
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2023 

"Do You Want to Build with Snowman?": Positioning Twine Story "Do You Want to Build with Snowman?": Positioning Twine Story 

Formats Through Critical Code Study Formats Through Critical Code Study 

Daniel Cox 
University of Central Florida 

 Part of the Creative Writing Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Cox, Daniel, ""Do You Want to Build with Snowman?": Positioning Twine Story Formats Through Critical 
Code Study" (2023). Electronic Theses and Dissertations, 2020-. 1848. 
https://stars.library.ucf.edu/etd2020/1848 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/574?utm_source=stars.library.ucf.edu%2Fetd2020%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1848?utm_source=stars.library.ucf.edu%2Fetd2020%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages


 

“DO YOU WANT TO BUILD WITH SNOWMAN?”: POSITIONING TWINE STORY 
 FORMATS THROUGH CRITICAL CODE STUDY 

 
 
 
 

by 
 
 
 
 

DANIEL COX 
B.S. Old Dominion University, 2014 
M.A. Old Dominion University, 2017 

 
 
 

A dissertation submitted in partial fulfillment of the requirements  
for the degree of Doctor of Philosophy 
in the College of Arts and Humanities 

at the University of Central Florida 
Orlando, Florida 

 
 
 
 

Summer 
2023 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Major Professor: Anastasia Salter



ii 

 

 

 

 

 

 

 

© 2023 Daniel Cox 

  



 
iii 

ABSTRACT 

Using critical code studies, this dissertation examines the Twine story format Snowman. 

Despite existing books on the authoring tool Twine, a central part of its functionality, what it 

names “story formats,” is rarely covered. This study steps into this gap and, based on my own 

experiences through working on story formats and documenting examples using Twine, explores 

the greater social context of the story format Snowman through examining its source code. This 

dissertation consists of three chapters, each using a different set of research methods. First, the 

metaphor of a stack is used to better understand how software like Snowman is based on a past 

of other, older concepts and functionality. Second, the concept of a network is applied to better 

understand how software projects often rely on relationships of trust and hidden labor. Third, two 

other story formats, which are based on Snowman, are compared through first using a distant 

reading approach to find structures and then a closer reading to review how they are different. 

This research presents not only a greater emphasis on story formats missing from existing 

scholarship but also positions the story format Snowman as an important, but often overlooked, 

part of Twine’s history. 

  



 
iv 

ACKNOWLEDGEMENTS 

This research would not have been possible without my PhD cohort and friends at UCF. 

Although the winds of fate, and, of course, a global pandemic, scattered us across the world, I am 

still thankful for your friendship and support through my first few years moving to Florida and 

becoming part of the Texts and Technology program at UCF. I truly hope we see each other again 

someday. 

 This work would also not be possible without my advisor, Anastasia Salter, who, let’s be 

honest here, has really put up with some nonsense from me at times. As we have discussed at 

times, I hope both of our next decade of life is less stressful than the last. 

 I also want to acknowledge my committee and their feedback and support through this 

process. Much of this had to be finished in a short period and you all were onboard to help me 

get to the finish line on time. Thank you. 

  



 
v 

TABLE OF CONTENTS 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF TABLES ......................................................................................................................... ix 

CHAPTER 1: YOU CAN UNDERSTAND THIS ......................................................................... 1 

What is Twine? ................................................................................................................ 4 

Why Focus on Twine? ..................................................................................................... 7 

Why Study Twine’s Source Code? ............................................................................... 10 

Why Study the Story Format Snowman? ...................................................................... 14 

Research Questions ....................................................................................................... 17 

Chapter Summaries ....................................................................................................... 18 

Conclusion ..................................................................................................................... 21 

CHAPTER 2: CALLING THE PAST .......................................................................................... 23 

Software Foundations .................................................................................................... 26 

Function Stack as Strata in Snowman ........................................................................... 30 

Starting with jQuery .................................................................................................. 31 

Progressing a Story Using Underscore ...................................................................... 35 

Completing the Function ........................................................................................... 41 

Conclusion ..................................................................................................................... 43 

CHAPTER 3: TRUSTING THE PRESENT ................................................................................ 46 

Revealing Culture .......................................................................................................... 48 

Dependency Network of Snowman 1.4 ......................................................................... 52 

Exploring the Network .............................................................................................. 58 

Trust Switches ........................................................................................................... 63 

Conclusion ..................................................................................................................... 67 



 
vi 

CHAPTER 4: REFLECTING ON THE FUTURE ....................................................................... 71 

Coding Crimes ............................................................................................................... 73 

Structures of Snowman 1.3 ........................................................................................... 76 

Adventures 1.0 ........................................................................................................... 80 

Trialogue 0.0.8 ........................................................................................................... 85 

Children of Snowman ................................................................................................ 89 

Conclusion ..................................................................................................................... 91 

CHAPTER 5: END OF BEGINNING .......................................................................................... 95 

Findings and Contributions ........................................................................................... 97 

Limitations .................................................................................................................. 105 

Future Research ........................................................................................................... 108 

End of Beginning ........................................................................................................ 113 

REFERENCES ........................................................................................................................... 115 

 

  



 
vii 

LIST OF FIGURES 

Figure 1. Screenshot of Twine 1.4.2 showing “passages” .............................................................. 4 

Figure 2. Screenshot of Twine 2.6.2 ............................................................................................... 6 

Figure 3. Line 205 of “Story.js” in Snowman 1.4 with “this” Keyword ...................................... 33 

Figure 4. Complete Line 205 from “src/Story.js” in Snowman .................................................... 34 

Figure 5. Example use of “data-passage” encoding in Snowman 1.4 .......................................... 38 

Figure 6. Event target conversion and search in Snowman 1.4 .................................................... 38 

Figure 7. Retrieval of data from event target in Snowman 1.4 ..................................................... 39 

Figure 8. Escaping of data passage result based on jQuery and Underscore ................................ 39 

Figure 9. Completed Line 206 of Snowman 1.4. .......................................................................... 40 

Figure 10. Lines 205 - 207 in “src/Story.js” of Snowman 1.4 ...................................................... 42 

Figure 11. Abbreviated “package.json” file for Snowman 1.4 ..................................................... 53 

Figure 12. “dependencies” section of Snowman 1.4 “package.json” file ..................................... 54 

Figure 13. Development dependencies for Snowman 1.4 ............................................................ 55 

Figure 14. Full visualization of Snowman 1.4 dependency network ............................................ 57 

Figure 15. jQuery inclusion in Snowman 1.4 dependency network ............................................. 58 

Figure 16. Project “inherits” within Snowman 1.4 dependency network ..................................... 59 

Figure 17. Project “defined” within Snowman 1.4 dependency network ..................................... 60 

Figure 18. Project “browserify” within Snowman 1.4 dependency network ............................... 60 

Figure 19. Project “cssnano” within Snowman 1.4 dependency network .................................... 61 

Figure 20. Project “is-arrayish” within Snowman 1.4 dependency network ................................ 62 

Figure 21. Mention of project “colors” within Snowman 1.4 dependency network .................... 63 

Figure 22. Color-coded Line-by-line Comparison between “passage.js” and “Passage.ts” ......... 83 

Figure 23. Color-coded Line-by-line Comparison between “story.js” and “Story.ts” files ......... 84 



 
viii 

Figure 24. Screenshot of Trialogue Visual Layout ....................................................................... 86 

Figure 25. Visualization of Changes Between Snowman and Trialogue “passage.js” Files ........ 87 

Figure 26. Visualization of Changes Between Snowman and Trialogue “story.js” Files ............ 88 

 

  



 
ix 

LIST OF TABLES 

Table 1. Snowman 1.3 Passage Properties.................................................................................... 78 

Table 2. Snowman 1.3 Passage Methods ...................................................................................... 78 

Table 3. Snowman 1.3 Story Properties........................................................................................ 78 

Table 4. Snowman 1.3 Story Methods .......................................................................................... 79 

Table 5. Search Results from Adventures 1.0 Source Code ......................................................... 82 

Table 6. Search Results for Story Keywords in Adventures Source Code ................................... 83 

Table 7. Search results using “passage.js” keywords in Trialogue 0.0.8 source code .................. 87 



1 

 

CHAPTER 1: YOU CAN UNDERSTAND THIS 

 Programmers often leave notes in their source code. These can take many forms of 

including reminders about changes they still need to perform or information to help others better 

understand certain aspects. Ignored by the computer when the code is run, these notes are often 

called “comments” and date back to some of the earliest programming languages in the 1950s 

(Wexelblat, 1981). In a chapter dedicated to one of the most infamous comments found in source 

code, Cassel (2022) describes some common patterns found in the 6th edition of the Unix 

operating system released in May 1975. These include obvious entries like descriptions of 

functionality and the occasional swear word. Then, Cassel (2022) notes the infamous comment: 

“You are not expected to understand this” (Cassel, 2022; p. 63). At the time, the comment was a 

private note to other programmers on the same project. It was left to warn off other developers 

from changing any of the code associated with the comment, explains Cassel (2022). Yet, 

unbeknownst to anyone at the time, the comment would soon become famous through the lecture 

notes of a professor. Requesting a copy of the new version of the Unix operating system to 

review for his students in his upcoming computer science courses, John Lions at the University 

of New South Wales began to make some new lecture notes. After reviewing all 9000 lines of 

code, Lions put together a line-by-line commentary for his students that also included all the 

source code as a reference named simply “A Commentary on the UNIX Operating System” in 

1976. While originally only for students as part of a course on operating systems, the collected 

notes were packaged as book, photocopied, and shared around the computer science students at 

the University of New South Wales and then beyond the university to others. The existence of 

the comment quickly spread to students at other campuses and then hobbyists more generally 



 
2 

who had gained access to the notes. The comment was taken as a taunt and drove others to 

decipher why it was added to the code and what it could mean. 

 That comment was not written for a public audience. The source code for the 6th edition 

of the Unix operating system was not intended to be shared through its inclusion in teaching 

resources. By the time licensing around the Unix operating system source code was changed in 

1979 and Western Electric Company, the company who had created the code, sought to remove 

access to the book, the damage had already been done. Not only was the source code spread 

widely, but so too was the comment. “You are not expected to understand this” had gained its 

infamy in many programmer circles with people quoting it to each other as a joke and the phrase 

appearing on t-shirts at programmer conventions (Cassel, 2017). While a somewhat silly 

example, Cassel (2022) includes an important aspect of its history. Yes, the comment was a 

private note, and an accidental book made it popular, but the act of leaving the note in the source 

code suggested a future, human audience. Every comment placed by a programmer “is an 

implicit acknowledgement,” begins Cassel (2022), “of all the careful caretakers who may 

someday be revisiting your code” (p. 68). While not expecting as many people to come across 

the note as eventually happened, its authors were still expecting others to read it through the 

warning to future programmers. While the comment seemingly stands alone as a short note in 

one version of many of an operating system, its history does not. “[I]t’s people who write 

programs,” writes Cassel (2022), adding “code is written collectively” (p. 68; original emphasis). 

The code of the 6th edition of the Unix operating system contains notes between fellow 

programmers. The sharing of the lecture notes as a packaged notes was a collective action taken 

by many people across multiple university campuses. The larger history of the two both point to 

the hidden labor behind the code and the spreading of the notes. Programmers may have written 



 
3 

the original code, but its longevity came about through the contributions of many others 

researching and explaining its history over many decades. 

 This dissertation explores the inherently collaborative and co-authored nature of source 

code. Following the example of the history presented around the spreading of the “You are not 

expected to understand this” comment, this dissertation explores a different work, focusing on 

the ways in which its source code is a text worth studying by itself. Rather than state its own 

warning, this introduction chapter takes as its motto “You can understand this”, establishing 

foundational concepts and helping a reader try to make sense of how the source code of a 

particular software project connects to a deeper past not obvious at first glance. Centered on 

Twine, an open-source tool used to create nonlinear, interactive stories (Klimas, 2013), this 

dissertation explores a single aspect of its functionality, what it names “story formats” (Cox, 

2021a). Each chapter of this dissertation explores the collective nature of the source code 

Snowman through a different metaphor per chapter. To contextualize this research, I will begin 

with a summary of Twine itself before moving through the important of studying its source code. 

Next, I review my own history with Twine and why it became a focus of this study. This is then 

followed by a discussion on the importance of studying code, linking it to a larger tradition of 

researching texts. I then explain the concept of a “story format” in Twine and how studying the 

story format Snowman can give greater insights into its history and connection to other software 

projects. The chapter ends with two sections found in a more traditional introduction to a 

dissertation: research questions and chapter summaries. 



 
4 

What is Twine? 

 What is known as Twine began first as another tool. In 2006, Chris Klimas created a 

program named Twee and a corresponding “markup language.” When wanting to create a digital 

story, an author could use particular symbols to “markup” a story to create connections between 

sections (Klimas, 2006). After being processed by the program Twee, the result would be a 

HyperText Markup Language (HTML) file with internal hyperlinks. This followed in the 

footsteps of other programs such as StorySpace where authors could write fiction, apply certain 

symbols, and create interactive stories to be played in a web browser (Bolter & Joyce, 1987). 

When playing the HTML output of Twee, a reader could use these hyperlinks to navigate the 

story in a nonlinear way, moving between sections as long as they had links to each other 

(Klimas, 2008). The program Twee was later replaced with a graphical user interface to the same 

functionality named Twine in 2009 (Arnott, 2013). Instead of needing to write in a special 

format, and use a separate tool to process the symbols, authors could visually move around its 

sections, called “passages,” showing how they connected to each other (Figure 1). 

 

Figure 1. Screenshot of Twine 1.4.2 showing “passages” 



 
5 

 Klimas continued work on Twine until it reached version 1.3.5 in later 2009, at which 

point it was set aside (Arnott, 2013). While Klimas had stopped actively working on Twine, it 

was slowly gaining in popularity across independent creators and programmers (Anthropy, 

2009). It was featured in the book Rise of the Videogame Zinesters in 2012, saw its first 

academic coverage in 2014, and a dedicated book named Writing Interactive Fiction with Twine 

was published in 2016 (Anthropy, 2012; Friedhoff, 2014; Ford, 2016). At the same time, Twine 

was featured heavily in what was called a “Twine Revolution” as more diverse and minority 

voices used it and other tools to create more visible games including Depression Quest (2013), a 

game about experiencing the effects of depression (Quinn, 2013; Ellison, 2013). This gathering 

interest in Twine led to a new team of programmers working on a new version, fixing known 

bugs in the 1.3.5 version from 2009. This new 1.4 version was published in late 2013 (Arnott, 

2013). In early 2014, Klimas returned to work on Twine, now with a new team behind the 

project and, on April 12, 2015, the first public access to a brand new and improved version, 

2.0.4, was published (Cox, 2021b; Klimas, 2015). Unlike the solo work of Klimas on Twine up 

until its 1.3.5 release, the new 2.0 version included a team of people contributing fixes and 

working to help improve Twine. Throughout Twine 1.3.4 and into 1.4, the focus was on a 

desktop application. With 2.0.4, the first public version of what was called “Twine 2,” this 

shifted to a web-based application existing both online, accessed using only a web browser, and 

as a desktop version (Klimas, 2015a). This new approach allowed the new web-based version of 

Twine to be available on more devices, no longer requiring special builds per operating system 

(Figure 2). 



 
6 

 

Figure 2. Screenshot of Twine 2.6.2 

 For many years, Twine 2 did not support the original Twee format. In this same period, 

other programs began to emerge as “Twine-compatible” where authors could use new programs 

to process the same data, producing HTML Twine could understand without needing to use the 

tool itself (Cox, 2019a). During this period, there was a section of the community who produced 

Twine works without using the tool itself. This eventually led to, nearly 15 years after its 

introduction in 2006, an official specification on Twee published in 2021, allowing other tools to 

use the format between themselves (Edwards & Cox, 2021). During and after the official 

specification development, pressure was placed on Chris Klimas to return its functionality to 

Twine itself (Cox, 2019a). Added as part of the 2.6.0 version in 2023, Twee support finally also 

returned to Twine, having been absent from 2015 to 2023 (Klimas, 2023a). As of this writing, 

authors can use the online or desktop versions of Twine 2.6 to create a story through visually 

arranging and creating links between passages. They can also, lost since the time of Twine 1.4, 

also use the Twee format again, allowing authors to write their stories, add symbols to create 

connections, and use a program, this time including Twine itself, to make HTML files playable 

in web browsers. Through community support over many years, this functionality finally 

returned to the graphical program inspired from the original format. 



 
7 

Why Focus on Twine? 

 My own connection to Twine and its community began in December 2012 during the 

time of Twine 1.3.5. While taking part in a casual competition for creating games with many 

other people, I encountered the work CYBERQUEEN (2012), created by Porpentine. 

CYBERQUEEN (2012) is a dark and claustrophobic work where the reader is faced with making 

decisions they have little context for and through which they are further drawn into a twisted 

world where the screen often shows the description of what might happen next through on-screen 

prompts such as choosing between “wet” and “sticky” (Porpentine, 2012). Being intrigued by 

both CYBERQUEEN (2012) and Twine as a tool for creating experiences like it, I began to try to 

learn it. Very quickly, I found its existing documentation frustrating and began to create my own. 

This led to, within a couple of weeks of playing CYBERQUEEN (2012), my first YouTube video 

on how to use Twine 1.3.5 in January 2013 (Cox, 2013b). The response to the video was very 

positive and I decided to begin to create more tutorials. This continued intermittently through 

mid-2015, with me writing a “Twine Tuesday” series most weeks (Cox, 2013a) and further 

creating dozens of videos covering examples of how to create different things with Twine into 

2016 (Cox, 2016). In early 2017, I was invited to join the Twine Committee as part of a new 

non-profit named the Interactive Fiction Technology Foundation (IFTF) holding the copyrights 

for multiple digital storytelling tools for future safekeeping (Our Mission and Goals, n.d.). The 

Twine Committee was formed as a group of people governing “the maintenance, preservation, 

and improvement of the Twine project’s intellectual property, infrastructure, and community” 

(Twine Committee, n.d.). I accepted the invitation with my first major project the creation of a 

dedicated teaching resource named the “Twine Cookbook” with examples based on my own 

videos and edited for a more public audience. While visiting the University of Central Florida 



 
8 

during a conference on November 7, 2017, I was interviewed by Anastasia Salter and Stuart 

Moulthrop for their book project on the theory and practice of creating with Twine that would 

eventually be published in 2021 (Salter & Moulthrop, 2021). At the time, I was coming to the 

end of my M.A. program at Old Dominion University and the interest in Twine as a research 

subject, something I had not seen in academia up to that point, pushed me into considering 

applying to UCF’s Texts and Technology Ph.D. program in the months following the conference. 

 From 2017 into 2021, I acted as the primary contributor and author of the hundreds of 

pages of the Twine Cookbook while also continuing to create my own video series (Cox, 2016, 

2017, 2019b, 2020b). Having a strong interest in acting as a historian and archivist for the Twine 

community, I also agreed to take over working on some functionality Chris Klimas had been 

maintaining on his own in 2018 (Cox, 2018). This led to my greater involvement in bringing a 

documentation focus to an aspect of Twine named “story formats”, with me acting as a co-author 

on the collection of files named “Twine Specifications”, technical documents explaining what 

Twine accepts as input and produces as output (Cox, et al., 2019). Through 2021 and into early 

2023, I maintained an interest in Twine, but also focused on bringing my insider knowledge to 

new academic projects. I acted as a collaborator on research into studying how people 

understand their audiences when creating digital stories using Twine (Daiute et al., 2021), a 

history of the tool in connection to others (Cox, 2022b), and on bringing augmented reality to 

Twine (Berge et al., 2022). This study would not be possible without my insider knowledge, nor 

would aspects of its history be able to be studied by other scholars without my labor across many 

years in creating resources like the Twine Cookbook and the Twine Specifications. 

 The answer to the question “Why focus on Twine?” might be better stated as “How could 

I not write about Twine?” As the last two paragraphs explain, I have spent the better part of over 



 
9 

a decade documenting tools like Twine through creating not only hundreds of YouTube videos, 

but also contributing learning resources consisting of tens-of-thousands of words. There is no 

objective viewpoint for investigations into the archives and history around Twine for me. Most 

of the public-facing resources were written by me. My feelings around the labor behind the code 

will, at times, come through in my writing about its history, and this is not to be rejected nor to 

feel shame about during the process of trying to record it for others. As someone with a deep 

emotional stake in my own work with Twine over many years, I cannot always separate myself 

as a programmer who wrote the code from myself as a researcher presenting findings months to 

several years later. While not explicitly relying on its research methods, this study comes from 

recognizing, as the field of critical autoethnography calls for, “responsibility for our subjective 

lenses through reflexivity” (Boylorn & Orbe, 2021; p. 3). Describing the role of researchers 

when it comes to their emotional closeness to their work, D’Ignazio & Klein (2020) call this 

recognizing the “value [of] multiple forms of knowledge, including the knowledge that comes 

from people as living, feeling bodies in the world” (p. 104). Rather than pretend an objective 

stance is possible, my research presented in this study follows in the call of D’Ignazio and Klein 

(2020) to create research “informed by direct experience” (p. 21). It is through my knowledge 

and direct experience this research is possible, and I acknowledge many of the sources used in 

this study are those either I created or are possible through the work I have done in the past. This 

study is an investigation of the inherently co-authored nature of programming, and nothing could 

be more feminist than to explain my own positionality and passion as it comes to the work 

presented based on over a decade of personal labor. 



 
10 

Why Study Twine’s Source Code? 

 To begin to understand why this study is focused on a single aspect of Twine means 

beginning with the importance of research into source code itself. This study is indebted to a 

deeper history around the studying of the relationships between texts and the technologies that 

produce them. Bolter (2001) traces the roots of the term ‘technology’ as based in Ancient Greek. 

The concept of techne includes in its definition the making of meaning or creation of some 

output based on a system of rules. Bolter (2001) describes how a “writer always needs a surface 

on which to make [their] marks and a tool with which to make them” (p. 15). The tools and 

methods used to make the marks is technology, based on a system of rules, and the process of 

writing is the creation of texts. These two concepts cannot be separated. Ong (2012), in Orality 

and Literacy, makes a similar claim, stating how “Writing, commitment of the word to space, 

enlarges the potentiality of language almost beyond measure” and “re-structures thought” (p. 7). 

The act of authoring, as presented by Ong (2012), is one of potentially changing how thinking 

works. Programming is, of course, another form of writing. Vee (2017) makes the immediate 

connection between being literate in coding, being able to read and write in a programming 

language, and the power this gives people within digital spaces. Vee (2017) writes how 

programming “is the act and practice of writing code” (p. 19) and how knowledge of coding 

influences how people “function in society” because of “the ways literacy is attached to power” 

(p. 27). By highlighting code in its textual form, Vee (2017) provides the gap between the 

importance of writing and the role of software in shaping how works are created. Vee (2017) 

also adds an aspect of power and its relationship to coding as well. Placed in a digital setting, the 

role of writing, the structuring of text using technology, is done using tools which are themselves 



 
11 

based on programming. The writing of code is an act of power enabled through access to 

technology and the literacy needed to use digital systems to create new works. 

 Through interacting with software, we are also interacting with the cultural forces behind 

its construction and its maintenance. In Software Takes Command, Manovich (2013) defines 

“cultural software” as “types of software that support actions we normally associate with 

‘culture’” (p. 20). Within the introduction to the book, Manovich (2013) categorizes software, 

with an important category being “[development] software tools and services that support all 

these [cultural] activities” (p. 23). By adopting a definition of cultural software as those 

providing functionality for creating other programs, the term “culture software” becomes a 

description of not only software supporting culture but also containing its own culture and 

influence over users through its systems and interfaces. How code is written becomes its own 

form of “culture” within the crafting of structures and connections to other, existing source code 

within these tools. While Bogost (2007) is primarily writing about games in his book Persuasive 

Games, an important term used in the book, “procedural rhetoric”, also applies here. Bogost 

(2007) describes procedural rhetoric as “the practice of persuading through processes in general 

and computational processes in particular” (p. 2). Through the interfaces created using 

development tools, the ways in which people and digital systems relate to each other can be 

influenced. Not only does each programming language provide different functionality, the tools 

used to edit those languages, themselves products of programming languages, also contribute to 

their persuasive nature. If coding is an act of power enabled through technology, then the 

structures within code, created based on combinations of software tools and other humans, need 

to be studied for how they embed cultural values and hold persuasive influence over other 

systems and the people in which they interact. Code cannot be thought as only existing as 



 
12 

running on computers, as people read and write in programming languages as well, as the history 

around the comments in the Unix operating system remind us (Cassel, 2022). This duality of 

code positions it as inherently social. Other tools and people are needed to create new textual 

works to continue spreading past embedded cultural values into future software works. 

 Early in the book Critical Code Studies, Marino, (2020) defines code as a “social text” (p. 

4). Depending on the reader, its meaning is changed. If a human is reading the code, its 

translation may have one meaning. If a computer is running it, the code may produce a different 

outcome. A mistranslation of the code by a computer is the same as a human attempting to read a 

language they do not understand. Meaning may be made, but not a complete or intended 

meaning by the original author. First and foremost, then, code is a text. It is read by different 

audiences and produces different meanings for them within a context. This collection of speaker, 

audience, and text places code as firmly within the tradition of rhetoric, as meaning making is 

contingent on who is producing the message, what the message is, and who is receiving it. At the 

same time, programming cannot be separated from the tools and services used to create with it. 

These embed cultural values and continue existing power structures influencing the 

programming language and tools created with it (Manovich, 2013). For humans writing code, 

they translate the symbols into meaning based on their own understanding and literacy with the 

digital tools used for editing (Vee, 2017). The necessity of studying code, then, is directly tied to 

the amount of power it exercises over the lives of the people who interact with it. As Marino 

(2020) explains, “If code governs so much of our lives, then to understand its operation is to get 

some sense of the systems that operate on us” (p. 3). While software has great potential for 

empowerment, its misuse can lead to greater oppression for minority groups, replicating the 

culture of its developers and editing tools in the applications created (Noble, 2018). Thus, 



 
13 

studying code becomes essential for understanding what additional values are entangled in 

software and how the structures found in source code affect other systems. This means 

examining not only the source code, but also its social relationships to other systems and people. 

