
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2023 

Distributed Optimization with Limited Communication in Distributed Optimization with Limited Communication in 

Networks with Adversaries Networks with Adversaries 

Iyanuoluwa Emiola 
University of Central Florida 

 Part of the Electrical and Electronics Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Emiola, Iyanuoluwa, "Distributed Optimization with Limited Communication in Networks with Adversaries" 
(2023). Electronic Theses and Dissertations, 2020-. 1833. 
https://stars.library.ucf.edu/etd2020/1833 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd2020%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1833?utm_source=stars.library.ucf.edu%2Fetd2020%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages


DISTRIBUTED OPTIMIZATION WITH LIMITED COMMUNICATION IN NETWORKS
WITH ADVERSARIES

by

IYANUOLUWA EMIOLA
M.S. Delaware State University, 2018

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando Florida

Summer Term
2023

Major Professor: Chinwendu Enyioha



© 2023 Iyanuoluwa Emiola

ii



ABSTRACT

We all hope for the best but sometimes, one must plan for ways of dealing with the worst-case

scenarios, especially in a network with adversaries. This dissertation illustrates a detailed descrip-

tion of distributed optimization algorithms over a network of agents, in which some agents are

adversarial. The model considered is such that adversarial agents act to subvert the objective of

the network. The algorithms presented in this dissertation are solved via gradient-based distributed

optimization algorithm and the effects of the adversarial agents on the convergence of the algorithm

to the optimal solution are characterized. The analyses presented establish conditions under which

the adversarial agents have enough information to obstruct convergence to the optimal solution by

the non-adversarial agents. The adversarial agents act by using up network bandwidth, forcing the

communication of the non-adversarial agents to be constrained. A distributed gradient-based opti-

mization algorithm is explored in which the non-adversarial agents exchange quantized information

with one another using fixed and adaptive quantization scheme. Additionally, convergence of the

solution to a neighborhood of the optimal solution is proved in the communication-constrained

environment amidst the presence of adversarial agents.

iii



This dissertation is dedicated to my late mother, Victoria Yetunde Emiola (1958 - 2004) who

passed away on August 19, 2004. RIP my sweet mother.

iv



ACKNOWLEDGMENTS

I acknowledge those who have supported me through this doctoral journey. I would like to thank my

advisor, Dr. Chinwendu Enyioha for his mentorship and guidance. I started the doctoral program

in Electrical Engineering less than four years ago and I have had the opportunity to publish and

present my work at selective venues including conferences and a journal. All of these were made

possible by my advisor and I appreciate the extra hours he spent with me to ensure I am successful

at UCF.

To all of the professors and staffs - including Dr. Andriy Semichaevsky, Dr. John Chikwem, Late

Dr. Levi Nwachuku, Mrs Ugochi Nwachuku, Dr. Dawn Lott, Dr. Onur Yavuz and others - who

have taught and mentored me at Lincoln University of Pennsylvania, Delaware State University and

University of Central Florida, I thank you.

I also want to use the opportunity to appreciate the rest of the dissertation committee members:Dr.

Atia, Dr. Rahnavard, Dr. Qu and Dr. Vela for their guidance and constructive feedback. I am

grateful to my lab colleague Diego Benalcazar, friends: Robson Adem, John Erhabor, Adesoji

Aliu, Philip Bissiwu, Greg Fritjofson, UCF African Graduate Students Association members and

others that have encouraged and spurred my career pursuit.

Most importantly, I am grateful to my father, Babafemi Emmanuel Emiola and my sisters Tomilola

Emiola and Yejide Emiola for their support and motivation even during some difficult times. You

all have been amazing and this accomplishment would not have been possible without you.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 3: DISTRIBUTED OPTIMIZATION IN THE PRESENCE OF MALICIOUS

AGENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Problem Formulation and Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Convergence Analysis Over a Complete Graph . . . . . . . . . . . . . . . . . . . . 17

Convergence Analysis over General Graph Structures . . . . . . . . . . . . . . . . 21

Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Complete Graph Case with Common Attack Vector . . . . . . . . . . . . . . . . . 24

General Graph Case with Different Attack Vectors . . . . . . . . . . . . . . . . . . 26

CHAPTER 4: QUANTIZED AND DISTRIBUTED SUBGRADIENT OPTIMIZATION

WITH MALICIOUS ATTACK . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

The Uniform Quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Distributed Subgradient Convergence Analysis with Quantization and Attack . . . . . . . 36

Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 5: DISTRIBUTED AND ADAPTIVE QUANTIZATION IN A NETWORK

WITH ADVERSARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

The Adaptive Quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Consensus Update Equation for Non-Adversarial Agents . . . . . . . . . . . . . . 49

Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Proposition to Detect Malicious Agents . . . . . . . . . . . . . . . . . . . . . . . 58

Proposition for Resilience against Adversarial Attacks . . . . . . . . . . . . . . . . 62

Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

CHAPTER 6: IMPROVING CONVERGENCE RATES OF DISTRIBUTED OPTIMIZA-

vii



TION ALGORITHMS UNDER ADVERSARIES: ONLINE PERFORMANCE

AND BARZILAI-BORWEIN QUASI-NEWTON METHODS . . . . . . . . 71

Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Barzilai-Borwein Quasi-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Convergence Analysis of Centralized BB . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Convergence Analysis with step size 𝛼1 . . . . . . . . . . . . . . . . . . . . . . . 74

Convergence Analysis of Centralized BB with Second Step Size . . . . . . . . . . 76

Distributed Barzilai-Borwein Quasi-Newton Method . . . . . . . . . . . . . . . . . . . 77

Algorithm for Distributed BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Convergence Analysis of Distributed BB . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Distributed BB Convergence Analysis with the First Step-Size . . . . . . . . . . . 79

Distributed BB with Second Step-Size . . . . . . . . . . . . . . . . . . . . . . . . 84

Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Sublinear Regret with Barzilai-Borwein Step Sizes . . . . . . . . . . . . . . . . . 87

Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Algorithms for Online Optimization Problem . . . . . . . . . . . . . . . . . . . . 89

The BB Quasi-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Regret Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



CHAPTER 7: CONCLUSION AND OPEN PROBLEMS . . . . . . . . . . . . . . . . . . 98

APPENDIX A: RANGE OF THE BARZILAI-BORWEIN STEP SIZE BOUNDS . . . . . 100

Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Proof of Lemma 6.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Proof of Lemma 6.0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Proof of Lemma 6.0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Proof of Lemma 6.0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

APPENDIX B: ERROR DUE TO PROJECTION BOUNDS PROOF . . . . . . . . . . . . 113

Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



LIST OF FIGURES

1.1 In the Network above, adversarial nodes disrupt non-adversarial nodes by

injecting attack or false data. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Same Attack Simulations for 8 non-adversarial agents and 2 adversarial agents. 25

3.2 Same Attack Simulations for 5 non-adversarial agent and 5 malicious agents. . 26

3.3 Same Attack Simulations for 1 non-adversarial agent and 9 malicious agents. . 27

3.4 Different Attack Simulations for 8 non-adversarial agent and 2 malicious agents. 28

3.5 Different Attack Simulations for 5 non-adversarial agent and 5 malicious agents. 29

3.6 Different Attack Simulations for 3 non-adversarial agent and 7 malicious agents. 30

4.1 Adversarial behavior in WSN . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Adversarial behavior in WSN . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Adaptive Simulations for 9 non-adversarial agents and 1 malicious agent. . . . 58

5.3 Adaptive Simulations for 5 non-adversarial agents and 5 malicious agents. . . 59

5.4 Adaptive Simulations for 1 non-adversarial agent and 9 malicious agents. . . . 60

5.5 Simulations for regular adversarial weights 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 for more adversarial

agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



5.6 Simulations with weights of Adversarial agents removed𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 −𝑤𝑏 = 𝑛𝑤𝑖 𝑗−1
𝑛2 68

5.7 Simulations for regular adversarial weights 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 for less adversarial agents 69

5.8 Simulations with weights of Adversarial agents removed𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 −𝑤𝑏 = 𝑛𝑤𝑖 𝑗−1
𝑛2 70

6.1 Distributed Simulations for 10 iterations . . . . . . . . . . . . . . . . . . . . 87

xi



CHAPTER 1: INTRODUCTION

Anyone is prone to experiencing adversarial attack whether through phishing, cyber attacks, fraud

or in other scenarios. These malicious acts are meant to deceive or prevent an individual from

accomplishing his desired goals. In a network of autonomous systems, agents in the network may

act in a malicious or adversarial way either because they are faulty, or have been compromised

and are being used as stooges for an undesired goal in the network. Optimization problems with

malicious attack is applicable in adversarial machine learning where an adversary can attack a

machine learning model at the training or testing stage by injecting false data or manipulating data

in the dataset. Another application is seen in Wireless Sensor Networks where adversarial nodes

disrupt non-adversarial nodes by injecting false data as seen in Figure 1.1. In such attacks, non-

adversarial agents in the network sometimes consider preventive mechanisms which leads to solving

optimization algorithms. An optimization problem can either be constrained or unconstrained

depending on the nature of the attack or problem.

Solutions to unconstrained optimization problems can be applied to multi-agent systems and ma-

chine learning problems, especially if the problem is in a decentralized or distributed fashion [1–6].

Sometimes, in adversarial attack applications, malicious agents can be present in a network that

will slow down convergence rates to optimal points as seen in [7–9]. To address these lapses, we

present and analyze the performance of a distributed optimization problem in a network containing

adversarial nodes. To solve an optimization problem over a network of agents in a distributed

manner, gradient-based methods alongside an agreement update step are commonly used [10–14].

In the process, agents iteratively update their estimates and exchanges it with neighboring nodes.

This well-studied process arrives at the optimal solution depending on certain assumptions made

on the cost function being optimized and the choice of the step-size. In typical formulations of

1



distributed optimization problems, the objective can be considered decomposable as

min
𝑥∈R𝑝

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝑓𝑖(𝑥𝑖), (1.1)

where 𝑛 is the total number of agents, 𝑓𝑖(·) is the local objective function of agent 𝑖, 𝑥𝑖 is the decision

variable of each agent and 𝑓 (𝑥) is the global objective function that is meant to be optimized. Each

agent 𝑖 will also optimize its local objective function 𝑓𝑖(𝑥𝑖) and iteratively exchanges its decision

variable 𝑥𝑖 with neighboring agents over a communication network. In the presence of malicious

agents, however, the local and consensus computations are altered and sometimes disrupts the

performance of these distributed optimization algorithms. When such misbehavior occur in a

network with adversaries, one has to either detect these threats or take any needed steps to mitigate

their effects.

