOLOv3 [84] architecture on MS-COCO [68] dataset.

Model FLOPs (Billions) Params (Millions) MAP@0.5
Baseline Ours ↓% Baseline Ours ↓% Baseline Ours ↓

YOLOv3-tiny 5.56 2.71 51.26 8.85 2.86 67.73 32.90 29.58 3.32
YOLOv3-416-2x 65.86 32.35 50.88 61.95 22.22 64.13 55.40 55.34 0.06
YOLOv3-416-3x 65.86 22.27 66.18 61.95 15.97 74.22 55.40 53.83 1.57

tively while the baseline models has 69.8% top1 and 89.1% top5 accuracy. We then compress

this model to obtain two models with FLOPs reduction of 43.45% and 62.10%. Results of this

experiment are summarised in Table 3.4.

Results on Object Detection

To demonstrate our method’s effectiveness irrespective of the model architecture, dataset and the

objective function, we tested it on object detection problem. We used 2 predefined variants of

YOLOv3 [84] object detector pretrained on MS-COCO [68] dataset. These variants are YOLOv3-

tiny [84], which contains 13 convolution layers and a much deeper model YOLOv3-416 [84],
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Table 3.6: VGG16 inference time, power and energy consumption on NVIDIA Jetson AGX Xavier,
with various compression factors of 2x, 3x, 4x and 5x

Method Baseline 2× 3× 4× 5×
Inference time (ms) 40 30 26 25 23

Power (W) 6.01 5.55 5.15 5.08 4.94
Energy (Joule) 0.24 0.17 0.14 0.12 0.11

Top5 Accuracy (%) 90.4 - 91.3 90.8 90.3

which contains 75 convolution layers. We used code and pretrained models from [48] to serve

as baselines. For YOLOv3-tiny our method was able to achieve 51.26% reduction in FLOPs and

67.73% reduction in model parameters.

We also compressed YOLO-416 to 2x and 3x speedup ratios. These compressed models attain

53.83 and 55.34 MAP score respectively, as compared to the baseline model which has 55.40

MAP. Detailed results are presented in Table 3.5.

Implementation On Edge Processors

We also measured the GPU speed up of our method on Nvidia Jetson Nano by compressing the

VGG16 to reduce the FLOPs by 50% and 66%. Our method achieves 35.6% and 45.3% speedup

respectively. Table 3.6 shows the inference time, power and energy consumption of VGG16 on

the NVIDIA Jetson AGX Xavier (trained on ImageNet) using compression factors of 2x, 3x, 4x

and 5x. We see that total energy use can be reduced in half with less than 1% loss in accuracy.

Thus, we verified that the compressed model not only runs faster, but also requires less energy

when implemented in edge processors that operate with limited resources such as GPU memory

and power. It should be noted that we did not implement our method in C++ but used the python

based Pytorch instead. We believe that an optimized C++ cuda implementation can achieve even

better performance on GPUs.
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Table 3.7: Comparison with DCFNet [81] (Fourier-Bessel bases and K=3): Our method signifi-
cantly outperforms DCFNet in reducing the number of FLOPs and number of parameters, while
also achieving better accuracy.

Model Dataset FLOPs ↓% Param ↓% Accuracy (%)
DCFNet Ours DCFNet Ours DCFNet Ours

DCFNet (Conv-2) MNIST 84.86 88.40 87.74 98.30 99.40 98.34
DCFNet (Conv-3) SVHN 87.04 89.40 87.96 99.20 92.84 93.12

VGG16 CIFAR10 65.82 82.10 66.59 99.10 88.21 91.07

Additional Discussions and Insights

In this section, we provide additional discussions and insights into how basis representation and

SSRFT enables compression with minimal performance loss. As described in section 2, several

previous works have employed similar filter decomposition for the neural network compression. In

DCFNet [81], authors assume that the filters can be represented using 2D Fourier Bessel functions,

and optimize the corresponding spectral weights for this basis. To compare against DCFNet we

first implemented and trained Conv-2, Conv-3 and VGG16 network architectures as described in

their paper [81]. Next we compressed those baselines using our compression and SFT. In Table

3.7 we compare the compression achieved by our method to that of Fourier-Bessel bases variant

of DCFNet, with K=3. It can been seen that our method significantly outperform DCFNet both in

terms of reduction in FLOPs and reduction in number of parameters. For example, with VGG16

and the CIFAR10 data set, our method outperforms DCFNet by achieving greater reduction in

FLOPs (82.10% vs. 65.82%) and number of parameters (99.10% vs. 66.59%) while offering

greater accuracy (91.07% vs. 88.21%).

Another similar low-rank approximation technique has been proposed by Zhang et. al in [118].

To understand the key difference between our method and Zhang’s, consider the convolution of

an input image x with the filter kernel h which produces the output y = h ∗ x. Zhang et. al
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Input Image

Original CNN BasisModel

Figure 3.5: Comparison of first 32 activations for the first layer of orignal convNet and basisNet:
Despite significant differences in reconstruction, basisNet achieves 80% compression in FLOPs
with less then 1% performance difference.

[118] focus on the subspace of the filter output y. Assuming that y lie in a low-rank subspace,

Zhang et. al apply SVD to the matrix YYT (where each column of Y is a response of the filter

to a particular training image), and find a linear combination of the eigen vectors of YYT whose

output approximates y. On the other hand, we pay no attention to the output y, but apply the basis

representation to the filters h directly.

Table 3.2 compares our method with Zhang’s, and shows the Top-5 accuracy on the ImageNet

dataset using VGG-16 network compressed for 3x, 4x and 5x speedup ratios. Our compression

and optimization technique outperform Zhang’s method for all speedups ratios.

Whereas [118] and [45] (among others) optimize the spatial convolution filters to approximate the

responses of the filters of the original network, we optimize the underlying basis and the represen-
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Table 3.8: Effect of orthonormality constraint (eq. 3.14) on test accuracy for VGG-16 on CI-
FAR100. Higher value of t indicates less compression.

t Params. Accuracy (%)
LCE LCE + J

0.15 0.42M 31.05 34.05
0.25 0.80M 47.35 48.63
0.35 1.28M 55.06 56.34
0.45 1.90M 64.39 64.46
0.55 2.69M 66.51 66.59

tation of the filters in this basis. In fact, there is no expectation that the activations produced by

the basisConv layer will be the same as those produced by the convolution layer of the original

network. To see how the reconstructions of intermediate outputs is different for the compressed

network and the original network we visualized the first 32 activations of first convolution layer

and first basisConv layer in Figure 3.5. The zoomed insets show the input image used to generate

these activations, and 5th activation of both networks are clearly visually quite different. In fact,

careful comparison of corresponding activations show subtle yet noticeable differences between

how responses of the BasisConv and conventional convolution layers respond. It is evident that

each emphasizes and learn different image features in the manner necessary to optimize the overall

performance of the network.

Effect of Orthogonality term in Loss Function: The purpose of the loss term in Equation 3.14

is to ensure the basis filters remain orthogonal and as close to unit norm as possible when SFT

is applied. Figure 3.6 shows the covariance matrices for the basis filters for three of the thirteen

basisConv layers in the compressed network, with the orthogonality constraint included on the

left, and without it on the right. We can see that introducing this term does indeed decorrelates the

optimized filters, thereby ensuring that they continue to form an orthogonal basis. As a result, the

corresponding 1D filters continue to represent the spectra of equivalent spatial convolution filters
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(a) Conv 1 (b) Conv 5 (c) Conv 10

Figure 3.6: Basis filter covariance matrices with (left) and without the normalization (right) term
in loss: We have displayed covariance matrices for 3 of the 13 basisConv layers in compressed
VGG16 pretrained on CIFAR100.

in this basis.

To better understand the impact of the orthogonality term in Equation 3.14, we compressed VGG16

pretrained on CIFAR100 with five different values of the threshold t applied to S (Equation 3.12)

to obtain corresponding values of Qt. We trained these compressed network with and without

the orthogonality term Jl in the loss function in Equation 3.13. Results of this experiment are

summarised in Table 3.8. We can see that the improvement due to the inclusion of the orthogonality

term increases as we increase the compression. Therefore, imposing the orthogonality condition

improves the performance of the compressed network and enables greater compression.