 The importance of studying the source code of Twine is found in its connection to its 

social context. The history of Twine is one of being the output of many people working together 

and contributing new ideas and approaches. While Chris Klimas has had a major influence in its 

direction over its lifetime, Salter and Moulthrop (2021) document the history of Twine as 

influenced by the books created by Melissa Ford (Ford, 2016) and Anna Anthropy (Anthropy, 

2012). There was also my work on the Twine Cookbook (Cox, 2021c) and dozens of tutorial 

videos across many years. Marino (2020) writes of how other texts should be examined in 

connection to source code and how this impacts its meaning in context. The use of the word 

“critical,” explains Marino (2020), is intentional in the establishment of the field in connection to 

this idea: “[t]he critical in critical code studies encourages also exploring the social context 

through the entry point of code” (p. 28; original emphasis). This means examining code as more 

than a single file or collection, but in conversation with other works, tools, and development 

services in which it interacts (Manovich, 2013). As described by Marino (2020), “every piece of 

source code is only ever partial” (p. 48). To investigate the source code of some software means 

looking into what “missing” parts might not be evident in a file and supplied by other software 

libraries or packages on which it relies to run, test, or process its source in some way. Twine can 

be better understood through its social connections, digging into its source code and what 

structures might be present there. 



 
14 

Why Study the Story Format Snowman? 

 A strong case can be made for the study of Twine in its role in the “Twine Revolution” 

(Ellison, 2013). The same, too, for how Twine has enabled new forms of creativity and the 

importance of focusing on the theory and practices around it (Salter & Moulthrop, 2021). Twine 

could also be centered as a tool for creating interactive fiction (Ford, 2016). Yet, all these 

approaches have been covered previously. What has yet to be a focus in research is story formats 

themselves. When described by Ford (2016) in the book Writing Interactive Fiction with Twine 

(2016), each story format is summed up as “unique way[s] of writing scripts” (p. 125). 

Throughout most of the book, the emphasis is on only the default story format of Twine 2, 

Harlowe, with the first mention of using a different one coming significantly through most of its 

material with Ford (2016) writing “the [functionality] you love from Harlowe [is] available” in 

other story formats as well, but that it is “written with a different syntax” (p. 460). In fact, it is 

easy to think of story formats in Twine as little more than formatting differences. Throughout the 

period of Twine 1.3.5 and 1.4 from 2009 to 2014, they were described as “visual layouts” (Cox, 

2021a). When creating a story in Twine 1.3.5 and 1.4, an author could choose between using the 

default story format, Sugarcane, and an alternative, Jonah. Both used the same programming 

functionality but produced different HTML presentations. When using the first, Sugarcane, each 

passage within the story was shown separately, replacing the contents of the current with the 

next. Jonah, on the other hand, appended content vertically, allowing a reader to scroll back 

through what sections of a story they had visited previously as one long journey shown on the 

screen (Story Formats - Twine Wiki, 2014). The role of story formats changed substantially with 

the introduction of Twine 2.0.4 in 2015. Instead of a single “language” with different 

presentations available, each story format became a different approach to using Twine. At first, 



 
15 

the story formats packaged with Twine were similar in what they offered to authors: Harlowe, 

the default option, uses parentheses to mark its functionality; SugarCube, another story format, 

uses less-than and greater-than symbols; and Snowman, provided a way to tap into the 

programming language JavaScript available in web browsers (Cox, 2021c). However, they 

quickly departed from each other in what they offered to authors and how it could be used. 

 Throughout working on the Twine Cookbook from 2017 to 2021, I was constantly put 

into a position of needing to translate between one story format and another. Many story formats 

for Twine 2 use a concept called “macros” carried over from earlier version of Twine, “a 

shortcut to performing a specific task” (Ford, 2016). These define functionality an author can use 

using one or more words. What might exist as functionality provided in one story might not exist 

in another. This meant an example of a particular pattern appearing in one story format becomes 

impossible to replicate in another. The same too with certain functionality around other media, 

with SugarCube supporting playing audio files, for example, with the same functionality not 

appearing in others. Salter and Moulthrop (2021) get the closest to understanding these 

differences in explaining how each story format has grown into “ways of thinking about making” 

in their introduction to their book (p. 15). It comes as no surprise the documentation for the 

default story format for Twine 2, Harlowe, moved to call itself as a “programming language” in 

2022 (Arnott, 2022). Even SugarCube includes a nod in this direction, describing how to use its 

functionality as part of what it names “TwineScript” (Edwards, 2021). Yet, what ties both 

Harlowe, SugarCube, and all other story formats for Twine together is an aspect covered some in 

Salter and Moulthrop’s (2021) work but rarely appearing in others: an author cannot write a story 

in Twine without also writing within the “programming language” defined by the story format 

they have chosen. It is impossible to use Twine to create a story and not engage with a story 



 
16 

format. The interface through which stories are written are crafted within the boundaries as 

established by the authors of the story format. Not only do they carry within themselves their 

own cultural values (Manovich, 2013), but how functionality is offered requires a level of 

literacy about what is available and how it can be used (Vee, 2017). All authors must write 

within the bounds of a language. 

 With all story formats carrying this importance to authoring in Twine, the choice of only 

one as a research subject may seem odd, but Snowman was picked for multiple reasons. First, as 

alluded to earlier in this chapter, I took over the maintenance of Snowman from Chris Klimas in 

2018 (Cox, 2018). Much of this research comes from my “direct experience” (D’Ignazio & 

Klein, 2020) with the code through not only working on Snowman but also serving as a co-

author on the Twine HTML Output specification (Cox et al., 2019). While there are others with 

some of my knowledge, I bring to this dissertation and its presented research detailed, insider 

experience with concepts and on coding structures no one else has. Beyond this, Snowman, as a 

story format, has not been covered in either Ford’s (2016) or Salter and Moulthrop’s (2021) 

books on Twine. It also does not appear in the independent collection The Twine Grimoire 

(Baccaris, 2020, 2021). This gap in research and academic interest matches previous work on the 

“forgotten” aspects of many digital storytelling tools (Koenitz & Eladhari, 2019). Without 

researchers stepping in, like with the narrative around the “You are not expected to understand 

this” comment in the 6th edition of the Unix operating system, its history remains untold and 

potentially forgotten. As Cassel (2022) reminds, “code is written collectively” (p. 68). The way 

to better understand Snowman and its connection to other works is to investigate these 

relationships to past software libraries and possible future iterations by examining its “social 

context” (Marino, 2020; p. 28). With no one stepping up to tell the story of Snowman, I have 



 
17 

chosen to do so. As with my previous research into the history of Twine and other tools, they 

survive longer by others deciding to tell their stories and adding to the existing resources around 

them (Cox, 2022b). This dissertation is, in many ways, a narrative around Snowman as told 

through its relationships to other works, including those I created myself. 

Research Questions 

 Each chapter in this dissertation was driven by research questions crafted to investigate a 

particular aspect of the relationships of the story format Snowman to other software libraries and 

projects. Arranged in order, these questions, and each chapter’s associated research in attempts to 

answer, seek to position Snowman within a “geology” of sorts running from its relationships to 

past software, across its present coding dependencies, and into possible futures by reviewing 

projects based on the concepts and code from Snowman developed after a particular moment in 

its history. Each chapter following this introduction goes into greater detail of the theoretical 

basis with the questions included here for formatting purposes. 

• Research Question 1: How can the metaphor of “strata” (Foucault, 1969) serve as a lens 

to understand the archaeology (Parikka, 2015) of function calls (Soloman, 2013) within 

the story format Snowman? 

• Research Question 2: What can be learned from studying the “network” (Latour, 2007) of 

the code and testing dependencies of the story format Snowman through the ways in 

which some projects form “switches” affecting its arrangement and relationships? 

(Castells, 2010)? 

• Research Question 3: How can applying a “macroanalysis” approach (Jockers, 2013) of 

using both “distant” (Moretti, 2013) and “close”, comparative readings (Harvey & Pagel, 



 
18 

1991) of both “child” and “grandchild” source code be used to show a “legacy” of the 

story format Snowman in those projects based on it? 

 

Chapter Summaries 

 The best place to begin to understand Snowman is to begin with the software libraries on 

which it is based. The next chapter examines three lines of code from the current version of 

Snowman, 1.4, connecting how parts of the code rely on other software libraries within their own 

histories and purposes. This chapter draws heavily from the concept of “strata” from the work of 

Foucault (1969) in understanding history as composed of intersecting “moving” and seemingly 

“unmoving histories” such as wars on one side and “crop rotations” on the other. Rather than 

take the obvious histories, scholars should seek to find where they intersect and work through 

what “system of relations” exist to be studied at these points (p. 3). Taken up within the field of 

media archaeology, Parikka (2015) calls for the studying of “nonlinear strata” where the digital 

present intersects with the material past (p. 6). In the edited collection Media Archaeology, 

Huhtamo and Parikka (2011) describe this approach as studying the moments where the “past is 

brought to the present, and the present to the past” of digital works (p. 15). Mapping the 

metaphor of strata over into programming, this chapter studies the moments of intersection 

between past and present when different software libraries communicate using the concept of a 

function. Within programming, larger programs are often broken down into smaller sections with 

their own input and output to solve smaller tasks named functions. These different sections 

interact with each other through the verb “calling” by sending input and waiting for a response. 

When one function calls another that calls another, they form into what is named a “stack” where 

the response of one is fed as input into another. Yet, in this arrangement, there is considerable 



 
19 

power concentrated at the function deepest in the past or upon which other codes rests. This 

chapter explores the metaphor of strata as applied to the function stack, exploring how three lines 

of code in Snowman highlight how the present version of the code “calls” back into a much 

deeper history of concepts and software libraries spanning years and even decades into the past 

through something seemingly as simple as responding to a reader clicking on a hyperlink in an 

HTML file. 

 While the first research chapter explores the past, the second examines the present. 

Software is often built on parts written by other people, and Snowman 1.4 is no exception. This 

chapter begins with the metaphor of a “network” as described by Latour (2007) and a 

complication to this understanding through what Castells (2010) names a “switch.” Many 

systems are composed of multiple entries all contributing “work” toward some goal. Latour 

(2007) describes these collections as being part of “a vast array of entities swarming” of relative 

equality between them (p. 44). Yet, it is Castells (2010) who complicates networks as being 

inherently unequal in their constructions with certain “privileged instruments of power” among 

them. Within network structures, these “instruments of power” are named “switches” and are 

capable of “shaping social structure” around them (p. 510). Even a small change in a switch can 

ripple across a network and affect its edges. By being part of a network, all forces are affected by 

switches in some way, even if the direct relationship is not at first obvious. This chapter maps the 

metaphors of networks and switches onto programming by creating a visualization of all the 

other code projects needed for Snowman 1.4 to be prepared for use with Twine. Through 

creating a visualization of the hundreds of projects on which Snowman 1.4 is dependent, 

multiple examples are highlighted from all the relationships to examine the ways in which not 

only are code projects dependent on the most connected, but often rely heavily on the work of 



 
20 

the seemingly least connected, those on which large parts of an overall network would not 

otherwise work. As with the findings of the previous chapter around the structure of the stack, 

those on the edges of a dependency network often have greater power over its shape and 

arrangement than seem at first glance. This chapter ends with a reflection on the many smaller 

open-source projects many larger software collections are reliant on and what these switches can 

mean for issues like security. 

 The last research chapter looks to the future of Snowman through comparing its 

structures to those in other story formats not packaged with Twine. Between its introduction in 

2015 along with Twine 2.0.4, Snowman’s source code stayed relatively the same until a new 

maintainer took over the project in late 2018 (Cox, 2018). Between most of 2015 to 2019, other 

story formats were created based on the current version of Snowman at the time, 1.3. Through 

first doing a close analysis of the names of important structures in the Snowman 1.3 code, the 

text mining tool Orange was used to search through the source code of two other projects and 

identify files with the same names (Demšar et al., 2013). These structures were then compared 

back to the original, following the call of Tornhill (2015) to treat code as a “crime scene” where 

the text itself is examined and closely studied outside of running it through an approach named 

“static analysis” (Rival & Yi, 2020). By moving from a larger search to closer analysis, this 

chapter compares how two other story formats are different from the Snowman 1.3 code and how 

these changes manifest in what expectations they are fulfilling for the authors using them. This 

chapter, like its sister chapters, also examines the concepts of Twine manifest in Snowman, and 

how interpretations of these concepts, its own “cultural values” in the words of Manovich 

(2013), affect how the other story formats. While Snowman itself may have seen fewer updates 



 
21 

over the lifespan of Twine, its longevity lives on behind the multiple story formats based on its 

code structures and concepts affecting how authors use Twine to create new stories in the future. 

Conclusion 

 The complexity of story formats is often erased from the history of Twine. In popular 

coverage of Twine, story formats are not mentioned nor does the differences in their 

functionality appear (Hudson, 2017; Robertson, 2021). Salter and Moulthrop's (2021) book is 

one of the very few sources who engage with the topic at any length. Story formats represent the 

labor of many others, but this fact is often completely overshadowed with a focus on Twine as a 

tool containing these other works. The story format Snowman, as an example of this labor, is the 

focus of this study, bringing greater attention to both its own positioning within Twine’s history 

and how it depends on a past and influences the future of other story formats. This introduction 

chapter opened with the example of the “You are not expected to understand this” comment as 

studied and examined by Cassel (2022). While perhaps popular to those in the know in the 

1970s, the history of the comment contains an important seed of understanding of all 

programming projects and central to this study: even if working alone, a programmer is 

interacting with and through the labor of others. Programming is never truly an individual action. 

Like all texts, source code pulls from the work that came before it to establish concepts, 

procedures, and structures on which new works are based. As Cassel (2022) writes, “code is 

written collectively” (p. 68). This dissertation is itself built from the past of my own work across 

over a decade of written guides, video tutorials, and more public collections like the Twine 

Cookbook and Twine Specifications. Had I not encountered CYBERQUEEN (2012) in December 

2012, I might not have created video tutorials on Twine in 2013, been interviewed in 2017, and 

ultimately moved to Florida to study at the University of Central Florida. Had I not decided to 



 
22 

take over the maintenance of the story format Snowman in 2018, this dissertation might have 

become something very different than the research presented after this introduction chapter. 

When Marino (2020) writes on how “visible code is always partial”, the same could also be said 

about the past on which this study rests (p. 75). There is always more to discover using new 

metaphors and theoretical frameworks for studying code. As, hopefully, the following chapters 

reveal to readers, Snowman itself is indebted to a past stretching back many years even as its 

present is dependent on hundreds of other projects for it to be processed and included with 

Twine. What its future holds is still being written. While this study is one story told about 

Snowman positioned among other, existing narratives on other story formats and Twine itself, 

others will follow and, it can only be wished, built from this research labor as well. 

  



 
23 

CHAPTER 2: CALLING THE PAST 

 The history of programming languages begins with wanting to write code faster. After the 

unveiling of the first digital computer, Electronic Numerical Integrator and Computer (ENIAC), 

in 1945, researchers across businesses and universities immediately sought ways to “automate” 

its programming. At the time, each new computer program required re-inventing the same 

processes and structures. Through having a way to automate common parts, programmers could 

concentrate on only the new problems they were trying to solve rather than revisit those already 

known. During the continued development of the ENIAC, one of its lead researchers 

documented a need for common “routine” operations such as “logarithm, cosine, arctangent, or 

square root” be built into computers. Beyond these “routine” operations, there was also the need 

for other operations a programmer might need to add under the same category. Named 

“subroutines,” these were envisioned to help programmers with “the repetition of their coding,” 

as first described in an article appearing originally in 1947 (Mauchly, 1982). This concept was 

refined by other researchers with a more technical description of “subroutines” appearing in an 

academic paper in 1952 as “a self-contained part” and “an entity of its own” within a larger 

program designed to allow a programmer “to concentrate on one section of a programme [sic] at 

a time without the overall detailed programme [sic] continually intruding” (Wheeler, 1952; p. 

235). Two years later, in 1954, the first general-purpose programming language, FORTRAN, 

introduced itself to a more public audience itself through its acronym and description. Within a 

1956 programmer’s reference book for the language, FORTRAN is defined as a “FORmula 

TRANslating System” through which “automatic coding” (p. 1) could be accomplished through 

a series of symbols “closely resembling the ordinary language of mathematics" (Backus et al., 

1956; p. 2). The programmer’s reference for FORTRAN also continued the use of the term 



 
24 

subroutines. In trying to match “the ordinary language of mathematics," the programmers and 

researchers behind FORTRAN borrowed a term from mathematics to help more general 

audiences understand how subroutines worked in their system: they named them “functions.” 

FORTRAN came with a set of functions it called a “library” with the ability to add more as 

needed (Backus et al., 1956, p. 40). When the new version of FORTRAN, named FORTRAN II, 

was published in 1958, it made the connection between existing functionality and those added by 

programmers even more explicit by adding a new keyword “CALL”. When a programmer 

wanted to use a function in the library, they needed to use the keyword “CALL” and the 

language would handle the “transfer of control to the subroutine" named (Reference Manual: 

FORTRAN II for the IBM 704 Data Processing System, 1958; p. 15). When “called,” the 

subroutine would gain direct control over the running code, making a connection to past labor 

form present work. Future programming languages copied from the concepts of FORTRAN as 

they slowly spread through additional sources like teaching materials. 

 Thought of as the first textbook on computer programming, The Art of Computer 

Programming: Volume I was started in 1962 and first published in 1968. Between the 

introduction of FORTRAN in 1956 and other programming languages in the later 1950s, there 

was a need for a comprehensive overview of programming concepts. In the third edition of the 

book, Knuth (1997) focuses on subroutines as a central topic important to all programmers. 

“When a certain task is to be performed at several different places in a program,” explains Knuth 

(1997), “it is usually undesirable to repeat the coding in each place” (p. 186). Knuth (1997) 

explains how “[m]ost computer installations have built up a large library of useful subroutines, 

and such a library greatly facilitates the programming of standard computer applications” (p. 

186). Within this “large library of useful subroutines,” as explained by Knuth (1997), the 



 
25 

execution of the code moves through multiple layers. Using a metaphor becoming common by 

the time of the original publishing of the book The Art of Computer Programming: Volume I in 

1968, Knuth (1997) writes how the subroutines interacting with each other create a “stack.” 

Newer programs are built on previous ones. When run, the older code itself might be reaching 

deeper into the past of the subroutine library available. Such an approach is created when “[o]ne 

problem leads to another and this leads to another” where past solutions can be combined, 

explains Knuth (1997) (p. 241). Across a “function stack,” each part solves a certain, smaller 

problem. They “call,” borrowing from the term popularized in FORTRAN II, down to the past 

while passing data “up” to the previous as it finishes its own execution (Reference Manual: 

FORTRAN II for the IBM 704 Data Processing System, 1958). To solve a complex problem, a 

programmer might incorporate many subroutines. These are stacked on top of each other with 

code from one programmer contacting the programs of others which, in turn, potentially contacts 

others. In phrasing borrowed from the FORTRAN II programmer’s reference, these series of 

relationships “may be indefinitely expanded" by one function calling the next (p. 2). This creates 

not only a “library” of functionality available to new programmers, but inherently constructs 

social relationships through which future programs are built on the labor of the past. 

 The history of a software project can be better understood by investigating the libraries it 

“calls.” This chapter, like the tracing of the concept of “function,” begins with earlier references 

and their own histories. As explained by Knuth (1997), when functions are used in connection to 

each other, they create a “function stack,” a structure where each part influences others nearby 

within its organization. In this chapter, the latest version of Snowman, 1.4, is explored through 

three lines of its code as the point where humans interact with the story format. As explained in 

the next section, not only does source code carry with it an understanding of how it can be used, 



 
26 

what functions it exposes for others, but the arrangement of a function stack itself is always 

inherently one where choices made in the past of one project affect the future organization of 

others. As is explained in more depth later in this chapter on a section introducing the associated 

research, the three lines from Snowman 1.4 were chosen for their connection not only to other 

software libraries, but with how a user interacts with them as well. The primary form of 

interaction for HTML is clicking hyperlinks, and the lines examined serve as the bridge through 

which those interactions are translated into story progression by Snowman. This chapter wraps 

up by reflecting on the importance of studying code as connected to a deeper history on which 

functions “call” to the past. 

Software Foundations 

 Software is built on software. The different layers of subroutines create a “geology” of 

layers across different libraries. To investigate these layers requires understanding how digital 

works often contain collisions of the present with the past. In their introduction to the edited 

collection Media Archaeology, Huhtamo and Parikka (2011) describe the work of investigating 

digital media as research through which the “past is brought to the present, and the present to the 

past” (p. 15). To better understand digital media, researchers must “take [the object’s] material 

nature into consideration” (p. 8). All media have materiality. They are accessed, interfaced, and 

used in different ways. The contact between systems points to how they can be investigated by 

examining what their interaction reveal about their interfaces at each layer. Marino (2020) calls 

for this form of investigation when studying code, writing of how “[s]oftware studies, platform 

studies, and media archaeology [. . .] can now work to strengthen one another” (p. 22). This 

echoes the work of Wardrip-Fruin (2011) in the edited collection on media archaeology. In a 

chapter named “Digital Media Archaeology: Interpreting Computational Processes”, Wardrip-



 
27 

Fruin (2011) suggests researchers move beyond the “surface of their projects” to dig deeper into 

digital systems (p. 320). Wardrip-Fruin (2011) lays out a process for investigating “its surface 

output, the data it employs, and the processes it executes” (p. 307). While not discussing 

functions directly, Wardrip-Fruin (2011) puts forth a useful approach to understanding the 

relationship one function has to others through the input, output, and processes of each as part of 

navigating a stack from the present into the deeper past of discovering, in the words of Marino 

(2020), the “partial” code visible in any layer of meaning as found in some code. 

 Parikka (2015) puts a conceptual name to the different layers of meaning found in media: 

strata. Building from the work of Foucault (1969) in The Archaeology of Knowledge, Parikka 

(2015) pulls from the introduction of the work and the call to study the “various sedimentary 

strata” of history. According to Foucault (1969), the history of “governments, wars, and 

famines” can be connected to the “history of sea routes” and other, details beyond the obvious 

ones more traditionally studied (Foucault, 1969). Instead of looking at the obvious, an 

investigation of a cluster of historical events should begin by posing a different question: “which 

strata should be isolated from the others?” (p. 3). From this base, Parikka (2015) builds on 

Kittler’s (1999) provocation that humanities researchers should, in the paraphrased words of 

Parikka (2015), “have a proper understanding of the sciences and engineering realities that 

govern the highly fine-structured computer worlds in which we live – without ignoring the fact 

that technical media did not start with the digital” (p. 2). For Parikka (2015), combining the 

concepts of Foucault (1969) with the importance of the materiality of media as found in Kittler 

(1999), there is a need for constantly considering the stratification of remediation, as presented 

by Bolter and Grusin (2003). Each form of digital media presents ways in which it reveals and 

hides its own past to older media (Bolter & Grusin, 2003). In The Geology of Media, Parikka 



 
28 

(2015) calls for a study of stratification, the points of “double articulation” of present to past and 

past to present, how an object is made from other objects, by starting from the digital present and 

digging into the deeper material past (p. 36). Work should start at the point of interaction, where 

human meets system, and then dig deeper across the passage of time to understand where the 

technical media became digital from its own past. For each stratum, research should seek to find 

how it reveals and hides the previous layer on which it was built. 

 This chapter is not strictly concerned with digital media. However, it does use media 

archaeology and its emphasis on digging into the past as part of using the conception of strata as 

presented by Parikka (2015). As explained in the introduction to this chapter, functions “stack” 

on top of each other. Soloman (2013), in fact, makes this connection explicit in the essay “Last 

In, First Out”. Soloman (2013) writes how the “function stack” is a useful way to understand 

digital systems because of the connection between interfaces as “technological circumstances” as 

affecting “[other] media in turn” (Para. 25). There is no direct access to the data; every presented 

interface is itself mediated. Graphical user interfaces, as well as those between digital systems, 

reveal and hide aspects of themselves between layers. For Galloway (2006), how data is accessed 

is governed by rules put into place as part of the construction of how its interface is programmed. 

When using a word processing program, for example, the editing program presents an interface 

to the data on which it is working. A user cannot manipulate the data directly and can only edit in 

ways the interface itself allows. Galloway (2006) raises the importance aspect of digital 

interfaces as being centered on control over how data can be accessed and through what 

methods. This connects to how Brown (2015) describes data as being accepted or not by 

programs. Each interface creates rules for how it knows what to accept, and what it will not 

accept, created in part by the presences and absences within its interface creating these implicit 



 
29 

rules (Brown, 2015). Bratton (2015) brings this point home by pointing to the importance of 

communication and the metaphor of the stack specifically. As one digital system “sits” on 

another, its own control adds to the previous layers, creating a “stack” of power relationships 

between one structure and the next (Bratton, 2015). Soloman (2013), echoing the two forces of 

remediation from Bolter and Grusin (2003) for digital media, calls this the “paradoxical 

arrangement” of the function stack: each level in the stack “open[s] up possibilities for new types 

of free creative action” while also “are always already constrained and preconditioned by the 

lower-level systems and infrastructure upon which they are implemented” (Para. 25). This 

paradox is the point of “double articulation” mentioned by Parikka (2015), and as affected by 

what each accepts, from Brown (2015), and control from Galloway (2006) and Bratton (2015). 

The stack is a structure of power and control made by different functionality “stacked” on top of 

each other and through which one level accesses the values from another. Soloman (2013) 

describes this as each level “serv[ing] a nondiscursive role to those above, and yet, a discursive 

role in relation to those below” (Para. 26). As the introduction to this chapter relates, the 

structure of the functions stack is a foundational one to programming and the study of code. 