An illustration of such a preventive strategy is seen in [15–17], where an attempt is made to detect

sensitive malicious insider threats. Another application where non-adversarial agents in a network

can use preventive mechanisms against adversarial agents is seen in underwater communication

systems [18] where the magnitude of information transmitted is very important. Underwater

communication systems face challenges due to time variation of communication channels and

system complexities. To reduce such bottlenecks, the number of bits of information transmitted

has to be taken into huge consideration. Some methods of solving communication-constrained

problems as described above include event-triggered control, sparsification and quantization (the

crux of this dissertation). In an event-triggered control, communication occurs when a necessary

event is prompted and the relevant agents estimates are chosen in the analysis. Sparsification

involves either dropping out some agents state or making them zero. Quantization involves limited

communications amongst agents using a type of quantizer that depends on parameters such as

quantization interval, step and the number of bits. To determine the number of bits of information

2



needed, we let 𝑥𝑖 be the state of each agent 𝑖. If 𝒙𝑖 ∈ R𝑝, agents can transmit up to 𝑝 floating point

numbers and exchange 𝑥𝑖(𝑘 + 1) = 𝑝(𝑥𝑖(𝑘), 𝑥 𝑗 ....). Using an inductive approach, the computations

needed for 1 time step is initially performed and an iterative approach is employed in a manner

where the order on the number of bits is O(1
𝜖
) ∗ 𝑛 ∗ 𝑝 for 𝜖 accuracy and O(1

𝜖
) iterations. In the

context of the dissertation, it is assumed that adversarial agents use up communication bandwidth

and non-adversarial agents have to manage what is left via quantization. Results are corroborated

with numerical experiments to show the applications of the proposed methodologies.

Research Impact: This dissertation research will have substantial merit and national importance

both theoretically and technologically especially in the field of optimization. Due to the intensive

computations involved in large scale distributed optimization algorithms, a major focus of research

has been on improving the convergence, coordination and computation costs. Therefore, the goal

is to obtain an optimization algorithm that can converge very fast with little cost. This dissertation

is also relevant in adversarial distributed optimization as it offers preventive mechanisms in dealing

with adversarial attack in a communication-constrained environment.

3



A — Adversarial Node — Non-Adversarial NodeN

A

N

A

N

N

N

N

Attack

N

Attack

Figure 1.1: In the Network above, adversarial nodes disrupt non-adversarial nodes by injecting
attack or false data.

4



CHAPTER 2: LITERATURE REVIEW

Different approaches have been taken to solve distributed optimization problems when adversarial

nodes are present. An example is the approach taken in [9] where the author uses the Fast Row-

stochastic Optimization with uncoordinated Step-sizes (FROST) algorithm that does not require

the nodes to compute step sizes. The authors in [9] also considers the bounds on a parameter and a

gradient bound to show the strength of the attack, though an explicit characterization of the extent

to which the perturbed parameter alters and prevents convergence is not presented. Another method

is the topological approach in tolerating malicious nodes shown in [19] where the author examines

the conditions under which a malicious agent can be identified based on the topology and the size

of the network. Some approaches to decision problems in the presence of adversaries often assume

certain so-called ‘trusted’ agents cannot be compromised, and use information being shared by those

agents as a benchmark to identify and exclude malicious information; thus, building in resilience

to their optimization algorithm [16, 17, 20, 21]. Similarly flavored problems have been studied

in the context of state estimation where methods to identify and extract malicious information

are proposed [22, 23]. Other related adversarial problems like [24–31] explore the detection of

attacks on distributed systems and protection strategies. This dissertation involves exploring the

performance of distributed optimization algorithms under adversarial attack in a communication-

constrained environment.

An important aspect of this dissertation is to show the conditions under which adversarial agents

in a network can obstruct the non-adversarial agents from obtaining their optimal point. When

the objective function is strongly convex, with Lipschitz continuous gradients, convergence to the

optimal solution using gradient-based methods can be achieved at a linear rate [32–34]. It is also

known that noisy communication channels and adversarial nodes in the network can slow down the

linear convergence rate [35,36]. In spatially distributed systems with band-limited communication

5



channels, where agents may resort to exchanging low-bit (quantized) information at each time-step,

the resulting convergence rate is also impacted. Researchers have explored how quantization affects

the performance of these distributed optimization algorithms [37–45].

In this dissertation, it is assumed that malicious nodes not only send corrupted information to

neighboring agents, but also hog the available communication bandwidth. This results in the

need for the non-malicoius nodes to manage the limited bandwidth available by quantizing the

iterates broadcast to neighboring nodes. To solve this, a distributed gradient with quantized

and adversarial attack method (DISGAQAAM) is proposed where non-adversarial agents send

quantized information and adversarial agents send perturbed estimates using an attack vector. The

results on adversarial attack obtained in this dissertation focuses on detection of attacks, resilience

against attacks and the convergence attributes of distributed optimization models under adversarial

attack in a limited communication environment and differ from those in [9,19,22] where the authors

focus mostly on detection and preventive strategies in dealing with adversarial agents.

The attack model is such that the adversarial agents consume communication bandwidths available

in a bid to obstruct the non-adversarial agents from reaching the optimal solution of the network

objective. To cope with hogging of the communication bandwidth, the non-adversarial agents quan-

tize the estimates they broadcast to their neighboring agents via an adaptive quantizer. Researchers

have explored different quantization designs and how they affect the behavior and convergence of

distributed optimization problems as seen in [42, 46–49]. Nonetheless, these quantization mecha-

nisms usually result in quantization errors and some researchers have also explore techniques on

how to compensate for those errors as seen in [50–55]. In [56], a uniform quantizer is used to

show how the estimates of non-adversarial agents can converge to the neighborhood of the optimal

solution when adversarial agents disrupt the network. This dissertation focuses on the design of

a fixed and adaptive quantizer in a communication-constrained environment amidst the presence

of adversarial agents. An adaptive quantizer is studied in [57] in a communication-constrained

6



environment but the authors did not consider the presence of adversarial attacks by malicious actors

which is a contribution of this dissertation.

In the cause of this thesis, a novel distributed gradient with adaptive quantization and adversarial

attack method (DISGAQAAM) is presented using an adaptive quantizer when non-adversarial

agents try to survive the havoc caused by adversarial agents due to the injection of attack by

the adversarial agents. The DISGAQAAM method is described in a manner that non-adversarial

agents can detect the presence of an attack by using an outlier test according to relationship between

the resolution of the quantizer and the attack vector as described. It is shown that under strong

convexity of the objective function, convergence to the neighborhood of the optimal solution can

still be obtained using a suitable step size. A detection strategy is also proposed as a way to detect

adversarial agents in the network.

Solving many distributed optimization algorithms in a network with adversarial agents, especially

in large-scale systems fit the paradigm for distributed optimization in which components or agents

of the system locally and iteratively solves a part of an optimization problem. The agents including

the adversarial and non-adversarial agents exchange information with other (neighboring) agents

in the network to arrive at a system-wide solution. Distributed decision problems are common in

many areas including power systems, multi-agent systems, wireless sensor networks and have seen

a recent surge in distributed machine learning, where server and worker nodes cooperate to solve

learning problems as seen in [58–61]. Typically, in a network comprising 𝑛 agents, each agent

(whether good or bad) has a (sometimes private) local objective function 𝑓𝑖(𝑥) and the goal is to

optimize an aggregate function comprising the local objective functions of the agents ∑𝑛
𝑖=1 𝑓𝑖(𝑥).

In much of the literature, the local objective functions are usually assumed to be strongly convex

and Lipschitz smooth.

The literature on distributed optimization methods is rich and encompasses a wide range of methods

7



that have been proposed to solve such problems including Alternating Direction Method of Mul-

tipliers (ADMM) dual averaging, gradient-based and Newton-type methods. While the ADMM

framework can easily handle a broader class of functions e.g. nondifferentiable functions, can be

parallelized and is easy to implement, it has a very poor convergence rate [10]. Dual averaging

methods, on the other hand, in which agents keep estimates of the decision variable and exchange

them with neighboring agents are known to perform even more poorly than ADMM [62,63]. Many

of the work on distributed optimization with adversaries have been done using distributed gradi-

ent descent (DGD) methods and their variants, which attempt to combine the merits of the dual

averaging and ADMM are appealing and have been studied in the literature [12, 34, 64–69]. Ap-

plying the gradient-descent method to minimize strongly convex and smooth objective functions,

is known, results in a linear rate of convergence with an appropriately chosen step size [70]. When

adversarial agents are present in a network, the algorithms might not converge linearly to be exact

but can converge to a neighborhood of an optimal solution as seen in [7] and [56]. To overcome the

convergence rate limitations of gradient-based methods, second-order (Newton-type) algorithms

have been proposed [71, 72]. Though Newton-type methods have quadratic convergence rates, the

computational and storage overhead incurred in inverting the Hessian is significant, particularly

for large-scale problems that have a high number of variables especially in large distributed sys-

tems with multiple agents. Furthermore, to distribute the computation of Newton-type methods,

positive-definiteness of the Hessian of the objective function is needed to ensure methods like

matrix splitting are applicable [73, 74].

To ensure great performance of distributed algorithms in the presence of attacks, one has to choose

the step size appropriately to speed up convergence. Even though constant or decaying step-

sizes are commonly used in gradient-based and Newton-type methods, the Quasi-Newton methods

that leverage the computation structure of the gradient methods alongside the fast convergence

properties of Newton-type methods have been studied, including methods like the Broyden-Fletcher-

8



Goldfarb-Shanno (BFGS) algorithm [75, 76], the Davidon-Fletcher-Powell [77, 78] algorithm and

the Barzilai-Borwein (BB) method first introduced in [79]. To illustrate the performance of Quasi-

Newton Methods, we consider solving problem (1.1) in a distributed manner. The gradient descent

update is given by:

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘)−𝛼𝑖∇ 𝑓𝑖(𝑥(𝑘)),

where 𝑥𝑖 is the estimate of each agent 𝑖, 𝛼𝑖 is the step size of each agent 𝑖 and ∇ 𝑓𝑖(𝑥(𝑘)) is the

gradient of each agent’s estimates and the newton update is given by:

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘)− 𝐹−1 (𝑥𝑖(𝑘))∇ 𝑓𝑖(𝑥(𝑘)). (2.1)

In equation (2.1), computing the inverse of the hessian 𝐹−1 for large scale problems becomes a

bottleneck, hence the relevance of Quasi-Newton Methods. The central idea in the performance of

these methods is to speed up convergence by exploiting the information from the inverse hessian

without necessarily computing it explicitly. For example, Barzilai-Borwein quasi-Newton method

computes step-sizes using the difference of successive iterates and the gradient evaluated at those

iterates. One of the appealing properties of the BB method is the simple nature of the computations

and updates involved, even in the distributed case as shown in the later part of this thesis.

To improve the convergence rates of distributed gradient descent algorithms in the presence of

adversarial agents, Barzilai-Borwein methods can be employed. In this regard, a preliminary work is

presented in the later part of this dissertation to show its effectiveness in addressing the challenges of

computing the inverse of the hessian. The work on BB method in the last chapter of this dissertation

builds on earlier work on Distributed Gradient Descent (DGD) methods [12,80], [81–83] as well as

distributed Barzilai-Borwein methods [84,85] where the authors analyze two-dimensional convex-

quadratic functions. More recent efforts in [86], which took an adapt-then-combine strategy for

agreement updates obtained a geometric rate of convergence. As shown in the last chapter of

9



this dissertation, a fully distributed algorithm that converges 𝑄-linearly to the optimal solution

is proposed. The difference between the theoretical results obtained from the later part of this

dissertation and the results in [84–86] is the is the direct approach used in achieving Q-Linear

convergence which is not the case for the results cited. The approach taken in the BB method is

applicable to strongly convex functions and the centralized and distributed cases are analysed where

computation of the step-sizes are done in an uncoordinated manner. In this approach, agents locally

carry out computations, exchange information with neighboring agents to reach an agreement and

use information obtained from other agents to continue the iterative process. The applications of

the BB methods to combating adversarial attacks is a future work that will be explored and curious

readers are welcome to embark on this research topic.