Conclusion

In summary, we have introduced a very general method for CNN compression that is conceptu-

ally straightforward, effective, and easy to implement, and yet achieves very competitive results

compared to other (more intricate) state of the art techniques. As noted in [41], the real difficulty

in compressing a network using low rank approximation in determining what the optimal rank of

each layer is–effectively, an architecture search problem with one hyperparameter per layer. We
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have shown that this can be solved by i)learning a linear representation for the original filters with

sparse weights that automatically favors rank reduction and compression, and ii) jointly optimiz-

ing the low-rank basis and filter spectra to maximize the performance of the compressed network.

Referred to as SSRFT, the proposed two-step method first imposes sparsity on the linear represen-

tation of the filters to make the decomposition more amenable to compression and rank reduction.

Specifically, we showed that minimizing the L1 norm of the weights of linear combination reduces

a bound on trace of the weight matrix, forcing many of the corresponding eigenvalues to become

small (or zero) in value. In turn, this makes it easy to compress the network by simply selecting a

small number of basis filters using a fixed threshold, and then optimizing the low-rank basis and

filter spectra to maximize performance . We used various network architectures (VGG16, ResNet,

DenseNet, and YOLOV3) and different datasets (MNIST, SVHN, CIFAR-10, CIFAR-100, Im-

ageNet, and MS-COCO) to show that our method consistently achieves significant reduction in

the learnable parameters, storage size, and FLOPs while outperforming many other well-received

state of the art methods for network compression. The results of these direct comparison with

other state of the art methods show that the proposed method often achieves greater compression

at competitive performance levels.
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CHAPTER 4: SIMULTANEOUS LEARNING AND COMPRESSION

Introduction

Two popular neural network compression methods are filter pruning and low rank approximation.

In this work we propose a unified framework for tackling both kinds of compression methods

while the network is being trained. Conventional pruning typically starts with a filter importance

score estimation, where a dedicated algorithm estimates the importance score of each pretrained

filter in the model. There are several ways to estimate filter importance, some methods (i.e. [76,

114, 70]) estimate the contribution of each filter to some loss and use it as a proxy for importance

while others estimate filter importance based on the statistics of the output feature map [64]. Least

important filters are then removed from the model, either iteratively or all at once and the resulting

compressed model then is fine-tuned to recover any loss of performance.

Low rank approximation compression methods [20, 3, 99, 118] start with the assumption that the

pretrained convolutions filters form a rank deficient matrix. They exploit this fact by representing

the filters in a given convolution layer by the weighted linear combination of a set of basis filters

[118, 99]. The network layer then operates by applying the basis filters first on the input followed

by the weighted linear recombination of the channels of intermediate output. Compression results

from the fact that the decomposition represents the same information as the original filters in

a much more compact fashion by discarding basis filters corresponding to small eigen values.

This truncation of filters introduces some error in the model’s prediction which is mitigated by

subsequent fine-tuning.

Since both of these methods depend on filter truncation, it is important for their success that the

original filters are compactly represented in the first place and the discarded filters contain little
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Figure 4.1: Randomly initialized filters are trained in eigen decomposed form with a weighted sum
of task specific loss and group L1 constraint. Set G can be rows of W to obtain optimally compact
recombined filters for low rank approximation or the columns for pruning based methods.

information. However conventional methods do not explicitly train filters for this purpose so any

deletion of filters also discards useful information learned by the model. Recently Alvarez et. al.

[3] have attempted to address this issue by training a compression aware model from scratch. How-

ever their method is only applicable to the compression methods based on low rank approximation

and doesn’t take pruning methods into consideration.
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We show that our basisConv structure can be used for both low-rank approximation and pruning.

Assume that the recombined filters are the columns of the matrix Ĥ, the basis filters are the columns

of F and coefficient of linear combination are the columns of W. The relation between these

quantities is given by Ĥ = FW. Taking inspiration from [61], we train the randomly initialized

filters in eigen decomposed form with group L1 regularization on linear combination matrix W.

This in turn encourages sparsity in W and enables us to obtain optimally compact filters for low

rank approximation and pruning based compression methods. The use of group L1 regularization

enables us to force either entire rows or columns of W to be zero (depending on the choice of

group). We will show that minimizing the L1 norm of the rows leads to low-rank approximation,

while minimizing the column-wise L1 norm removes entire filters, and is eqivalent to pruning.

This is different from vanilla L1 which does not impose structural constraints, but achieves overall

smaller L1 norm with sub-optimal compactness.

Finally, our method also eliminates the need for a dedicated filter importance metric which is at

the core of network pruning method. Instead, our method uses the column norm of W as a proxy

for filter importance and deletes the filters corresponding to the smallest norms.

In this chapter, our contributions are as follows: (i) we present a framework for simultaneous

training and compression which enables training, pruning, and rank reduction of CNNs filters in

eigen space as the network learns from scratch. (ii) We show that group L1 regularization on

recombination coefficients enables learning a compact filter representation suitable for network

compression. (iii) We show that the L1 norm of the columns of the matrix W can be used a proxy

for the filter importance score which can then be used to prune (delete) unimportant filters.
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Compressed Model

Figure 4.2: Schematic diagram of our compression framework.

Method

In this section, we describe our approach which aims to learn compact representation favourable

for network compression. As depicted in Figure 4.2, our method first replaces randomly initialized

filters denoted by H with a set of basis filters F and recombination coefficients matrix W. The

model is then trained with group L1 regularization on W along with any task specific loss function

(e.g. cross entropy loss for classification). Following [61] we applied group L1 regularization to the

columns of W to train for pruning and rows of W for low rank approximation based compression.

The addition of group L1 term to the overall loss function encourages entire groups of the elements

W to become sparse. Finally we multiply the learned W and F matrices to obtain a compact

approximation for the original filters H. These filters are finally compressed using standard pruning

or low rank approximation techniques.
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Figure 4.3: Comparison of the normalized cumulative sum of the eigen-values associated with
the different layers of Vgg16 trained on CIFAR10. The model is trained with row wise L1 norm
(yellow curve), vanilla L1 norm (red curve) and without any regularizer (blue curve). X-axis
represents the eigen-filter number, while the y-axis is the normalized cumulative sum of eigen-
values. Imposing groups wise sparsity on w results in a more compact filters, so fewer eigen-filters
are needed for the yellow curve to reach 100%.

Training from scratch

To train form scratch we first need to calculate F and W from the randomly initialized filters.

To understand how we do it, consider the convolution layer of a CNN, whose filters are of size
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M ×N ×D ×D, where N and M are number of input channels and output channels respectively

and the spatial dimension of the filters is D×D. These filters are flattened and arranged as columns

of the matrix H ∈ RA×M , where A = ND2. Following [20, 99] we compute the singular value

decomposition of H. This lets us write it as H = USVT where U = F and SVT = W.

After decomposition, F and W are optimized to minimize the following cost function to train the

model:

argmin
F,W

(
f(F,W) +

α

L

L∑
j=1

(∑
g∈G

|wg
j |

))
(4.1)

Here f(F,W) is the task specific loss function (i.e. cross entropy loss for classification). L is

the number of layers, and |wg
j | is the L2 norm of the vector that belongs to G, the set of either

rows or columns of W. Since the L2 norm is used for each member of the group, and then we

minimize the L1 norm of these values collectively for the whole group, this is referred to as group

L1 regularization or alternatively mixed norm [90]. So, the second term in Eq. 4.1 computes the

average of group L1 norm of W in every layer in the model and α is the weight given to this term

in the overall loss function.

After training, F and W are finally recombined to obtain the filter matrix Ĥ = FW, which is now

suitable for compression using with either pruning or low rank approximation based techniques.

Low rank approximation

Following the methods proposed by [20, 118] we again decomposed the filters Ĥ with singular

value decomposition to obtain the final basis filters F̂ and coefficient matrix Ŵ. As depicted

in Figure 4.1 the original convolution layer is replaced with two convolutions, the first with F̂
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followed by another with Ŵ, after appropriate reshaping of the filters. The model is now easily

compressed by discarding the columns of F̂ (i.e. the basis filters) which correspond to the smallest

eigen-values of the decomposition.

Pruning

For pruning, we first need to estimate the importance of each filter so that the least important

filters can be identified and deleted. While other pruning methods [76, 64] propose complicated

techniques to estimate the importance of each filter, we make use of the the linear combination

matrix W. Since Ĥ is computed as the matrix product of F and W, we can see that each filter in Ĥ

is the linear combination of basis filters in F, with the columns of W acting as the weights of this

linear combination. Therefore, the importance of any filter in Ĥ can be estimated by just taking the

column wise L1 norm of the W matrix. Once the filter importance is estimated, pruning becomes

trivial by simply eliminating the least important columns of Ĥ corresponding to the columns of W

with smallest L1 norm.