 The research presented in this chapter embraces the metaphor of strata from Parikka 

(2015) as a useful lens to understand the relationships between layers of a function stack as 

building from the work of Galloway (2006), understanding how control manifests within 

communication; Brown (2015), accepting and rejecting of data across interfaces; and Bratton 

(2015), how the implementation of a stack encodes power structures. In the next section, three 

lines for Snowman 1.4 are explored in-depth. Following the suggestion established by the field 

of media archaeology to begin where humans interact with a system, these three lines are 

highlighted because they control the loading of a section of a story, what Twine names a passage, 



 
30 

based on a reader clicking on a hyperlink in a web browser. Because of the importance of 

understanding the effects of remediation, and specifically how stratification can happen with an 

interface, the context of each software library is discussed first before proceeding into how each 

level of the stack interacts as part of their own functionality. Based on the order presented by 

Wardrip-Fruin (2011), each function is examined in terms of its input, processing, and its output. 

As first Knuth (1997) hints at and Soloman (2013) declares, each layer in a stack affects those 

above it through a “paradoxical arrangement” (Para. 26). This requires understanding, as with the 

calls from Parikka (2015), to move from the digital present into the material past. For Snowman, 

this means beginning where it does: the processing of HTML data. 

Function Stack as Strata in Snowman 

 When a Twine HTML file is loaded in a web browser, the JavaScript code of the story 

format is run. This first loads its own values and then looks for special HTML elements within 

the webpage and starts to perform the work of loading different values and preparing for the first 

interaction with a reader (Cox et al., 2019). In the story format Snowman, the first moment 

where a reader can interact with a story occurs starting at Line 205 in a file named “src/Story.js.” 

This contains the first of several uses of what are named “event listeners.” In the programming 

language JavaScript, code can wait for someone or something to take an action and then react in 

some way. For example, when a user begins to type in a search field in a web browser, 

JavaScript code was written with an event listener for the interface element. As a user types, the 

event undergoes what is called a “trigger” in a web browser and a function is run as a result. This 

approach allows JavaScript code to only react when needed through programmers adding event 

listeners for possible interactions and only running when the associated event happens 

("Introduction to Events", 2023). Snowman completes all its internal loading and then begins to 



 
31 

wait on an event named “click” triggered when a reader performs a left click on any hyperlink. In 

Twine works, the primary form of communication between reader and the story format is 

through the clicking of hyperlinks. In Snowman, this functionality is provided starting at Line 

205. This section begins with reviewing the software library providing the functionality 

connected to this event listener, jQuery, before moving to a second library, Underscore. Finally, 

this section will explain how the last line of code, containing only a single function, connects to 

the two previous ones. It is only through the last line that the meaning of the three lines changes 

to become its own stratum within Snowman. 

Starting with jQuery 

 Snowman does not work directly with functionality provided by a web browser. Instead, 

this is provided by the JavaScript library jQuery, an interface for working with the lowest level 

structure in a web browser called the document object model (DOM). When an HTML file is 

loaded by a web browser, it creates an in-memory object version of the document file. JavaScript 

can interact with this object, and a web browser will translate the interactions, along with any 

possible changes to its values, to manipulate the visual representation shown on a screen 

("Document Object Model (DOM)", 2023). jQuery was created to solve a problem with 

accessing the DOM of a web browser. While the model is often the same across web browsers, 

the interfaces for accessing and changing are sometimes very different. In the early 2000s, there 

were multiple web browsers with each following their own approaches to using JavaScript 

functionality such as event listeners. jQuery sought to establish its own standard across them. In 

the words of an announcement by its creator to other programmers in 2004, jQuery will 

“revolutionize[] the way you can get Javascript[sic] to interact with HTML” (Resig, 2004). One 

of the earliest versions of its website declares its design to “change the way you write 



 
32 

Javascript[sic]” (jQuery: New Wave Javascript, 2006). By using jQuery, the library could act as 

an interface to the other web browser functions. A programmer could write to the standard of 

jQuery and know their own code would work the same regardless of what web browser ran the 

project. This approach was so successful, in fact, by nearly twenty years after its introduction, 

jQuery was reported to be used on 94.3% of all websites where it can be detected (Usage 

Statistics and Market Share of JQuery for Websites, March 2023, 2023). In an apt description of 

the role jQuery began to see itself in across web development, a blog post from 2014 names 

jQuery as a “repairman for browsers” (The jQuery Foundation and Standards, 2014). While each 

web browser provides their own functions for accessing the DOM, jQuery often “sits” on top of 

these interfaces, providing its own functions for working with and changing the visual 

representation of a loaded HTML file. In this role, it became and remains easier to detect in 

existing code based on how it presents: its functions are accessed using the dollar sign, $. 

 As early as the first public version, jQuery began to use the dollar sign, $, in JavaScript 

(jQuery 1.0 – Alpha Release, 2006). This allowed developers to simply reference its interface 

using the dollar sign and a name of one of its functions. In many cases, jQuery usage can be 

detected by looking for this pattern of the dollar sign, signaling a likelihood of using the library 

within some code. In Snowman 1.4, Line 205 of the src/Story.js file begins with a dollar sign and 

a function named “on()”. To provide a standard across web browsers, jQuery established the use 

of functions like “on()” to work across different web browsers. A programmer can prepare code 

to react when a user left-clicks on the webpage, what is known more technically as a “click” 

event ("Element: click event", 2023). Written in English, the “on()” function describes the 

following situation: “When the specific event happens, do this” ("on()", 2023). In Snowman, the 

event is a user clicking. This then triggers the second part of the explanation, “do this.” On Line 



 
33 

205, the second part is another function containing its own instructions for what should happen 

next. 

 To help programmers describe their own functions, the programming language JavaScript 

contains the keyword “function.” Whenever a programmer wants to define a new function, they 

can use the keyword (ECMA-262, 15th edition, June 2023, 2023). Because the contents of one 

function might contain the same name of existing values, JavaScript includes an approach a 

programmer can specify the current function rather than any other existing values names from 

nearby structures: the keyword “this.” When the keyword is used in JavaScript, a programmer is 

specifying the current function or structure. It can be thought of as translated into English as 

“this object right here” rather than another one ("this", 2023). On Line 205, both keywords are 

found. First, the line begins with the “this” keyword, referencing the larger structure in which the 

line is found. This is referring to the name of the file, “story.js”, within which the larger structure 

named “Story” is found. To help programmers quickly identify files, a common naming practice 

is to name the file based on the largest structure found within it. In Snowman 1.4, its 

“src/Story.js” file contains the Story structure. On Line 205, the keyword “this” appears first 

followed by the name of a value, “$el.” As explained, the use of the dollar sign signals the use of 

jQuery. Here, it refers to data retrieved from an earlier use of a jQuery function in the file. The 

naming convention helps to retain, at a quick glance, where the data came from it is using. 

Expanded to include the new keywords, Line 205 becomes slightly different (Figure 3). 

 

Figure 3. Line 205 of “Story.js” in Snowman 1.4 with “this” Keyword 



 
34 

 There is one last detail within the processing of Line 205. As mentioned as part of its 

input, the use of the “on()” function uses three values: what event to listen for, how to filter these 

results, and what function to call when the event happens. The first input is the event “click” by 

name. In the next section, the second input will be explained. This leaves the last input: the 

function to run when the event is triggered. To prepare for moving toward Line 206, there is one 

last item to mention: the input of the function reacting to the event. In JavaScript, as run in a web 

browser, every event generates data. This includes information on where the event occurred, 

what triggered it, such as a “click”, and other information ("Event", 2023). This is needed for the 

function to react to an event, telling the function important information. To complete Line 205, 

one last item is needed, the data passed to the internal function (Figure 4). 

 

Figure 4. Complete Line 205 from “src/Story.js” in Snowman 

 Put all together, the stratum of jQuery acts as an interface to the DOM of the Twine 

HTML data. Moving from the “bottom” to the top, there is the “on()” function as part of a larger 

structure named Story in the src/Story.js file. To help developers have an standard interface for 

working with events, the “on()” function acts as an interface to the DOM presented by different 

web browsers. When an event happens, this function checks for what it is listening for, “click” 

on this line, and then filters the results before finally calling a function with data created by the 

web browser. This is passed to the “on()” function when the event happens, giving it access to 

data from the web browser on what happened and where within the DOM. In the next section, 

Line 206 is examined as another point of intersection with a different software library, 



 
35 

Underscore. First, however, understanding Underscore and its positioning in Snowman begins 

with its intersections with the functionality surrounding how a story progresses in Twine. 

Progressing a Story Using Underscore 

 When an author uses the publish functionality in Twine, their current work is packaged as 

a collection of HTML elements along with the currently selected story format. In HTML, each 

part of a webpage is divided into smaller unit called “elements.” These describe how the 

webpage is presented through the data each unit, element, it contains ("HTML: HyperText 

Markup Language", 2023). Twine publishes a story by encoding its data into HTML elements as 

part of a webpage where the story is a single element with each passage its own HTML element 

containing its data (Cox et al., 2021). When the resulting HTML file is opened in a web browser, 

the story format JavaScript code runs and then attempts to read the packaged Twine HTML as 

data values stored in the same file. After it prepares its own values, Snowman processes these 

HTML elements as a collection of values matching what Twine names parts of a story: passages. 

The Story structure in Snowman has a value named “passages” containing each passage within 

the story with its own data. This collection becomes very important, as it serves as an internal 

database of the story as divided across different parts. When story progression is about to 

happen, it is this database where Snowman turns to determine what should be shown next to a 

reader. This makes the accessing and changing of story data, both as part of this collection, and 

as perceived by a reader, an important part of how Snowman works. It is also central to the next 

line of code covered in this section. Outside of some special situations, passage content is not 

shown to a reader unless they click on a link, functionality explained in the last section as 

starting with Line 205 in the “src/Story.js” file in Snowman. In this section, the next stratum, the 

JavaScript utility library Underscore, is positioned between jQuery and Snowman functions. 



 
36 

 Understanding Underscore, like with jQuery, begins with knowing why it was created 

and what problems it is attempting to solve. Much like jQuery, Underscore was created to supply 

its own standard set of functions to perform different tasks in JavaScript. However, while jQuery 

is focused on working with the DOM more directly as an interface across web browser 

differences, Underscore is a set of utility functions augmenting the existing data structures and 

functionality of the programming language JavaScript (Ashkenas & Gonggrijp, 2022). Because 

of its specific focus, Underscore is often paired with other software libraries. To prevent 

confusion, like with jQuery using a particular symbol, the dollar sign, Underscore matches its 

own name, the underscore symbol, “_.” Underscore functions use the underscore symbol and 

then the name of the function. Because of its emphasis on utility functionality, Underscore also 

supplies an interface where the output of one function can more easily fed into the input of 

another (Ashkenas & Gonggrijp, 2022). When used within a project, it is not uncommon to see 

multiple functions connected as they send data to each other as part of a single line of code. 

 Like with jQuery, the introduction of Underscore also represents a particular point in web 

development and changes to the language of JavaScript. After the first version of Underscore 

appeared in 2009, usage of the library slowly grew in popularity (Ashkenas, 2009). In 2012, 

some of the developers working on the code split off a new project named Lodash as a “drop-in 

replacement” for Underscore (Dalton, Cambridge & Bynens, 2012). This created two parallel 

branches moving forward with each claiming a smaller part of the overall usage by 2023. Lodash 

at approximately 3.4% and Underscore at 8.8% (Historical Yearly Trends in the Usage Statistics 

of Javascript Libraries for Websites, March 2023, 2023). There is one more event Underscore 

and its sister project Lodash faced jQuery did not: changes to the JavaScript programming 

language. Underscore, like jQuery, has its own standard set of utility functions. However, the 



 
37 

introduction of the sixth version of JavaScript in 2015 also established a new historical 

precedent: JavaScript would be updated every year instead of every few years (ECMA-262, 6th 

Edition, June 2015, 2015). This meant utility libraries like Underscore and its sister project 

Lodash became less needed over time as parts of what they provided to programmers began to 

slowly be added to the JavaScript language every year. This places the greater importance of 

utility libraries like Underscore as part of a pre-2015 historical pattern of development in 

JavaScript projects. 

 Having established the history of Underscore and its placement within the larger narrative 

around changes in the programming language JavaScript, it is time to understand how it impacts 

Snowman 1.4. Underscore becomes involved as part of Line 206. In the previous line of code, 

data was passed to a new function. Line 206 uses this data with information on what happened 

and where it happened within the DOM to help figure out what to load next for a reader during a 

Twine story. How it does this is connected with the second input to the previously reviewed 

jQuery “on()” function. In the previous section, this input was ignored because it becomes more 

important in understanding how Underscore and jQuery work together. In the previous section, 

this input was described as filtering of the results. This is true, as the “on()” function in jQuery 

might create many event listeners depending on the amount of content and its organization. 

However, the second input part filters down all possible results into only those matching a 

certain pattern within the DOM. In Line 205, this filtering is used is to look for first hyperlinks, 

defined by the anchor HTML element, and then specifically to those who also contain an internal 

part labelled “data-passage.” This appears as part of the combined pattern of “a[data-passage].” 

This filtering is important because of how Snowman works: it encodes the story destination of a 

hyperlink when showing a new passage to a reader (Figure 5). 



 
38 

 

Figure 5. Example use of “data-passage” encoding in Snowman 1.4 

 Line 206 begins with event data passed to it. When an event happens in a web browser, it 

is often connected to a location in the DOM called its “target” ("event.target", 2023). This the 

element, unit within the HTML, where the event happened as determined by the web browser. 

For example, a user might click on a button or a text field. In each case, the specific element 

would be the target of the event. When a reader clicks a link, the target of the event is the 

hyperlink element, the HTML anchor, itself. As passed to the inner function, this element is part 

of innermost part of Line 206. Based on the passed element, the closest one containing “data-

passage” is found. In jQuery, the “closest()” function performs this search ("closest()", 2023). 

This usage on Line 206 finds the name of the destination passage from the target HTML element 

(Figure 6). 

 

Figure 6. Event target conversion and search in Snowman 1.4 

 Because data is stored as part of the anchor element, the “data()” function in jQuery is 

used to retrieve it ("data()", 2023). On this line, the value is based on the closest element with 

“data-passage” starting from the target of the event element. Put together so far, the processes in 

English can be described as “Using jQuery, based on the HTML element within the larger 



 
39 

document-object, search both it and any neighbor elements for one containing ‘data-passage.’ 

Once found, retrieve its current value (as placed there by Snowman)” (Figure 7). 

 

Figure 7. Retrieval of data from event target in Snowman 1.4 

 There may be occasions where an author has tried to use certain symbols in English in the 

names of passages that may have certain undesired meanings in HTML. To protect against these 

combinations of symbols causing problems, the result of the jQuery function is then fed into the 

use of the Underscore “unescape()” function. This function performs the action of searching for 

and then providing what it known as an “escaping sequence” by converting certain sequences of 

symbols into something web browsers can understand ("unescape()", 2022). This last processing 

is done on the result of the jQuery “data()” function. Explained in English, these new functions 

add to the description as the following: “Using jQuery, based on the HTML element within the 

larger document-object, search both it and any neighbor elements for one containing ‘data-

passage.’ Once found, retrieve its current value (as placed there by Snowman). Using 

Underscore, process the name of the passage found” (Figure 8). 

 

Figure 8. Escaping of data passage result based on jQuery and Underscore 

 The processing of Line 206 begins with data given to the internal function. Among its 

data is a value named “target” with the name of the HTML element where the reader clicked. 



 
40 

This is processed by jQuery using its “closest()” function, finding an element nearby to the 

“target” containing “data-passage” data. Next, the “data()” function is used to retrieve this data 

from the “data-passage” value within the HTML element. Finally, this resulting value is given to 

the Underscore “unescaped()” function where it processes the value and makes sure it is safe for 

use with Snowman. After all this happens, one more function is used: “Story.show().” However, 

the name “Story” does not appear on this line. Instead, the special keyword “this” is used again. 

As previously explained, the “this” keyword in the programming language JavaScript allows a 

data structure to refer to itself. Like with Line 205, Line 206 uses the same keyword to refer to 

the larger structure of Story. The more complete Line 206 shows these changes (Figure 9). 

 

Figure 9. Completed Line 206 of Snowman 1.4. 

 In the completed line, when a reader clicks a hyperlink, Snowman processes HTML data, 

checks its internal database of passage data, and then attempts to show a reader the next section 

of the story. Within this processing is a mix of jQuery, Underscore, and Snowman functions, 

each connected to and passing data to the next. Within a single line of code are multiple 

functions stacked on top of each other to receive the data of an event and use its values to find 

the next part of a Twine story to show to a reader. In the next section of this chapter, the final 

line is examined. It is both separate and key to understanding how the three lines work together, 

providing a completion of the function beginning with Line 205 while also changing how all the 

lines are understood together. 



 
41 

Completing the Function 

 The previous two lines of code examined in this chapter added to the understanding of 

the Snowman story format. The first established the use of jQuery and the role event listeners 

play within the code by waiting for the reader to “click” and then reacting. The second line was 

more complicated with the intersection of jQuery and Underscore through looking for an HTML 

element with a particular value, parsing it, and then using the value to search for the next passage 

to show a reader using the “Story.show()” function in Snowman. Finally, we have reached the 

last line: Line 207. This last section re-connects the function loop started from the first line 

through the last line of this code. Beginning on Line 207, the use of an important function is 

included: “bind().” In the programming language JavaScript, as has been previously examined, 

the keyword “this” refers to the data structure in which it is used. This is always the rule except 

when it is broken using a special function, “bind().” When used within a data structure, its 

internal reference can be overwritten with another, allowing an internal structure to “see” an 

outer one that would otherwise be impossible ("scope", 2023). In Snowman, this is used to allow 

the inner function to be able to “see” the larger data structure Story and its functions, something 

not allowed by default in JavaScript to prevent potential problems like values having the same 

names and creating confusion. Like with jQuery and Underscore, this creates an internal stratum 

as a source of functionality. This also enables functionality used in the previous line, access to 

the “Story.show()” function. As part of Line 206, the exact usage is “this.show(),” but the 

“show()” function is not part of the inner structure. It is part of the larger Story function. As with 

untangling the connections, understanding this line of code begins with isolating its historical 

context before moving through its input, processing, and output (Wardrip-Fruin, 2011). Without 



 
42 

understanding this last line, the entire structure carries a different and potentially conflicting 

meaning. 

 Line 207 includes only a single function, “bind().” However, this function has profound 

implications for both Line 206 and Line 205. The internal function’s reference to itself is 

overwritten, connecting it to the larger Story structure (Figure 10). 

 

Figure 10. Lines 205 - 207 in “src/Story.js” of Snowman 1.4 

 It may seem strange to have an entire section of this chapter dedicated to a single 

function, but without the use of “bind()” function, Line 206 does not work. Line 207 cannot be 

disentangled from Line 206 without significantly re-writing the code. The “Story.show()” 

function cannot be accessed inside another function without being able to “see” the other 

structure. There is no clear-cut path between one line and the next within programming as these 

three lines demonstrate. There is always a hidden nature to the code within its own stack of 

meaning, and methodologies like media archaeology provide ways to see into how the code 

relates to each other by revealing its different layers in pursuit of the materialist end point. A 

complete understanding of Lines 205 – 207 is not possible without each line in turn. Without the 

use of “bind()” function, the use of Story function would not be “visible.” The same is also true 

of the use of value “$el” on Line 205 caught up in the ways the functions and data structures 

wrap around each other in JavaScript. The entire function stack originating within these three 

lines of code crisscrosses with other stratum through interlocking meanings as code from the 

present calls to the deeper past and back again. Echoing Parikka (2015) and a need explore 



 
43 

points of “double articulation,” the three lines of code examined in this chapter contain 

intersections of past and present at the same time as jQuery, Underscore, and Snowman functions 

all work together across their own different histories (p. 36). Each stratum explored creates a 

completed function placement in the larger “stack,” but also one matching how Soloman (2013) 

describes the “paradoxical arrangement” of one layer to the next. The structures of jQuery affect 

the use of functions of Underscore and how JavaScript itself works affects both software libraries 

through the use of the “bind()” function, changing how one structure can “see” another. 

Conclusion 

 In the book The Archaeology of Knowledge, Foucault (1969) poses an important question 

at the center of this chapter: “which strata should be isolated from the others?” (p. 3). There is a 

considerable amount missing when viewed only “on the surface,” in the words of Wardrip-Fruin 

(2011), connected to only three lines of code. Beginning from the point where a reader interacts 

with the code, the use of the event listener in Snowman via the programming language 

JavaScript, the layers of meaning quickly twist into each other. Line 205 cannot work without 

Line 206 and Line 206 cannot work without the single use of the “bind()” function on Line 207, 

which connects back to Line 205. Yet, at the same time, the strata of jQuery and Underscore are 

entangled within the media archaeological examination of how a “click” event is processed by 

code written years apart from each other. When clicking on a hyperlink in a Twine story, a 

reader is not actively considering the decades of concepts and years of code translating their 

action into story progression for them. Yet, present code calls to a deeper past. Putting the central 

question another way, it might be better phrased as “Can programming stratum be easily isolated 

from each other?” The answer to this question, as this chapter hopefully points toward, is a 

definitive negative. An ever-important note comes from Marino (2020) on this: “visible code is 



 
44 

always partial” (p. 75). Despite this partially “visible” past of all code, the investigation of its 

relationships is vital to understanding not only the archaeology of a project in the form of 

digging into its layers but also the connections between structures. By beginning with how 

stratum relate to each other, and the ways in which they cannot be easily isolated, the more 

important questions become why they cannot be isolated and in which ways an examination of 

the remediated stratification patterns can help us understand the ways in which software build on 

each other. The present of Snowman is affected by choices made in the past and which make up 

the history of the software libraries on which it depends to work. 

 It can be no mistake Parikka (2015) and Soloman (2013) arrive independently at the 

importance of, in the words of Huhtamo and Parikka (2011), how an investigation of structures 

helps to see how “[t]he past is brought to the present, and the present to the past” (p. 15). Within 

media archaeology, the work of Foucault (1969), examination of strata, and Bolter and Grusin 

(2003), remediation, point to how digital media have a material past in which they, in often both 

equal measures, point to the partially visible past and hide evidence of it at the same time. By 

investigating these strata, a connection can be found through how the material past is echoed in 

the technical present; nothing is truly lost if references to it remain. Through the digital interfaces 

to the media, these references echo from the past to the present. For Soloman (2013), in 

considering the structure of the function stack, this same relationship becomes the use of the term 

“paradoxical arrangement,” connecting to the work of Bolter and Grusin (2003) while also being 

in conversation with Galloway (2006), Brown (2015), and Bratton (2015) on how control and 

power become encoded in how the structure of a stack is created and maintained. One level of a 

stack influences the next. When it comes to programming, these interconnections between them 

often “hide” what Soloman (2013) calls “creative action” between one layer and another (Para. 



 
45 

25). Depending on how the access is created, it might not be possible for one layer to even 

communicate with another’s values, as in the case of how this can happen in JavaScript. Yet, 

source code can always be studied through its input, processing, and output to begin to better 

understand its relationships to the past on which it was built (Wardrip-Fruin, 2011). Through 

these investigations, the greater interconnectivity of the past can be found entangled in the 

present. 

 Software is built on software in the same way media is built on media. The fields of 

critical code studies and media archaeology encourage us to investigate how the materialist past 

connects to the technical media present. In the case of Snowman 1.4 more specifically and 

JavaScript more generally, the project and language is in conversation with past languages and 

their own concepts. If there can be said to be a “materialist” past of programming languages, it is 

connected to the history around the early work to help create “automatic coding” in FORTRAN 

and other languages in the 1950s. Actions taken decades before in naming conventions and 

concept organization still affect the present. This chapter highlights the need for greater research 

into the history of software libraries projects rely on and how their own functions influence each 

other. This requires investigating the software libraries and their own histories for how patterns 

emerge, tracking how each layer of usage across a project connects to larger trends across past 

and present. 

  



 
46 

 

CHAPTER 3: TRUSTING THE PRESENT 

 On January 7, 2022, Marak Squires made a handful of changes in the source code of a 

project named colors that allows programmers to use different colors when creating text output 

for their programs. Through a few lines of new code, a programmer could use red text for 

warnings or green for when a program is operating normally. For projects like colors, it is very 

common to see small changes happen occasionally such as bug fixes or scheduled updates. When 

these happen, the version of the program is usually updated as well, signaling others they should 

use the new code in their own projects. In this one case, however, the changes were neither 

scheduled nor normal. Squires was protesting. Angered over how the project was being included 

in larger ones used by Fortune 500 companies to make millions of dollars while neither the 

project nor anyone who worked on it received any support or money, Squires crafted a targeted 

update to colors (Squires, 2022). Knowing most people would accept the new changes to colors 

into their own projects without question, Squires introduced an infinite loop into its code, 

updated the version, and tens of thousands of projects accepted the new changes immediately. 

Within hours of the update, those running the changes saw everything from minor problems to 

outright crashing across everything from small hobby projects to systems supporting millions of 

customers. It took most organizations multiple hours to revert the changes and clean up the mess 

(Roth, 2022). Rather than garner support for the colors project through this protest, however, the 

response from most was annoyance and disgust with Squires for causing the problem in the first 

place (Sharma, 2022). Many reported removing colors from their projects and anything else 

Squires might have worked on as well (Ropek, 2022). In place of gaining better support, Squires 



 
47 

had triggered a major reaction against all projects connected to their work. Trust had been 

permanently broken. 