Optimization problems with models are also applicable in online convex optimization and have

been explored in [87] where the author measured the performance of an online problem involving

an adversarial loss functions and an adversarial constraint via dynamic regret. In the pursuit of

examining the performance of a distributed optimization problem with adversarial attack, an online

optimization application of a gradient-based algorithm using the Barzilai-Borwein step sizes is

presented in the last chapter of this dissertation. Online Optimization involves a process where

an online agent makes a decision without knowing whether the decision is correct or not. The

objective of the online agent is to make a sequence of accurate decisions given knowledge of

the optimal solution to previous decisions. A common notion associated with many optimization

problems known as regret measures how well the online agent performs after a certain time, based

on the the difference between the loss incured and the best decision taken [88]. The problem of

online optimization has applications to a number of fields including game theory, the smart grid and

classification in machine learning amongst others. Performance of online optimization algorithms

is usually measured in terms of the aggregate regret suffered by the online agent compared with the

known optimal solution of each problem across the sequence of problems.

10



Online optimization methods and algorithms have been studied using different methods including

gradient-based methods [88–90]. Extensions have been considered on unconstrained problems [91]

and online problems with long-term [92]. Problems in dynamic environments have also been

analyzed in [87,93–97]. The author in [94] used gradient tracking technique in a static optimization

scenario and showed that the regret bounds in the dynamic optimization case is independent of the

time horizon. In [95], the authors obtained sublinear regret in a dynamic case for a distributed

online problem using the primal-dual descent algorithm. The authors in [96] obtained sublinear

regret for a distributed online framework that has time-varying constraints and presented a fit

technique to deal with constraint violations. In [87], the authors solves the online optimization

problem with an application to adversarial attack. They explored an online constrained problem

with adversarial objective functions and constraints and obtained a sublinear regret. The key

contribution in the online optimization algorithm proposed in the later part of this dissertation

is the introduction of the Quasi-Newton Barzilai-Borwein (BB) method in the online scenario to

speed up convergence and avoid the bottleneck of computing the inverse of the hessian that the

Newton method demands. Additionally, the results in [88–90] used regular gradient methods in

obtaining sublinear regret while the online work proposed in the later part of this dissertation

obtains a similar sublinear regret using the BB step sizes. As well-structured as gradient methods

are, applying them to large-scale online problems face several challenges and become impractical

due to their well-known slow convergence rates in the static settings [98]. The newton method’s

limitations in storing and inverting the inverse of the hessian also makes them impractical for

large-scale online optimization problems. In this regard, an online distributed Barzilai-Borwein

method is proposed as a preliminary work in the last chapter of this dissertation.

Problems Studied in the Dissertation: The problems explored are itemized as follows:

• A distributed optimization method is proposed in a scenario where adversarial agents inject

11



attack into the network by perturbing their estimates by an attack vector. Convergence to a

neighborhood of the optimal solution is proved for a complete and general graph despite the

presence of adversarial agents in the network.

• Conditions under which adversarial agents can force divergence are shown. Using suitable

preventive mechanisms, detection and resilience strategies are shown to deal with the injection

of attack performed by adversarial agents. A bound on the attack vector is shown as a detection

metric to identify adversarial agents in the network.

• To manage the bandwidth that the adversarial agents use due to their attack, a distributed

gradient algorithm that involves non-adversarial agents quantizing their estimates is proposed.

Both fixed and adaptive quantizers are used and results show that non-adversarial agents can

still approach the neighborhood of the optimal solution.

• To improve the convergence rates of distributed optimization problems with adversaries, a

preliminary work on distributed Quasi-Newton Method is proposed as a possible improvement

over the Newton method. The applications of Quasi-Newton Method to online optimization

is also showed.

The next chapter explores a distributed optimization model in the presence of adversaries.

12



CHAPTER 3: DISTRIBUTED OPTIMIZATION IN THE PRESENCE OF

MALICIOUS AGENTS

This chapter presents an analysis of the effects of malicious agents on the solution of a distributed

optimization problem over a network using the gradient descent algorithm. It is shown how

adversarial nodes can disrupt convergence to optimal solution of the network with knowledge of

the average initial value of the non-malicious agents. When the network structure connecting the

agents is a complete graph, it is shown how cooperation enables the agents to prevent convergence

to the optimal solution by perturbing their local estimates. However when the network structure is

not a complete graph, it is characterized how the malicious agents can cause disruption if they have

an initial value of the regular agents estimates. This thesis shows that for the agents solving the

distributed optimization problem to converge to a neighborhood of the optimal solution, the distance

between their average initial value and the optimal solution has to be less than the magnitude of the

attack vector.

Notations

Vectors and matrices are represented by boldface lower and upper case letters, respectively. We

denote the set of positive and negative reals as R+ and R−, a vector or matrix transpose as (·)𝑇 , and

the L2-norm of a vector by | |·| |. The gradient of a function 𝑓 (·) is denoted ∇ 𝑓 (·) and the Hessian of

a function 𝑓 (·) be 𝐹(·) = ∇2 𝑓 (·). We denote a vector or matrix transpose as (·)𝑇 , and the L2-norm

of a vector by | |·| |. We also denote the gradient of a function 𝑓 (·) as ∇ 𝑓 (·) and an 𝑛 dimensional

vector of ones as 1𝑛.

The problem on distributed optimization with adversaries is formulated in the next section.

13



Problem Formulation and Attack Model

We consider a network comprising 𝑛 agents represented by an undirected graph 𝐺 = (V,E) where

V = 1,2, ...𝑛 is the set of nodes (agents) and E = (𝑖, 𝑗) is the set of edges. Let the neighbors of

each agent 𝑖 be denoted by the set 𝑁𝑖 = { 𝑗 : (𝑖, 𝑗) ∈ E}. Because the graph is undirected, (𝑖, 𝑗) ∈ E

also implies (𝑖, 𝑗) ∈ E. Let a closed convex set be defined as intersections of closed points in space

that are on a side of a hyperplane. The agents collectively solve the unconstrained distributed

optimization problem

min
𝒙∈X

𝑓 (𝒙) =
𝑛∑︁
𝑖=1

𝑓𝑖(𝒙), (3.1)

where each local objective function 𝑓𝑖(·) is convex and smooth and X is the feasible set. To solve

the optimization problem using the gradient descent method, each agent 𝑖 maintains a local copy

𝒙𝑖 ∈ R𝑝 of the decision variable 𝒙 ∈ R𝑝 and carries out a local update using their local cost function

and broadcast the same to their neighbors:

𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙(𝑘)), (3.2)

where 𝛼𝑖 ∈ R+ is an appropriately chosen step size. It is known that if 𝑓𝑖 is convex and differentiable,

with an appropriately chosen step size 𝛼𝑖 the updates in Equation 3.2 will converge to the optimal

solution [11]. The problem set-up considers two cases – the complete graph and the non-complete

graph case. In the complete graph case, the adversarial agents are assumed to know one other and

coordinate the choice of an attack vector.

Similar to adversarial machine learning, the forms of attack can be black box (the attacker has no

knowledge of the model), grey box (attacker has partial knowledge of the model) or white box (the

attacker has complete knowledge of the model). In the context of this dissertation, it is assumed

that the attackers takes the white box attack form and it is assumed that the adversarial agents are

14



not known to the rest of the network a priori. In this chapter, it is assumed that adversarial agents

have knowledge of the model needed to cause obstruction. Assumptions on the attack model are

shown below:

• Adversarial agents have knowledge of the algorithm and the goal of non-adversarial agents.

• Since adversarial agents know the problem that malicious agents are solving, they can perturb

in a manner to result in a deviation of the optimal solution non-adversarial agents are trying

to achieve.

• Non-adversarial agents can detect adversarial agents in the network using a detection strategy

that will be explored in the later part of the thesis.

The objective of the adversarial or malicious nodes is to deviate the network from reaching the

true optimal solution 𝑥∗ of Problem 3.1. To accomplish the malicious objective, rather than follow

the update in Equation 3.2, the adversarial nodes perturb their local estimates with an attack vector

𝜖 ∈ R𝑝:

𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙(𝑘)) + 𝜖(𝑘), (3.3)

before broadcasting their estimates to neighboring agents in the network. We note that an alternative

formulation is to assume an objective function of the form:

min
𝑥
𝑓 (𝒙) (3.4)

for the adversarial agents such that the optimal solution to 𝑓 (𝑥) is 𝑥𝑎 = 𝑥∗+𝜖 , where 𝑥∗ is the optimal

solution to the objective function 𝑓 (𝒙). We assume the adversarial agents carefully pick values of

𝜖 by which to perturb their local estimates.

Next, convergence of the distributed gradient-based method to solve Problem (3.1) using the update

15



in (3.2) when there are malicious agents is analysed. Before proceeding, however, the assumptions

being made on Problem (3.1) is stated below.

Assumption 1. The cost function 𝑓 (𝒙) in Problems (3.1) is strongly convex and twice differentiable.

This implies that for any vectors 𝑥, 𝑦 ∈ R𝑝, there exists ` ∈ R+ such that:

𝑓 (𝑥) ≥ 𝑓 (𝑦) +∇ 𝑓 (𝑦)𝑇 (𝑥− 𝑦) +
`

2
∥𝑥− 𝑦∥2.

Assumption 2. The gradient of the objective function ∇ 𝑓 is Lipschitz continuous. This implies that

for all vectors 𝑥, 𝑦 ∈ R𝑛, there exists a constant 𝐿 ∈ R+ such that: ∥∇ 𝑓 (𝒙)−∇ 𝑓 (𝑦)∥≤ 𝐿∥𝑥− 𝑦∥.

Assumption 3. The attack vector 𝜖 is uniformly bounded. This means that a constant 𝐶 > 0 exists

such that ∥𝜖 ∥ ≤ 𝐶.

These assumptions are standard in the distributed optimization literature, as they allow for analysis.

Convergence Analysis

Convergence for the problem and attack model presented in Section 3 will be characterized, based

on the distributed gradient descent algorithm and agreement updates. Each agent 𝑖 updates his local

estimate 𝑥𝑖 and takes a weighted average of neighboring nodes following

𝒙𝑖 (𝑘 + 1) =
∑︁

𝑗∈𝑁𝑖∪{𝑖}
𝑊𝑖 𝑗𝒙 𝑗 (𝑘) −𝛼𝑖∇ 𝑓𝑖 (𝒙𝑖 (𝑘)) , (3.5)

where𝑊 is an 𝑛-dimensional square weighting matrix comprising entries𝑊𝑖 𝑗 that denote the weight

attached to agent 𝑗’s estimate by agent 𝑖.