Training from Scratch: Recall that our method replaces the convolution layers in each of the

networks with the decomposition shown in Figure 4.1 prior to training. We then train the decom-

posed models from scratch as described in Section 4 for same number of epochs as the original

models. We have observed that the decomposed model easily attains an accuracy within ±1% of

the original model with some minor tweaking of the hyper-parameter α. To show that our method

encourages compact representation with basis filters, in Figure 4.3 we compare the normalized

cumulative sum of the eigen-values associated with the VGG-16 filters learned with group wise L1

norm, vanilla L1 norm and those without any regularizer. Thus, the faster the plot reaches 100%,

the smaller the number of required filters is. It is clear that imposing group wise sparsity on W

yields the most compact representation, with less eigen-filters required for any given value of the
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cumulative sum of the eigen-values.

Dynamic Compression: As previously discussed, most neural network compression techniques

are applied to pretrained models, which have not been designed with subsequent compression in

mind. This approach typically results in a distribution of learned filters where information is almost

uniformly dispersed. In contrast, our strategy of compression-aware training from the beginning

facilitates the learning of compact filters. One significant advantage of this approach is that it

allows us to compress the model without the need for any further fine-tuning, while still preserving

high accuracy.

We apply dynamic compression in the low rank decomposed form. Once the model is trained from

scratch using the method outlined in 4 we achieve dynamic compression by simply truncating the

basis filters in F̂ and coefficients in Ŵ corresponding to the smallest eigen values.

Experiments

In this section we present the evaluation of our method for learning compact model from scratch

and compression with low rank and pruning methods. We evaluated our method on on CIFAR10

and ImageNet classification datasets. The network architectures investigated for compression are

ResNet-18, ResNet-56, ResNet-110, VGG-16 and DenseNet-40.

Compression: After training, the models are compressed with both pruning (dropping recombined

filters) and low rank methods (dropping basis filters), and the final fine-tuning step is performed to

mitigate any performance loss due to filter deletion. All compression results and are summarised

in Figures 4.4 for CIFAR10, and in 4.5 for ImageNet, and compared to other state of the art

metods. Each method is represented with a colored circle, centered around the accuracy (y axis)

and FLOPs (x axis) while the size of circle is proportional to the number of parameters. Since our
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Figure 4.4: Results on CIFAR-10

pre-training procedure enables learning of compact representations, we can discard large number

of filters containing less information and achieve higher compression compared to other methods.

In each case, we see that our low-rank method (labeled “Low Rank (Ours)”) achieves the lowest

flops with very competitive performance accuracy compared to other state of the art methods. Our

pruned models (”Pruning (Ours)”) achieves even greater compression and reduction in FLOPS

with slightly less accuracy compared to other methods, while also avoiding costly filter importance
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Figure 4.5: Results on ImageNet for Resnet-18.

estimation proposed in [64, 76, 114].

Dynamic Compression: As previously discussed, our training approach allows us to compress the

model without the need for any further fine-tuning, while still preserving high accuracy. Conven-

tional models, when subjected to filter truncation, often exhibit significant performance degrada-

tion. However, our method maintains high accuracy even when a substantial number of filters are

removed from the model, as demonstrated in Figure 4.6.
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Figure 4.6: Result of dynamically compressing the model without any finetuning. Compact filters,
which were learned through our training process, enable the model to maintain high accuracy level
even when a significant number of filters are removed.

This unique attribute of our training scheme allows us to deploy various compressed versions of

the model without requiring any additional fine-tuning on the data.
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Conclusion

Traditional methods for network compression deal with conventionally trained networks that have

a lot of redundant parameters and filters. Our method essentially allows a network to self-compress

as it undergoes training. Essentially, a minimum group L1 norm criterion is imposed on a decom-

posed structure for the convolutional layers. By defining the group L1 norm either along the

columns or along the rows of the coefficient matrix, the network can “self compress” by either

deleting unimportant filters (pruning) or reducing their rank (compact representation). Finally, us-

ing the CIFAR-10 and ImageNet data sets along with several different network architectures, we

showed that our method provides very competitive accuracies at the lowest number of FLOPs as

compared to several other state of the art methods.
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CHAPTER 5: COMPRESSED CONTINUAL LEARNING

Introduction

Recent progress in machine learning research has led to impressive advances and has enabled many

practical applications of the deep learning models [28, 84]. These conventional methods however

assume that all training data is available at once which is hardly the case in real world applications.

For instance, imagine a warehouse robot tasked with visually scanning items. If traditional training

pipeline is used, every time a set of new items classes are added to the inventory the model will

need to be trained again from scratch, with all previous and newly available data. This process is

not only time consuming but also needlessly computationally expensive. Additionally, previous

training data may not be available now. Naively training the model on new dataset alone makes the

model suffer catastrophic forgetting, where model forgets the previously learned representations

and adapt to new data only. This limitation has hampered the widespread adaption of deep learning

methods.

The strategies for addressing this problem are referred to as continual learning or lifelong learn-

ing in the literature and are an active area of research. Lifelong learning aims to train a model

incrementally, as new data becomes available while also preserving the previously learned repre-

sentations. To solve this problem several methods have been introduced, and among them, network

expansion based methods have shown potential. These methods add dedicated parameters to the

model for each new task which can be used to calculate the task specific feature maps, thus avoid-

ing forgetting. For example Rusu et al. [87], Yoon et al. [111] and Jerfel et al., 2019 [46] have

proposed incrementally adding parameters to the model for each new task. Vinay et. al. [102]

suggested adding several task specific feature map transformation layers to the model which re-

quire a small number of additional parameters. Similarly, Miao et. al. [74] proposed a low rank
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sub-space based approach which decompose original filters into a set of task specific atoms and

shared coefficients. Task specific filters are obtained at inference time by multiplying the shared

coefficients with corresponding filter atoms.

We propose a filter decomposition based approach to address the problem of life-long learning

while avoiding catastropic forgetting. Our method enables knowledge sharing between tasks with a

set of shared basis filters while task specific coefficients enable the model to compute task specific

feature maps. We leverage the low rank approximation of convolution filters H to decompose

them into compact basis filters F and coefficients w. We share the filters F among all tasks while

new coefficients are added to the model for each additional task. In contrast to Miao et al. [74],

task specific feature maps are computed by a sequence of convolutions with F followed by wt,

as depicted in Fig. 5.2. Finally choosing compact basis to represent H lets us get away with

using a small number of basis filters. This enables significant reduction in FLOPs and number of

parameters in the model.

While the formulation introduced above performs well compared to similar methods, it has one

notable drawback: since the basis filters F are trained exclusively on the first task’s data, this

creates a bias towards that specific task. To address this issue, we also propose a progressive growth

approach for the basis filters. In this proposed method, basis filters can be seen as a continuously

expanding knowledge base, capable of learning from all subsequent tasks.

To demonstrate efficiency of the proposed approach, we evaluate our model on a variety of datasets

and network architectures. With Resnet18[28] based architecture, we report performance improve-

ment on CIFAR100 [53] with significantly low FLOPs and parameters as compared to other meth-

ods. For the ImageNet [47] data set, our method achieves comparable performance to other re-

cently reported methods.

Our contributions in this chapter are as follows. i) We propose a filter decomposition-based ap-
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Figure 5.1: Illustration of low rank filter decomposition. On top is the 2D convolution with fil-
ters H, which can be decomposed into basis filters F and coefficients w. A convolution with F
followed by w can be used to approximate the original output.

proach to address life-long learning in convolutional neural networks, which effectively mitigates

catastrophic forgetting. Our method facilitates knowledge sharing across tasks using a set of shared

basis filters, while employing task-specific coefficients to compute distinct feature maps for each

task. This not only ensures adaptability but also results in a significant reduction in FLOPs and the

number of model parameters, thanks to the compact basis filters. ii) We introduce a progressive

growth strategy for the basis filters to counter the bias towards the first task. In our approach, the

basis filters act as an evolving knowledge base, capable of assimilating learnings from all preceding

tasks, thereby ensuring a more balanced and comprehensive model. iii) We provide empirical ev-

idence demonstrating the efficiency of our approach through evaluations on multiple datasets and

network architectures. For instance, with a Resnet18-based architecture, our model demosntrates

performance improvements on CIFAR100 with substantially lower FLOPs and parameters com-

pared to alternative methods. Additionally, our method delivers competitive performance on the

ImageNet dataset relative to other state-of-the-art approaches.
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Method

Our method for lifelong learning has been inspired by low rank filter decomposition-based tech-

niques [20, 45]. We show that this formulation can not only be used to compress the pretrained

convolution layer but also naturally extends to adapt the model for learning new tasks. It has been

observed by [20] that task parameters lie in low dimensional sub space of the convolutional filters.