 This chapter returns to two themes presented in chapter one: software carries cultural 

values (Manovich, 2013) and it can be best understood in a greater social context (Marino, 

2020). As discussed in the last chapter, software projects “call” to the past in the current 

functionality visible to systems and people interacting with it. This chapter moves from the past 

to the present of Snowman 1.4 through making more visible two aspects highlighted in its 

introduction. First, applications of all sizes are built on the often-hidden labor of others. The 

labor behind colors is frequently included in everything from commercial software running 

websites to student projects. Yet, as the protest from Squires showed, many people either do not 

know of this hidden labor or do not care about the work on which their software relies on to run 

(Roth, 2022). Second, these smaller projects strongly affect other software to which they are 

connected. If changes in colors can crash software for millions of people, its influence is far 

greater than seems at first glance (Sharma, 2022). The dependency of one project on another can 

be described by the term “trust,” but also goes beyond it as well. By choosing to become 

dependent on code written by another person, a programmer is putting their work into an implicit 

social relationship of control as well. As reviewed in the last chapter, other software libraries can 

strongly affect how code based on its functions can operate. This culture of trust and control is 

then echoed across all projects within its relationships. To help make sense of these relationships 

between software libraries, this chapter uses the metaphor of a “network” as defined by Latour 

(2007) as one in which the “work” of many forces all contributes toward each other. Building 

from this metaphor, a second one, “switch” is pulled from the work of Castells (2010). While 

Latour (2007) presents social relationships in which each party might have equal parity to each 



 
48 

other, this is rarely the case when examining expanded networks with their own sub-collection of 

forces. From Castells (2010) comes the metaphor of the “switch” within a network on which 

things depend and without which they cannot function, like the example of the project colors and 

how it was able to affect so many other projects. In examining the network of projects on which 

Snowman 1.4 depends, this chapter seeks to draw attention to how projects exist in connection to 

each other. This is then followed by an analysis of how the structure of the network as built on 

code affects the social relationships between programmers at the same time. The cultural values 

of smaller projects become part of the larger implicit contract of the collective itself. 

Revealing Culture 

 In a chapter dedicated to analyzing a single file from The Transborder Immigrant Tool in 

Critical Code Studies, Marino (2020) describes the multiple software libraries being used by the 

tool. To cut down on the complexity of the chapter, Marino (2020) explains several lines of code 

as “[p]ackages and imports, libraries” (p. 74). These lines include references to software libraries 

as part of the Java programming language and other details not examined. Despite including all 

597 lines of code from the “TBMIDlet.java” file being analyzed in the chapter, there are even 

more lines not included in the book that would, if included, inflate it by thousands or potentially 

tens-of-thousands of pages by themselves. Yet, without this other code not included in the 

chapter, the 597 lines of “TBMIDlet.java” file would not run. The single file is dependent on 

things like definitions of how data is stored in memory for different operating systems, accessing 

location information, and accessing media files on a computer defined across multiple other files 

and projects. Some of these are software libraries are part of the programming language Java 

used in the file, but many others are written by the authors of the project and others beyond even 

their work. Software is often dependent on other works in this way. There is a web of 



 
49 

connections between one project to others producing a series of social relationships between 

aspects of one to another. 

 The metaphor of a network is a powerful one for understanding how different 

relationships affect each other. In the book Reassembling the Social, Latour (2007) explains the 

different forces in a network through the concept of an “actor.” These are, in the words of Latour 

(2007), “the moving target of a vast array of entities swarming toward it” (p. 44). To understand 

an actor, an analysis needs to begin with the other entities “swarming” it. At the same time, each 

different actor is performing “work,” leaving a trace, on the others around it, establishing a 

relationship as the total, “net”, of all these relationships. In a programming sense, the “work” in 

Latour’s (2007) terms is seen in the effects generated by one project manifesting in another. In 

the example of the project colors, this is the addition of the infinite loop crashing many projects. 

Yet, in being affected by the “work” of one actor on another, there is a connection between them, 

creating a relationship. At one end of the network is a small change rippling out across the 

relationships and affecting seemingly disconnected parts at the other end. Within this pattern, 

there is obviously some actor within the network who can create major changes with small 

differences in how they operate. Yet, in how Latour (2007) explains networks, such actors 

cannot exist. To understand the importance of one actor gaining a higher degree of influence 

within a network of others requires adding another metaphor to the existing one provided by 

Latour (2007): switches. 

 Within any societal structure, there will always be some entities with more power than 

others. In identifying this aspect of all human endeavors, Castells (2010) writes in Rise of the 

Network Society of how there are networks of influences across power structures like economies. 

Yet, unlike how Latour (2007) explains networks as filled with actors affecting each other in 



 
50 

equal measure, Castells (2010) defines certain entities as “switches” or what is described as 

“privileged instruments of power” (p. 510). There are places within networks where power 

gathers and begins to affect the relationships around them. Any small change in the switches 

ripple outwards as they act as the gateway to other, more distant relationships of the network. 

Castells (2010) makes this point explicit in articulating switches as “shaping social structure” (p. 

510). Not only are the switches gathering points of power within the network but can also have a 

profound influence on social relationships of people affected by the digital structures. By 

controlling what happens with a switch, both the virtual structure and the more physical 

relationships are affected. As with the project colors opening example, Squires brought attention 

to how powerful the package had become by disrupting many others with only a few changes. 

This was, up till that moment, only a potential power. While Castells (2010) was describing the 

perceived influence of power as being concentrated within governments trying to control access 

to information within the digital networks of countries, there are others who have made the 

connection between this same effect as the project colors example and within the realm of how 

software projects depend on each other. 

 In their research on open-source projects, de Souza et al. (2005) make the connection 

between the work of programmers and how its code is used with other projects. Not only is the 

software dependent on each other, the people involved are as well. de Souza et al. (2005) make 

the point of how the “social and organizational structure” of projects is “achieved through the 

technological organization of the underlying artifact, the software source code” (p. 204 - 205). 

The social organization of the project manifests in its code, echoing the label of “cultural 

software” from Manovich (2013), in how the culture of a project manifests in its code and 

influences the community around it. Such an observation also matches the work of Ofoeda et al. 



 
51 

(2019), who call for more study of the ways in which one software library can affect others. 

Ofoeda et al. (2019) suggest the connections between projects are mediated through the 

organization of their programming interfaces. By controlling access to and availability of its 

functions, for example, one party can influence another. A social network, for example, can 

control who can access its data by limiting who can use its functions or asking for money to 

provide certain levels of trust or access to select parties. Following the explanation of functions 

and their default ability to hide data from other data structures explained in chapter two, projects 

can restrict what is available for certain audiences. How programmers feel about other people 

accessing the data of a project can also produce a socialization effect on both the developers and 

what they produce (Ducheneaut, 2005). If, like Squires, programmers feel their work is 

underappreciated, they could stop working on it or even stage a protest. 

 This chapter uses the concepts of “network” from Latour (2007) and “switch” from 

Castells (2010). In the next section, these are applied to the dependency network of the current 

version of Snowman, 1.4. Through the application of these concepts, two aspects of the revealed 

relationships are examined: first, as both Manovich (2013) and Marino (2020) confirm, code is 

cultural and social. Code carries more than instructions for computers, it embeds the values of 

those who work on it. Second, the code structures found in programming are echoes of the social 

structures of the people who work on it. Through researching code, not only can glimpses of 

these relationships be discovered, so too can its cultural values and how they are translated into 

and out of the structures found in its source code. From de Souza et al. (2005) and Ofoeda et al. 

(2019) come an understanding of how programming interfaces affect not only other projects, but 

also the social relationships of projects existing in dependency to each other. As the example of 

the project colors points to, a change in the social understanding of a small project can be deeply 



 
52 

disruptive to the larger collective network surrounding its usage by others. Even smaller projects 

depend on the silent labor of many others to support it, as the next section examines. Snowman 

1.4 is not immune to this fact. 

Dependency Network of Snowman 1.4 

 To begin to understand Snowman, we must start with the programming language it is 

written in, JavaScript. As I examined in chapter two, early computers were defined with a need 

for “routine” operations. Programmers could then add more under the same category, 

“subroutines” (Mauchly, 1982). In the 2023 specification describing how the programming 

language JavaScript works, the term “function” is defined in connection to the term “subroutine” 

in the same way they appeared together in the reference manual for FORTRAN II in 1958: a 

function is a structure “that may be invoked as a subroutine” (ECMA-262, 15th edition, June 

2023, 2023; Section 4.4.34). Just like the FORTRAN II reference manual, the programming 

language JavaScript provides some functions, but more can also be added (Reference Manual: 

FORTRAN II for the IBM 704 Data Processing System, 1958). For much of its life, JavaScript 

was closely associated with web browsers. JavaScript was first introduced as part of the web 

browser Netscape Navigator in 1995 to enable more interactive webpages (Krill, 2009). Using 

JavaScript meant also needing a web browser for much of its lifetime. In early 2009, however, 

this began to change. Ryan Dahl introduced what is known as a “runtime” for JavaScript. Instead 

of needing a web browser to interpret the code, a program named Node.js could provide “run” 

support for specific operating systems like Windows and macOS when it became “time” to 

interpret the language. This allowed programmers to use JavaScript outside of web browsers to 

create other types of programs with the runtime translating the language for them (About -

Node.js, 2023). As many people at the time were familiar with JavaScript, Node.js became very 



 
53 

popular as a way to apply knowledge of JavaScript in web browsers to more programming-

related tasks outside of web development (Dahl, 2010). Within months, many people had written 

JavaScript code using Node.js and soon others were using these new software libraries for their 

own projects. In 2010, a new companion program to Node.js was included with it, the Node 

Package Manager (NPM). Through using a website, developers could upload their code, named 

“packages”, and others could download and use them. To speed up this process of finding 

existing code, NPM also embraced a special file for each project in Node.js named 

“package.json” with information about the project encoded in the JavaScript Object Notation 

(JSON) format for easier processing (npm, 2023a). When creating a new project, a programmer 

could create their own “package.json” file, list what other packages they wanted, and the 

companion program would retrieve them from the website and install them for usage. 

 As a project based in JavaScript, Snowman 1.4 has its own “package.json” file with its 

name, version, and other details. This information not only identifies the project as a package by 

itself, but also helps other JavaScript projects understand its information quickly (Figure 11). 

 

Figure 11. Abbreviated “package.json” file for Snowman 1.4 

 Within most “package.json” files are two important sections, “dependencies” and 

“devDependencies.” For most projects, the first section is usually short with a handful of to up to 

a dozen other packages needed. The second, however, might be considerably longer and require 

additional tools to compile and test the code to help other developers be able to reproduce the 



 
54 

same output (Goswami et al., 2020). The reason for this difference is in accounting for what is 

needed to run compared to what is needed to develop the code. Generally, what is needed for it 

to run is smaller because the second list handles the important tasks such as accounting for 

differences in web browsers and differences across hardware such as running on a mobile device 

or desktop computer. This is solved on the development side because, depending on where the 

code is designed to run, there might be a need to add more code for one operating system or 

another added or removed. For Snowman 1.4, this pattern is also used. The “dependencies” 

section of the Snowman 1.4 “package.json” file only lists four packages it needs to run (Figure 

12). 

 

Figure 12. “dependencies” section of Snowman 1.4 “package.json” file 

 While there are only four packages needed for Snowman 1.4 to run, the list needed for its 

development and preparing the code for usage with Twine stories is much longer. There are 20 

packages listed as part of its development dependencies. These include packages needed to test 

its code, enforce certain standards, and make sure it can run the same across a wide range of web 

browsers and their different versions (Figure 13). 

  



 
55 

 

Figure 13. Development dependencies for Snowman 1.4 

 All the required packages are needed to work on the code for Snowman 1.4. This means 

not only the four packages included in the “dependencies” section of its package.json file, but 

also the 20 listed in its “devDependencies” section as well. Based on the addition of these two 

numbers, the assumption would be that only 24 packages are needed. However, all these 

packages also depend on others. As computed by NPM, the final count is 627 unique packages to 

download before work on Snowman can begin. While the total number may seem high, it is 

within the expectations of the number of dependencies for a Twine story format. The current 

versions of Harlowe, SugarCube, and Chapbook, other story formats also packaged in the current 

version of Twine along with Snowman 1.4, are dependent on 316 (Harlowe, 2023), 405 

(Edwards, 2019), and 1573 other packages (Klimas, 2023a). To better understand these 

relationships, the tool NPM Graph is used. This online tool accepts a “package.json file” or name 

of a project hosted on NPM’s website. From left to right, it then draws an arrow from the 

package listing the dependency to the package and then graphs its own dependencies, if any, as a 



 
56 

full visualization of all the relationships (Kieffer & Brigante, 2022). This creates, for even a 

smaller project like Snowman 1.4, a large and hard-to-read graph as some of the 627 packages 

are themselves dependent on inter-network connections. 

 To help make sense of, as well as highlight specific projects within it, the full 

visualization is included next and then three configurations within the network are explored. For 

the first, many arrows “swarm” on projects supported by a small group of people. It is these on 

which many other projects depend and see fewer changes as a result. The second configuration is 

larger projects with many changes but who are dependent on many others in turn. These projects 

often serve as smaller networks with projects depending on it and projects on which it depends 

relationships. The third configuration are those packages on the edges of the network. These hide 

a powerful aspect of the network. While seemingly disconnected from many, they hold more 

potential influence than seem at a surface level (Figure 14). 

 



 
57 

 

Figure 14. Full visualization of Snowman 1.4 dependency network 



 
58 

Exploring the Network  

 Within the defining of the term “actor” by Latour (2007), the words “swarming toward” 

appear. This helps describe the process through which connections emerge because of the 

“work” of one part “swarming” toward others, creating a relationship in the process (p. 44). 

Within the relationships of the dependencies in the visualization created by NPM Graph, an 

arrow indicates a dependent relationship from the left-hand side to the named package on the 

right-hand. In chapter two, the software libraries jQuery and Underscore were discussed in 

connection to the Snowman source code. These also appear within the network of packages for 

Snowman 1.4. However, while important for the internal working of Snowman, they do not have 

any projects on which they themselves depend. The relationship between Snowman to jQuery is 

a single line moving from one to another (Figure 15). 

 

Figure 15. jQuery inclusion in Snowman 1.4 dependency network 

 Within the visualization, the more arrows pointing toward a package, the greater its 

seeming importance. With each arrow representing dependence, the more arrows, the more other 

projects depend on it. One such example in the Snowman 1.4 dependency network is the project 

inherits (Figure 16). 

 



 
59 

 

Figure 16. Project “inherits” within Snowman 1.4 dependency network 

 Over the lifetime of Snowman from 2009 to 2022, there have been 491 changes to its 

source code (Cox, 2017a). This is notable in relation to the project inherits, which reports only 

32 changes across its 12 years of existence with nearly all these changes made by a single 

person, Isaac Schlueter (Schlueter, 2011). Yet, for seemingly unremarkable at first glance, the 

visualization of the Snowman 1.4 dependency network shows a very remarkable aspect of the 

project inherits: many other packages depend on its code. Its importance can only be seen 

through other projects “swarming” toward it, in the words of Latour (2007). Yet, the “work” of 

the collection of relationships is not distributed evenly. The labor of the project inherits is 

centered around primarily one person while other projects use this work indirectly as being 

dependent on other projects through which the project inherits is a dependency. 

 The project defined matches this same configuration within the network. An examination 

of the project shows only 28 changes across its 11 years with two people supplying most of these 

changes (Halliday & Harband, 2012). Yet, like the project inherits, an examination of the project 

by itself does not show its importance. Only through viewing the network of forces can the 

relationship between it and other packages most clearly be seen (Figure 17). 

 



 
60 

 

Figure 17. Project “defined” within Snowman 1.4 dependency network 

 The projects inherits and defined are examples of the “end” of relationships with no other 

packages on which they depend. They are also both examples of how the labor of only a handful 

is connected to the work of many others. Yet, this configuration is not only one to be found 

within the Snowman 1.4 dependency network. A second one also appears in places where a 

single larger project spreads outward to many others. For example, the project browserify is 

connected to Snowman through a single arrow from the left-hand side of the visualization but 

also shows many arrows pointing away from it (Figure 18). 

 

Figure 18. Project “browserify” within Snowman 1.4 dependency network 

 Unlike the 32 changes of the project inherits (Schlueter, 2011) and 28 of the project 

defined (Halliday & Harband, 2012), the project browserify shows a total of 2,290 changes 

across contributions by 187 different people. Part of this greater interest might account for its 

description of defining a way “to organize your browser code and load modules installed by 



 
61 

npm” (browserify, 2010). As explained as part of the introduction of the Node.js runtime, the 

program allows developers to separate JavaScript from web browsers. Yet, as the popularity of 

this package shows, many developers have used this separation to develop for web browsers 

even when not needing them to run JavaScript code. Within Snowman, the project browserify is 

used for this exact same purpose. While the project is designed for Node.js, it is used with other 

code within Twine as run in a web browser. 

 A second project matching the same configuration of browserify is the project cssnano. It 

too has a single connection from Snowman but is dependent on many other projects. However, 

unlike the project browserify, the project cssnano is, as described by its programmers, is “built 

on top of the PostCSS ecosystem” (cssnano/cssnano, 2015). Examining its own dependencies 

shows this same relationship with the project cssnano: other projects on which it depends use the 

“postcss” prefix, including the project postcss itself (Figure 19). 

 

Figure 19. Project “cssnano” within Snowman 1.4 dependency network 

 There is one last configuration present in the Snowman 1.4 dependency network. So far, 

the projects inherits and defined represent those on which many depend but have seen fewer 

changes. On the other hand, there are those projects with a larger number of changes, but which 

are dependent on many others in turn, the projects browserify and cssnano. The last 

configuration represents those found on the right-most edge of the visualization. These are, like 



 
62 

the first configuration, those at the “end” of a network of forces, yet, at the same time, seemingly 

have a smaller influence at first glance. The first highlighted package matching this configuration 

is the project is-arrayish, found at the top-most of the visualization with only a single project 

dependent on it (Figure 20). 

 

Figure 20. Project “is-arrayish” within Snowman 1.4 dependency network 

 Examining the project is-arrayish shows a configuration within the network like the 

projects inherits and defined. With only 28 changes across eight years, it only has four people 

who have contributed to its code (Qix, 2015). Yet, within the arrangement of the Snowman 1.4 

dependency network, it does not have the same placement as the projects inherits and defined 

with many arrows pointing toward it. Regardless, its importance is not to be mistaken. Moving 

backward from is-arrayish shows a chain of connections leading back to Snowman itself across 

multiple projects. Even if not a point where many connections converge, Snowman still requires 

it because it is a dependency many relationships away as an outward edge of the network. 

 There is one more package to be examined, the project colors. The inclusion of the 

project colors in the opening of this chapter was not a coincidence. The package also appears 

within the Snowman 1.4 dependency network itself. It, like the project is-arrayish, at the end of a 

series of relationships (Figure 21). 

 



 
63 

 

Figure 21. Mention of project “colors” within Snowman 1.4 dependency network 

 Unlike the projects inherits, defined, and is-arrayish, however, the project colors has seen 

259 changes with the latest being the protest code added by Squires. No other changes have been 

made since January 7, 2022 (Squires, 2022). It remains frozen as it was when the protest by 

Squires occurred. Yet, despite this, it appears in the Snowman 1.4 dependency network and is a 

part of other code. Even if, as reported on, some programmers began to remove it from their own 

projects, the “work” continues (Ropek, 2022). As a comment on the code over a year later 

shows, some people remain completely unaware of the earlier protest (Chouhan, 2023). It 

remains part of the network. 

Trust Switches 

 This section reviewed six different packages across three different configurations within 

a single Snowman 1.4 dependency network. While only brief details such as the people behind 

them and the number of changes over time were noted, none were singled out as more important 

than others. This was a purposeful move. The tool NPM Graph helps to show the relationships 

between projects such as inherits and defined being a focus of many others with the projects is-

arrayish and colors only with one other project each dependent on them. Yet, a question 

remains: which of these might be thought of within the metaphor of a switch as defined by 

Castells (2010)? At first glance, a case could be made for the larger ones. The projects 



 
64 

browserify and cssnano could seemingly approach the potential for, in the words of Castells 

(2010), “shaping social structure” (p. 510). Dozens of people have contributed to both, and they 

are dependent on many others. Yet, the chapter opened on the project colors for a reason. 

Despite a lack of connections within the Snowman 1.4 dependency network, the protest by 

Squires was still able to affect many others. It clearly held great power over the networks in 

which, at least before January 7, 2022, it was connected. The same could be explained about the 

project is-arrayish and the series of connections leading back to Snowman. Should a person 

want, they could stage a protest using the project is-arrayish and achieve a similar result to the 

one done with the project colors. Given this potential, this chapter argues something different: all 

six packages are switches. The visualization hides an important aspect of their relationships as 

reminded by Ofoeda et al. (2019) and Ducheneaut (2005): code dependency is social 

dependency. In any case where one project is dependent on another, it inherits some of its social 

values through being dependent on its code and programmers for the project to run. Entangled 

among the relationships are aspects of control, trust, and labor. 

 The protest by Squires points to the inherently social context of the relationships between 

code packages. The Snowman 1.4 dependency network is not strictly one of programming 

dependency, it is also one of social relationships. Through studying the socialization of open-

source projects, Ducheneaut (2005) presents research on the ways in which members of 

programming communities become more involved. Over time, the “progressive integration of 

new members” is achieved through engagement with the social and technical aspects of a single 

project (p. 328). It is through these contributions that they become part of the socialization of the 

community and the other packages on which it depends. The longer people participate at 

“higher” levels of involvement, the more likely they are to replicate its social structures and 



 
65 

reinforce the implicit social contract around its work. de Souza et al. (2005) makes this same 

point. The social organization of a project becomes mirrored in the “underlying artifact, the 

software source code” (p. 205). This is then echoed back at those contributing to the project, 

completing the circle of the social appearing in the technical and the technical, in turn, 

influencing the encoded values of the project, as Manovich (2013) explains. Social values are 

inscribed into a project, and in turn, the project influences the social values of other systems and 

people who interact with it. For as much as the Snowman 1.4 dependency network is a collection 

of one programmer trusting another, it is also built, at least to some degree, on the labor of the 

few. The higher number of connections yet fewer people contributing to projects like inherits 

and defined show a large part of the Snowman 1.4 dependency network relies on less than a 

dozen people despite being hundreds of different packages. At the same time, should any of 

these fewer people, like Squires, become disillusioned with their unrecognized labor, they have a 

much higher degree of control created through the implied trust social value layered onto it from 

those depending on it for their own projects. Those on the “edges” of the network must trust 

certain projects because the software they use trust others, propagating trust as a key social value 

spread by the network of software dependencies. 

 Along with encoded trust, invisible labor is also shared across the network. The projects 

inherits and defined are part of a larger trend in open-source communities. In their survey work 

across over 10,000 coding projects, Ghosh and Prakash (2000) report of how the “top 10 authors 

alone (0.08% of the total) are credited for 19.8% of the code base” (Para. 9). They continue, 

writing on how the “top 250 authors were credited with participation in over five projects, and 

the vast majority (over 77%) of authors were only involved in a single project” (Para. 10). 

Clearly, as shown in the Snowman 1.4 dependency network much of the labor rests on a smaller 



 
66 

number of people. This also matches with the research of Maass (2004) on a single programming 

community with “only 6% report frequently and 20.6% offer patch contributions periodically” 

(p. 67). This is also confirmed by previous research of Hertel et al. (2003) where greater 

involvement was based, in part, on a higher degree of trust given to both the work of the person 

and their standing in the community. Hertel et al. (2003) write of how those trusted “indicated 

higher concerns for reactions of significant others as well as higher pragmatic interests in 

improving the quality” of the project yet were a smaller percentage of the overall population (p. 

1171). The greater the trust, the more labor was incorporated into projects. The Snowman 1.4 

dependency network showed this as well. Many projects sit either on the far edges of the 

visualization within chains of relationships back to Snowman or, like the projects inherits and 

defined, as major points of convergence of many others. Yet, the number of people contributing 

to code on which many other packages depend is quite small compared to the larger projects. 

This same few-supporting-many pattern is also backed up by cultural studies research into 

fandom and fan-related labor such as the research of Stanfill (2019) and Salter and Stanfill 

(2020) where “fans” of projects contribute to and build on its influence through unpaid and 

frequently exploited labor through which larger organizations, like larger coding projects, are 

supported. As pointed out by Hertel et al. (2003), trust and labor are deeply encoded in these 

networks. The greater likelihood of a person to follow the social contract of a community, the 

more welcome they are. At the same time, the greater levels of trust granted also come with more 

unrecognized labor for the single project and the larger network of relationships to other projects 

to which it is connected. 



 
67 

Conclusion 

 This chapter opened with the story of the project colors and the political act of Squires. 

On January 7, 2022, Squires created a major incident for thousands of projects by changing their 

code to create an infinite loop (Squires, 2022). This action was a protest. As demonstrated 

through the act, there is no process in place to force or even incentivize large companies to 

support open-source code (Roth, 2022). In doing this, Squires drew attention to the ways in 

which changes to small packages can have major impacts on the larger network of relationships 

when considering the dependencies of different projects across time and space. By crashing 

everything from hobby to large, sprawling projects, Squires was able to not only point to the 

importance of the network of forces composing the “work” of their relationships as the 

dependent of distant dependents, but, to build from the work of Castells (2010), also pointed to 

the ways in which not only do the seemingly smallest projects have the most “weight”, but how 

changes to their code can affect distant software packages through their acting as a switch for 

massive networks of nodes with no seeming connection to others at first, human glance. By 

drawing attention to ways in which major companies were profiting from the free labor of small 

projects, Squires was able to show how the switches of the network of dependencies are not 

always larger projects, but nearly always based on the often uncompensated work of fewer 

people (Ghosh & Prakash, 2000). These are often, as the examples of this chapter pointed out, 

the smallest projects with a handful of maintainers whose code have existed for a decade or more 

and act as foundational forces within the often-hidden network of dependencies of code within 

the space. Building from how Latour (2007) suggests networks work, the creation of 

relationships point inward to the small packages from the larger ones, creating the relationships 



 
68 

while also, from Castells (2010), having profound social impacts beyond the networks 

themselves when a disruption happens. 

  Brought into the examination of the Snowman 1.4 network of dependencies, the often-

hidden nature of these relationships became clearer. When Marino (2020) writes, “the visible 

code does not reveal all,” it describes these relationships (p. 75). For Snowman 1.4, the invisible 

code was able to be seen when visualized as a network of actors starting from the project and 

extending out multiple levels until evidence of the switches within it became more obvious based 

on the traces of “work” between the larger to smaller packages within the network. Now 

“visible,” these sprawling relationships create dependencies where, as was noted in the chapter 

for projects like the projects inherits and defined, there are only a single maintainer per project 

and code that has seen very little changes over a decade of updates despite their increased 

importance and implicit trust (Hertel et al., 2003). Yet, more work needs to be done to 

understand the distant history and dependency of projects as an investigation of its code and 

social relationships. Not only, in the work of Manovich (2013) and de Souza et al. (2005), does 

the dependency of software connect to the social values of a network, ignoring the effects of 

virtual software networks can have profound issues. While the example of the project colors was 

a wakeup call for many developers within the JavaScript community in early 2022, it was not the 

first nor the last time a small package had or would make a major ripple (Alfadel et al., 2022). 