Let 𝑋 = [𝒙1; 𝒙2; . . . 𝒙𝑛]𝑇 ∈ R𝑛𝑝 be the concatenation of the local variables 𝒙𝑖, 𝐼𝑝 be the identity

matrix whose dimension is 𝑝, ⊗ be the Kronecker operation, 1𝑛 be an 𝑛 dimensional vector

16



of ones and let 𝑊 be doubly stochastic. We can express equation (3.5) more compactly as:

𝑋(𝑘 +1) = (𝑊 ⊗ 𝐼𝑝)𝑋(𝑘)−𝛼𝑖∇ 𝑓 (𝑋(𝑘)), where𝑊 ⊗ 𝐼𝑝 ∈ R𝑛𝑝×𝑛𝑝, and ∇ 𝑓 (𝑋(𝑘)) ∈ R𝑛𝑝 is the gradient

of the objective 𝑓 (·) evaluated at 𝑋(𝑘). The doubly stochastic matrix 𝑊 has one eigenvalue _ = 1

and the other eigenvalues satisfy 0 < _ < 1.

Convergence analysis to a neighborhood of the optimal solution will be examined by using the

relationship: ∥𝑥𝑖(𝑘)− 𝑥∗∥= ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥+∥�̄�(𝑘)− 𝑥∗∥. However, we must keep in mind that the

bound on ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥ in the following Lemma captures the information on the spectral gap.

Lemma 3.0.1. Let Assumptions 1, 2 and 3 hold with 𝛽 being the second biggest value of the

eigenvalues of the weights 𝑊 (which has one eigenvalue equal to 1 and others have values less

than 1), the distance between the individual estimates and the averaged estimates is bounded by the

following:

∥𝑥𝑖(𝑘)− �̄�(𝑘)∥≤ 𝛼�̄�𝑖

1− 𝛽 .

Proof. See [12] for the proof.

Convergence Analysis Over a Complete Graph

To characterize convergence in the complete graph case, we introduce some additional notation to

be used in the analyses. Let the average of local estimates be 𝒙(𝑘), the average of local gradients

at current estimates be 𝑔(𝑘) and the average of the attack be 𝜖 ; that is, 𝒙(𝑘) = 1
𝑛

∑𝑛
𝑖=1 𝒙𝑖(𝑘), 𝜖 =

1
𝑛

∑𝑛
𝑖=1 𝝐𝑖(𝑘), and 𝑔(𝑘) = 1

𝑛

∑𝑛
𝑖=1∇ 𝑓𝑖(𝒙𝑖(𝑘)). where 𝒙(𝑘) ∈ R𝑝, 𝑔(𝑘) ∈ R𝑝 and 𝜖 ∈ R𝑝.

Based on the definition of 𝑋(𝐾), let 𝑋(𝑘) be such that 𝑋(𝑘) = [𝒙(𝑘), .....𝒙(𝑘)] ∈ R𝑛𝑝, then according

to Lemma IV.2 in [12], we have the following: 𝑋(𝑘) = 1
𝑛
((1𝑛1𝑇𝑛 ) ⊗ 𝐼)𝑋(𝑘). Since 𝑊 is doubly

17



stochastic, we have the following relationship:

𝑋(𝑘 + 1) =
1
𝑛

((1𝑛1𝑇𝑛 )⊗ 𝐼)𝑋(𝑘). (3.6)

From Equation (3.6) as proved in [12], the consensus update can be expressed as 𝒙(𝑘 + 1) =

𝒙(𝑘)−𝛼𝑔(𝑘).

For the complete graph case, since the malicious agents are aware of one another and can cooperate,

collectively deciding on the degree 𝜖 to which they want to perturb their local estimates for their

adversarial goal. Therefore, all malicious agents choose the same 𝜖 ∈ R𝑝 which is the average of all

attack vectors received from neighbors estimates. In our first result, we derive the condition under

which convergence to a neighborhood of the optimal solution may be attained. As we will see, the

size of the neighborhood, amongst others depends on the magnitude of the attack vector 𝜖 .

Lemma 3.0.2. Suppose Assumptions 1, 2 and 3 hold. If the average initial value of of the agents

when malicious agents are present satisfy ∥𝒙(0)−𝑥∗∥< ∥𝜖 ∥ and the step size 𝛼 satisfies the following

relationship: 𝛼 < 2
`+𝐿 , then the iterates generated converge to a neighborhood of the optimal

solution, 𝑥∗; where ` and 𝐿 are the strong convexity parameter and Lipschitz constant of the

objective function and its gradient respectively with ` ≤ 𝐿.

Proof. The iterative equation solution for a distributed gradient descent is:

𝑋(𝑘) = −𝛼
𝑘−1∑︁
𝑠=0

(
𝑊 (𝑘−1−𝑠) ⊗ 𝐼

)
∇ 𝑓 (𝑥(𝑠)) ,

which accounts for the consensus step as well. The relationship between the optimal solution 𝑥∗ and

the desired malicious solution 𝑥𝑎 of the adversarial agents can be expressed as: 𝑥𝑎 = 𝑥∗ + 𝜖 . When

malicious agents are present, we have the following update: 𝒙(𝑘 + 1)− 𝑥𝑎 = 𝒙(𝑘)− 𝛼𝑔(𝑘)− 𝑥𝑎 .

We now have the iterate equation as: 𝒙(𝑘 + 1)− (𝑥∗ + 𝜖) = 𝒙(𝑘)− (𝑥∗ + 𝜖) − 𝛼𝑔(𝑘). To analyze

18



convergence of the iterates to the optimal solution, we will begin by considering the iterative

equation. We can express ∥𝒙(𝑘 + 1)− 𝑥∗− 𝜖 ∥2 as:

∥𝒙(𝑘 + 1)− 𝑥∗− 𝜖 ∥2= ∥𝒙(𝑘)− 𝑥∗− 𝜖 −𝛼𝑔(𝑘)∥2= ∥𝒙(𝑘)− 𝑥∗∥2+∥𝜖 ∥2+𝛼2∥𝑔(𝑘)∥2+2𝜖(𝛼𝑔(𝑘)− (𝒙(𝑘)− 𝑥∗))

−2(𝒙(𝑘)− 𝑥∗)𝑇 (𝛼𝑔(𝑘)).

By using vector norm principle, we know that for vectors 𝑎, 𝑏, the inequality 2𝑎𝑇𝑏 ≤ ∥𝑎∥2+∥𝑏∥2

is satisfied. By similarly applying vector norm principles, we have the following:

2𝜖(𝛼𝑔(𝑘)− (𝒙(𝑘)− 𝑥∗)) ≤ ∥𝜖 ∥2+∥𝛼𝑔(𝑘)− (𝒙(𝑘)− 𝑥∗)∥2= ∥𝜖 ∥2+∥𝛼𝑔(𝑘)∥2+∥𝒙(𝑘)− 𝑥∗∥2−2(𝒙(𝑘)− 𝑥∗)𝑇

≤ ∥𝜖 ∥2+𝛼2∥𝑔(𝑘)∥2+∥𝒙(𝑘)− 𝑥∗∥2−𝛼𝑐1∥𝑔(𝑘)∥2−𝛼𝑐2∥𝒙(𝑘)− 𝑥∗∥2,

where the values of 𝑐1 and 𝑐2 are [11]:

𝑐1 =
2

`+ 𝐿
and 𝑐2 =

2`𝐿
`+ 𝐿

.

By using strong convexity of the objective function we obtain (Theorem 2.1.12 in [11]):

∥𝒙(𝑘 + 1)− 𝑥∗− 𝜖 ∥2= ∥𝒙(𝑘)− 𝑥∗− 𝜖 −𝛼𝑔(𝑘)∥2≤ ∥𝒙(𝑘)− 𝑥∗∥2+∥𝜖 ∥2+𝛼2∥𝑔(𝑘)∥2+∥𝜖 ∥2+𝛼2∥𝑔(𝑘)∥2

+∥𝒙(𝑘)−𝑥∗∥2−𝛼𝑐1∥𝑔(𝑘)∥2−𝛼𝑐2∥𝒙(𝑘)−𝑥∗∥2−𝛼𝑐1∥𝑔(𝑘)∥2−𝛼𝑐2∥𝒙(𝑘)− 𝑥∗∥2,

= (2−2𝛼𝑐2)∥𝒙(𝑘)− 𝑥∗∥2+(2𝛼2 −2𝛼𝑐1)∥𝑔(𝑘)∥2+2∥𝜖 ∥2.

(3.7)

In what follows we would show that the terms in the right hand side of Equation (3.7) does not

grow unbounded and is, in fact, related to the initial iterates and magnitude of the malicious

attack. Clearly ∥𝜖 ∥2 is positive and (2𝛼2 −2𝛼𝑐1) is negative when 𝛼 < 𝑐1. Now we will show that

(2−2𝛼𝑐2) > 0 by equivalently showing that 𝛼𝑐2 < 1.

By using the value 𝑐2 = 2`𝐿
`+𝐿 , we obtain the following relationship: 𝛼𝑐2 = 2𝛼`𝐿

`+𝐿 . Since 𝛼 < 1
`
, then

we obtain the upper bound 𝛼𝑐2 as follows: 𝛼𝑐2 <
1
`

2`𝐿
`+𝐿 = 2𝐿

`+𝐿 . We know that both 𝐿 and ` are

19



positive and ` ≤ 𝐿. Therefore if ` = 𝐿, then, 2𝐿/(` + 𝐿) = 1. So we obtain the fact that 𝛼𝑐2 < 1.

We have now affirmed that (2−2𝛼𝑐2) > 0. Moreover, if 𝛼𝑐2 >
1
2 , then we obtain that 1−𝛼𝑐2 <

1
2

and we obtain that 2−2𝛼𝑐2 < 1. Therefore by using the following condition: 0 < 2−2𝛼𝑐2 < 1, the

left hand side of Equation (3.7) can be upper bounded by

∥𝒙(𝑘 + 1)− 𝑥∗− 𝜖 ∥2≤ (2−2𝛼𝑐2)∥𝒙(𝑘)− 𝑥∗∥2+2∥𝜖 ∥2. (3.8)

If 𝒙(𝑘 + 1)− 𝑥∗ < 0 < 𝜖 , then we have the relationship below:

∥𝒙(𝑘 + 1)− 𝑥∗− 𝜖 ∥2> ∥𝒙(𝑘 + 1)− 𝑥∗∥2. (3.9)

From equations (3.8) and (3.9), we obtain the following relationship: ∥𝒙(𝑘 + 1) − 𝑥∗∥2≤ (2 −

2𝛼𝑐2)∥𝒙(𝑘)−𝑥∗∥2+2∥𝜖 ∥2. By applying recursion we obtain the upper bound of ∥𝒙(𝑘)−𝑥∗∥2 to be:

∥𝒙(𝑘)− 𝑥∗∥2≤ (2−2𝛼𝑐2)𝑘 ∥𝒙(0)− 𝑥∗∥2+2∥𝜖 ∥2, (3.10)

from which we conclude that, after taking the square roots of both sides of equation (3.10), the

following relationship holds:

∥𝒙(𝑘)− 𝑥∗∥≤ (2−2𝛼𝑐2)
𝑘
2 ∥𝒙(0)− 𝑥∗∥+

√
2∥𝐶∥. (3.11)

where 𝐶 is the bound on the attack vector. Hence, the iterates converge to the neighborhood of the

optimal solution, 𝑥∗.