We have exploited this fact for CNN compression by substituting the trained convolutional filters

(for the currently known tasks) with compact basis filters F and coefficients w, as shown in Fig.

5.1. For the lifelong learning problem setting, the basis filters are shared (and are kept fixed) while

separate new coefficients are added and trained for each new task. The combination of shared basis

filters and task specific coefficients enables the model to preserve previously learned knowledge

and avoid forgetting previous tasks.

Low Rank Approximation of Filters

To find these compact basis filters and coefficients, consider the fundamental 2D convolution op-

eration in a CNN. Assume that an input tensor x is convolved with a set of filters H ∈ RP×L×D×D,

where P is the number of filters in H and with each filter of size L×D ×D. The output y, of this

convolution operation is expressed as

y = x ∗H (5.1)

We know that eigen decomposition results in a compact basis that minimizes the reconstruction

error achieved by a linear combination of basis functions. We therefore choose F as the eigen

filters that represent the sub-space in which the original filters H lie. The method for obtaining

these is also well-known and straightforward. To approximate the compact sub-space these filters

are flattened and arranged as columns of the matrix H̃ ∈ RA×P , where A = LD2. We then

54



. . . . . .
Shared Basis 

Filters, 
𝑭 ∈ ℝ𝑸×𝑳×𝑫×𝑫

Task Specific 
Filters, 

𝒘𝝉 ∈ ℝ
𝑷×𝑸×𝟏×𝟏

𝒘𝟏

𝒘𝟐

𝒘𝝉

𝒚𝝉

𝒛

𝒙𝟏

𝒙𝟐

𝒙𝝉

𝒚𝟐

𝒚𝟏

Figure 5.2: Our Efficient Lifelong Learning (ELL) method. We substitute the original filters H
with shared basis filters F and a set of task specific coefficients wt. Combination of these two lets
us compute task specific features throughout the network.

compute its singular value decomposition as H̃ = USVT and initialize F̃ with the columns of U

corresponding to non zero eigen values. This leads to w̃ = SVT and finally appropriate reshaping

of F̃ and w̃ lets us rewrite the convolution operation defined in Eq. 5.1 as a sequence of of two

successive convolutions:

y′ = (x ∗ F) ∗w (5.2)

where F ∈ RP×L×D×D and w ∈ RP×P×1×1. We refer to the construct introduced in Eq. 5.2 as

decomposed convolution. This representation is typically used to compress the model in terms

of FLOPs and number of parameters however in its current form it actually increases FLOPs and
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parameters. To compress the model we discard k% the basis filters in F corresponding to the

smallest eigen values. This results in F ∈ RQ×L×D×D and correspondingly w ∈ RP×Q×1×1, where

Q = ⌈P − kP/100⌉.

Efficient Lifelong Learning

The objective of lifelong learning algorithm (Algo. 1) is to incrementally train the model on a

set of disjoint classes with some data availability constraints. Formally, the model observes data

(Xt,Yt) randomly drawn from distribution Dt, corresponding to task t, where Xt and Yt represents

the input images and corresponding ground truth labels respectively. The goal of a continual

learning algorithm is to train model on Dt while also preserving the previously learned knowledge.

However, this data availability constraint introduces the problem of catastrophic forgetting [62, 51]

where the model forgets the previous knowledge and performs poorly on previous tasks.

We seek to solve this catastrophic forgetting problem by using the decomposed convolution struc-

ture. We initially train a vanilla neural network on the first task with convolution filters H, given

the data samples (X1,Y1) via the optimization

argmin
H

∑
D1

ℓ(f(X1;H),Y1) (5.3)

here f(:) represents the model function and l is the loss function. Once the model is trained we

decompose and compress the trained filters as described in Sec. 5. Compact nature of basis filters

allows us to discard up to 25% of the total filters corresponding to the smallest eigen values, without

an adverse affect on model’s performance. However with even higher levels of compression model

encounters performance degradation. To counter that we fine tune F and w1 to minimize the same

loss as before.
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Algorithm 1 Training procedure of the proposed method
1: function TRAIN(H, k, D1 ... DT)
2: Train model using D1, according to Eq. 5.3
3: Decompose H in each Conv2D layer into F and w
4: Truncate k% filters in F and update w accordingly
5: for t = 1 to T do
6: if t == 1 then
7: Initialize w1 = w
8: Finetune F and w1 using D1, according to Eq. 5.4
9: else

10: Initialize wt = w1

11: Train wt using Dt, according to Eq. 5.5
12: end if
13: end for
14: return (F, w1 .. wT)
15: end function

argmin
F,w1

∑
D1

ℓ(f(X1;F,w1),Y1) (5.4)

It is important to note that initial training and fine tuning is done using D1 only. For each new task

t > 1, we add additional task specific coefficients wt and initialize them with w1. This is followed

by training the model using Dt to optimize

argmin
wt

∑
Dt

ℓ(f(Xt;wt),Yt) (5.5)

To compute the task specific feature maps, we first convolve the input tensor with the shared ba-

sis filters followed by a convolution with corresponding task specific coefficients wt, as depicted

in Fig. 5.2. Since shared basis filters are only trained once, this formulation allows us to pre-

serve the learned task specific representations perfectly through out the model and thus avoids the

catastrophic forgetting problem entirely.
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Expandable Basis Filters

While the formulation introduced in the previous section performs well compared to similar meth-

ods, it has one notable drawback: since the basis filters F are trained exclusively on the first task’s

data, this creates a bias towards that specific task. To address this issue, we propose a progres-

sive growth approach for the basis filters. In this proposed method, basis filters can be seen as a

continuously expanding knowledge base, capable of learning from all subsequent tasks.

Formally, let’s assume we have convolution filters of the form H ∈ RP×L×D×D, where P repre-

sents the depth of the input tensor and L denotes the number of filters in the current layer. We

can decompose H into shared basis filters F ∈ RP×L×D×D and coefficients w ∈ RP×P×1×1, as

discussed in the previous section. Following compression, the filters for first task (t = 1) are

configured as

F1 ∈ RQ×L×D×D

w1 ∈ RP×Q×1×1

where Q < P . To eliminate bias introduced due to freezing F1 basis filters, task specific basis

filters are added such that for all subsequent tasks, t > 1

Ft ∈ RαQ×L×D×D

wt ∈ RP×Q(1+α(t−1))×1×1

where α, also referred to as growth rate, is the hyper-parameter which governs the number of filters

in each Ft and its value is constrained within range [0, 1]. It is important to highlight that when

the growth rate parameter is set to zero, the method is reduced to its elementary form, wherein no
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task-specific basis filters are used. Finally we define forward pass for task t as

y = (x ∗ cat(F1,F2..Ft)) ∗wt (5.6)

where cat(.) is the concatenation function, which concatenates all previously learned basis filters.

This ensures every subsequent task can not only benefit from representations learned with all pre-

vious task data, but also have more flexibility to learn their own. It should be noted that while

training with task t data we only adapt Ft and wt in each layer and all other filters remain fixed.

Experiments

We evaluated our method on two lifelong learning scenarios - Task Incremental Learning (TIL)

and Class Incremental Learning (CIL). These two scenarios differ in the manner in with new task

is treated at inference time. In TIL it is assumed that the task ID is known at inference time which

can be used to select the corresponding wt to calculate task specific representations. In CIL task

ID is not provided and has be to predicted at inference time. We adopted a simple entropy based

strategy to predict the task ID, where task ID of an unknown sample is chosen to be the ID of

classification head with least entropy.

We also evaluated our method for compression (in Sec. 5) by calculating the FLOPs and param-

eters required for a given model. We opted FLOPs over wall clock time as a measure of model’s

efficiency, since FLOPs are machine and implementation independent and can be easily estimated

in Pytorch.
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Figure 5.3: Comparison of CIL accuracy with Resnet18 architecture on CIFAR100 dataset.