Others have used the same method to attack the larger networks to try to impose their own 

control by breaking the trust of the network. 

 In 2019, a group of researchers studied eight years of packages on NPM and reported on 

major vulnerabilities, noting previous examples in 2016 and 2018 where it was possible to 

“directly or indirectly influence” up to 100,000 other packages with small changes in targeted 



 
69 

code many other projects depended on to work (Zimmermann et al., 2019; p. 996). In 2021, 

multiple parties reported working on what has become known as “dependency confusion” or 

“NPM substitution attacks” where small changes are introduced to packages during search 

attempts to its database or during transit from the service to developers when downloading files 

in attempts to steal information, break into systems, or otherwise cause damage (Birsan, 2021; 

Goodin, 2021). This problem has become serious enough the NPM documentation specifically 

mentions it and how to combat it (npm: Threats and Mitigations, 2023b). What is not “visible” is 

increasingly not only of historical importance for the running code, telling a greater context of 

what the code is dependent on and needs for its development and running, but also increasingly 

the source of attacks as the network of dependencies comes under influence by the small 

switches within the larger, sprawling networks of projects dependent on each other and 

operating, for the most part, outside of human conception with tools like visualizations of the 

dependency graphs needed to understand the code and how it relates to each other. 

 Code dependency is both textual, how the code is written and what parts of another 

application programming interface it may use, but also shaped by the social forces and implicit 

trust of the dependency of one project on another. Snowman 1.4 is but one of many existing 

projects with a connection to over 600 others. It is strongly affected by changes in these other 

packages and especially within the most highly connected points of its own dependency graph. 

At the same time, Snowman has also been used by many people to create their own Twine 

stories, passing on this social values from the network into the interface and metaphors it 

presents to authors (Cox, 2020a). In the same way Manovich (2013) and de Souza et al. (2005) 

recognize the influence of the digital on the social, it can be no mistake that Castells (2010) 

defines the concept of “switches” as “shaping social structure” (p. 510). As the next chapter will 



 
70 

explore, other story formats have been based on Snowman, putting it within a different network 

of influences and spreading its own social values into the future. 

  



 
71 

CHAPTER 4: REFLECTING ON THE FUTURE 

 In early 1993, programmers at the National Center for Supercomputing Applications 

(NCSA) created a program whose impact is still being felt decades later. Named Mosaic, this 

graphical web browser would go on to have a profound effect on how people accessed webpages 

(Andreessen & Bina, 1994; The Future Frontier: Computing on NCSA Mosaic’s 10th 

Anniversary, 2009). Having seen a prototype of one of the first graphical web browsers, Erwise, 

created by graduate students at Helsinki Technical University in 1992, the programmers at 

NCSA began to create their own (Berners-Lee, 1992). By early 1993, they had named their 

application Mosaic. Seeing the commercial potential of a graphical web browser for an 

upcoming version of their operating system, Microsoft bought the rights to the name and source 

code of Mosaic in 1994 to help create a new project they named Internet Explorer to be released 

the next year. Rather than, in the words of McCullough (2018), try to improve on the Mosaic 

code, the team behind Internet Explorer was told to “follow the traditional Microsoft game plan: 

the first version would be a copycat product that didn’t have to be great; it just had to be good 

enough” (p. 49). At the same time, some of the programmers behind Mosaic, now without the 

rights to their own code, began working for a company initially named Mosaic Communications 

Corporation. This naming led to legal trouble with the rights to the name “Mosaic” having been 

sold, so the new company changed its name to Netscape and pushed to beat Microsoft to having 

a new commercial graphical web browser out on the market. In 1994, the re-named Netscape 

released their web browser, Navigator (McCullough, 2018; Ryan, 2010). By 1995, what was 

later labelled the “browser wars” had begun as Microsoft’s Internet Explorer and Netscape’s 

Navigator added different features to constantly compete with each other (Ryan, 2010). It was 

during these “browser wars” in which web technologies such as JavaScript, Cascading Style 



 
72 

Sheets (CSS), and the use of software platform Flash began to flourish as the two companies 

embraced new approaches to deliver interactive content using web browsers (Sink, 2003; Salter 

& Murray, 2014). Every war has its end, however. Nearly a decade later, the commercial 

company Netscape had folded, giving birth to a new open source web browser built on the same 

code named Firefox as part of a new organization named Mozilla managing its rights in 2002 

(History of the Mozilla Project, 2023). In 2022, 27 years after its introduction in 1995, Internet 

Explorer would also see its own end (Woods, 2022). Nearly 30 years after the introduction of 

Mosaic, its “children” would end their “wars” as each had been replaced by other, newer 

applications serving the same purpose. 

 Drawing on the same historical trajectory of how the work behind the web browser 

Mosaic became the much more well-known applications Netscape Navigator and Internet 

Explorer, this chapter presents work around Snowman and two of its much more well-known 

“children”: the story formats Adventures and Trialogue. In much the same ways the previous 

chapters examined the relationships between Snowman and other software as part of its past and 

present, this chapter moves into its future beyond its own source code. Despite previous research 

showing Snowman as a story format with fewer usages than others like Harlowe and SugarCube 

(Cox, 2020a), a catalog of story formats for Twine names it directly as the influence of many 

others (DeMarco, 2018b). Although not updated since 2018, a second collection of over 30 story 

formats for Twine include the tag “basedOn” naming Snowman for many of them, representing 

some 20% of all known story formats at the time (DeMarco, 2018a). Yet, as noted in the 

introduction to this dissertation, Snowman is not a focus of either Ford's (2016) or Salter and 

Moulthrop's (2021) books. Nor does it appear in Baccaris’ The Twine Grimoire collections 

(Baccaris, 2020, 2021). To help explain why Snowman is, like Mosaic, the less-known “root” of 



 
73 

more popular “branches,” this chapter draws on two concepts: from literary studies the concept 

of distant reading with a second, named “macroanalysis,” from the work of Moretti (2013) and 

Jockers (2013). From software studies, the concept of “static analysis” is used to explain the 

basis of looking at code as a “static” text in which its history and changes over time become 

important considerations to study (Rival & Yi, 2020). Like with distant reading, static analysis 

seeks trends and patterns in source code specifically to find the differences between versions of 

code across time within a project (Tornhill, 2015). Both approaches share a focus on text as a site 

of study where documents can be processed into quantitative patterns around particular usages, 

allowing for an easier comparison of multiple sources of input. In this chapter, distant reading is 

paired with a close examination of, first, the naming and code structures found in Snowman 

before moving to using a text mining tool to help drive a later closer examination of how 

different instances compare to one another across projects (Jockers, 2013). By moving from 

larger patterns to smaller examples, this chapter seeks to explore how the concepts Snowman 

appear in its “children,” how these changes match the expectation of the other story formats, and 

what they might also show about the future of Snowman outside of the original project. 

Coding Crimes 

 In the forward to the book Your Code as a Crime Scene, Michael Feathers writes how it 

is “easy it is to look at code and think there is nothing more than what we see” (p. i). For the 

author of the book, Tornhill (2015), this is repeated on the very first page. In the opening 

paragraphs of Your Code as a Crime Scene, Feathers (2015) relates how when people only look 

at “what’s visible in the code,” they will “miss a lot of valuable information” (Tornhill 2015; p. 

1). To better understand a project, explains Tornhill (2015), its code must be treated as a text 

with a history containing “evidence” of its authors and their changes. This focus on the code as a 



 
74 

point of investigation has a long history. Sallis et al. (1996) connect some of the earliest work on 

what is named “software forensics” to researchers studying security issues. Sallis et al. (1996) 

explain how software forensics experts sees as their role the determination of “authorships” 

based on “the premise that authors develop a style and approach that is identifiable” (p. 481). By 

examining the “layout”, “style”, and “structure” of code in a project, Sallis et al. (1996) suggest 

it can become possible to classify code as originating from the same person or project based on 

the textual patterns present in each. In the work of examining projects as “crime scenes,” 

Tornhill (2015) describes this method as “static analysis” based on existing security practices. 

Rather than treat the code as “dynamic,” running on a computer, the project is considered a 

complete text in and of itself where the static analysis is dedicated to understanding “the impact 

[. . .] code has on the machine” because of its mixed audiences of “machines and humans” (p. 5 - 

6). In their book Introduction to Static Analysis, Rival and Yi (2020) use the same explanation as 

Tornhill (2015), noting the use of “dynamic” as “[taking] place while the program computes, 

typically over several executions” whereas static analysis is done “independently from any 

execution” (p. 26). Based on the differences between static analysis and trying to understand the 

code while running, both Tornhill (2015) and Rival and Yi (2020) note that while static analysis 

cannot give a complete accounting of a program without it running, examining the source code 

of a project can give insights impossible to gleam any other way. Rival and Yi (2020), like with 

Tornhill (2015), also note the importance of intention when using static analysis. As with any 

textual investigation, as Rival and Yi (2020) explain, the goal of the analysis is as important as 

the “choice of abstraction”; the relationships studied will affect what can be found from such an 

analysis (p. 444). While static analysis of a large collection of code can reveal much, it can also 

hide the finer details with an emphasis on major trends across many files. There must be some 



 
75 

balance between the patterns found and smaller instances within the work. Any larger trends in 

the programming studied must be balanced, in part, with an understanding of how they appear in 

practice within the code of a particular file or usage in a larger project. 

 In the opening chapter of the book Macroanalysis, Jockers (2013) writes of how the 

history of digital humanities has its roots in “humanities computing,” the analysis of texts using 

digital tools (p. 1). Jockers (2013) suggests how there is room in literary studies to borrow from 

scientists in adopting the use of repeatable methods as part of quantitative analysis. When it 

comes to trying to read and comprehend thousands of works, a single human would struggle to 

remember all the details. The use of what literary studies names “close reading” cannot handle 

hundreds of works or trying to understand trends across many decades of publications. Jockers 

(2013) explains this as a major issue between wanting to understand large collections of texts, 

“big data,” and the use of the close reading approach in literary studies: “big data renders it 

totally inappropriate as a method of studying literary history” (p. 7) Because of the time-costs in 

terms of years or decades for a single person to attempt to read thousands of works, the sheer 

impossibility of a one person both reading and retaining many connections between the works 

becomes increasingly impossible. Instead, building from the work of Moretti (2007) in the book 

Graphs, Maps, Trees, Jockers (2013) proposes the use of the term “macroanalysis” to define the 

use of larger-scale textual studies to understand not only the patterns across texts, but also the 

“systematic examination of data” beyond the interpretative act of reading, connecting into the 

importance of digital tools for understanding major trends (p. 25). Yet, Jockers (2013) does not 

propose to get rid of the use of the close reading method, suggesting the importance of a blended 

approach where digital tools can help identify “macro” trends while researchers can use 

instances found by data searches to understand the “micro” usages within them (p. 25). In the 



 
76 

chapter “Graphs, Trees, Materialism, Fishing” in an edited collection of responses to the book 

Maps, Graphs, Trees, Shalizi (2011) suggests a similar approach. Rather than taking on the 

larger-scale parsing of texts as a single point of research, Shalizi (2011) proposes the borrowing 

of another approach, “comparative method,” to understand texts highlighted by searches and text 

mining tools. Built on a foundation of comparative biology, Shalizi (2011) relates how instances 

found by searches can be compared in pairs or groups to better understand their relationships to 

some proposed origin or parent source (p. 140). When working on sources from a common 

source, the use of comparisons can show how each work has changed (Harvey & Pagel, 1991). 

By combining these two methods, larger-scale patterns can be found and then examined in a 

closer way.  

Structures of Snowman 1.3 

 In the closing pages of the first chapter of the book Your Code as a Crime Scene, Tornhill 

(2015) concludes on an important point this section uses as a foundation: “when it comes to 

software design, there’s no tool that replaces human expertise” (p. 8). As Tornhill (2015) 

explains in a section named “Forget Tools”, the use of textual searching and pattern matching by 

themselves is not enough to gain a full insight into how code relates to each other. Because of 

naming changes and one file needing another to run “dynamically,” it can become difficult for 

text searching to understand the relationships between similar data structures across 

programming languages and formatting conventions (Tornhill, 2015; p. 8-10). This does not 

mean it is impossible to compare projects, but there is an inherit difficulty in reviewing data 

structures and programming patterns using exclusively distant reading tools. To help with this 

process, this section first covers the names of code structures found in Snowman 1.3 before then 

using these names to search against the first official version of the other story formats: 



 
77 

Adventures 1.0 and Trialogue 0.0.8. While the two previous chapters in this dissertation focused 

on Snowman 1.4, this chapter moves back a version to 1.3. The reason for this is because both of 

the other projects examined in this chapter are based on that version, not the work of the 

maintainer who followed after Klimas in 2019 (Cox, 2017a). As explained in chapter two, the 

programming language JavaScript also changed in 2015. With the move to Snowman 1.4, these 

changes were incorporated into Snowman and introduced new structures to the code. I selected 

Snowman 1.3 to avoid comparisons across versions of JavaScript. 

 As established in chapter one, Snowman was originally created by Chris Klimas and 

released alongside Twine 2.0.4 in 2015 (Cox, 2021b). While the project contains many files, 

three contain its core programming with multiple others serving as testing and packaging roles 

for the project, a common pattern found in JavaScript projects using the Node.js runtime (see 

chapter two). The three core files are found in the “src” folder: “story.js,” “passage.js,” and 

“index.js.” For each file, the file ending, “.js”, indicates they contain JavaScript code. Two of 

these files, “passage.js” and “story.js,” represent its two core concepts: Passage and Story. The 

last file, “index.js,” combines the two when the story format runs. In Snowman 1.3, the concepts 

of Passage and Story are represented as a collection of values and a set of functions. In the 

programming language JavaScript, the combination of values and functions is named an 

“object.” Any values with names within an object are called its “properties” with its functions 

named “methods” (ECMA-262, 15th edition, June 2023, 2023). In Snowman 1.3, each file, 

“passage.js” and “story.js,” contains their own properties and methods. For “passage.js,” these 

are the following properties (Table 1). 

  



 
78 

Table 1. Snowman 1.3 Passage Properties. 

Name Description 
id Number representing passage creation order. 
name Label of passage. 
tags Passage metadata. 
source Content. 

Each Passage object also has three methods: “render(),” the processing of author content 

into HTML; “renderEl(),” the parsing of special symbols into HTML elements; and 

“readyFunc(),” the processing of JavaScript code within a passage. Each passage handles its own 

“rendering,” a process through which HTML output is created (Table 2). 

Table 2. Snowman 1.3 Passage Methods 

Name Description 
render() Translation of author symbols into HTML. 
renderEl() Converts markup symbols into HTML. 
readyFunc() jQuery helper function. 

Similar, the “story.js” file has its own properties for its Story object (Table 3). 

 Table 3. Snowman 1.3 Story Properties 

Name Description 
el HTML element to show content. 
startPassage “id” number of passage to begin story. 
creator Name of program that created HTML. 
creatorVersion Version of program that created HTML. 
history Passages visited in story. 
state Collection of author-added data. 
checkpointName Name of current checkpoint. 
errorMessage What to show if an error occurs. 
atCheckpoint If story is currently at a checkpoint. 
passages Collection of Passage objects. 
userScripts Collection of Story JavaScript content. 
userStyles Collection of Story Style Sheets content. 

Each Story object also has its own methods: “start(),” the finding and showing of the 

starting passage for the story; “show(),” the retrieval and replacing of currently shown content 

with a passage from the passages collection; and “render(),” the calling of a passage’s own 



 
79 

“render()” function by using its name. Snowman 1.3 also supports saving and returning to 

particular values saved to the URL using the “save()” function, the recording of values for 

possible URL encoding; “saveHash(),” the creation of a URL with saved data; “checkpoint(),” 

the saving of data in the web browser, and “restore(),” the use of a encoded URL to re-create 

story data once saved (Table 4). 

Table 4. Snowman 1.3 Story Methods 

Name Description 
start() Begins story. 
passage() Searches for name in collection of passages. 
show() Replaces current with new story content. 
render() Returns a passage’s render() result. 
checkpoint() Records data to web browser’s storage. 
saveHash() Converts author data into URL. 
save() Adds saveHash() value to URL. 
restore() Restores author data. 

In the next two sections, each story format and its history is explained. This is followed 

by the results of my use of the names of the properties and methods from the “passage.js” and 

then “story.js” files in Snowman 1.3 as input for a text mining tool, Orange (Demšar et al., 

2013). I performed a distant reading through arranging what Orange names a “workflow” 

through which the source code of each story format was used input and the names of different 

properties and methods used as part of a “keyword-based text document scoring” (Text Mining - 

Keyword-Based Text Document Scoring, n.d.).  In this approach, each individual document is 

“scored” against each other, producing a table of results with the word count (frequency of term) 

within the document and as compared against the others entered. Because I was unfamiliar with 

the source code of each project before this work, this approach allowed me, as will be explained 

per story format, to quickly narrow down which files to more closely investigate by producing a 

list of possible files to study. As with the warning given by Tornhill (2015), “when it comes to 



 
80 

software design, there’s no tool that replaces human expertise,” these results were then verified 

and compared using a close reading approach (p. 8). While I have “direct experience” working 

with Snowman, I used the descriptions as a shorthand reference (D’Ignazio & Klein, 2020). They 

are also provided in this chapter to give the reader a better understanding of how each story 

format departed from the original functionality. As the story format with the largest obvious 

differences, Adventures 1.0 is explored first. 

Adventures 1.0 

 The Twine story format Adventures reached its 1.0.0 version on September 15, 2017 

(Kaczynski, 2017b). From the initial work beginning on August 7, 2017, the story format 

Adventures lasted until it was archived on May 13, 2020 (Kaczynski, 2017a). Snowman 1.3, on 

which Adventures 1.0 was based, did not provide an easy way to manage data outside of those 

functions available in the programming language JavaScript. To create a role-playing game, 

authors would need to program all the rules and structures they wanted by themselves. To make 

the management of character statistics and other expected aspects easier, Adventures 1.0 

provided functions and data structures to carry out common calculations such as accounting for 

damage to a player character and managing in-game currencies. Later versions of Adventures 

also came packaged with icons and visual elements audiences might expect to see in a story 

mimicking common aesthetic trends from role-playing games for the 8- and 16-bit era of video 

game consoles (Kaczynski, n.d.). These helped authors present a unified visual appearance to 

their stories in Adventures. 

 As previously explored in chapter two and three, Snowman is written using the 

JavaScript programming language. Adventures, however, is not. It is written in a sister 



 
81 

programming language named TypeScript created by Microsoft in 2012 (Foley, 2012). Before 

the major change to JavaScript in 2015, programmers at Microsoft created a special version of 

JavaScript with the programming concept of “types.” When writing code, a programmer can 

specify the exact kind of data they want to use, its “type.” Each kind of data used in 

programming requires a different, specific amount of memory to use. For example, whole 

numbers such as five use a certain amount and are different than decimal numbers such as 4.15, 

which require other amounts of memory. In JavaScript, each value is dedicated the same, larger 

amount and then adjusted while the code is running if more memory is needed (ECMA-262, 15th 

edition, June 2023, 2023; Section 29.1). In cases where the larger, fuller amount was not needed, 

this can also lead to small amounts of wasteful memory cleaned up by the runtime. In 

TypeScript, the exact “type” is specified by the programmer, allowing the runtime to not need to 

adjust memory amounts as often while running. In general, the use of types can create faster 

programs, as a computer knows exactly how much memory it needs to reserve for the values 

based on the type specified by programmers in the language itself ("Everyday Types", 2023). 

Using TypeScript, programmers can write in one language and have it converted into JavaScript 

through a process named “transpiling” based on the term “compiled” describing the compiling of 

a file with software library code in order to run (Foley, 2012). This allows programmers to write 

in a different, sister language and still produce valid and frequently even more optimized 

JavaScript because of the original use of types. While JavaScript does not have types for its 

values, the “transpiled” code from TypeScript can often take advantage of ways to optimize or 

reduce the total number of values in ways a human doing the same work would not normally be 

able to do so ("Performance", 2023). To help differentiate the files from those using JavaScript, 

TypeScript files use a “.ts” file ending. 



 
82 

 Based on my searching for the Passage-associated keywords of property and method 

names from Snowman 1.3 (see Table 1 and Table 2), Orange identified multiple possible files to 

investigate in the Adventures 1.0 source code (Table 5). 

Table 5. Search Results from Adventures 1.0 Source Code 

File Name Word Count Word Presence 
defaultItems.ts 8.285714285714290 0.2857142857142860 
Story.ts 3.142857142857140 0.2857142857142860 
Character.ts 2.857142857142860 0.2857142857142860 
Passage.ts 0.42857142857142900 0.2857142857142860 
Item.ts 0.2857142857142860 0.2857142857142860 
Choice.ts 0.14285714285714300 0.14285714285714300 
Stat.ts 0.14285714285714300 0.14285714285714300 

Reviewing the most likely files showed mixed results. Within the Adventures 1.0 source 

code, the words “tag” and “name,” properties found in the “passage.js” file of Snowman 1.3, 

appear many times, skewing the initial results. When I opened the first result, the 

“defaultItems.ts” file, I found a listing of many entries for many “items” with their default 

values. This file was ruled out immediately with the much more likely “Passage.ts” file chosen 

next. Comparing the two files showed some major differences. In Snowman 1.3, there are 223 

lines of code in its “passage.js” file (Klimas, 2018). In the “Passage.ts” file for Adventures 1.0, 

there are only 18 lines of code (Kaczynski, 2017b). While the “Passage.ts” file has the same 

general property names, with “name” and “tags” appearing, for example, it seems to lack the 

same methods. As explained in chapter two, functions (methods) are the ways in which one 

structure communicates with another. The lack of functions in the “Passage.ts” file show an 

important change: its corresponding Passage object does not communicate with other objects 

within the code in the same way. A visual comparison using the software editing program Visual 

Studio Code shows the differences between the two files with large blank spaces on the right-

hand side where the code lines do not match (Figure 22). 



 
83 

 

Figure 22. Color-coded Line-by-line Comparison between “passage.js” and “Passage.ts” 

 Following the same pattern applied to searching for property and method names from the 

“passage.js” file in the Adventures 1.0 source code, I performed a second search for keywords 

matching the “story.js” file from Snowman 1.3 (Table 7). 

Table 6. Search Results for Story Keywords in Adventures Source Code 

Name Word Count Word Presence 
Story.ts 3.4285714285714300 0.2857142857142860 
defaultItems.ts 2.0714285714285700 0.07142857142857140 
Character.ts 0.7142857142857140 0.07142857142857140 
Choice.ts 0.35714285714285700 0.07142857142857140 
Passage.ts 0.14285714285714300 0.14285714285714300 
Item.ts 0.07142857142857140 0.07142857142857140 
Stat.ts 0.07142857142857140 0.07142857142857140 

In the second usage, the file with the highest connection to the use of the property and 

method names from the “story.js” file in the Snowman 1.3 source code was the “Story.ts” file in 

Adventures 1.0. Opening this file showed some of the expected functionality using similar 

naming conventions from the Snowman 1.3 code such as the “show()” function, as mentioned in 

chapter two. However, beyond some obvious connections, the “Story.ts” file shows some major 

changes as well. In a similar way to the comparison between the “passage.js” and “Passage.ts” 

files, the “Story.ts” file is much shorter that its original counterpart “story.js” with the original at 



 
84 

506 lines of code and “Story.ts” at only 199 lines of code. A second visual comparison of the two 

files shows some of these changes (Figure 23). 

 

Figure 23. Color-coded Line-by-line Comparison between “story.js” and “Story.ts” files 

While there are some similarly named properties from the “story.js” file in Snowman 1.3 

appearing in the “Story.ts” file of the Adventures 1.0 source code, the introduction of new 

properties shows the shift in audience. Particularly, “lootableInventory” and “shop” names 

demonstrate expectations around the role-playing audience of the story format. These are 

connected to earlier lines in the “Story.ts” file where other files define core concepts of “Shop”, 

“Inventory”, “Character”, and “Item” referenced using special keywords in the programming 

language TypeScript. These show additional functionality contained in other files and combined, 

using the keyword “import” in TypeScript, with the original file when used together 

("Handbook", 2012). Rather than all the functions related to the story format defined in one file, 

it is split between objects with their own properties and methods in other files. 

 The search of the names of the properties and functions of the “passage.js” and “story.js” 

files from Snowman 1.3 pointed to the obviously named counterparts of “Passage.ts” and 

“Story.ts” files in the Adventures 1.0 source code. Yet, the similar filenames hid the significant 



 
85 

changes in the Adventures 1.0 code from its “parent,” Snowman 1.3. As was outlined, there are 

two major shifts from the organization of the original project. First, the concept of a passage is 

changed through the move from Snowman 1.3, where each object has their own functions, to, in 

Adventure 1.0, as a collection of data affected by other functionality; it does have as many 

functions and thus does not communicate as often or in the same way. The second major change 

arrives from the use of additional concepts such as “Shop” and “Inventory,” pointing to the much 

stronger emphasis on functionality related to role-playing games not found in Snowman 1.3. 

Even with the change from JavaScript to TypeScript, it was still possible to find and, with some 

investigation of the “evidence,” in the words of Tornhill (2015), how the same concepts and 

named functionality appears in both projects in slightly different forms. While Adventures 1.0 

showed a seemingly major departure from the Snowman 1.3 source code, the next story format, 

Trialogue 0.0.8, has much more subtle changes for its own audience. 