The central idea in Lemma 3.0.2 is that the average initial value of the agents need to lie within 𝜖

of the optimal solution 𝑥∗ for the agents to converge to a neighborhood of the optimal solution in

the presence of malicious agents. Knowledge of the average initial starting value is also critical for

20



the adversarial nodes, because their choice of 𝜖 could depend on the initial average value of 𝒙. The

compete graph case in Lemma 3.0.2 also allows for adversarial agents who know one another to

cooperate in choosing the attack vector or perturbation parameter 𝜖 . However, the downside is the

possibility of jointly picking the wrong attack vector to bolster their malicious objective.

Next, we consider a general case where cooperation is not as easy because of the subset of malicious

agents may not be neighbors.

Convergence Analysis over General Graph Structures

We consider the case in which the communication structure is more general, as opposed to being

a complete graph. With a general structure, malicious agents do not necessarily have the liberty

to cooperate and agree on values for the attack vector 𝜖 , since they may not be adjacent to one

another in the network. In other words, each regular agent independently solves the minimization

problem (3.1) with the malicious agents additively perturbing their local estimates by the attack

vector 𝜖𝑖. We will now examine the conditions on the attack parameter that enables convergence

when non-adversarial and malicious agents are present in a general graph structure. In the analysis

that follows, we assume that the largest value of 𝜖𝑖 is chosen based on the estimates the agents

receive from neighbors.

We will now show conditions on 𝜖 that enable neighborhood convergence of iterates to the optimal

point.

Lemma 3.0.3. Suppose Assumptions 1, 2 and 3 hold, and let the bounded 𝜖 ⪰ 0. If ∥𝒙𝑖(0)− 𝑥∗∥<

0 < 𝜖𝑖 ∀𝑖 and the step size 𝛼 satisfies 𝛼 < 2
`+𝐿 , then the individual iterates generated converge to

the neighborhood of the optimal solution, 𝑥∗.

Proof. The proof is similar to the one in Lemma 3.0.2 except that in this scenario, each agent is

21



individually solving its own problem. In this case, the malicious agents are not cooperating to

coordinate the attack vector 𝜖 . We begin with the iterate equation:

∥𝒙𝑖(𝑘 + 1)− 𝑥∗− 𝜖𝑖∥2= ∥𝒙𝑖(𝑘)− 𝑥∗− 𝜖𝑖 −𝛼𝑔(𝑘)∥2= ∥𝒙𝑖(𝑘)− 𝑥∗∥2+∥𝜖𝑖∥2+𝛼2∥𝑔(𝑘)∥2

+ 2𝜖𝑖(𝛼𝑔(𝑘)− (𝒙𝑖(𝑘)− 𝑥∗))−2(𝒙𝑖(𝑘)− 𝑥∗)𝑇 (𝛼𝑔(𝑘)).
(3.12)

Leveraging the fact that for vectors 𝑎, 𝑏, the inequality 2𝑎𝑇𝑏 ≤ ∥𝑎∥2+∥𝑏∥2 holds, we can further

simplify the fourth summand in Equation (3.12) as

2𝜖𝑖(𝛼𝑔(𝑘)−(𝒙𝑖(𝑘)−𝑥∗)) ≤ ∥𝜖𝑖∥2+∥𝛼𝑔(𝑘)−(𝒙𝑖(𝑘)−𝑥∗)∥2= ∥𝜖𝑖∥2+∥𝛼𝑔(𝑘)∥2+∥𝒙𝑖(𝑘)−𝑥∗∥2−2(𝒙𝑖(𝑘)−𝑥∗)𝑇 ,

≤ ∥𝜖𝑖∥2+𝛼2∥𝑔(𝑘)∥2+∥𝒙𝑖(𝑘)− 𝑥∗∥2−𝛼𝑐1∥𝑔(𝑘)∥2−𝛼𝑐2∥𝒙𝑖(𝑘)− 𝑥∗∥2.

where the values of 𝑐1 and 𝑐2 are respectively [11]:

𝑐1 =
2

`+ 𝐿
and 𝑐2 =

2`𝐿
`+ 𝐿

.

Hence, Equation (3.12) can be upper bounded by:

∥𝒙𝑖(𝑘 + 1)− 𝑥∗− 𝜖𝑖∥2= ∥𝒙𝑖(𝑘)− 𝑥∗− 𝜖𝑖 −𝛼𝑔(𝑘)∥2≤ ∥𝒙𝑖(𝑘)− 𝑥∗∥2+∥𝜖𝑖∥2+𝛼2∥𝑔(𝑘)∥2+∥𝜖𝑖∥2+𝛼2∥𝑔(𝑘)∥2

+∥𝒙𝑖(𝑘)−𝑥∗∥2−𝛼𝑐1∥𝑔(𝑘)∥2−𝛼𝑐2∥𝒙𝑖(𝑘)−𝑥∗∥2−𝛼𝑐1∥𝑔(𝑘)∥2−𝛼𝑐2∥𝒙𝑖(𝑘)− 𝑥∗∥2,

= (2−2𝛼𝑐2)∥𝒙𝑖(𝑘)− 𝑥∗∥2+(2𝛼2 −2𝛼𝑐1)∥𝑔(𝑘)∥2+2∥𝜖𝑖∥2.

Since ∥𝜖𝑖∥2 is positive, the term (2𝛼2 − 2𝛼𝑐1) is negative when 𝛼 < 𝑐1 and using the fact that

0 < (2−2𝛼𝑐2) < 1, which we showed in Lemma 3.0.2, we obtain the following:

∥𝒙𝑖(𝑘 + 1)−𝑥∗−𝜖𝑖∥2≤ (2−2𝛼𝑐2)∥𝒙𝑖(𝑘)−𝑥∗∥2+2∥𝜖𝑖∥2. (3.13)

22



Since 𝒙𝑖(𝑘 + 1)− 𝑥∗ < 0 < 𝜖𝑖, we obtain the relationship below:

∥𝒙𝑖(𝑘 + 1)− 𝑥∗− 𝜖𝑖∥2> ∥𝒙𝑖(𝑘 + 1)− 𝑥∗∥2. (3.14)

From equations (3.13) and (3.14), we obtain: ∥𝒙𝑖(𝑘 +1)−𝑥∗∥2≤ (2−2𝛼𝑐2)∥𝒙𝑖(𝑘)−𝑥∗∥2+2∥𝜖𝑖∥2, and

by the recursive relationship, we obtain the bounds: ∥𝒙𝑖(𝑘)−𝑥∗∥2≤ (2−2𝛼𝑐2)𝑘 ∥𝒙𝑖(0)−𝑥∗∥2+2∥𝜖𝑖∥2,

from which we conclude that ∥𝒙𝑖(𝑘)−𝑥∗∥ can be bounded as the following:

∥𝒙𝑖(𝑘)−𝑥∗∥≤ (2−2𝛼𝑐2)
𝑘
2 ∥𝒙𝑖(0)−𝑥∗∥+

√
2∥𝜖𝑖∥.

Therefore, the individual iterates converge to the neighborhood of the optimal solution, 𝑥∗.

Lemma 3.0.3 illustrates the deviations of individual agents from the optimal solution and the bound

indicates the chosen attack vector affects the neighborhood of convergence. While in Lemma 3.0.2

allows adversarial agents to coordinate and use a uniform attack vector 𝜖 , the result in Lemma 3.0.3

does not require cooperation or the use of a uniform attack vector.

Remark 1. The disparities in the convergence analysis of the complete and general graph are

due to how adversarial choose their attack vectors. If the attackers jointly choose their attack

vector favorably, then the complete graphical structure will be more favorable for the adversarial

agents than the general graphical structures as they have more leverage in the obstruction process.

However, the general graphical structure has advantages too as there is more privacy and flexibility

for the adversarial agents to choose their attack vectors. The results for both the complete and

general graphical structures can be improved by making the attack vector as a function of the agents

estimates for more interdependence.

23



Numerical Experiments

We illustrate our theoretical results of Lemmas 3.0.2 and 3.0.3 in a network of 𝑛 = 10 agents over

100 iterations using the linear regression loss function as follows:

min
𝒙∈R𝑝

𝑓 (𝒙) =
𝑛∑︁
𝑖=1

1
2
∥𝐴𝑖𝒙− 𝑏𝑖∥2, (3.15)

in a distributed way. In equation (3.15), 𝑛 = 10, 𝐴𝑖 is a 𝑛 by 𝑛matrix and 𝑏𝑖 is an 𝑛 by 1 matrix. The

gradient of the the function in equation (3.15) is 𝐴𝑇 (𝐴𝑖𝒙 − 𝑏𝑖). Given that the Lipschitz constant

𝐿 is the largest eigenvalue of 𝐴𝑇 𝐴 and the strong convexity constant ` is the smallest eigenvalue

of 𝐴𝑇 𝐴, we choose a step size such that 𝛼 < 2
`+𝐿 to satisfy the strong convexity assumptions based

on results of Lemmas 3.0.2 and 3.0.3. We will show how the choices of attack vectors of different

magnitudes and agents’ initial estimates influence convergence to a neighborhood of the optimal

solution. In the illustrations to follow, entries of the attack vector was drawn uniform distribution

over the interval (0,1). For the complete and general graph cases below, we use a step size of

𝛼 = 1
`+𝐿 .

Complete Graph Case with Common Attack Vector

We begin with the case when the communication network is a complete graph, the case in which the

adversarial agents perturb their local iterates with a common attack vector. We define the error as

the distance between the average iterate and the optimal solution and present the error convergence

in Figure 3.1 to 3.3. For the plot in Figure 3.3, we assumed the number of non-adversarial nodes

was 1 with 9 adversarial nodes.

In Figure 3.2, we illustrate convergence of the error when there are 5 adversarial and 5 non-

24



adversarial nodes in the 10-node network. Figure 3.1 contains the plot for the scenario with 8

non-adversarial nodes and 2 adversarial nodes, which shows a further reduction in the actual error

obtained. In the three figures, we can observe that as the proportion of non-adversarial agents in

the network increase, the error convergences faster.

0 10 20 30 40 50 60 70 80 90 100

10
0

Error

Figure 3.1: Same Attack Simulations for 8 non-adversarial agents and 2 adversarial agents.

25



0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Error

Figure 3.2: Same Attack Simulations for 5 non-adversarial agent and 5 malicious agents.

General Graph Case with Different Attack Vectors

We perform experiments using the same linear regression loss function in a scenario where adver-

sarial agents use a different attack vector. All the parameters used in this scenario are similar to

those used in the scenario with same attack vector (section 3). We vary the number of malicious

nodes for the general (non-complete) graph case comprising 𝑛 = 10 agents while solving Problem

(3.15). We also show the error evolution for different proportions of malicious to non-malicious

nodes. Figure 3.6 shows the case with 3 non-adversarial and 7 adversarial nodes. Figure 3.5 shows

the case with 5 non-adversarial and 5 adversarial nodes; and Figure 3.4 shows the case comprising

26



0 10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Error

Figure 3.3: Same Attack Simulations for 1 non-adversarial agent and 9 malicious agents.