Class Incremental Learning (CIL)

Resnet18: To evaluate our method on CIL we first adopted Resnet18 network architecture and

trained it on three uniform splits of CIFAR100. Specifically we divide the 100 classes into 5, 1060



Table 5.1: Comparison of CIL accuracy with Resnet18 architecture on 10-split CIFAR100 dataset.

Method / Task ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Avg.

LwF [62] 88.5 70.1 54.8 45.7 39.4 36.3 31.4 28.9 25.5 23.9 44.5
EWC [51] 88.5 52.4 48.6 38.4 31.1 26.4 21.6 19.9 18.8 16.4 36.2
SDC [113] 88.5 78.8 75.8 73.1 71.5 60.7 53.9 43.5 29.5 19.3 59.5

SI [115] 88.5 52.9 40.7 33.6 31.8 29.4 27.5 25.6 24.7 23.3 37.8
MAS [2] 88.5 42.1 36.4 35.1 32.5 25.7 21.0 19.2 17.7 15.4 33.4

RWalk [12] 88.5 55.1 40.7 32.1 29.2 25.8 23.0 20.7 19.5 17.9 35.3
DMC [117] 88.5 76.3 67.5 62.4 57.3 52.7 48.7 43.9 40.1 36.2 57.4
EFT [102] 90.2 76.2 70.1 63.1 57.9 53.6 52.1 49.6 47.6 45.5 60.6

Ours (k=0%) 92.4 76.3 67.1 63.6 62.0 58.6 56.4 54.3 52.1 49.8 63.3
Ours (k=75%) 89.1 74.7 65.1 61.6 59.8 55.6 53.7 51.4 49.4 47.3 60.8

and 20 sets of tasks and refer to them as 5-split, 10-split and 20-split respectively. These splits

cover a wide range of problem difficulty as 20-split CIFAR100 tests models ability to adapt to

large number of new tasks while 5-split setting tests model’s ability to train on a larger number

of classes per task. For each one of these splits we trained Resenet18 at two compression levels

with value of k set to 0% and 75% (k is the percentage of basis filters discarded). Results for

the 10-split scenario are summarised in Table 5.1 while the results for the 5-split and 20-split

cases are plotted in Figure 5.3. We notice that our method outperform others even with very high

levels of compression. For example in Table 5.1, when compared with EFT [102] our Resnet18

with k = 75% performs slightly better with 60.8% average CIL accuracy as compared to EFT’s

60.6%. Additionally truncation of large number of basis filters significantly reduces the FLOPs

and number of parameters in the model (detailed comparison in Sec. 5).

Resnet32: For evaluating Resnet32 on CIFAR100 we followed the non uniform split used by

FAS’s[74]. This split is different form the previous ones because here the first tasks always contains

50 classes while the remaining 50 are divided into sets of 5 or 10. This experiment evaluates a

significantly different and harder problem as now we have very uneven number of classes per task.
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Table 5.2: Average CIL with Resnet32 archi-
tecture on non uniform 6-split and 11-split
CIFAR100. Dataset is divided into tasks such
that first task contains 50 classes and remain-
ing are equally divided into 5 or 10 sets.

Method 6-split 11-split

LwF [62] 57.03 56.82
EWC [51] 56.28 55.41
iCaRL [83] 57.17 52.57
SDC [113] 57.10 56.80
BiC [108] 59.36 54.20

Rebalancing [36] 63.12 60.14
FAS-a [74] 60.23 55.54
FAS-b [74] 65.44 62.48

Ours (k=0%) 66.65 62.54
Ours (k=25%) 62.73 59.23

Table 5.3: Average TIL accuracy and task
prediction accuracy for Rensnet32, trained on
non-uniform split CIFAR100.

Method 6-split 11-split
TIL (K=0%) 88.6 93.4

TIL (K=25%) 87.5 93.0
Task Prediction (K=0%) 79.1 74.5

Task Prediction (K=25%) 76.7 73.2

Table 5.4: Comparison of TIL accuracy with AlexNet architecture on 10-split ImageNet.

Method / Task ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Avg.

LwF [62] 27.6 37.2 42.0 44.4 50.5 56.6 57.9 61.2 62.0 62.7 50.2
IMM [57] 68.5 53.6 52.1 51.7 52.5 55.5 54.7 53.5 54.2 51.8 54.8
EWC [51] 21.8 26.5 29.5 32.9 35.6 40.4 40.0 44.7 47.8 61.1 38.0

PackNet [72] 67.5 65.8 62.2 58.4 58.6 58.7 56.0 56.5 54.1 53.6 59.1
EFT [102] 69.0 63.2 60.1 62.5 53.6 57.2 55.1 52.8 55.7 62.5 59.4

Ours (k=0%) 65.6 63.3 60.7 63.9 56.5 57.4 55.0 52.8 55.7 64.1 59.5
Ours (k=25%) 65.0 63.0 59.7 62.8 55.5 56.3 54.5 52.4 55.0 63.5 58.8

As we can see in Table 5.2 our method with k = 0 out performs other methods. However due

to non-uniformity of the splits our method does not perform equally well with high compression.

This performance degradation mainly comes from the failure of class prediction mechanism as

shown in Table 5.3.
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Table 5.5: Comparison of TIL accuracy with VGG16 architecture on 10-split TinyImageNet.

Method / Task ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Avg.

LfL [49] 32.4 35.4 43.4 44.1 45.0 55.9 49.4 51.1 58.6 61.4 47.7
LwF [62] 45.1 45.5 53.5 57.6 56.2 65.7 63.5 58.4 59.6 58.5 56.4
IMM [57] 50.6 38.5 44.7 49.2 47.5 51.9 53.7 47.7 50.0 48.7 48.3
EWC [51] 33.9 35.4 43.6 46.7 49.5 52.5 47.8 50.2 56.6 61.4 47.8
HAT [91] 46.8 49.1 55.8 58.0 53.7 61.0 58.7 54.0 54.6 50.3 54.2

PackNet [72] 52.5 49.7 56.5 59.8 55.0 64.7 61.7 55.9 55.2 52.5 56.4
TFM [73] 48.2 47.7 56.7 58.2 54.8 62.2 61.5 57.3 58.5 54.8 56.0
EFT [102] 67.2 62.5 69.4 62.6 68.3 69.6 59.0 67.8 71.5 70.1 66.8

Ours (k=0%) 64.3 64.6 70.8 65.9 68.0 70.6 60.2 69.4 71.2 69.0 67.4
Ours (k=50%) 64.2 64.6 69.1 64.0 68.4 68.7 60.4 67.5 72.1 69.7 66.9

Task Incremental Learning (TIL)

We also tested our method on TIL with AlexNet and VGG16 architectures. We trained these

on uniform 10-split ImageNet [47] and TinyImageNet datasets respectively. ImageNet is a clas-

sification dataset containing 1000 classes, while TinyImageNet is a smaller subset of ImageNet

dataset containing 200 classes, downsampled to 64 × 64 spatial resolution. The results of these

experiments are shown in the Table 5.4 and Table 5.5. We can see that, for both ImageNet and

TinyImageNet our uncompressed models (k = 0%) achieves better average accuracy compared to

the other methods, while the compressed variants attain results comparable to the previous SOTA.

Expandable Basis Filters

Our proposed expandable basis filters scheme was evaluated on the Resnet18 architecture using

the 5-split CIFAR100 dataset. Initially, the model was compressed with k = 90%, resulting in the

removal of 90% of filters in every convolution layer. The resulting model was then trained with

four distinct values of α, specifically (0, 0.1, 0.3, 0.5). The results for Task Incremental Learning
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Figure 5.4: Evaluation of Forward Knowledge Transfer (FWT).

and Class Incremental Learning are displayed in Figure 5.5. As hypothesized, the addition of

task-specific basis filters markedly enhances performance for all tasks where t > 1.

Forward Transfer (FWT)

FWT is an important metric of the quality of representations learned by a lifelong learning system.

It measures the ability of the model to positively influence a future task’s performance based on the

existing representations. Our method achieves FWT mainly by sharing the basis F and by initial-

izing task specific parameters wt with wt−1. We evaluated our method for FWT on Resnet18 with

10-split CIFAR100 by comparing this method of weight initialization to initializing wt randomly

for three levels of compression. Results of this experiment are presented in Fig. 5.4. We no-

tice that for all compression levels initializing with wt−1 helps model achieve better performance.

Secondly for higher levels of compression (when k > 0) model gets better at FWT.
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(a) Class incremental learning.