Trialogue 0.0.8 

 The documentation of Trialogue explains it as a story format for changing “a branching 

narrative into an interactive chat story” (van Kemenade, 2022a). Unlike many story formats 

where a new passage completely replaces the current one, Trialogue appends the content. This 

echoes the layout of one of the early story formats for Twine 1, Jonah (see chapter one). In 

Trialogue, this creates a chat-like appearance as each new passage loads at the bottom and adds 

to the top. By allowing choices between different options at the bottom of the screen, the visual 

presentation of routes through a story replicates a “chat” layout between different parties (Figure 

24). 

  



 
86 

 

Figure 24. Screenshot of Trialogue Visual Layout 

 The story format Trialogue began as work funded by the Slovak National Gallery as part 

of the Filla Fulla Chat project in connection to the centennial anniversary of the founding of 

Czechoslovakia (Chat with Emil Filla & Ľudovít Fulla, 2018). It was then improved through 

funding connected to the Tolerant Futures project as a collaboration with the University of 

Edinburgh and Durham University (van Kemenade, 2022c). For much of Trialogue’s history and 

development, there were fewer versions with the first official one occurring with 0.0.8 on 

February 6, 2022 (van Kemenade, 2022b). Like Snowman, Trialogue is also written in 

JavaScript. 

 Like the search of the Adventures 1.0 source code, I used the same keywords from the 

Snowman 1.3 code from its “passage.js” (Table 1 and Table 2) and “story.js” files (Table 3 and 

Table 4) in the same workflow in Orange (Demšar et al., 2013). Using the Passage-related 

keywords quickly showed a familiar naming convention from Snowman 1.3 manifesting in 

Trialogue 0.0.8 (Table 8). 

  



 
87 

Table 7. Search results using “passage.js” keywords in Trialogue 0.0.8 source code 

File Name Word Count Word Presence 
story.js 11.714285714285700 0.7142857142857140 
passage.js 10.285714285714300 1.0 
index.html 3.142857142857140 0.2857142857142860 
trialogue.css 0.2857142857142860 0.14285714285714300 
index.js 0.0 0.0 

 Investigating the presence of a “passage.js” file in the Trialogue 0.0.8 source code and 

comparing its contents in the same file from Snowman 1.3 showed some spacing and the 

introduction of many new lines. Beyond these editing and comment changes, one notable 

addition was found in the introduction of a new property, “links,” in the “passage.js” file of 

Trialogue 0.0.8 not present in the original file. Using a line-by-line comparison, the use of green 

lines in a file comparison visualization shows the new content in the Trialogue version and its 

placement in reference Snowman one (Figure 25). 

 

Figure 25. Visualization of Changes Between Snowman and Trialogue “passage.js” Files 

 Investigating the “story.js” file of Trialogue 0.0.8 also showed some significant 

differences between the projects. The “story.js” file in the Trialogue 0.0.8 source code is a total 

of 848 lines of code whereas the original is 506 lines of code. The additional 342 lines of code 

seem to come from, in part, a major departure from the recording of changes to the story and 

how they are tracked over time. These additional lines are most obvious from the “start()” 

function shared by both projects with the use of a red color showing the changes to spacing and 



 
88 

the use of green additional lines in a line-by-line comparison of each file. In multiple instances, 

many new lines of code exist between the original formatting in the same file from Snowman 1.3 

(Figure 26). 

 

Figure 26. Visualization of Changes Between Snowman and Trialogue “story.js” Files 

Unlike the more dramatic departure found from the movement from JavaScript to 

TypeScript found in comparing Snowman 1.3 to Adventures 1.0, the changes in Trialogue 0.0.8 

are more subtle. While the “passage.js” files are named the same and seem very similar on the 

surface, the change of one property in the Trialogue 0.0.8 version points to a shift in the 

processing of authorial content. Rather than create internal links, connections between passages a 

player can click on to progress a story, as part of the processing of its content, the visual layout 

itself is changed, connecting back to how the story format handles is visualization presentation as 

different from Snowman 1.3. This appears first in the addition of a new property in the 

“passage.js” file and then in the processing of this property in the “story.js” file. Searching for 

the new property “links” shows it as part of functionality used to make the content appear after a 

short delay to mimic a person responding after a moment of consideration to compose a reply. 



 
89 

Each time a reader interacts with the story, there is a short delay before the next part is shown to 

them as if another person was chatting with them in real-time. 

Children of Snowman 

 While the text mining tool Orange is useful for finding files matching specific keywords, 

the study of both the Adventures 1.0 and Trialogue 0.0.8 source code in this chapter found files 

matching the same names as the original Snowman 1.3. Such a legacy points to two important 

aspects of research shown in this chapter. First, using text mining tools can be helpful in isolating 

files for potential reviewing, but it must always be paired with “human expertise,” in the words 

of Tornhill (2015). In multiple cases, the files Orange predicted as most useful to search were not 

ones matching the same structures even if the keywords appeared there most often, as was the 

case with the “defaultItems.ts” file from the Adventures 1.0 source code. For these, a close 

examination of the code showed similar structures in other files matching those from the original 

project. Second, the use of static analysis and comparing the files showed changes between them 

that would most likely not seem as obvious in seeing the code running. It was only through a 

line-by-line comparison was it possible to see, for example, the changes between the “passage.js” 

in Snowman 1.3 and “passage.js” in Trialogue 0.0.8 files and then carry this change into 

additional research into other files to determine how the new change affected the visual 

representation of hyperlinks internally in Trialogue 0.0.8. Through the combined research 

methods, this helped show the differences between the story formats from Snowman 1.3 and how 

these changes reflect adjustments in their functionality toward different audiences and 

expectations. 



 
90 

 Despite the difference in programming languages between Adventures 1.0 and Snowman 

1.3, it was still possible to study the code structures in each. Notably, the number of lines of code 

between the similarly named files helps provide “evidence,” in the words of Tornhill (2015), of 

how its internal objects acted in different ways. The greater number of methods found in the 

Snowman 1.3 code point to how its Passage object communicates to other code. The lack of 

them in the Adventures 1.0 code shows the opposite. Its own Passage object does not 

communicate as much in the same way. At the same time, the increase in lines of code and 

greater number of core concepts, represented by the use of the “import” keyword in TypeScript 

in its “Story.ts” file ("Handbook", 2012), show the ways in which Adventures 1.0 contains much 

more code across other files named with functionality matching its role-playing audience and 

description for authors considering using it (Kaczynski, n.d.). This points to more functionality 

associated with its core concept of Story than connected to its Passage object. With more 

methods found in its “Story.ts” file than “Passage.ts” file, this also demonstrates greater 

communication between other objects and processes of data in one concept than the other such as 

the “rendering” found in Snowman 1.3’s Passage object moved into the Story object of 

Adventures 1.0’s source code. The lack of the same methods with the prefix “render”, as found 

in the Snowman 1.3, illustrates how this functionality had been moved to be a part of a different 

object internally in Adventures 1.0. In Snowman 1.3, two of its three methods perform the action 

of “rendering” in its Passage object. The lack of these point to how the same object is acted upon 

rather than perform the actions itself. 

 While the core files of Trialogue 0.0.8 matched those found in Snowman 1.3, its changes 

also showed different expectations. The introduction of a new property, “links”, revealed how 

story content appears to readers, reflecting a display layout echoing one of the earliest story 



 
91 

formats for Twine, Jonah (see chapter one). At the same time, the greater number of code lines 

also points to, in the same way it did in the Adventures 1.0 code, an increased focus on the Story 

rather than Passage object with more methods added in Trialogue 0.0.8 than exist in the same 

object in the Snowman 1.3 source code. As was explored in this section, this additional 

functionality is connected to the change in how the story format displays story content, 

introducing a delay in showing the result of a reader clicking on a hyperlink in a story and how 

the content is displayed to them. 

 Interestingly, neither Adventures 1.0 nor Trialogue 0.0.8 seem to contain two properties 

found in Snowman 1.3 in the form of metadata of the story being displayed to the reader. While 

the method names are similar across all three projects, the properties “creator” and 

“creatorVersion”, data containing what program, usually but not always Twine, that created the 

file and its own version, do not appear in Adventures 1.0 and Trialogue 0.0.8. Because these 

properties are not used in Snowman 1.3 beyond their recording from the HTML data, this might 

explain why they are missing while other structures, like methods of the same name, are retained. 

Such changes also speak to the ways in which some parts of the original project are removed or 

improved upon across new projects based on the same concepts, refining how the same general 

structures are understood and re-created by other programmers. 

Conclusion 

 While centered on trying to improve a single project, the metaphor of code as a “crime 

scene” is helpful for studying source code (Tornhill, 2015). Through applying a static analysis 

approach, the text of code can be studied through examining how it connects to other projects by 

comparing their naming and code structures without needing to run it (Rival & Yi, 2020). 



 
92 

Borrowing from literary studies, applying distant reading or macroanalysis can help in looking 

for specific patterns in the code as a text (Jockers, 2013; Moretti, 2007). However, text mining is 

not enough to fully understand the code. As with the results shown from Orange, what it 

highlights from the source code of a project is not always the file needed or matching 

functionality from the original. This can then be paired with close reading and a comparative 

method to understand both where larger trends happen, as produced from tools like Orange, and 

how those instances can be studied within texts (Harvey & Pagel, 1991; Jockers, 2013). By 

alternating between using text mining tools and then closely examining those finding through 

comparing them across versions, the history of a project can be more easily mapped from the 

original onto its “children.” As Tornhill (2015) warns, the visible code of any one file is not 

enough to understand a project. The present code has a connection to a deeper past (see chapter 

two). As shown through this chapter as an application of digging into text of other projects, while 

both Adventures 1.0.0 and Trialogue 0.0.8 have files sharing the same general names of those 

found in Snowman 1.3, an analysis of the structures within the source code show sometimes 

subtle interconnections such as the introduction of an additional property “links” in the Trialogue 

0.0.8 and its role in displaying content in a chat-like presentation. The same can also be written 

about the removal of the functions from the “Passages.ts” file in the Adventures 1.0.0 code and 

what this demonstrates about the ways in which objects communicate with each other within the 

source code based on the absence of functionality seen in the original project. While text mining 

of both projects revealed similar files that might have been found by searching through every 

directory of the project without the tool’s help, the analysis of each went deeper into how the 

difference manifested in the functionality based in the re-organization and assumptions of each 

story format. As Tornhill (2015) explained in moving beyond relying on only tools to study 



 
93 

code, “when it comes to software design, there’s no tool that replaces human expertise” (p. 8). 

Understanding the hidden relationships of projects starts with tools to help find areas to 

potentially study and then bringing a human understanding of code to explore how the concepts 

found within the code structures relate to each other beyond the obvious searching for keywords 

and similar names tools can provide. 

 This chapter opened on the history of the Mosaic web browser and its connection to the 

more famous Netscape’s Navigator and Microsoft’s Internet Explorer. Unlike the research 

presented in this chapter, such a comparison between the early versions of their source code and 

the original project are not possible. While the code to Mosaic is public, and so too is the version 

of Navigator that eventually became Firefox nearly a decade later, the code for Internet Explorer 

is not. Yet, what secrets might it show using the same research methods used in this chapter? 

What, too, might be found by exploring other projects using the companion methods of 

collecting keywords from one project and then using text mining to search through its source 

code before carefully reviewing the resulting files found? As explored in the previous chapter, 

projects are often based on the social values encoded in networks created from the dependency 

of one package on another. What might be found in the deeper history of many of the 

commercial projects and unreleased source code? Might they contain comments like the one 

highlighted in chapter one? Researchers may never truly know the impact of the concepts and 

code structures of Mosaic and if they found their way into influencing how webpages were 

viewed nearly 30 years later when the long life of Internet Explorer finally ended. The same can 

also be written of many projects yet to be studied as applications of all kinds are built on the 

structures, patterns, and keywords of the past with some, like Mosaic, serving as a textual origin 



 
94 

for projects across decades of usages. How might the reflections of the present by found in future 

applications? 

  



 
95 

CHAPTER 5: END OF BEGINNING 

 The history of the story format Snowman as presented across Ford (2016), Salter and 

Moulthrop (2021), and the collected tutorials of Baccaris (Baccaris, 2020, 2021) is of a 

seemingly minor work compared to its sister story formats, hardly worth mentioning for those 

wanting to use the authoring tool Twine. Yet, this dissertation paints a very different picture. 

While previous research has shown its popularity is low (Cox, 2020a), as the previous chapter 

outlined, Snowman was the foundation of some 20% of all known story formats in 2018 

(DeMarco, 2018). It also incorporates influences across some 600 other packages on which it 

depends (chapter three) and has served as a direct influence of other story formats like 

Adventures and Trialogue (chapter four). How can the perception of Snowman from one set of 

works on one side and the evidence of this dissertation on the other be reconciled? Snowman 

must be considered through its social relationships. In the book Critical Code Studies, Marino 

(2020) establishes the use the term “critical” as an important aspect of studying code. As 

explained by Marino (2020), the “critical in critical code studies encourages also exploring the 

social context through the entry point of code” (p. 28; original emphasis). Through the repeating 

defining of code as a “social text,” Marino (2020) creates an understanding of code in which can 

be studied through its textual relationships such as its community, usage between human and 

computer systems, and its connection to other projects (p. 5). Across three research chapters, this 

study has presented Snowman within its relationships to other software. In chapter two, this was 

how Snowman includes and uses the functions of other software to create the structure of a 

“stack.” In chapter three, these were the packages on which Snowman depends and the power 

these could potentially display to be disruptive to the larger networks to which they belong 

through the implicit trust of one package on another. Finally, in the previous chapter, chapter 



 
96 

four, Snowman was shown to have heavily influenced two specific projects, Adventures and 

Trialogue, with potentially many others not included in the chapter. Put in this “social context,” 

as defined by Marino (2020), the importance of Snowman is not as an end point, but as a 

beginning for other works extending forward in unexpected ways. As the three examples of the 

comment from the 6th edition of the Unix operating system (chapter one), protest by Marak 

Squires (chapter three), and role of the graphical web browser Mosaic (chapter four) 

demonstrate, the “strata,” as proposed by Foucault (1969) is hard to entangle. What exactly is the 

beginning of these histories, and can the narrative of one truly be separated from another? What 

is the history of the 6th edition of the Unix operating system without the spreading of its 

infamous comment? Would the act of Squires through the project colors have had the same 

effect if other projects did not have such implicit trust in one another? What would accessing 

webpages look like without the “root” software of Mosaic to help shape the interactive 

experiences of potentially tens-of-millions of users over nearly three decades? Finally, of course, 

what is Twine without the influence of Snowman on authors and programmers wanting to use it 

as a foundation for their own work? How might, in a more personal connection, this study 

become very different if I had not taken over maintenance of Snowman? Would the work on the 

Twine Specification documents had happened if I did not, in the words of D’Ignazio and Klein 

(2020) have the “direct experience” (p. 21) needed to work first on the documents and then have 

the “human expertise” to explain the structures of the Snowman code (Tornhill, 2015; p. 8)? The 

social context of all these projects is understood from the entry point of their code and then how 

the cultural and social relationships influence each other. 

 In this final chapter, the results of research into the social relationships through code of 

Snowman are reviewed. In the next section, Findings and Contributions, the research questions 



 
97 

are included along with the theoretical framing, research results, and contributions of each 

chapter. Next, in the next section, Limitations, the boundaries of the research and presented 

results are examined, explaining the reasonings for why they were placed and observed in 

respect to the research performed. Finally, in the last section, Future Research, I propose new 

research questions and paths following a focus on what more can be studied on Twine and its 

story formats and for the field critical code studies more generally through comparing code 

projects. Research is never done, and the work on better understanding code as a "social text" 

must continue beyond this study and other, similar works. 

Findings and Contributions 

 The research performed and reported across three chapters in this dissertation were driven 

by questions seeking to better understand the connection between the Twine story format 

Snowman and the code on which it is dependent and interacts. As explained in chapter one, 

Snowman was chosen as a site of study for several reasons. First, there is a notable lack of 

academic research into Snowman, with it missing from multiple books on Twine, its history, and 

how to use the authoring tool to create stories (Ford, 2016; Salter & Moulthrop, 2021). Second, 

Snowman has served as the basis for multiple story formats and was the foundation for some 

20% of all known story formats in 2018 (DeMarco, 2018). Third, and as discussed in chapter 

one, I have close, “direct experience” (D’Ignazio & Klein, 2020) with the code of Snowman as 

its current maintainer and this experience led to my co-authoring documents to help others 

understand story formats and associated formats (Cox et al., 2019) beyond my previous work on 

the Twine Cookbook (Cox, 2021c). Based on these three reasons, this study presents research 

into Snowman from a textual perspective, examining the ways in which its code “calls” to the 

past, is built on the trust of the present, and how its concepts are reflected in projects on which it 



 
98 

is based. This section moves through each question driving this dissertation with a short 

summary of the theory, findings, and how the research and methods contribute to the approaches 

used in each chapter. 

Research Question 1: How can the metaphor of “strata” (Foucault, 1969) serve as a lens 

to understand the archaeology (Parikka, 2015) of function calls (Soloman, 2013) within the story 

format Snowman? 

 In the book The Archaeology of Knowledge, Foucault (1969) establishes the metaphor of 

“strata” as linked to studying of history deeper than the obvious connections. Those researching 

history should move into, as an example Foucault (1969) gives, the ways in “wars” can be linked 

to the “history of sea routes” (p. 3). Foucault (1969) raises an important aspect of all historical 

narratives as being entangled in a mesh of the past and present without a clear linear progression 

between one and the next. Building from this work, Parikka (2015) shifts the focus of “strata” 

into the conceptual space of geology, pointing to how all media can be investigated through 

applying a form of archaeology where the digital present coexists with a material past at the 

same time. Like Foucault (1969), Parikka (2015) calls for a study of the points of “double 

articulation” where both past and present are enmeshed with each other (p. 36). Parallel to 

Parikka (2015), Soloman (2013) has examined “function stacks,” the ways in which present 

functionality “calls” to past code through its interfaces, as being linked to how each “layer” in 

the larger stack exists in a “paradoxical arrangement” with each other as this acts to both “open 

up possibilities” while also “always already constrained and preconditioned” by other systems, 

echoing the same findings on media from Bolter and Grusin (2003) and their use of the concept 

of “remediation.” To this understanding of interfaces and the structure of a stack, Galloway 

(2006) and Bratton (2015) add studies of the ways in which power and control are concentrated 



 
99 

in how systems expose functionality and values through the interfaces they provide to each other. 

Across a stack, those on the “bottom” serve as having the greatest influence on, as explained by 

Soloman (2013). 

 This chapter investigates three lines of code found in the Snowman 1.4 source code. 

Specifically, these are Lines 205 – 207 in the “src/Story.js” file, serving as the point where the 

code hands over control from its running to a possible external actor such as a human reading the 

story. These lines of code also act as a “double articulation,” as explained by Parikka (2015), by 

being a point where not only can external forces intercede in the working of the story format, but 

also where multiple software libraries are used at the same time, showing not only the ways in 

power and control are centered on interfaces Galloway (2006), but also the ways in the 

arrangement of the function stack by the three lines of code also points to how it opens and 

closes the expressions of the next layer in the arrangement (Soloman, 2013). Beginning with the 

software library jQuery, the chapter digs into the history of how it came about and its role within 

the Snowman before continuing with another library, Underscore. Between both jQuery and 

Underscore, values are processed, and data returned “up” the stack, until it encounters 

functionality based on the programming language JavaScript. Within Snowman 1.4, when a 

reader clicks on a link, there is an entangling of the present code of the story format with code 

written in a deeper past across jQuery, Underscore, and the use of concepts within JavaScript. 

Hidden in the seeming simple interaction is an exchange of data and power across a complex 

function stack in the lens of different “strata” where each interconnect with each other with the 

summation of their functionality as equally important as any one part in understand how both 

they are working separately and how the structure in which they exist adds to this understanding 

of how data is processed by the story format Snowman. 



 
100 

 While examining only three lines of code within a single file in the story format 

Snowman, this chapter also points to the ways in which all code projects are built on histories 

both obvious and more hidden within its own contexts. To recall the metaphor of “strata” 

embraced by Foucault (1969) and Parikka (2015), the past and present of history exists at the 

same time in many points and a deeper understanding of the influences of code especially can be 

gleamed by digging into how these points help to understand how past code structures can serve 

to shape the present within function stacks (Soloman, 2013). While focused on Snowman and its 

connection to other JavaScript libraries, this chapter also establishes a method by which other 

code could be studied by moving beyond the obvious connection to the past and investigating 

how other code libraries and packages are used. Through the interfaces of each project, a degree 

of control (Galloway, 2006) is created in what the code agrees to accept and what it will ignore 

(Brown, 2015). The programming interface of each project defines not only its own influence 

within the project in which it is defined but also an understanding of other structures in which it 

interacts and exchanges data. Through researching these points of interaction, greater insights 

can be found in how systems influence and affect each other. 

 Research Question 2: What can be learned from studying the “network” (Latour, 2007) of 

the code and testing dependencies of the story format Snowman through the ways in which 

“switches” play a role in affecting its arrangement and relationships (Castells, 2010)? 

 In the book Software Takes Command, Manovich (2013) defines “cultural software” as 

all software connected to “actions we normally associate with ‘culture’” (p. 20). Building from 

work like Manovich’s (2013), Marino (2020) defines code as a “social text” with different 

audiences, both computer and human (p. 4). Seeking to recontextualize the term “network,” 

Latour (2007) stresses the defining aspects of a network is the “work” distributed across “net” 



 
101 

relationships. These exist as both visible and more seemingly invisible, stretching across multiple 

entries and their own relationships to others. To the concept of networks, Castells (2010) brings 

the metaphor of a “switch” as a center point acting as “privileged instruments of power” (p. 510). 

For Castells (2010), all networks inevitably give rise to unequal relationships where one or more 

of the entries within them act as a “switch” for others. At the same time, these networks affect 

more than the digital locations in which they might arise and have the potential of “shaping 

social structure” (p. 510). The changes affecting the digital can also pressure more material 

relationships. From Manovich (2013) and Marino (2020) come an understanding of code as 

existing within relationships affecting other systems, both computer and human. From Latour 

(2007), the concept of a “network” as composed of distributed relationships across both obvious 

and more hidden connections. This chapter bridges from the conceptual network into considering 

how smaller parts within it how greater influence than others and especially between the digital 

and social. Castells (2010) serves as an anchoring of Latour’s (2007) articulation with networks 

containing “switches” acting to pressure those around and connected to it in different ways. 

 This chapter examines the code and testing dependencies of the Twine story format 

Snowman 1.4. Among these, including every dependency of all other packages, are hundreds of 

interconnections across over 600 packages. In visualizing these relationships, the concept of a 

“switch” from Castells (2010) becomes apparent across three configurations. First, there are 

many highly connected projects on which many others are dependent. These, like the projects of 

inherits and defined examined in the chapter, often represent only a handful of people with 

smaller number of changes over longer periods of time (Halliday & Harband 2012; Schlueter, 

2011). Second, there are many projects like browserify and cssnano that have seen many changes 

but are themselves dependent on many other projects, creating a center who projects dependent 



 
102 

on but they themselves are dependent on others. Third, there is a final configuration identified in 

the Snowman 1.4 dependency network: those along the edges. There are many projects who 

appear along the edge of the graph without which other projects along a dependency connection 

would fail. These exist in not a direct dependency to any projects, but often multiple levels deep 

with many existing as dependencies of hundreds of others throughout a series of trust 

relationships from one to the next across the network. These equally contribute to the “work” of 

the net number of relationships with the Snowman 1.4 dependency network, as explained by 

Latour (2007). By showcasing examples, this chapter points to how the social influence on 

Snowman exists across a network of forces stretching across hundreds of other projects spanning 

the work of many people across both the recent past and older libraries of code. 

 Not only does the code found in any one project often depend on things solved by others, 

but these trust and labor relationships affect each other. This points to how the “network” of 

dependencies across code is not only a security issue, in the example of the project colors 

highlighted, but this chapter also highlights how the present code of many projects reaches into a 

distributed past across hundreds of people and decades of work. This “network” of code projects 

is not only a history of labor, but also, in the words of Castells (2010), have the potential of 

“shaping social structure” (p. 510). There is an obvious reference between the changes in the 

highly connected projects and those dependent on them, but this also extends to the smaller 

projects on which many depend multiple levels deep. A change in how, for example, the project 

inherits works could ripple across tens-of-thousands of projects as the update to the project 

colors did within the incident noted in the chapter. At the same time, the example of the project 

colors also points to how the trust embedded in the network often goes unquestioned across code 

structures and their own programming interfaces. The “work” of the hundreds of smaller projects 



 
103 

is not equal with many serving as a “switch” without, perhaps, being aware of how future work 

would depend on them. 

 Research Question 3: How can applying a “macroanalysis” approach (Jockers, 2013) of 

using both “distant” (Moretti, 2013) and “close”, comparative readings (Harvey & Pagel, 1991) 

of both “child” and “grandchild” source code be used to show a “legacy” of the story format 

Snowman in those projects based on it? 

 Code projects are often based on previous work. This can take the form of building on 

ideas, concepts, or simply wanting to experiment with different coding structures for the same 

functionality. Yet, when it comes to tracing the “legacy” of coding structures between an original 

and those projects based on it, the research involved can often be complicated. Frequently, 

projects might be written in a different programming language or incorporate changes for 

additional functionality only present in the newer projects. Tornhill (2015) provides a useful way 

to start an investigation by understanding code as a “crime scene.” By treating the source code of 

a project as text outside of a computer running it, the code can be researched using what is 

named “static analysis,” a concept common in security and history connected to software 

forensics (Rival & Yi, 2020; Sallis et al., 1996). At the same time, borrowing from literary 

studies brings the method of “distant reading,” the analysis of large or many textual sources 

where a single human would struggle trying to read and process the amount of relationships or 

easily find patterns (Moretti, 2013). Static analysis, based on software studies, and distant 

reading, pulling from Literary Studies, both provide tools for understanding text and finding 

patterns. Yet, as Jockers (2013) explains, distant reading by itself can often miss smaller details 

by only looking for large trends. There is a need, using a concept created by Jockers (2013), to 

perform a “macroanalysis” where the more traditional use of close reading, a detailed analysis of 



 
104 

a single document or lines within a larger work, with the newer distant reading, pairing a macro 

search with a “micro” analysis of patterns found using digital humanities methods like text 

mining and pattern analysis. By using keywords gleamed from an original work, other projects 

can be searched for names or structures and then these searches closely examined for how they 

meet certain criteria or if the same pattern from the original appears in the “child” work. 