8 non-adversarial nodes and 2 malicious nodes. From the figures, we can observe that as the

ratio of malicious nodes in the network increases, the convergence error increases. This outcome

is intuitive and expected, since the presence of more agents causing disruption to the distributed

consensus-based gradient algorithm would cause a greater deviation from the optimal solution.

In this chapter, the application of distributed optimization in adversarial attacks is shown. In

addition, conditions that guarantee convergence to a neighborhood of the optimal solution despite

the presence of malicious nodes in a network is presented. The method used in this chapter is the

standard distributed gradient descent method.

27



0 10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Error

Figure 3.4: Different Attack Simulations for 8 non-adversarial agent and 2 malicious agents.

In the next chapter, an extension of the application of the problem described in this chapter

is presented specifically in a scenario where there are constraints from adversarial attack and

quantization.

28



0 10 20 30 40 50 60 70 80 90 100

0.6

0.7

0.8

0.9

1

1.1

1.2

Error

Figure 3.5: Different Attack Simulations for 5 non-adversarial agent and 5 malicious agents.

29



0 10 20 30 40 50 60 70 80 90 100

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Error

Figure 3.6: Different Attack Simulations for 3 non-adversarial agent and 7 malicious agents.

30



CHAPTER 4: QUANTIZED AND DISTRIBUTED SUBGRADIENT

OPTIMIZATION WITH MALICIOUS ATTACK

There are different methods for solving communication-constrained problems; some of which

are event-triggered, sparsification and Quantization (the focus of this dissertation). In an event-

triggered strategy, communication is done when necessary and especially when a particular event

has occurred. Sparsification entails dropping some terms or making some entries (𝑥𝑖) zero. Quan-

tization is explored in this chapter where convergence properties of a distributed gradient algorithm

in the presence of adversarial agents and limited bandwidth for communication are characterized.

The application of a communication-constrained optimization is seen in underwater communica-

tion where the communication strategy using the number of bits of information matters due to the

complexity of the system. In a communication-constrained environment, agents 𝒙𝑖 ∈ R𝑝 transmit

up to 𝑝 floating point numbers. For distributed solution, they exchange 𝑥𝑖(𝑘 + 1) = 𝑝(𝑥𝑖(𝑘), 𝑥 𝑗 ....)

with his neighbors. The calculations on the number of bits needed is initially done by computing

the number of bits needed for 1 time step. Subsequently, for 𝜖 accuracy and O(1
𝜖
) iterations, the

order on the number of bits is O(1
𝜖
)∗𝑛 ∗ 𝑝.

In this chapter, it is shown that the algorithm proposed converges to a neighborhood of the optimal

solution and that the closeness to the optimal solution can be expressed in terms of the number

of bits from the quantization and the size of the attack vector. The results in this chapter show

that if a step size is chosen with respect to the strong convexity and Lipschitz parameters and the

subgradient bound is expressed in terms of a suitable step size, then non-adversarial agents are still

able to approach the optimal solution despite the presence of adversarial agents. Furthermore, the

performance of the algorithm is expressed as a function of the adversarial attack vector and fineness

of the quantization.

31



Problem Formulation

Suppose there is an undirected graph 𝐺 = (V,E) comprising 𝑛 nodes where V = 1,2, ...𝑛 is the set

of nodes (agents) and E = (𝑖, 𝑗) is the set of edges, the neighbors of each agent 𝑖 is defined as the set

𝑁𝑖 = { 𝑗 : (𝑖, 𝑗) ∈ E}. Let a closed convex set be defined as intersections of closed points in space

that are on a side of a hyperplane. The agents are to jointly solve the problem

min
𝒙∈X

𝑓 (𝒙) =
𝑛∑︁
𝑖=1

𝑓𝑖(𝒙), (4.1)

where 𝒙 is the decision variable, X is the closed, convex, feasible set and each agent 𝑖 has a

component 𝑓𝑖(·) of the strongly convex objective function 𝑓 (·). We assume that some agents in

the network act in an adversarial (malicious) manner by perturbing their estimate at each iteration

and overwhelming the communication bandwidth for coordination in the network. To manage the

limited bandwidth left, the non-adversarial nodes quantize the information shared with neighboring

nodes. The uniform quantizer is chosen to ensure that agents use equal and constant step sizes to

broadcast information to their neighbors.

As illustrated in Figure 4.1, the thin communication links are used to denote connection between two

non-adversarial agents, while thick pipes are used to depict the connection between an adversarial

agent and any other agents (adversarial or non-adversarial). The non-adversarial nodes need to

manage the communication bandwidth to approach the optimal solution to Equation (4.1) and to

overcome the bottleneck caused by adversarial nodes upscaling their estimates. We solve problem

(4.1) using the distributed subgradient method. In this framework, each non-adversarial agent 𝑖

broadcasts quantized iterates 𝑄(𝒙𝑖(𝑘)) ∈ R𝑝 based on what is received from neighbors and carry

32



Non-adversarial Agent

Adversarial Agent

Figure 4.1: Adversarial behavior in WSN

out a local update according to:

𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘)− 𝒒𝑖(𝑘) +
∑︁

𝑗∈𝑁𝑖∪{𝑖}
𝑤𝑖 𝑗𝒒 𝑗 (𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙𝑖(𝑘)), (4.2)

where 𝛼𝑖 ∈ R+ is the step size, 𝑤𝑖 𝑗 is the (𝑖, 𝑗)𝑡ℎ element of the weight matrix, and 𝑞𝑖(𝑘) =𝑄𝑖
𝑘
(𝒙𝑖(𝑘))

is the quantized value of 𝒙𝑖(𝑘). The attack model is explained in the next section.

33



Attack Model

The attack model used in this chapter is similar to adversarial machine learning where adversarial

agents can attack a machine learning model at the training or testing stage by injecting false data

in the dataset. Adversarial agents can attack such a model using different types of attack such as

a black box where the attacker has no knowledge of the update, a grey box where the attacker has

partial knowledge of the model and a white box where the attacker has complete knowledge of the

update. In this chapter, it is assumed that adversarial agents have sufficient knowledge of the model

needed to cause obstruction. Assumptions on the attack model are itemized below:

• Adversarial agents have sufficient knowledge of the algorithm and the objective of non-

adversarial agents.

• Since adversarial agents are familiar with the problem adversarial agents are solving, they

can perturb in a manner to result in a deviation of the optimal solution non-adversarial agents

are trying to arrive at.

• Non-adversarial agents can detect adversarial agents in the network using a detection strategy

that will be explored in the later part of the thesis.

The aim of the malicious agents is to prevent the network from reaching the optimal solution

to Problem (4.1), by perturbing their estimates with either a positive or negative attack vector

𝑒𝑖(𝑘) ∈ R𝑝 (with all entries of the vector being positive or negative) according to the following

update equation:

𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘)− 𝒒𝑖(𝑘) +
∑︁

𝑗∈𝑁𝑖∪{𝑖}
𝑤𝑖 𝑗𝒒 𝑗 (𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙𝑖(𝑘))+𝑒𝑖(𝑘). (4.3)

After the step in Equation (4.3), the adversarial agents broadcast their estimates to their neighbors.

34



We note that the adversarial agents can choose either the same attack vector 𝑒(𝑘) or different attack

vector 𝑒𝑖(𝑘) at every iteration in a general graphical structures where 𝑒(𝑘) is average of all the

attack vectors 𝑒𝑖(𝑘). We analyze the general graphical structures scenario and details regarding

these graphical structures in an adversarial case are seen in [35].

Now we explore the uniform quantization scheme the non-adversarial agents are using to manage

the bandwidth used by adversarial agents in the next section.

The Uniform Quantizer

Let 𝒙 ∈ R𝑝. A uniform quantizer with step size 𝛿 and mid-value 𝒙′ is 𝑸(𝑥) = 𝒙′ + sign(𝒙 −

𝒙′)𝛿⌊ ∥𝒙−𝒙
′∥

𝛿
+ 1

2⌋, where 𝛿 = ℓ

2𝑏 , ℓ is the size of the quantization interval, 𝑏 is the number of bits,

⌊·⌋ is the floor function and sign(𝒙) is the sign function. Let the quantization interval be set to

[𝒙′−1/2,𝒙′+1/2], and the uniform quantizer be denoted as 𝑸𝑖
𝑘
(𝒙𝑖(𝑘)) with mid-value expressed as

𝒙′
𝑘

Δ,𝑖
. Let the quantization outcome 𝒒𝑖(𝑘) = 𝑸𝑖

𝑘
(𝒙𝑖(𝑘)); then, the quantization error, Δ𝑖(𝑘) is given by

Δ𝑖(𝑘) = 𝒒𝑖(𝑘)− 𝒙𝑖(𝑘). Suppose ℓ𝑖 is the quantization interval size for each agent 𝑖, the quantization

error bound of a uniform quantizer is given by ∥Δ𝑖(𝑘)∥≤ ℓ𝑖
2𝑏+1 .

The following assumptions are made on Problem (4.1):

Assumption 4. The cost function 𝑓 (𝒙) in Problems (4.1) is strongly convex. This implies that for

any vectors 𝒙, 𝒚 ∈ R𝑝, there exists a strong convexity parameter ` ∈ R+, with ` ≤ 𝐿 (where 𝐿 is the

Lipschitz constant) such that: 𝑓 (𝒙) ≥ 𝑓 (𝒚) +∇ 𝑓 (𝒚)𝑇 (𝒙− 𝒚) + `

2 ∥𝒙− 𝒚∥2.

Assumption 5. The subgradient 𝑔𝑖 of 𝑓𝑖 at 𝒙𝑖 is uniformly bounded by �̄�𝑖 in the feasible set X.

This implies that there exists �̄�𝑖 > 0 such that ∥𝑔𝑖(𝒙𝑖)∥≤ �̄�𝑖, where for all 𝒚, the relationship

𝑓𝑖(𝒚) ≥ 𝑓𝑖(𝒙) +𝑔𝑇
𝑖

(𝒚𝑖 − 𝒙𝑖) holds.

35



Assumption 6. The attack vector 𝑒𝑖(𝑘) is uniformly bounded. This means that a constant 𝐶 > 0

exists such that for all 𝑘 , ∥𝑒𝑖(𝑘)∥ ≤ 𝐶.

Using the above assumptions, we show below that convergence to a neighborhood of the optimal

solution is attained despite the two constraints of malicious attack and quantization described.