(b) Task incremental learning.

Figure 5.5: Results of our proposed expandable basis filter for Resnet18 on 5-split CIFAR100
dataset.
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Table 5.6: Comparison of FLOPs and parameters for various models used in our experiments.

k FLOPs (Billions) Params (Millions)
Resnet18 Resnet32 VGG16 AlexNet Resnet18 Resnet32 VGG16 AlexNet*

Baseline 1.11 0.14 2.50 1.74 11.16 0.46 14.76 2.88
0% 1.25 0.15 2.84 2.00 26.84 0.80 33.24 9.77
25% 0.95 0.12 2.10 1.50 20.61 0.60 25.05 8.36
50% 0.64 0.08 1.43 1.00 14.38 0.41 16.86 6.94
75% 0.32 0.04 0.72 0.48 7.24 0.21 8.66 5.52

Analysis of FLOPs and Parameters

We now compare the FLOPs and parameters of various network architectures used in our experi-

ments. For our method, number of total tasks does not impact the FLOPs of a single input image.

As can be deduced from Eq. 5.2, the output at each layer is obtained by convolving the input tensor

with the shared basis filters followed by the convolution with a single task specific wt. However

as more tasks are added to the model, additional coefficients and classification heads increase the

number of parameters in the model drastically. For comparative purposes we selected Resnet18,

VGG16 and ALexNet, each containing ten task specific wt’s in every layer. Table 5.6 show the

FLOPs and parameters at four levels of compression.

We can see that our Resnet18 trained for CIL, with k = 75% needs 0.32 Billion FLOPs and 7.24

Million parameters. In comparison EFT [102] performs equally well but needs 1.21 Billion FLOPs

and 11.60 Million parameters. Similarly our Resnet32 with k = 0% outperforms FAS-b[74] on

non-uniform split CIFAR100 and needs only 0.15 Billion FLOPs as compared to 0.28 Billion

required by FAS-b[74].
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Conclusion

In this chapter we proposed a method for continual learning that draws upon principles from neural

network compression to incrementally learn new tasks. This methodology stems from filter decom-

position techniques and demonstrates a natural extension to the domain of continual learning. It

is widely recognized that task parameters inhabit a low-dimensional subspace of the network’s

filters. This allows the filter kernels to be compactly represented using basis filters and remixing

coefficients. In the context of continual learning, the basis filters are shared while new coefficients

are introduced for each new task. This approach enables the model to perfectly retain previously

acquired knowledge, thereby avoiding catastrophic forgetting. When applied to various continual

learning problems for image classificatioin, our method consistently demonstrated performance

improvements while maintaining significantly lower FLOPs and parameters. Additionally we also

introduced a method to eliminate the bias inherent in earlier formulations for continual learning

that stem from training by freezing the basis filters. Specifically, our approach incorporates task-

specific basis filters into the model, coupled with an inference mechanism in which these filters

functions as a knowledge reservoir. This knowledge reservoir provides a foundation of information

that each subsequent task can utilize and expand upon.

67



CHAPTER 6: EFFICIENT CROWD ANALYSIS

Introduction

Hitherto fore, we have mainly discussed the compression of networks designed for classification

problems. In this Chapter, we discuss the application of our basisConv compression methodology

to a network designed to solve a regression problem. In particular, we develop a network for

counting the number of people in a large crowd, and then study the effect of compression on this

network.

Counting dense crowds is significant both from socio-political and safety perspective. At one end

of the spectrum, there are large peaceful gatherings such as during pilgrimages that typically have

large crowds occurring in known and pre-defined locations. At the other end are as expressive mobs

in demonstrations and protests. Computer vision based crowd counting offers fast and objective

estimation of the number of people in such events. Furthermore, crowd counting is extendable to

other domains, for instance, counting cells or bacteria from microscopic images [58, 97], animal

crowd estimates in wildlife sanctuaries [5], or estimating the number of vehicles at transportation

hubs or traffic jams [79].

In this work, we propose a novel approach to crowd counting, density map estimation and local-

ization of people in a given crowd image. Our approach stems from the observation that these

three problems are very interrelated - in fact, they can be decomposed with respect to each other.

Counting provides an estimate of the number of people / objects without any information about

their location. Density maps, which can be computed at multiple levels, provide weak information

about location of each person. Localization does provide accurate location information, never-

theless, it is extremely difficult to estimate directly due to its very sparse nature. Therefore, we
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propose to estimate all three tasks simultaneously, while employing the fact that each is special

case of another one. Density maps can be ‘sharpened’ till they approximate the localization map,

whose integral should equal to the true count.

Furthermore, we introduce a new and the largest dataset to-date for training and evaluating dense

crowd counting, density map estimation and localization methods, particularly suitable for training

very deep Convolutional Neural Networks (CNNs). Though counting has traditionally been con-

sidered the primary focus of research, density map estimation and localization have significance

and utility beyond counting. In particular, two applications are noteworthy: initialization / detec-

tion of people for tracking in dense crowds [42]; and rectifying counting errors from an automated

computer vision algorithm. That is, a real user or analyst who desires to estimate the exact count

for a real image without any error, the results of counting alone are insufficient. The single number

for an entire image makes it difficult to assess the error or the source of the error. However, the lo-

calization can provide an initial set of dot locations of the individuals, the user then can quickly go

through the image and remove the false positives and add the false negatives. The count using such

an approach will be much more accurate and the user can get 100% precise count for the query

image. This is particularly important when the number of image samples are few, and reliable

counts are desired. Table 6.1 summarizes the statistics of the multi-scene datasets for dense crowd

counting. The proposed UCF-QNRF dataset has the most number of high-count crowd images and

annotations, and a wider variety of scenes containing the most diverse set of viewpoints, densities

and lighting variations.

Finally, to make crowd counting efficient we apply our filter decomposition based neural network

compression method on our trained model. In doing so we are able to significantly reduce the

FLOPs required to make an inference on the pretrained model, thus making the deployment more

efficient.
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Dataset Number
Images

Number
Ann.

Avg
Count

Max
Count

Avg
Resolution

Avg
Density

UCF CC 50 [43] 50 63,974 1279 4633 2101 × 2888 2.02 ×10−4

WorldExpo’10 [116] 3980 225,216 56 334 576 × 720 1.36 ×10−4

ShanghaiTech A [119] 482 241,677 501 3139 589 × 868 9.33 ×10−4

UCF-QNRF 1535 1,251,642 815 12865 2013 × 2902 1.12 ×10−4

Table 6.1: Summary of statistics of different datasets. UCF CC 50 (44MB); WorldExpo’10
(325MB); ShanghaiTech A (67MB); and the proposed UCF-QNRF Dataset (4.33GB).

Our contributions in this work are manifold. i) We present a novel approach to crowd counting,

density map estimation, and localization of individuals within an image. By recognizing the in-

terconnectedness of these three problems, we simultaneously estimate all of them. Our method

leverages the concept that density maps can be progressively sharpened to approximate localiza-

tion maps, the integral of which corresponds to the true count. ii) We introduce the largest dataset

to date for training and evaluating dense crowd counting, density map estimation, and localiza-

tion methods. Our dataset, UCF-QNRF, is particularly suitable for training deep Convolutional

Neural Networks (CNNs) and boasts an unparalleled diversity in terms of viewpoints, densities,

and lighting conditions. iii) We enhance the efficiency of crowd counting by incorporating a filter

decomposition-based neural network compression method on our trained model. This results in

a significant reduction in the number of floating-point operations (FLOPs) needed for inference,

making the model more efficient and practical for deployment in real-world scenarios.

Deep CNN with Composition Loss

In this section, we present the motivation for decomposing the loss of three interrelated problems

of counting, density map estimation and localization, followed by details about the deep Convolu-

tional Neural Network which can enable training and estimation of the three tasks simultaneously.
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Figure 6.1: Six images from the dataset demonstrating the diversity of count and setting.

Composition Loss

Let x = [x, y] denote a pixel location in a given image, and N be the number of people annotated

with {xi : i = 1, 2, . . . N} as their respective locations. Dense crowds typically depict heads of

people as they are the only parts least occluded and mostly visible. In localization maps, only

a single pixel is activated, i.e., set to 1 per head, while all other pixels are set to 0. This makes

localization maps extremely sparse and therefore difficult to train and estimate. We observe that

successive computation of ‘sharper’ density maps which are relatively easier to train can aid in

localization as well. Moreover, all three tasks should influence count, which is the integral over

density or localization map. We use the Gaussian Kernel and adapt it for our problem of simulta-

neous solution for the three tasks.