 This chapter follows the methods set out by Jockers (2013) as changed using static 

analysis and code studies through how Tornhill (2015) understands code as a “crime scene.” This 

chapter begins with collecting a set of keywords based on the JavaScript properties and functions 

within Snowman 1.3. This version of Snowman was picked because it serves as a “branching” 

point for many other story formats based on it including the project Adventures 1.0 (2017) 

explored in the chapter. Based on the keywords collected for the two major concepts in 

Snowman, Story and Passage, the text-mining tool Orange is used to perform a search across all 

the files in a project for those matching the usage of the keywords per concept (Demšar et al., 

2013). Beginning with Adventures 1.0, the project is compared to the keywords from Snowman 

1.3 and instances of matches are explored for how they compare to the same places in the 

original code. This pattern is then repeated for Trialogue 0.0.8. Overall, both Adventures 1.0 and 

Trialogue 0.0.8 were found to closely match the same file structures and concepts of Snowman 

1.3 with a greater change in formatting in Adventures 1.0 because of the use of the programming 

language TypeScript. In each case, the comparisons between the same-named files also revealed 

changing of functionality to match their audiences with Adventures 1.0 containing many genre-

related data structures and Trialogue 0.0.8 with functionality to support its visual layout changes. 

Both projects also seemed to mirror the naming conventions of Snowman 1.3 in their 



 
105 

understanding of a story format containing both Story and Passage core concepts with 

Adventures 1.0 adding more such as Inventory and Shop for its own purposes. 

 While Trialogue is still receiving updates, Adventures 1.0 has been archived by its 

original author. The same is also true of Snowman 1.3, which has become two different branches 

of 1.4 and 2.0 based on the work of a new maintainer (Cox, 2017a). By basing the research in 

performing archival work, this chapter also established the use of macroanalysis as a useful 

method for understanding code through the combination of searching for keywords and 

structures across a project based on an original analysis of a project and then looking for these 

terms in branched projects. Through using macro searches and micro analysis, this chapter 

created methods for understanding potentially very large projects containing hundreds if not 

thousands of files through, first, collecting keywords and then performing a distant reading using 

text mining tools like Orange before then using matches to perform a close reading of how code 

structures and patterns are different in the newer project than the original. Such methods, outside 

of their application in this chapter, hold great promise for studying other projects such as how 

Mozilla’s open-source Firefox is based on the code of the commercial Netscape Navigator 

created nearly a decade before. It also has many applications across many other situations where 

there is code access to both the original and “branched” versions for comparison and analysis. 

Limitations 

 Each chapter included in this dissertation had self-imposed limitations to keep the scale 

of each chapter within a manageable size. Because each chapter could easily grow into a large-

scale research project of its own, these limitations serve not only to keep the chapter within a 

reasonable scale, but also to maintain the entire project as being in conversation with itself across 



 
106 

the document, serving not as a single method for research for understanding the Twine 2 story 

format Snowman, but also how it exists within relationships to other libraries and projects based 

on its structures and concepts. This section explores three limitations, one per chapter, and why 

they were imposed to limit the size of each chapter. 

“True” depth of function stack and lack of access to source code for some applications 

and operating systems. 

 Chapter two explores the function stack of three lines of code found within Snowman 1.4. 

Within the chapter, the software libraires of jQuery and Underscore are discussed. Yet, the full 

function stack of the operation extends much more than is discussed within the chapter, moving 

from the internal operations of JavaScript within a web browser into how the application of the 

web browser works and then into the internal mechanics of the operating system in which it is 

running. Depending on the web browser, it might be possible to explore the source code with 

access available for Chromium, the base libraries used with the Chrome web browser 

(Chromium, 2023) or for the Firefox web browser (Mozilla Search - Firefox, 2023). Beyond 

having access to the web browser source code, a full investigation would also require looking 

into the operating system itself. The Windows operating system is commercial software licensed 

through Microsoft and does not provide access to its source code. This is also true of macOS, 

which is licensed through Apple. It could, potentially, be possible to examine the entire function 

stack beginning from Line 205 through to the lowest level available by running the code using an 

open source operating system such as those available using the Linux kernel such as Ubuntu 

(Ubuntu, 2023) or its sister project Debian (Debian, 2023). However, such an exploration would 

entail an extended analysis and understanding of not only how JavaScript runs within a web 

browser, but how the browser itself accessed hardware resources within the operating system and 



 
107 

then down to the hardware level. Such a detailed explanation could easily take up hundreds of 

pages. An accepted limitation of the chapter is an analysis of the function stack as it appears 

within a single programming language, JavaScript, and the libraries used within direct 

connection to the functionality discussed in the chapter. 

Dependency network size considerations. 

 Chapter three examined the code dependencies of Snowman 1.4. Yet, among the 

hundreds of packages mentioned, only a few were selected for highlighting. This was a specific 

limitation placed on the chapter to not extend it significantly by examining each package and 

their own histories and inclusion as dependencies in other packages. Specific examples were 

chosen to showcase configurations rather than an exploration of the entire network and all its 

code, potentially tens-of-thousands if not hundreds-of-thousands of lines of code in total. An 

extended study could, potentially, examine the complete ways in which the Snowman 1.4 is 

dependent on other code and the ways in which even the smallest project played a role, if any, in 

how the code was processed. Because of the inclusion of testing and development dependencies 

for every package, it might be the case that the extended network, while seemingly expansive, is 

not used by Snowman 1.4 directly, with only a single function or file from the hundreds of 

packages being involved in the processing of Snowman’s source code during building and 

testing processes. However, an investigation of this size would be both very time-consuming and 

ultimately reflect the same results shown in the visualization of the network within the chapter. 

The limitation of only six examples was placed on the chapter to showcase patterns within the 

network rather than everything involved in every package, a potentially very expansive project 

and work for a single dissertation chapter among a larger work reflecting other aspects of 

research into similar subjects. 



 
108 

Limitation of only two projects examined using text mining and close reading methods. 

 Chapter four only examines three code projects. The first is the Snowman 1.3 code to 

establish a baseline of the keywords based on the names of properties and methods within its 

source code. Next, Adventures 1.0 and Trialogue 0.0.8 are compared against the Snowman 1.3. 

Yet, within the methods expressed in the chapter using distant reading tool searches, there is a 

possibility to quickly search through code projects to identify files of interest for later close 

reading and comparative methods. Potentially, this chapter could have included many other 

projects for investigation beyond the two chosen. This would have presented the ability to 

examine many other projects to see if they too used the same code structures and naming pattern 

mentioned within the chapter found in Snowman 1.3 and replicated in Adventures 1.0 and 

Trialogue 0.0.8. However, because the time required to review these additional projects on a file-

by-file, and sometimes a line-by-line comparison, a limitation was placed on the chapter to 

curtail the possibility of the chapter outgrowing the entire document through reviewing many 

other projects and even a single or couple of important changes per projects. These methods hold 

great potential for future research, but within the chapter were only applied across two projects in 

connection to an original to keep the scale of the project within a single dissertation chapter 

rather than a book-sized project by itself. 

Future Research 

 As discussed in chapter one, the Twine story format Snowman has not seen much 

coverage or examples in either Ford’s (2016) or Salter and Moulthrop (2021) books. Snowman is 

also often neglected when it comes to tutorials and guides (Baccaris, 2020, 2021). Yet, it has 

inspired multiple “children” in the form of multiple story formats based on the original work of 



 
109 

Chris Kilmas through Snowman 1.3 and additional changes by Daniel Cox into Snowman 1.4 

and its 2.0 branches. Based on this lack of academic coverage of Snowman within those already 

discussing Twine, there is a need to investigate not only how people use the story format to 

create stories in Twine, but the ways in which Snowman has served as an inspiration and 

foundation for other projects. This study is the start of some of this work, examining not only 

how Snowman relates to other libraries it includes and uses within its processing, but also how it 

is positioned within a network of forces and how these forces influence what it can offer authors 

when using it to create new stories. This section details three possible paths forward for research 

like the methods examined in this document. First, future research could examine the ways in 

which the HTML storage of Twine affects the construction and interpretation of story formats 

when handling that data. Second, future research could focus on the authoring experience in 

Twine in connection to how decisions are made on story formats and how an author understands 

themselves in reference to what expressions are available to them. Third, this section ends with 

pointing toward how the methods used in chapter four could provide greater insights into the 

historical and textual connections between other software projects. 

How do the HTML storage elements of Twine affect the conceptualization of story 

format functionality? 

 As covered within chapter three, Snowman 1.3 has two core concepts: Story and Passage. 

They appear not only in the Snowman 1.3 code but are also mirrored in those story formats based 

on it examined within this study: Adventures and Trialogue. This suggests they might be 

common in other story formats based on concepts with the same name appearing within the 

HTML storage elements created by Twine. Future research could investigate other story formats 

outside of the Snowman family such as Harlowe and SugarCube to see how these same concepts 



 
110 

appear and in what ways the data of the Twine 2 HTML elements appear and are used as 

properties of objects within JavaScript within the other story formats. Do they use the same code 

structures in the same way? If so, is this an influence of the HTML elements? Does every story 

format need the same concepts because of their appearance within the storage layer of every 

story format? Put a different way: does the presence of the HTML elements predict object 

creation in the programming languages processing them? Is there a way to understand Twine 

outside of the Story and Passage object metaphors within coding structures? And, if so, what 

might different metaphors bring to the same data for understanding its structures and presenting 

the data to people experiencing the content? Like with the work done on the story format 

TwineSpace, itself also based on Snowman, and the use of the metaphor of a “scene” (Cox et al., 

2022), is there room within the community of Twine to re-imagine the same data using different 

structures and relationships based on the same or other storage methods or additional HTML 

elements and attributes? Shifted outside of HTML, could new expressions become available 

based on a different storage language and thus processing layer of new story formats? At the 

same time, Twine is not a traditional software platform and story formats can be used outside of 

the authoring tool to create compatible and non-compatible works. There may come a point 

where additional data or storage formats could be used with story formats outside of Twine to 

make Twine-like experiences for web browsers without the need of the Twine 2 HTML elements 

themselves (Edwards & Cox, 2021). Future research is needed to push at the edges of how 

important the authoring tool Twine is for what people assume is the HTML output created by it 

produced by other tools using the same storage approaches and structures. 

How do authors understand themselves in reference to what is, and is not, available in a 

story format? 



 
111 

 While there has been some work done on trying to quantify the different story formats 

used by authors across time (Cox, 2020a), much more work is needed to study how people 

understand story formats and the authoring process more generally (Daiute et al., 2021). Why 

does an author choose one story format over another? Do they make this choice based on certain 

factors such as available functionality or ease in performing certain tasks? Do any authors feel 

“trapped” within a story format based on issues like not wanting to translate between one story 

format and another for a larger story? Are there any authors who have moved between story 

formats based on certain issues they encountered when using a story format? Under what 

contexts might an author choose one story format over another? There are many questions 

surrounding the authoring experience within Twine which have not been studied or at least 

studied with a clear focus on Twine as an authoring tool exclusively. This lack of research opens 

the door to many approaches to research including a focus on the editing interface provided by a 

story format and how much this contributes to an understanding of its available functionality as 

well as how much the documentation of each story format helps (or hinders) an understanding of 

what is available from the story format when creating stories. There are also questions about how 

much “programming” an author is comfortable with in a story format, as Twine itself is often 

presented as a tool without a need for “coding” with such phrasing also appearing on its own 

homepage. Is the inclusion of needing to use JavaScript, for example, something which prevents 

people from using Snowman over, say, Harlowe, which presents itself as a programming 

language (Arnott, 2022)? There is also room for future research to examine the perception of 

coding from certain people as being “against” the perceived views of something outside of their 

knowledge or not important to their learning despite Vee (2017) explicitly making the 



 
112 

connection between greater literacy and ability to make better informed decisions in digital 

contexts. 

What can similar structures and naming patterns show us about the textual relationships 

between software projects? 

 Chapter four establishes the use of pairing distant and closing reading methods for 

researching code projects where keywords are gathered and used to search for similar code 

structures when comparing projects by treating the code to a static analysis using text mining 

tools (Rival & Yi, 2020; Tornhill, 2015). While the chapter uses these methods to compare 

Twine story formats and their changes, the same methods could also be applied to other subjects. 

Future research using the same methods could compare, for example, the open-source code of 

the graphical web browser Mosaic with its later “grandchild” of Mozilla Firefox, searching for 

and comparing changes from 1993 to 2002 through comparing the assumptions of provided 

functionality to users of web browsers. At the same time, the methods could also be used to 

explore across similar projects implementing the same functionality but released under different 

licenses. For example, there is a historical archive of the Microsoft Disk Operating System (MS-

DOS), a popular operating system pre-dating the later graphical Windows operating system (MS-

DOS v1.25 and v2.0 Source Code, 2018). This could be studied against the FreeDOS open-

source code implementing the same concepts but under different authors (FDOS Kernel, 2018). 

There are many comparisons to be made following this same model through examining historical 

code to newer versions of the same general implementations or standards, researching if naming 

conventions and code structures are similar. For any instance of using these methods, the most 

important aspect for future research would be access to the text files composing each project for 

use with text mining tools such as Orange for easier searching (Demšar et al., 2013). If the code 



 
113 

can be read and processed by text mining tools, patterns can be found across dozens or 

potentially hundreds of files for similar structures and keywords before being reviewed more 

closely for how each usage is similar or different than each other. 

End of Beginning 

 As of this writing, Snowman has seen 491 changes from 2014 to 2022 with nearly all of 

those changes coming from either its original maintainer, Chris Klimas, from 2014 to 2019, or 

me, Daniel Cox, from 2019 to 2022 (Cox, 2017a). As I write this in June 2023, there have been 

no changes to Snowman in 2023 with a minor version update based on the newer versions of its 

own code dependencies. Despite this, the future of Snowman is brighter than it ever has been 

because of the many projects based on its concepts and structures. As a single project, Snowman 

is unlikely to ever gain ground on the usage statistics of its sister story formats I recorded in 2020 

(Cox, 2020a). Yet, the single fact some 20% or more of all known story formats in 2018 are 

based on Snowman show the potential for it, like the graphical web browser Mosaic before it, to 

be the “root” of a vast tree of other projects expanding outward in unexpected ways (DeMarco, 

2018). Like the projects on which it is based, Snowman has inherited some cultural values and 

has, in ways yet to be studied, passed these on to other people (Manovich, 2013). Will future 

papers and books on Twine include more of Snowman’s history? Or will it slowly fade as a 

steppingstone along a longer path toward much more famous works on which it influenced along 

the way? It is my hope this study, and any work to be published from future research arising 

from it, continues to investigate and present the history of Snowman and projects like it. As this 

study has shown, there is always more to code than what is visible on a surface level. Finding 

these connections to past software and present dependencies requires digging into the social and 

technical relationships of different projects to help understand why each arose, how they 



 
114 

influence each other through aspects like the hidden labor within them, and what the future of a 

project might hold based on its structures. 

  



 
115 

REFERENCES 

About—Node.js. (2023). Node.Js. https://nodejs.org/en/about 

Alfadel, M., Costa, D. E., Shihab, E., & Adams, B. (2022). On the Discoverability of npm 
Vulnerabilities in Node.js Projects. ACM Transactions on Software Engineering and 
Methodology, 3571848. https://doi.org/10.1145/3571848 

Andreessen, M., & Bina, E. (1994). NCSA Mosaic: A Global Hypermedia System. Internet 
Research, 4(1), 7–17. https://doi.org/10.1108/10662249410798803 

Anthropy, A. (2009). Town. Internet Archive. 
https://web.archive.org/web/20090721140212/http://www.auntiepixelante.com/town/ 

Anthropy, A. (2012). Rise of the videogame zinesters: How freaks, normals, amateurs, artists, 
dreamers, dropouts, queers, housewives, and people like you are taking back an art form 
(Seven Stories Press 1st ed). Seven Stories Press. 

Arnott, L. (2023). Harlowe. https://foss.heptapod.net/games/harlowe/-/tree/branch/default 

Arnott, L. (2013, December 4). Versions of Twine—Twine Wiki. Internet Archive. 
https://web.archive.org/web/20131204150747/http://twinery.org/wiki/versions_of_twine 

Arnott, L. (2022, June 20). Harlowe 3.3 manual. https://twine2.neocities.org/ 

Ashkenas, J. (2022). _.unescape(). In Underscore. 
https://underscorejs.org/docs/modules/unescape.html 

Ashkenas, J. (2009). Underscore.js. 
https://cdn.jsdelivr.net/gh/jashkenas/underscore@0.4.0/underscore.js 

Ashkenas, J., & Gonggrijp, J. (2022). Underscore-esm.js (1.13.6). 
https://underscorejs.org/docs/underscore-esm.html 

Baccaris, G. C. (2020). The Twine® Grimoire, Vol. 1. Itch. https://gcbaccaris.itch.io/grimoire-
one 

Baccaris, G. C. (2021). The Twine® Grimoire, Vol. 2. Itch. https://gcbaccaris.itch.io/grimoire-
two 

Backus, J. W., Mitchell, L. B., Beeber, R. J., Nelson, R. A., Best, S., Nutt, R., Goldberg, R., 
Herrick, H. L., Sayre, D., Hughes, R. A., Sheridan, P. B., Stern, H., & Ziller, I. (1956). 
The FORTRAN Automatic Coding System for the IBM 704 EDPM: Programmer’s 
Reference Manual. International Business Machines Corporation (IBM). 

Berge, P., Cox, D., Murray, J., & Salter, A. (2022). Adventures in TwineSpace: An Augmented 
Reality Story Format for Twine. In M. Vosmeer & L. Holloway-Attaway (Eds.), 

https://nodejs.org/en/about
https://doi.org/10.1145/3571848
https://doi.org/10.1108/10662249410798803
https://web.archive.org/web/20090721140212/http:/www.auntiepixelante.com/town/
https://foss.heptapod.net/games/harlowe/-/tree/branch/default
https://web.archive.org/web/20131204150747/http:/twinery.org/wiki/versions_of_twine
https://twine2.neocities.org/
https://underscorejs.org/docs/modules/unescape.html
https://cdn.jsdelivr.net/gh/jashkenas/underscore@0.4.0/underscore.js
https://underscorejs.org/docs/underscore-esm.html
https://gcbaccaris.itch.io/grimoire-one
https://gcbaccaris.itch.io/grimoire-one
https://gcbaccaris.itch.io/grimoire-two
https://gcbaccaris.itch.io/grimoire-two


 
116 

Interactive Storytelling (Vol. 13762, pp. 499–512). Springer International Publishing. 
https://doi.org/10.1007/978-3-031-22298-6_32 

Berners-Lee, T. (1992). Review—Erwise. https://www.w3.org/History/19921103-
hypertext/hypertext/Erwise/Review.html 

Birsan, A. (2021). Dependency Confusion: How I Hacked Into Apple, Microsoft and Dozens of 
Other Companies. Medium. https://medium.com/@alex.birsan/dependency-confusion-
4a5d60fec610 

Bogost, I. (2007). Persuasive games: The expressive power of videogames. MIT Press. 

Bolter, J. D., & Joyce, M. (1987). Hypertext and creative writing. Proceeding of the ACM 
Conference on Hypertext - HYPERTEXT ’87, 41–50. 
https://doi.org/10.1145/317426.317431 

Bolter, J. D. (2001). Writing space: Computers, hypertext, and the remediation of print (2nd ed). 
Lawrence Erlbaum Associates. 

Bolter, J. D., & Grusin, R. (2003). Remediation: Understanding new media. MIT Press. 

Boylorn, R. M., & Orbe, M. P. (Eds.). (2021). Critical autoethnography: Intersecting cultural 
identities in everyday life (Second edition). London. 

Bratton, B. H. (2015). The stack: On software and sovereignty. MIT Press. 

Brown, J. J. (2015). Ethical programs: Hospitality and the rhetorics of software. University of 
Michigan Press. 

browserify. (2010). GitHub. https://github.com/browserify/browserify 

Cassel, D. (2022). The Most Famous Comment in Unix History: “You Are Not Expected to 
Understand This.” In T. Bosch (Ed.), You are not expected to understand this: How 26 
lines of code changed the world (pp. 63–68). Princeton University Press. 

Cassel, D. (2017). “You are Not Expected to Understand This”: Unix’s Most Notorious Code 
Comment. The New Stack. https://thenewstack.io/not-expected-understand-explainer/ 

Castells, M. (2010). The rise of the network society. Wiley-Blackwell. 

Chat with Emil Filla & Ľudovít Fulla. (2018, July 10). Slovak National Gallery. 
https://fillafulla.sng.sk/ 

Chouhan, A. (2023). [Bug] Infinite loop in colors.js. Marak/Colors.Js - Issues. 
https://github.com/Marak/colors.js/issues/345 

Chromium. (2023). Google Git. https://chromium.googlesource.com/chromium/src.git 

.closest(). (2023). In jQuery API Documentation. https://api.jquery.com/closest/ 

https://doi.org/10.1007/978-3-031-22298-6_32
https://www.w3.org/History/19921103-hypertext/hypertext/Erwise/Review.html
https://www.w3.org/History/19921103-hypertext/hypertext/Erwise/Review.html
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://doi.org/10.1145/317426.317431
https://github.com/browserify/browserify
https://thenewstack.io/not-expected-understand-explainer/
https://fillafulla.sng.sk/
https://github.com/Marak/colors.js/issues/345
https://chromium.googlesource.com/chromium/src.git
https://api.jquery.com/closest/


 
117 

Cox, D. (2013a). Category—Twine Tuesday. Digital Ephemera. 
https://videlais.com/category/twine-tuesday/ 

Cox, D. (2017a). Snowman. GitHub. https://github.com/videlais/snowman 

Cox, D. (2022a). Snowman 1.0.0. Archive of Twine 2 Story Formats. GitHub. 
https://github.com/videlais/twine2-story-formats-
archive/blob/02a4405ccf7f54a37a49cc0cd129344de914c3bf/snowman-1.0.0/format.js 

Cox, D. (2020a). Static Echoes: Exploring the Life and Closing of the Free Twine Hosting 
Service, philome.la. Electronic Literature Organization Conference 2020. 
https://stars.library.ucf.edu/elo2020/asynchronous/talks/17 

Cox, D. (Ed.). (2021a). Story Formats. In Twine Cookbook. 
https://twinery.org/cookbook/introduction/story_formats.html 

Cox, D. (2013b). Twine 1.3.5: A short tutorial on using Twine (in Windows). YouTube. 
https://www.youtube.com/watch?v=JWgI3yYCfgI 

Cox, D. (Ed.). (2021b). Twine 2.0.4—Release Notes. In Twine Cookbook. 
https://twinery.org/cookbook/releasenotes/twine2/2.0.4.html 

Cox, D. (Ed.). (2021c). Twine Cookbook. https://twinery.org/cookbook/ 

Cox, D. (2022b). We Make How We Learn: The Role of Community in Authoring Tool 
Longevity. In C. Hargood, D. E. Millard, A. Mitchell, & U. Spierling (Eds.), The 
Authoring Problem (pp. 65–72). Springer International Publishing. 
https://doi.org/10.1007/978-3-031-05214-9_5 

Cox, D. (2016). Twine 2.0 Tutorials. YouTube. 
https://www.youtube.com/playlist?list=PLlXuD3kyVEr5tlic4SRe6ZG-R9OyS1T4d 

Cox, D. (2017b). Twine 2.1 Tutorials. YouTube. 
https://www.youtube.com/playlist?list=PLlXuD3kyVEr7bucZtQPpOZHjbUuGKaf2V 

Cox, D. (2018). Videlais/snowman@4f7525f. GitHub. 
https://github.com/videlais/snowman/commit/4f7525fa3f7481f8f8a157d6c5ee0be86696e
954 

Cox, D. (2019a). An Oral History of Twee. Digital Ephemera. 
https://videlais.com/2019/06/08/an-oral-history-of-twee/ 

Cox, D. (2019b). Learning Twine 2.2. YouTube. 
https://www.youtube.com/playlist?list=PLlXuD3kyVEr6T06I71pxVxJn5KK1B0rWO 

Cox, D. (2020b). Learning Twine 2.3. YouTube. 
https://www.youtube.com/playlist?list=PLlXuD3kyVEr5jWoG0oDygKWOgFC3qrKN- 

https://videlais.com/category/twine-tuesday/
https://github.com/videlais/snowman
https://github.com/videlais/twine2-story-formats-archive/blob/02a4405ccf7f54a37a49cc0cd129344de914c3bf/snowman-1.0.0/format.js
https://github.com/videlais/twine2-story-formats-archive/blob/02a4405ccf7f54a37a49cc0cd129344de914c3bf/snowman-1.0.0/format.js
https://stars.library.ucf.edu/elo2020/asynchronous/talks/17
https://twinery.org/cookbook/introduction/story_formats.html
https://www.youtube.com/watch?v=JWgI3yYCfgI
https://twinery.org/cookbook/releasenotes/twine2/2.0.4.html
https://twinery.org/cookbook/
https://doi.org/10.1007/978-3-031-05214-9_5
https://www.youtube.com/playlist?list=PLlXuD3kyVEr5tlic4SRe6ZG-R9OyS1T4d
https://www.youtube.com/playlist?list=PLlXuD3kyVEr7bucZtQPpOZHjbUuGKaf2V
https://github.com/videlais/snowman/commit/4f7525fa3f7481f8f8a157d6c5ee0be86696e954
https://github.com/videlais/snowman/commit/4f7525fa3f7481f8f8a157d6c5ee0be86696e954
https://videlais.com/2019/06/08/an-oral-history-of-twee/
https://www.youtube.com/playlist?list=PLlXuD3kyVEr6T06I71pxVxJn5KK1B0rWO
https://www.youtube.com/playlist?list=PLlXuD3kyVEr5jWoG0oDygKWOgFC3qrKN-


 
118 

Cox, D., Berge, P., Murray, J., & Salter, A. (2022). TwineSpace: A Twine 2 story format 
supporting 3D models and mixed reality projects. (1.0.0). Zenodo. 
https://doi.org/10.5281/ZENODO.6915351 

Cox, D., Klimas, C., & Edwards, T. M. (2019). Twine 2 HTML Output (v1.0.1) (1.0.1). 
https://github.com/iftechfoundation/twine-specs/blob/master/twine-2-htmloutput-spec.md 

cssnano/cssnano. (2015). GitHub. https://github.com/cssnano/cssnano 

Dahl, R. (2010). Joyent & Node. Google Groups. 
https://groups.google.com/g/nodejs/c/lWo0MbHZ6Tc 

Daiute, C., Cox, D., & Murray, J. T. (2021). Imagining the Other for Interactive Digital 
Narrative Design Learning in Real Time in Sherlock. In A. Mitchell & M. Vosmeer 
(Eds.), Interactive Storytelling (Vol. 13138, pp. 454–461). Springer International 
Publishing. https://doi.org/10.1007/978-3-030-92300-6_46 

Dalton, J.-D., Cambridge, K., & Bynens, M. (2012). Lo-Dash (0.1.0). Internet Archive. 
https://web.archive.org/web/20120512131557/http://lodash.com/ 

.data(). (2023). In jQuery API Documentation. https://api.jquery.com/data/ 

de Souza, C., Froehlich, J., & Dourish, P. (2005). Seeking the source: Software source code as a 
social and technical artifact. Proceedings of the 2005 International ACM SIGGROUP 
Conference on Supporting Group Work - GROUP ’05, 197. 
https://doi.org/10.1145/1099203.1099239 

Debian. (2023). https://www.debian.org/ 

DeMarco, M. C. (2018a). Twine Story/Proofing Format Catalog. GitHub. 
https://github.com/tweecode/format-catalog 

DeMarco, M. C. (2018b). A Catalog of Twine Story Formats. 
http://mcdemarco.net/tools/hyperfic/twine/catalog/ 

Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, 
M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., & 
Zupan, B. (2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning 
Research, 14, 2349–2353. 