Distributed Subgradient Convergence Analysis with Quantization and Attack

We now proceed to the convergence analysis used to solve Problem (4.1). The goal is to analyze

convergence to the optimal solution of the minimization problem in equation (4.1) in the presence

of quantization and attack as described in section 4. In equation (4.2), each non-adversarial and

adversarial agent 𝑖 achieves consensus with other nodes in the network by taking a weighted average

of its estimates and those of its neighbors. This averaged consensus includes non-adversarial and

adversarial agents’ estimates. Let 𝑋 = [𝒙1; 𝒙2; . . . 𝒙𝑛]𝑇 ∈ R𝑛𝑝 be the concatenation of the local

variables 𝒙𝑖, and let 𝐼𝑝 be the identity matrix of dimension 𝑝. When quantization occurs among

agents during broadcasting of information, the quantized values can result in solutions that are not

feasible when subjected to constraints. This results in an error when projected unto the feasible

set. Suppose 𝒉 ∈ R𝑝, let 𝝃(𝒉) be the error based on projection of 𝒉 in the feasible set X, let

𝚵 = [𝝃1; 𝝃2; . . . 𝝃𝑛]𝑇 ∈ R𝑛𝑝 be the concatenation of 𝝃𝑖 and 𝐻 denotes the concatenation of the local

variables of 𝒉𝑖 with 𝝃(𝒉) = 𝒉− [𝒉]X . Another representation of Equation (4.2) is given by:

𝒉𝑖(𝑘) =
∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗𝒙 𝑗 (𝑘) + 𝒙𝑖(𝑘)− 𝒒𝑖(𝑘) +
∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗 (𝒒 𝑗 (𝑘)− 𝒙 𝑗 (𝑘))−𝛼(𝑘)𝒈𝑖(𝒙𝑖(𝑘)),

where 𝛼(𝑘) is an appropriately chosen step size. The iterative update equation is now given as:

𝒙𝑖(𝑘 + 1) = [𝒉𝑖(𝑘)]X = 𝒉𝑖(𝑘)− 𝝃𝑖(𝒉𝑖(𝑘)). (4.4)

36



We obtain the matrix form of the above update to be the following:

𝑯(𝑘) = 𝑾𝑿(𝑘)+(𝑰−𝑾)(𝑿(𝑘)−𝑸(𝑘))−𝛼(𝑘)𝑮(𝑿(𝑘)),

𝑿(𝑘 + 1) = 𝑯(𝑘)−𝚵(𝑯(𝑘)), (4.5)

where 𝑾 is a doubly stochastic weight matrix. Suppose �̄�(𝑘) and 𝝃(𝑘) are the mean of 𝒙𝑖(𝑘) and

𝝃𝑖(ℎ𝑖(𝑘)) respectively, we obtain �̄�(𝑘) = 1
𝑛

∑𝑛
𝑖=1 𝒙𝑖(𝑘) = 1

𝑛
𝑿𝑇1 ∈ R𝑝, and

𝝃(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

𝝃𝑖(𝒉𝑖(𝑘)) =
1
𝑛
(𝚵(𝑘))𝑇 1 ∈ R𝑝 . (4.6)

We can define the quantization error for each agent 𝑖 as Δ𝑖(𝑘) = 𝒙𝑖(𝑘)− 𝑞𝑖(𝑘), the average of the

errors as Δ(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖(𝑘) and the average of the attack as 𝑒(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1
𝑒𝑖(𝑘). We now obtain:

�̄�(𝑘) = �̄�(𝑘)− 𝛼(𝑘)
𝑛

∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘)), and �̄�(𝑘 +1) = �̄�(𝑘)−𝝃(𝑘). Thus, we obtain the iterative equation:

�̄�(𝑘 + 1) = �̄�(𝑘)− 𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− 𝝃(𝑘). (4.7)

Now we introduce a Lemma that accounts for the bounds of the projection error according to

equation (4.6).

Lemma 4.0.1. Let Assumptions 4, 5 and 6 hold with Δ(𝑘) being the average of the quantization

errors. The error due to projection is bounded given by: ∥𝝃(𝑘)∥≤
√

8Δ(𝑘) +
√

2 �̄�
𝑛
𝛼.

Proof. See Appendix B.

Convergence analysis will be examined by using the relationship: ∥𝑥𝑖(𝑘)−𝑥∗∥= ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥+∥�̄�(𝑘)−

𝑥∗∥. However, we must examine the bound on ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥ in the following Lemma and note that

37



the bound captures the information on the spectral gap.

Lemma 4.0.2. Let Assumptions 4, 5 and 6 hold with 𝛽 being the second biggest value of the

eigenvalues of the weights 𝑊 (which has one eigenvalue equal to 1 and others have values less

than 1), the distance between the individual estimates and the averaged estimates is bounded by the

following:

∥𝑥𝑖(𝑘)− �̄�(𝑘)∥≤ 𝛼�̄�𝑖

1− 𝛽 ,

where 𝛼 is the step size and �̄�𝑖 is the subgradient bound.

Proof. See [12] for the proof.

Now we proceed to the main result in the next section.

Main Result

This section presents a convergence analysis based on the proposition in Sections 4, which is

summarized in Theorem 4.0.3 below.

Theorem 4.0.3. Let Assumptions 4, 5 and 6 hold, and suppose the step size 𝛼 satisfy 𝛼 < 2
`+𝐿 .

Given that the size of a uniform quantization interval with 𝑏 bits be upper-bounded by ℓ ≤ 2𝑏√
6
,

and the subgradient bound be upper-bounded by �̄� ≤ 1/
√

6𝛼, then the iterates generated when

non-adversarial send quantized estimates converge to a neighborhood of the optimal solution, 𝑥∗

with the neighborhood size given by
√

6(𝑙+2𝑏 �̄�𝛼)+2𝑏
√

3∥𝑒(𝑘)∥
2𝑏 .

Proof. To begin the proof, we first express the relationship between the optimal solutions of

the adversarial and non-adversarial agents. Thereafter, the relationships are substituted in the

convergence analysis of the proposed distributed optimization problem. Recall that the adversarial

38



agents are injecting the attack 𝑒𝑖(𝑘) and the non-adversarial agents have to manage the limited

bandwidth left via quantization with parameters shown in Theorem 4.0.3. Let 𝑒(𝑘) be the average

of 𝑒𝑖(𝑘) received from neighbors and let 𝒙∗ be the optimal solution of (4.7) and 𝒙𝑎 be the adversary

according to 𝒙𝑎 = 𝒙∗ + 𝑒(𝑘), then we obtain the following which will be used for the convergence

analysis:

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2= ∥�̄�(𝑘)− 𝒙∗− 𝑒(𝑘)− 𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− 𝝃(𝑘)∥2. (4.8)

By expanding equation (4.8), we obtain the following relationship:

∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥2= ∥�̄�(𝑘 + 1)−𝒙∗∥2+∥𝑒(𝑘)∥2+

𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

+∥𝝃(𝑘)∥2+2𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)
−2(�̄�(𝑘)−𝒙∗)𝑇

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
+2𝝃(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)− 𝒙∗)

)
+2𝑒(𝑘)𝝃(𝒌).

By inspection, the upper bound of the preceding expression ∥�̄�(𝑘 +1)−𝒙∗− 𝑒(𝑘)∥2 has eight terms.

In what follows, we bound some of the eight terms, starting with the fifth term.

2𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− (�̄�(𝑘)− 𝒙∗)

)
≤ ∥𝑒(𝑘)∥2+

𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− (�̄�(𝑘)− 𝒙∗)

2

−2(�̄�(𝑘)− 𝒙∗)𝑇
(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
,

≤ ∥𝑒(𝑘)∥2+
𝛼2

𝑛2

 𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

+ ∥�̄�(𝑘)− 𝒙∗∥2−𝛼
𝑛
𝑐1

 𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

−𝛼𝑐2∥�̄�(𝑘)− 𝒙∗∥2,

where 𝑐1 =
2

`+ 𝐿
and 𝑐2 =

2`𝐿
`+ 𝐿

. We proceed by bounding the second term of the derived upper

39



bound of 2𝑒(𝑘)
(
𝛼(𝑘)
𝑛

∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))− (�̄�(𝑘)− 𝒙∗)

)
. In this regard, we have the following bound:

 𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

 ≤ 𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥. (4.9)

By squaring both sides of the equation (4.9), we obtain: ∥∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))∥2≤ (∑𝑛

𝑖=1∥𝑔𝑖(𝒙𝑖(𝑘))∥)2.

Therefore we have the relationship:

2𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

≤ ∥𝑒(𝑘)∥2+
𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+∥�̄�(𝑘)− 𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)−𝒙∗∥2.

We recall that the expression ∥�̄�(𝑘 + 1)− 𝒙∗ − 𝑒(𝑘)∥2 is upper-bounded by eight terms. Now we

bound the seventh term, 2𝝃(𝑘)(𝛼(𝑘)
𝑛

∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))− (�̄�(𝑘)− 𝒙∗)) to obtain:

2𝝃(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− (�̄�(𝑘)− 𝒙∗)

)
≤ ∥𝝃(𝑘)∥2+

𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+ ∥�̄�(𝑘)− 𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)− 𝒙∗∥2.

Next we bound the expression 2𝑒(𝑘)𝝃(𝑘) as 2𝑒(𝑘)𝝃(𝑘) ≤ ∥𝑒(𝑘)∥2+∥𝝃(𝑘)∥2. Afterwards, we combine

40



all bounds and obtain the following:

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2

≤ ∥�̄�(𝑘)−𝒙∗∥2+∥𝑒(𝑘)∥2+
𝛼2

𝑛2 (
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥)2+∥𝝃(𝑘)∥2+∥𝑒(𝑘)∥2+
𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+∥�̄�(𝑘)−𝒙∗∥2

− 𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)− 𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)− 𝒙∗∥2+∥𝝃(𝑘)∥2

+
𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+ ∥�̄�(𝑘)− 𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)− 𝒙∗∥2+∥𝑒𝑖(𝑘)∥2+∥𝝃(𝑘)∥2.

= (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+3∥𝝃(𝒌)∥2+
(
3𝛼2

𝑛2 − 3𝛼
𝑛
𝑐1

) (
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

.

We will show that
(

3𝛼2

𝑛2 − 3𝛼
𝑛
𝑐1

)
≤ 0, when 𝛼 ≤ 𝑐1. To do this, it suffices to show that 3𝛼2−3𝛼𝑛𝑐1 ≤

0. We know that the root of the equation in 𝛼 of 𝛼(3𝛼−3𝑛𝑐1) = 0 is 𝛼 = 0 and 𝛼 = 𝑛𝑐1, and

we have solution 0 ≤ 𝛼 ≤ 𝑛𝑐1. So 𝛼 ∈ [0, 𝑛𝑐1]. If 𝛼 ≤ 𝑐1 and 𝑛 ≥ 1, it implies that 𝛼 ≤ 𝑛𝑐1.

Alternatively, if 𝛼 ≤ 𝑐1, then 𝛼2 ≤ 𝛼𝑐1 and consequently 3𝛼2

𝑛2 − 3𝛼𝑛𝑐1
𝑛

≤ 0 for 𝑛 > 0. We now obtain(
3𝛼2

𝑛2 − 3𝛼𝑛𝑐1
𝑛

) (∑𝑛
𝑖=1∥𝒈𝑖(𝒙𝑖(𝑘))∥

)2
≤ 0. Therefore the bounds on ∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒𝑖(𝑘)∥2 is:

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2 ≤ (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+3∥𝝃(𝒌)∥2.