Due to perspective effect and possibly variable density of the crowd, a single value of bandwidth, σ,

cannot be used for the Gaussian kernel, as it might lead to well-defined separation between people
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Figure 6.2: The figure shows the proposed architecture for estimating count, density and localiza-
tion maps simultaneously for a given patch in an image. At the top is the base DenseNet which
regresses only the counts. The proposed Composition Loss is implemented through multiple dense
blocks after branching off the base network. We also test the effect of additional constraint on
the density and localization maps (shown with amber and orange blocks) such that the count after
integral in each should also be consistent with the groundtruth count.

close to the camera or in regions of low density, while excess blurring in other regions. Many

images of dense crowds depict crowds in their entirety, making automatic perspective rectification

difficult. Thus, we propose to define σi for each person i as the minimum of the ℓ2 distance to

its nearest neighbor in spatial domain of the image or some maximum threshold, τ . This ensures

that the location information of each person is preserved precisely irrespective of default kernel

bandwidth, τ . Thus, the adaptive Gaussian kernel is given by,

D(x, f(·)) =
N∑
i=1

1√
2πf(σi)

exp

(
−(x− xi)

2 + (y − yi)
2

2f(σi)2

)
, (6.1)
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where the function f is used to produce a successive set of ‘sharper’ density maps. We define

fk(σ) = σ1/k. Thus, Dk = D(x, fk(·)). As can be seen when k = 1, Dk is a very smoothed-

out density map using nearest-neighbor dependent bandwidth and τ , whereas as k −→ ∞, Dk

approaches the binary localization map with a Dirac Delta function placed at each annotated pixel.

Since each pixel has a unit area, the localization map assumes a unit value at the annotated location.

For our experiments we used three density levels with last one being the localization map.

Hypothetically, since integral over each estimated D̂k yields a count for that density level, the fi-

nal count can be obtained by taking the mean of counts from the density and localization maps

as well as regression output from base CNN. This has two potential advantages: 1) the final

count relies on multiple sources - each capturing count at a different scale. 2) During training

the mean of four counts should equal the true count, which implicitly enforces an additional con-

straint that D̂k should not only capture the density and localization information, but that each of

their counts should also sum to the groundtruth count. For training, the loss function of density

and localization maps is the mean square error between the predicted and ground truth maps, i.e.

Lk = MSE(D̂k, Dk), where k = 1, 2, and ∞, and regression loss, Lc, is Euclidean loss between

predicted and groundtruth counts, while the final loss is defined as the weighted mean all four

losses.

It is also interesting to note that various connections between density levels and base CNN also

serve to provide intermediate supervision which can make the filters of base CNN towards counting

and density estimation early on in the network.

DenseNet with Composition Loss

The architecture of our network is shown in Figure 6.2 We use DenseNet [39] as our base network.

It consists of 4 Dense blocks where each block has a number of consecutive 1 × 1 and 3 × 3
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Layer Output Size Filters
512 × 28 × 28

Density Level 1 1 × 28 × 28 1 × 1 conv

Density Level 2
641 × 28 × 28

[
1 × 1 conv
3 × 3 conv

]
× 4

1 × 28 × 28 1 × 1 conv

Density Level ∞ 771 × 28 × 28
[

1 × 1 conv
3 × 3 conv

]
× 4

1 × 28 × 28 1 × 1 conv

Table 6.2: This table shows the filter dimensions and output of the three density layer blocks
appended to the network in Fig. 6.2.

convolutional layers. Each dense block (except for the last one) is followed by a Transition layer,

which reduces the number of feature-maps by applying 1 × 1 convolutions followed by 2 × 2

average pooling with stride 2. In our experiments we used DenseNet-201 architecture. It has

{6, 12, 48, 32} sets of 1× 1 and 3× 3 convolutional layers in the four dense blocks, respectively.

For density map estimation and localization, we branch out from DenseBlock2 and feed it to our

Density Network. The density network introduces 2 new dense blocks and three 1×1 convolutional

layers. Each dense block has features computed at the previous step, concatenated with all the

density levels predicted thus far as input, and learns features aimed at computing the current density

/ localization map. We used 1× 1 convolutions to get the output density map from these features.

Density Level 1 is computed directly from DenseBlock2 features.

We used Adam solver with a step learning rate in all our experiments. We used 0.001 as initial

learning rate and reduce the learning rate by a factor of 2 after every 20 epochs. We trained the

entire network for 70 epoch with a batch size of 16.
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Definition and Quantification of Tasks

In this section, we define the three tasks and the associated quantification measures.

Counting: The first task involves estimation of count for a crowd image i, given by ci. Although

this measure does not give any information about location or distribution of people in the image,

this is still very useful for many applications, for instance, estimating size of an entire crowd

spanning several square kilometers or miles. For the application of counting large crowds, Jacob’s

Method [44] due to Herbert Jacob is typically employed which involves dividing the area A into

smaller sections, finding the average number of people or density d in each section, computing

the mean density d̄ and extrapolating the results to entire region. However, with automated crowd

counting, it is now possible to obtain counts and density for multiple images at different locations,

thereby, permitting the more accurate integration of density over entire area covered by crowd.

Moreover, counting through multiple aerial images requires cartographic tools to map the images

onto the earth to compute ground areas. The density here is defined as the number of people in

the image divided by ground area covered by the image. We propose to use the same evaluation

measures as used in literature for this task: the Mean Absolute Error (C-MAE), Mean Squared

Error (C-MSE) with the addition of Normalized Absolute Error (C-NAE).

Density Map Estimation amounts to computing per-pixel density at each location in the image,

thus preserving spatial information about distribution of people. This is particularly relevant for

safety and surveillance, since very high density at a particular location in the scene can be catas-

trophic [1]. This is different from counting since an image can have counts within safe limits, while

containing regions that have very high density. This can happen due to the presence of empty re-

gions in the image, such as walls and sky for mounted cameras; and roads, vehicles, buildings

and forestation in aerial cameras. The metrics for evaluating density map estimation are similar to
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counting, except that they are per-pixel, i.e., the per-pixel Mean Absolute Error (DM-MAE) and

Mean Squared Error (DM-MSE). Finally, we also propose to compute the 2D Histogram Intersec-

tion (DM-HI) distance after normalizing both the groundtruth and estimated density maps. This

discards the effect of absolute counts and emphasizes the error in distribution of density compared

to the groundtruth.

Localization: The ideal approach to crowd counting would be to detect all the people in an image

and then count the number of detections. But since dense crowd images contain severe occlu-

sions among individuals and fewer pixels per person for those away from the camera, this is not

a feasible solution. This is why, most approaches to crowd counting bypass explicit detection and

perform direct regression on input images. However, for many applications, the precise location

of individuals is needed, for instance, to initialize a tracking algorithm in very high-density crowd

videos.

To quantify the localization error, estimated locations are associated with the ground truth locations

through 1-1 matching using greedy association, followed by computation of Precision and Recall

at various distance thresholds (1, 2, 3, . . . , 100 pixels). The overall performance of the localization

task is then computed through area under the Precision-Recall curve, L-AUC.

Compressing Crowd Counting Model

It is well known that large Convolutional Neural Networks (CNNs) are often over parameterized.

This is underscored by the existence of various methodologies for compressing a pretrained model,

including pruning-based techniques [18, 27] and low-rank factorization strategies [20, 45, 81]. In

this work, we adopt a low-rank decomposition approach, disassembling the filters into a set of

compact basis filters and with their corresponding coefficients. These compact basis filters enable
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us to compress the model by reducing the Floating Point Operations (FLOPs) required executing a

forward pass through the model.