D’Ignazio, C., & Klein, L. F. (2020). Data feminism. The MIT Press. 

Document Object Model (DOM). (2023). In Mozilla Developer Network. 
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model 

Ducheneaut, N. (2005). Socialization in an Open Source Software Community: A Socio-
Technical Analysis. Computer Supported Cooperative Work (CSCW), 14(4), 323–368. 
https://doi.org/10.1007/s10606-005-9000-1 

https://doi.org/10.5281/ZENODO.6915351
https://github.com/iftechfoundation/twine-specs/blob/master/twine-2-htmloutput-spec.md
https://github.com/cssnano/cssnano
https://groups.google.com/g/nodejs/c/lWo0MbHZ6Tc
https://doi.org/10.1007/978-3-030-92300-6_46
https://web.archive.org/web/20120512131557/http:/lodash.com/
https://api.jquery.com/data/
https://doi.org/10.1145/1099203.1099239
https://www.debian.org/
https://github.com/tweecode/format-catalog
http://mcdemarco.net/tools/hyperfic/twine/catalog/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://doi.org/10.1007/s10606-005-9000-1


 
119 

ECMA-262, 6th edition, June 2015. (2015). Ecma International. https://www.ecma-
international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf 

ECMA-262, 15th edition, June 2023. (2023). Ecma International. https://tc39.es/ecma262/ 

Edwards, T., & Cox, D. (2021). Twee 3 Specification (v3.0.2). Interactive Fiction Technology 
Foundation. https://github.com/iftechfoundation/twine-specs/blob/master/twee-3-
specification.md 

Edwards, T. M. (2019). SugarCube v2. GitHub. https://github.com/tmedwards/sugarcube-2 

Edwards, T. M. (2021). SugarCube v2 Documentation. 
https://www.motoslave.net/sugarcube/2/docs/ 

Element: Click event. (2023). In Mozilla Developer Network. https://developer.mozilla.org/en-
US/docs/Web/API/Element/click_event 

Ellison, C. (2013, April 10). Anna Anthropy and the Twine revolution. The Guardian. 
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy-twine-
revolution 

event. (2023). In Mozilla Developer Network. https://developer.mozilla.org/en-
US/docs/Web/API/Event 

event.target. (2023). In Mozilla Developer Network. https://developer.mozilla.org/en-
US/docs/Web/API/Event/target 

Everyday Types. (2023). In TypeScript Documentation. 
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html 

FDOS Kernel. (2018). FDOS. GitHub. https://github.com/FDOS/kernel 

Foley, M. J. (2012). Who built Microsoft TypeScript and why. ZDNET. 
https://www.zdnet.com/article/who-built-microsoft-typescript-and-why/ 

Ford, M. (2016). Writing interactive fiction with Twine. Que. 

Foucault, M. (1969). The archaeology of knowledge. Vintage Books. 

Foucault, M. (1994). The order of things: An archaeology of the human sciences. Vintage Books. 

Friedhoff, J. (2014). Untangling Twine: A Platform Study. DiGRA 2013 - Proceedings of the 
2013 DiGRA International Conference: DeFragging Game Studies. 
http://www.digra.org/wp-content/uploads/digital-library/paper_67.compressed.pdf 

Galloway, A. R. (2006). Protocol: How control exists after decentralization. MIT Press. 

Ghosh, R. A., & Prakash, V. V. (2000). The Orbiten free software survey. First Monday, 5(7). 
https://doi.org/10.5210/fm.v5i7.769 

https://www.ecma-international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf
https://tc39.es/ecma262/
https://github.com/iftechfoundation/twine-specs/blob/master/twee-3-specification.md
https://github.com/iftechfoundation/twine-specs/blob/master/twee-3-specification.md
https://github.com/tmedwards/sugarcube-2
https://www.motoslave.net/sugarcube/2/docs/
https://developer.mozilla.org/en-US/docs/Web/API/Element/click_event
https://developer.mozilla.org/en-US/docs/Web/API/Element/click_event
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy-twine-revolution
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy-twine-revolution
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html
https://github.com/FDOS/kernel
https://www.zdnet.com/article/who-built-microsoft-typescript-and-why/
http://www.digra.org/wp-content/uploads/digital-library/paper_67.compressed.pdf
https://doi.org/10.5210/fm.v5i7.769


 
120 

Goodin, D. (2021). A new type of supply-chain attack with serious consequences is flourishing. 
Ars Technica. https://arstechnica.com/gadgets/2021/03/more-top-tier-companies-
targeted-by-new-type-of-potentially-serious-attack/ 

Goswami, P., Gupta, S., Li, Z., Meng, N., & Yao, D. (2020). Investigating The Reproducibility 
of NPM Packages. 2020 IEEE International Conference on Software Maintenance and 
Evolution (ICSME), 677–681. https://doi.org/10.1109/ICSME46990.2020.00071 

Halliday, J., & Harband, J. (2012). defined. Inspect JS. GitHub. https://github.com/inspect-
js/defined 

Handbook. (2012). In The TypeScript Handbook. 
https://www.typescriptlang.org/docs/handbook/intro.html 

Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford 
University Press. 

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in Open 
Source projects: An Internet-based survey of contributors to the Linux kernel. Research 
Policy, 32(7), 1159–1177. https://doi.org/10.1016/S0048-7333(03)00047-7 

Historical yearly trends in the usage statistics of JavaScript libraries for websites, March 2023. 
(2023). Q-Success. 
https://w3techs.com/technologies/history_overview/javascript_library/all/y 

History of the Mozilla Project. (2023). Mozilla. https://www.mozilla.org/en-US/about/history/ 

HTML: HyperText Markup Language. (2023). In Mozilla Developer Network. 
https://developer.mozilla.org/en-US/docs/Web/HTML 

Hudson, L. (2017, October 25). Twine, the Video-Game Technology for All. 
https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-
all.html 

Introduction to events. (2023). In Mozilla Developer Network. https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Building_blocks/Events 

Jockers, M. L. (2013). Macroanalysis: Digital methods and literary history. University of 
Illinois Press. 

jQuery: New Wave Javascript. (2006, February 3). Internet Archive. 
https://web.archive.org/web/20060203025710/http://jquery.com/ 

jQuery 1.0 – Alpha Release. (2006, June 30). jQuery 1.0 – Alpha Release | Official jQuery Blog. 
https://blog.jquery.com/2006/06/30/jquery-10-alpha-release/ 

The jQuery Foundation and Standards. (2014, January 15). Official jQuery Blog. 
https://blog.jquery.com/2014/01/15/the-jquery-foundation-and-standards/ 

https://arstechnica.com/gadgets/2021/03/more-top-tier-companies-targeted-by-new-type-of-potentially-serious-attack/
https://arstechnica.com/gadgets/2021/03/more-top-tier-companies-targeted-by-new-type-of-potentially-serious-attack/
https://doi.org/10.1109/ICSME46990.2020.00071
https://github.com/inspect-js/defined
https://github.com/inspect-js/defined
https://www.typescriptlang.org/docs/handbook/intro.html
https://doi.org/10.1016/S0048-7333(03)00047-7
https://w3techs.com/technologies/history_overview/javascript_library/all/y
https://www.mozilla.org/en-US/about/history/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-all.html
https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-all.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events
https://web.archive.org/web/20060203025710/http:/jquery.com/
https://blog.jquery.com/2006/06/30/jquery-10-alpha-release/
https://blog.jquery.com/2014/01/15/the-jquery-foundation-and-standards/


 
121 

Kaczynski, F. (n.d.). Adventures. Retrieved April 26, 2023, from 
http://adventures.longwelwind.net/ 

Kaczynski, F. (2017a). Adventures. GitHub. https://github.com/Longwelwind/adventures 

Kaczynski, F. (2017b, September 15). Longwelwind/adventures@2619a50. GitHub. 
https://github.com/Longwelwind/adventures/commit/2619a50138502cf16ea8868e13d554
c89c01e1a9 

Kieffer, R., & Brigante, F. (2022). Npmgraph (2.9.1). https://npmgraph.js.org/ 

Kittler, F. A. (1999). Gramophone, film, typewriter. Stanford University Press. 

Klimas, C. (2023a). Chapbook. GitHub. https://github.com/klembot/chapbook 

Klimas, C. (2006, March 28). Code and Other Oddments. Gimcrack’d: An Exhibition of 
Narrative and Machinery. 
https://web.archive.org/web/20060328165735/http://gimcrackd.com/etc/src/ 

Klimas, C. (2008). Writing With Twee. Internet Archive. 
https://web.archive.org/web/20080123111435/http://gimcrackd.com/etc/doc/ 

Klimas, C. (2013, November 14). Homepage—Twine. Internet Archive. 
https://web.archive.org/web/20131114011254/https://twinery.org/ 

Klimas, C. (2015a). Twine 2, now a real(?) app. Chris Klimas. 
https://chrisklimas.com/blog/2015-04-13-twine-2-now-a-real-app/ 

Klimas, C. (2015b, April 15). 2.0.4—Releases. GitHub. 
https://github.com/klembot/twinejs/releases/tag/2.0.4 

Klimas, C. (2018). Snowman 1.3 Update. GitHub. 
https://github.com/videlais/snowman/tree/c26f06979d92288ff41bb09d0cec8fa96d77dfa7 

Klimas, C. (2023b). 2.6.0—Releases. GitHub. 
https://github.com/klembot/twinejs/releases/tag/2.6.0 

Knuth, D. E. (1997). The art of computer programming (3rd ed). Addison-Wesley. 

Koenitz, H., & Eladhari, M. P. (2019). Challenges of IDN Research and Teaching. In R. E. 
Cardona-Rivera, A. Sullivan, & R. M. Young (Eds.), Interactive Storytelling (Vol. 11869, 
pp. 26–39). Springer International Publishing. https://doi.org/10.1007/978-3-030-33894-
7_4 

Krill, P. (2009, April 4). JavaScript creator ponders past, future. Developer World - InfoWorld. 
https://web.archive.org/web/20090404173354/http://www.infoworld.com/d/developer-
world/javascript-creator-ponders-past-future-704 

http://adventures.longwelwind.net/
https://github.com/Longwelwind/adventures
https://github.com/Longwelwind/adventures/commit/2619a50138502cf16ea8868e13d554c89c01e1a9
https://github.com/Longwelwind/adventures/commit/2619a50138502cf16ea8868e13d554c89c01e1a9
https://npmgraph.js.org/
https://github.com/klembot/chapbook
https://web.archive.org/web/20060328165735/http:/gimcrackd.com/etc/src/
https://web.archive.org/web/20080123111435/http:/gimcrackd.com/etc/doc/
https://chrisklimas.com/blog/2015-04-13-twine-2-now-a-real-app/
https://github.com/klembot/twinejs/releases/tag/2.0.4
https://github.com/videlais/snowman/tree/c26f06979d92288ff41bb09d0cec8fa96d77dfa7
https://github.com/klembot/twinejs/releases/tag/2.6.0
https://doi.org/10.1007/978-3-030-33894-7_4
https://doi.org/10.1007/978-3-030-33894-7_4
https://web.archive.org/web/20090404173354/http:/www.infoworld.com/d/developer-world/javascript-creator-ponders-past-future-704
https://web.archive.org/web/20090404173354/http:/www.infoworld.com/d/developer-world/javascript-creator-ponders-past-future-704


 
122 

Latour, B. (2007). Reassembling the social: An introduction to Actor-Network-Theory. Oxford 
Univ. Press. 

Maass, W. (2004). Inside an open source software community: Empirical analysis on individual 
and group level. “Collaboration, Conflict and Control: The 4th Workshop on Open 
Source Software Engineering” W8S Workshop - 26th International Conference on 
Software Engineering, 2004, 65–70. https://doi.org/10.1049/ic:20040267 

Manovich, L. (2013). Software takes command: Extending the language of new media. 
Bloomsbury. 

Marino, M. C. (2020). Critical code studies: Initial methods. The MIT Press. 

Mauchly, J. W. (1982). Preparation of Problems for EDVAC-Type Machines. In B. Randell 
(Ed.), The Origins of Digital Computers (pp. 393–397). Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-642-61812-3_31 

McCullough, B. (2018). How the Internet happened: From Netscape to the iPhone (First 
edition). Liveright Publishing Corporation. 

Moretti, F. (2007). Graphs, maps, trees: Abstract models for a literary history (Paperback ed). 
Verso. 

Moretti, F. (2013). Distant reading. Verso. 

Mozilla Search—Firefox. (2023). Search Fox. Mozilla Central. https://searchfox.org/mozilla-
central/source 

MS-DOS v1.25 and v2.0 Source Code. (2018). Microsoft. GitHub. 
https://github.com/microsoft/MS-DOS 

Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York 
University Press. 

npm (2023a). Node Package Manager (9.7.1). https://www.npmjs.com/ 

npm: Threats and Mitigations (2023b). npm Documentation. https://docs.npmjs.com/threats-and-
mitigations 

Ofoeda, J., Boateng, R., & Effah, J. (2019). Application Programming Interface (API) Research: 
A Review of the Past to Inform the Future. International Journal of Enterprise 
Information Systems, 15(3), 76–95. https://doi.org/10.4018/IJEIS.2019070105 

.on(). (2023). In jQuery API Documentation. https://api.jquery.com/on/ 

Ong, W. J. (2012). Orality and literacy: The technologizing of the word (30th anniversary ed.; 
3rd ed). Routledge. 

https://doi.org/10.1049/ic:20040267
https://doi.org/10.1007/978-3-642-61812-3_31
https://searchfox.org/mozilla-central/source
https://searchfox.org/mozilla-central/source
https://github.com/microsoft/MS-DOS
https://www.npmjs.com/
https://docs.npmjs.com/threats-and-mitigations
https://docs.npmjs.com/threats-and-mitigations
https://doi.org/10.4018/IJEIS.2019070105
https://api.jquery.com/on/


 
123 

Our Mission and Goals. (n.d.). Interactive Fiction Technology Foundation. 
https://iftechfoundation.org/mission/ 

Parikka, J. (2015). A geology of media. University of Minnesota Press. 

Performance. (2023). In TypeScript. https://github.com/microsoft/TypeScript/wiki/Performance 

Porpentine. (2012). CYBERQUEEN. Interactive Fiction Database. 
https://ifdb.org/viewgame?id=8rib3ksuex22l5pl 

Qix. (2015). Node-is-arrayish. GitHub. https://github.com/Qix-/node-is-arrayish 

Quinn, Z. (2013). Depression Quest: An Interactive (non)Fiction About Living with Depression. 
http://www.depressionquest.com/ 

Reference Manual: FORTRAN II for the IBM 704 Data Processing System (X4115.2007). 
(1958). International Business Machines Corporation (IBM); Computer History Museum. 

Resig, J. (2006). BarCampNYC Wrap-up. https://johnresig.com/blog/barcampnyc-wrap-up/ 

Rival, X., & Yi, K. (2020). Introduction to static analysis: An abstract interpretation 
perspective. The MIT Press. 

Robertson, A. (2021, March 10). Text Adventures: How Twine remade gaming. The Verge. 
https://www.theverge.com/c/22321816/csk-twine 

Ropek, L. (2022). An Open-Source Developer Just Nuked Two Apps, Causing Chaos. Gizmodo. 
https://gizmodo.com/an-open-source-developer-just-caused-a-whole-lot-of-cha-
1848331944 

Roth, E. (2022, January 9). Open source developer corrupts widely-used libraries, affecting tons 
of projects. The Verge. https://www.theverge.com/2022/1/9/22874949/developer-
corrupts-open-source-libraries-projects-affected 

Ryan, J. (2010). A history of the Internet and the digital future. Reaktion Books. 

Sallis, P., Aakjaer, A., & MacDonell, S. (1996). Software forensics: Old methods for a new 
science. Proceedings 1996 International Conference Software Engineering: Education 
and Practice, 481–485. https://doi.org/10.1109/SEEP.1996.534037 

Salter, A., & Moulthrop, S. (2021). Twining: Critical and creative approaches to hypertext 
narratives. Amherst College Press. 

Salter, A., & Murray, J. (2014). Flash: Building the Interactive Web. MIT Press. 

Salter, A., & Stanfill, M. (2020). A portrait of the auteur as fanboy: The construction of 
authorship in transmedia franchises. University Press of Mississippi. 

Schlueter, I. (2011). Isaacs/inherits. GitHub. https://github.com/isaacs/inherits 

https://iftechfoundation.org/mission/
https://github.com/microsoft/TypeScript/wiki/Performance
https://ifdb.org/viewgame?id=8rib3ksuex22l5pl
https://github.com/Qix-/node-is-arrayish
http://www.depressionquest.com/
https://johnresig.com/blog/barcampnyc-wrap-up/
https://www.theverge.com/c/22321816/csk-twine
https://gizmodo.com/an-open-source-developer-just-caused-a-whole-lot-of-cha-1848331944
https://gizmodo.com/an-open-source-developer-just-caused-a-whole-lot-of-cha-1848331944
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://www.theverge.com/2022/1/9/22874949/developer-corrupts-open-source-libraries-projects-affected
https://doi.org/10.1109/SEEP.1996.534037
https://github.com/isaacs/inherits


 
124 

Scope. (2023). In Mozilla Developer Network. https://developer.mozilla.org/en-
US/docs/Glossary/Scope 

Shalizi, C. (2011). Graphs, Trees, Materialism, Fishing. In J. Goodwin & J. Holbo (Eds.), 
Reading Graphs, maps & trees: Responses to Franco Moretti (pp. 131–154). Parlor 
Press. 

Sharma, A. (2022). Dev corrupts NPM libs “colors” and “faker” breaking thousands of apps. 
Bleeping Computer. https://www.bleepingcomputer.com/news/security/dev-corrupts-
npm-libs-colors-and-faker-breaking-thousands-of-apps/ 

Sink, E. (2003). Memoirs From the Browser Wars. https://ericsink.com/Browser_Wars.html 

Soloman, R. (2013). LAST IN, FIRST OUT. Amodern. https://amodern.net/article/last-in-first-
out/ 

Squires, M. (2010). Colors.js (1.4.0). GitHub. https://github.com/Marak/colors.js 

Squires, M. (2022, January 7). Marak/colors.js@074a0f8. GitHub. 
https://github.com/Marak/colors.js/commit/074a0f8ed0c31c35d13d28632bd8a049ff136fb
6 

Stanfill, M. (2019). Exploiting fandom: How the media industry seeks to manipulate fans. 
University of Iowa Press. 

Story Formats—Twine Wiki. (2014). Twine Wiki. Internet Archive. 
https://web.archive.org/web/20140426042129/http://twinery.org/wiki/story_format 

Text Mining—Keyword-Based Text Document Scoring. (n.d.). Orange Datamining. 
Bioinformatics Laboratory, University of Ljubljana. Retrieved June 4, 2023, from 
https://orangedatamining.com/workflows/Text-Mining/page/2/ 

The Future Frontier: Computing on NCSA Mosaic’s 10th Anniversary. (2009). NCSA. 
https://web.archive.org/web/20090620091511/https://www.ncsa.illinois.edu/Conferences/
MosaicEvent/ 

this. (2023). In Mozilla Developer Network. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/this 

Tornhill, A. (2015). Your code as a crime scene: Use forensic techniques to arrest defects, 
bottlenecks, and bad design in your programs. The Pragmatic Bookshelf. 

Twine Committee. (n.d.). Interactive Fiction Technology Foundation. Retrieved May 26, 2023, 
from https://iftechfoundation.org/committees/twine/ 

Ubuntu. (2023). Ubuntu. https://ubuntu.com/ 

https://developer.mozilla.org/en-US/docs/Glossary/Scope
https://developer.mozilla.org/en-US/docs/Glossary/Scope
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://ericsink.com/Browser_Wars.html
https://amodern.net/article/last-in-first-out/
https://amodern.net/article/last-in-first-out/
https://github.com/Marak/colors.js
https://github.com/Marak/colors.js/commit/074a0f8ed0c31c35d13d28632bd8a049ff136fb6
https://github.com/Marak/colors.js/commit/074a0f8ed0c31c35d13d28632bd8a049ff136fb6
https://web.archive.org/web/20140426042129/http:/twinery.org/wiki/story_format
https://orangedatamining.com/workflows/Text-Mining/page/2/
https://web.archive.org/web/20090620091511/https:/www.ncsa.illinois.edu/Conferences/MosaicEvent/
https://web.archive.org/web/20090620091511/https:/www.ncsa.illinois.edu/Conferences/MosaicEvent/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://iftechfoundation.org/committees/twine/
https://ubuntu.com/


 
125 

Usage Statistics and Market Share of jQuery for Websites, March 2023. (2023). Q-Success. 
https://w3techs.com/technologies/details/js-jquery 

Usage Statistics and Market Share of Underscore for Websites, March 2023. (2023). Q-Success. 
https://w3techs.com/technologies/details/js-underscore 

van Kemenade, P. (2022a). What is Trialogue?. GitBook. https://phivk.gitbook.io/trialogue/ 

van Kemenade, P. (2022b, February 6). Release 0.0.8. Trialogue. GitHub. 
https://github.com/phivk/trialogue/releases/tag/v0.0.8 

van Kemenade, P. (2022c, July 8). Credits, thanks & license. Trialogue. GitBook. 
https://phivk.gitbook.io/trialogue/ 

Vee, A. (2017). Coding Literacy: How Computer Programming is Changing Writing. MIT Press. 

Wardrip-Fruin, N. (2011). Digital Media Archaeology: Interpreting Computational Processes. In 
E. Huhtamo & J. Parikka (Eds.), Media Archaeology: Approaches, Applications, and 
Implications (pp. 302–322). University of California Press. 

Wexelblat, R. L. (Ed.). (1981). History of programming languages. Academic Press. 

Wheeler, D. J. (1952). The use of sub-routines in programmes. Proceedings of the 1952 ACM 
National Meeting (Pittsburgh) - ACM ’52, 235–236. 
https://doi.org/10.1145/609784.609816 

Woods, R. (2022, June 15). Internet Explorer is dead—A look back at Microsoft’s browser 
history. XDA Developers. https://www.xda-developers.com/internet-explorer-browser-
history/ 

Zimmermann, M., Staicu, C.-A., Tenny, C., & Pradel, M. (2019). Small World with High Risks: 
A Study of Security Threats in the npm Ecosystem. 28th USENIX Security Symposium 
(USENIX Security 19), 995–1010. 
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman 

 

https://w3techs.com/technologies/details/js-jquery
https://w3techs.com/technologies/details/js-underscore
https://phivk.gitbook.io/trialogue/
https://github.com/phivk/trialogue/releases/tag/v0.0.8
https://phivk.gitbook.io/trialogue/
https://doi.org/10.1145/609784.609816
https://www.xda-developers.com/internet-explorer-browser-history/
https://www.xda-developers.com/internet-explorer-browser-history/
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman

	"Do You Want to Build with Snowman?": Positioning Twine Story Formats Through Critical Code Study
	STARS Citation

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: YOU CAN UNDERSTAND THIS
	What is Twine?
	Why Focus on Twine?
	Why Study Twine’s Source Code?
	Why Study the Story Format Snowman?
	Research Questions
	Chapter Summaries
	Conclusion

	CHAPTER 2: CALLING THE PAST
	Software Foundations
	Function Stack as Strata in Snowman
	Starting with jQuery
	Progressing a Story Using Underscore
	Completing the Function

	Conclusion

	CHAPTER 3: TRUSTING THE PRESENT
	Revealing Culture
	Dependency Network of Snowman 1.4
	Exploring the Network
	Trust Switches

	Conclusion

	CHAPTER 4: REFLECTING ON THE FUTURE
	Coding Crimes
	Structures of Snowman 1.3
	Adventures 1.0
	Trialogue 0.0.8
	Children of Snowman

	Conclusion

	CHAPTER 5: END OF BEGINNING
	Findings and Contributions
	Limitations
	Future Research
	End of Beginning

	REFERENCES