To find these compact basis filters and coefficients, consider the fundamental 2D convolution op-

eration in a CNN. Assume that an input tensor x is convolved with a set of filters H ∈ RP×L×D×D,

where P is the number of filters in H and with each filter of size L×D ×D. The output y, of this

convolution operation is expressed as

y = x ∗H (6.2)

We know that eigen decomposition results in a compact basis that minimizes the reconstruction

error achieved by a linear combination of basis functions. We therefore choose F as the eigen

filters that represent the sub-space in which the original filters H lie. The method for obtaining

these is also well-known and straightforward. To approximate the compact sub-space these filters

are flattened and arranged as columns of the matrix H̃ ∈ RP×A, where A = LD2. We then

compute its singular value decomposition as H̃ = USVT and initialize F̃ with the columns of VT

corresponding to non zero eigen values. This leads to w̃ = H̃F̃T and finally appropriate reshaping

of F̃ and w̃ lets us rewrite the convolution operation defined in Eq. 6.2 as a sequence of of two

successive convolutions:

y′ = (x ∗ F) ∗w (6.3)

where F ∈ RP×L×D×D and w ∈ RP×P×1×1. To compress the model we discard k% the basis filters

in F corresponding to the smallest eigen values. This results in F ∈ RQ×L×D×D and correspond-

ingly w ∈ RP×Q×1×1, where Q = ⌈P − kP/100⌉.
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Method C-MAE C-NAE C-MSE
Idrees et. al [43]* 315 0.63 508

MCNN [119] 277 0.55 426
Encoder-Decoder [7] 270 0.56 478

CMTL [94] 252 0.54 514
SwitchCNN [89] 228 0.44 445
Resnet101 [29]* 190 0.50 277

Densenet201 [39]* 163 0.40 226
Proposed 132 0.26 191

Compressed by 30% 134 0.26 206
Compressed by 50% 137 0.27 227

Table 6.3: We show counting results obtained using state-of-the-art methods in comparison with
the proposed approach. Methods with ‘*’ regress counts without computing density maps.

Experiments

Next, we present the results of experiments for the three tasks defined in Section 6. For each

task, we also provide the performance metrics of two compressed variants of the base model.

The compressed models have been optimized to operate with a reduction of 30% and 50% of the

Floating Point Operations (FLOPs) in comparison to the original model.

Counting

For counting, we evaluated the proposed UCF-QNRF dataset using the proposed method which

estimates counts, density maps and location of people simultaneously with several state-of-the-art

deep neural networks [7], [29], [39] as well as those specifically developed for crowd counting

[119], [94], [89]. To train the networks, we extracted patches of size 448, 224 and 112 pixels at

random locations from each training image. While deciding on image locations to extract patch

from we assigned higher probability of selection to image regions with higher count. We used mean

square error of counts as the loss function. At test time, we divide the image into a grid of 224 ×
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Method DM-MAE DM-MSE DM-HI
MCNN [119] 0.006670 0.0223 0.5354

SwitchCNN [89] 0.005673 0.0263 0.5301
CMTL [94] 0.005932 0.0244 0.5024
Proposed 4.4e-4 0.0017 0.9131

Compressed by 30% 4.7e-4 0.0018 0.9185
Compressed by 50% 5.1e-4 0.0020 0.8503

Table 6.4: Results for Density map estimation: We show results on Histogram intersection (HI),
obtained using existing state-of-the-art methods compared to the proposed approach.

224 pixel cells - zero-padding the image for dimensions not divisible by 224 - and evaluate each

cell using the trained network. Final image count is given by aggregating the counts in all cells.

Table 6.3 summarizes the results which shows the proposed network significantly outperforms the

competing deep CNNs and approaches for crowd counting. Additionally, our compressed models

demonstrate comparable performance to the original, uncompressed model.

Density Map Estimation

For density map estimation, we describe and compare the proposed approach with several meth-

ods that directly regress crowd density during training. Among the deep learning methods, MCNN

[119] consists of three columns of convolution networks with different filter sizes to capture dif-

ferent head sizes and combines the output of all the columns to make a final density estimate.

SwitchCNN [89] uses a similar three column network; however, it also employs a switching net-

work that decides which column should exclusively handle the input patch. CMTL [94] employs

a multitask network that computes a high level prior over the image patch (crowd count classifica-

tion) and density estimation. These networks are specifically designed for crowd density estimation

and their results are reported in first three rows of Table 6.4. The results of proposed approach and

compressed models are shown in the bottom three row of Table 6.4.
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Method Av. Precision Av. Recall L-AUC
MCNN [119] 59.93% 63.50% 0.591
ResNet74 [29] 61.60% 66.90% 0.612

DenseNet63 [39] 70.19% 58.10% 0.637
Encoder-Decoder [7] 71.80% 62.98% 0.670

Proposed 75.8% 59.75% 0.714
Compressed by 30% 74.2% 58.45% 0.702
Compressed by 50% 73.9% 57.93% 0.685

Table 6.5: This table shows the localization results averaged over four distance thresholds for
different methods. We show Average Precision, Average Recall and AUC metrics.

Localization

For the localization task, we adopt the same network configurations used for density map estima-

tion to perform localization. To get the accurate head locations, we post-process the outputs by

finding the local peaks/maximums based on a threshold, also known as non maximum suppres-

sion. Once the peaks are found, we match the predicted location with the ground truth location

using 1-1 matching, and compute precision and recall. We use different distance thresholds as

the pixel distance, i.e., if the detection is within the a particular distance threshold of the ground

truth, it is treated as True Positive, otherwise it is a False Positive. Similarly, there is no detection

within a ground truth location, it becomes a False Negative. The results of localization are reported

in Table 6.5. This table shows that DenseNet [39] and Encoder-Decoder [7] outperform ResNet

[29] and MCNN [119] while, the proposed methods significantly outperform all other methods for

localization.
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Conclusion

This work introduced a novel method to estimate counts, density maps and localization in dense

crowd images. We showed that the observation that these three problems are very interrelated, and

can be decomposed with respect to each other can be translated into Composition Loss which can

then be used to train a neural network. We solved all three tasks simultaneously with the counting

performance benefiting from the density map estimation and localization as well. We presented

extensive set of experiments using several recent deep architectures, and show that the proposed

approach is able give excellent performance. Finally we have also demonstrated the performance

of two compressed variations of our proposed model. The results indicate that despite a reduction

in Floating Point Operations (FLOPs) by 30% and 50%, the model continues to maintain high

accuracy across all three tasks, and is able to outperform all other techniques evaluated in the

comparisons.

81



CHAPTER 7: CONCLUSION

This dissertation’s primary motivation arose from the paradigm shift in the field of machine learn-

ing, instigated by the introduction of AlexNet in 2012, which paved the way for increasingly larger

and more complex neural networks. Despite the remarkable improvements these networks have

brought to areas such as speech, vision, and language processing, their computational requirements

and parameter counts have grown exponentially, outpacing the progression of hardware capabili-

ties. Consequently, this has created a significant barrier to the broader adoption of neural networks,

given the associated financial and computational costs.

Addressing these issues, our work has focused on the development of a set of neural network

compression methods based on filter decomposition for compress convolutional neural networks

(CNNs). We aimed to replace each convolutional layer with compact operations to minimize

computational requirements, storage capacity, and energy consumption, all while maintaining or

even enhancing model accuracy. Our methodology focused on three key performance metrics:

computation requirements, storage capacity, and model accuracy.

This dissertation is organized into several chapters, each discussing a critical aspect of our research.

We first reviewed previous works in Chapter 2, which set the stage for the development of our

compression strategies and their application in the subsequent chapters.

Chapter 3 detailed our filter decomposition-based approach to the compression of pre-trained deep

networks. This approach was premised on the observation that the original filters in a convolution

layer can be represented as weighted linear combinations of a set of 3D basis filters, with one-

dimensional weight kernels. We also discussed how these basis filters can be fine-tuned to offset

any performance loss due to truncation.
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In Chapter 4, we proposed a regularizer-based method for simultaneously training and compress-

ing CNNs from scratch. We emphasized the importance of training filters to be compact and

information-dense, to minimize the loss of useful information during filter truncation, a key step

in popular compression methods such as pruning and low-rank filter factorization.

In Chapter 5, we demonstrated how our filter decomposition-based compression method can be

effectively applied to the continual learning problem. We proposed a solution to the catastrophic

forgetting issue, a common challenge in continual learning settings, and showed that our method

significantly reduces the number of Floating Point Operations (FLOPs) required compared to other

methods.

Finally, we applied the proposed compression strategy to a regression-based crowd analysis frame-

work in Chapter 6. This framework introduced a novel method for integrating crowd counting,

density map estimation, and localization of individuals in a crowd image into a singular, unified

problem. We then employ a compression scheme based on low-rank filter decomposition to main-

tain high accuracy while reducing computational requirements.

In conclusion, this dissertation offers novel contributions to the field of neural network compres-

sion, presenting effective strategies for reducing the computational and financial costs of employ-

ing convolutional neural networks, thereby facilitating their broader adoption.
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