To show that 3− 3𝛼𝑐2 ≥ 0, we show that 3𝛼𝑐2 ≤ 3 ⇒ 𝛼𝑐2 ≤ 1. If 𝛼 ≤ 1/`, then we have the

following: 𝛼𝑐2 ≤ 1
`

2`𝐿
`+𝐿 = 2𝐿

`+𝐿 . If ` = 𝐿, then `+ 𝐿 = 2𝐿⇒ 𝛼𝑐1 ≤ 1. Since 𝛼𝑐2 ≤ 1, then we have

that (3−3𝛼𝑐2) ≥ 0. For 3−3𝛼𝑐2 not to grow unbounded we need (3−3𝛼𝑐2) ∈ (0,1). This implies

that we need 3(1−𝛼𝑐2) ≤ 1 or equivalently when 𝛼 ≥ 2
3𝑐2

= `+𝐿
3`𝐿 . If 𝛼 ∈

(
`+𝐿
3`𝐿 ,

1
`

)
, then the expression

(3−3𝛼𝑐2) will not grow unbounded. From Lemma 4.0.1, we obtain: ∥𝝃(𝑘)∥2≤ 8∥Δ(𝑘)∥2+2�̄�2𝛼2.

41



and it leads to the following:

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2≤ (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+24∥Δ(𝑘)∥2+6�̄�2𝛼2.

This leads to following relationship:

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2≤ (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+
24(ℓ)2

22𝑏+2 + 6�̄�2𝛼2,

≤ (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+
6(ℓ)2

22𝑏 + 6�̄�2𝛼2.

From the preceding relationship, the expression ∥�̄�(𝑘 + 1)− 𝒙∗ − 𝑒(𝑘)∥2 needs to be bounded to

an expression in terms of the expression ∥�̄�(𝑘 + 1) − 𝒙∗∥2. To achieve this goal, we need a

condition such that if �̄�(𝑘 + 1)− 𝒙∗ < 0 < 𝑒(𝑘), then ∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥≥ ∥�̄�(𝑘+1)− 𝒙∗∥. In

addition, to ensure that the algorithm also holds for negative attack vector, if 𝑒(𝑘) ≤ 0, then

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥≥ ∥�̄�(𝑘 + 1)− 𝒙∗∥ holds. Therefore, we obtain the following relationship:

∥�̄�(𝑘 + 1)−𝒙∗∥2≤ (3−3𝛼𝑐2)∥�̄�(𝑘)−𝒙∗∥2+3∥𝑒(𝑘)∥2+
6

22𝑏 (ℓ)2+6�̄�2𝛼2.

By applying recursion principles, we obtain the following bounds:

∥�̄�(𝑘)− 𝒙∗∥2≤ (3−3𝛼𝑐2)𝑘 ∥�̄�(0)−𝒙∗∥2+3∥𝑒(𝑘)∥2+
6

22𝑏 (ℓ)2+6�̄�2𝛼2,

Equivalently, the following relationship holds:

∥�̄�(𝑘)−𝒙∗∥ ≤ (3−3𝛼𝑐2)𝑘/2∥�̄�(0)−𝒙∗∥+
√

3∥𝐶∥+
√︂

6
22𝑏 ℓ +

√
6�̄�𝛼

where 𝐶 is the upper bound on the attack vector. For
√︁

6/22𝑏ℓ to be small, we need
√︁

6/22𝑏ℓ ≤ 1,

which implies that ℓ ≤ 1√︃
6

22𝑏

= 2𝑏√
6
. In addition, if

√
6�̄�𝛼 ≤ 1 or �̄� ≤ 1/

√
6𝛼, the size of the

42



neighborhood is given by:
√

6(𝑙+2𝑏𝐿𝛼)+2𝑏
√

3∥𝑒(𝑘)∥
2𝑏 , and the non-adversarial agents can converge to the

neighborhood of the optimal solution, 𝒙∗.

Remark 2. There are trade-offs in the results obtained by combining adversarial attack and

quantization as constraints. This is evident in the proof of Theorem 4.0.3, where we needed

the condition ∥�̄�(0)− 𝑥∗∥< ∥𝑒(𝑘)∥ when 𝑒(𝑘) > 0 for convergence. However, such condition is not

needed when 𝑒(𝑘) ≤ 0. Strong convexity assumption ensures that the error does not grow unbounded.

Moreover, the gradient bound needs to depend on the step size as well to aid convergence. Although

a recent result [35] shows that increasing the number of adversarial agents leads to an increase

in the convergence neighborhood, when quantization is added as a constraint, increasing the

number of bits leads to reduction of the error bounds. While the authors in [37, 39, 40] show that

convergence of distributed gradient methods with quantization depends on the quantization levels

and the number of bits, this proposed method adds adversarial attack to the constraint and still

guarantee similar convergence attributes.

Remark 3. We note that the results presented in Theorem 4.0.3 align with the existing literature;

for example, Theorem 4.4 in [8] is relatable in a manner where the authors established that a single

adversarial node can cause all nodes to converge to any arbitrary value when they implement

algorithm (4.3). The presence of the attack vector can be related to the adversarial agents solving

a different objective problem.

In the next chapter, an adaptive quantization technique used by non-adversarial agents is explored

to manage the significant bandwidth used by adversarial agents.

43



CHAPTER 5: DISTRIBUTED AND ADAPTIVE QUANTIZATION IN A

NETWORK WITH ADVERSARIES

This chapter describes a distributed subgradient with adaptive quantization and adversarial attack

method (DISGAQAAM) using an adaptive quantizer when non-adversarial agents try to survive

the havoc caused by adversarial agents due to the injection of attack by the adversarial agents. A

method is proposed in a manner that non-adversarial agents can detect the presence of an attack

using a suitable detection mechanism which will be explored in this chapter. Resilience strategies

against adversarial attacks are also explored in the course of this chapter. It is proved that under

strong convexity of the objective function, convergence to a neighborhood of the optimal solution

can still be obtained using a suitable step size.

Problem Formulation

For an undirected graph𝐺 = (V,E) comprising 𝑛 nodes and E edges, we let V = 1,2, ...𝑛 represent

the set of nodes, E = (𝑖, 𝑗) to be the set of edges and 𝑁𝑖 = { 𝑗 : (𝑖, 𝑗) ∈ E} to be the neighborhood

set. Let a closed convex set be defined as intersections of closed points in space that are on a side

of a hyperplane. The agents are represented by nodes and their objective is to jointly solve the

following:

min
𝒙∈X

𝑓 (𝒙) =
𝑛∑︁
𝑖=1

𝑓𝑖(𝒙). (5.1)

In equation (5.1), X is the closed, convex, feasible set and 𝒙 is the decision variable. Each agent

in the network holds some part 𝑓𝑖(·) of the strongly convex objective function 𝑓 (·). The goal of

the agents is to reach the optimal solution of problem (5.1), despite the injection of attack vectors

44



by some adversarial agents. We assume implicitly that the adversarial attacks are akin to denial

of service attacks in which the resources for communication and coordination are jammed making

the non-adversarial agents resort to compressing information being shared across the network to

manage the limited bandwidth.

Non-adversarial Agent

Adversarial Agent

Figure 5.1: Adversarial behavior in WSN

A recent result [56] solves the illustrated problem in Figure 5.1 using a fixed quantizer but the

crux of this paper is to solve the problem using an adaptive quantizer. As seen in Figure 5.1, the

thin communication links represent the connection between non-adversarial agents, while thick

pipes can either represent the connection between a malicious agent and a non-adversarial agent

or the connection between a malicious agent and any other malicious agent in the network. The

goal of the non-adversarial is to utilize the limited communication bandwidth left in order to reach

45



the desired optimal solution to problem (5.1). An adaptive quantization framework is used by the

non-adversarial agents to manage the limited bandwidths due to the injected attack to the network

caused by malicious agents.

Suppose each non-adversarial agent broadcast quantized information 𝑄(𝒙𝑖(𝑘)) ∈ R𝑝 to their neigh-

bors, the local update equation results in the following:

𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘)− 𝒒𝑖(𝑘) +
∑︁

𝑗∈𝑁𝑖∪{𝑖}
𝑤𝑖 𝑗𝒒 𝑗 (𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙𝑖(𝑘)). (5.2)

In Equation (5.2), 𝒙𝑖 ∈ R𝑝 is the estimate of agent 𝑖, 𝑞𝑖(𝑘) = 𝑄𝑖
𝑘
(𝒙𝑖(𝑘)) is the quantized estimates

non-adversarial agents broadcast to neighbors, 𝑤𝑖 𝑗 is the (𝑖, 𝑗)𝑡ℎ element of the doubly stochastic

weight matrix, and 𝛼𝑖 ∈ R+ is the step size.

The Adaptive Quantizer

In contrast to the fixed quantizer studied in chapter 4 section 4, the adaptive quantizer described

in this chapter serves as a preventive mechanism for the bandwidth used up by adversarial agents

due to their attack. The adaptive quantizer addressed in this chapter is a variation of the uniform

quantizer except that it is made adaptive to allow the non-adversarial nodes to compensate for the

adversarial nodes utilizing too much bandwidth.

We start by explaining the idea behind the uniform quantizer and we build up on that to derive the

adaptive version of it.

Let 𝒙 ∈ R𝑝, we define a uniform quantizer with resolution 𝛿 and mid-value 𝒙′ as

𝑸(𝑥) = 𝒙′+ sign(𝒙− 𝒙′)𝛿⌊ ∥𝒙− 𝒙′∥
𝛿

+
1
2
⌋,

46



where sign(𝒙) and ⌊·⌋ are the sign and floor function respectively. Let 𝑏 be the number of bits sent

by the non-adversarial agents. Then the resolution is expressed by the relationship 𝛿 = ℓ

2𝑏 , where

ℓ is the size of the quantization interval; and the quantization interval is set to [𝒙′−1/2,𝒙′+ 1/2]

with mid value 𝒙′
𝑘

Δ,𝑖
. The quantization error obtained for each non-adversarial agent 𝑖 of a uniform

quantizer is: Δ𝑖(𝑘) = 𝒒𝑖(𝑘)− 𝒙𝑖(𝑘). For clarity, if ℓ𝑖 is the quantization interval for each agent 𝑖, the

error bounds of a uniform quantizer is given by ∥Δ𝑖(𝑘)∥≤ ℓ𝑖
2𝑏+1 .

We make the quantizer adaptive to manage the bandwidth used by the adversarial agents by using

a variation between the attack vector and the parameters of the quantizer. Let the variable 𝑧𝑖(𝑘)

denote the magnitude of the attack vector (or correspondingly the amount of bandwidth used). If

𝑧𝑖(𝑘) is large, we make 𝛿 a low resolution and if 𝑧𝑖(𝑘) is small (or low bandwidth is used), we make

𝛿 high resolution. Consequently, agent 𝑖 can detect the presence of 𝑧𝑖(𝑘) by using an outlier test

according to 𝛿 ∝ 1
𝑧𝑖(𝑘) .

Attack Model

The main objective of the adversarial agents is to inject positive and negative attack vector values,

𝑒𝑖(𝑘) ∈ R𝑝 to the network to prevent the non-adversarial agents from reaching the optimal solution

of equation (5.1). In this chapter, it is assumed that adversarial agents have complete knowledge of

what the non-adversarial agents are trying to accomplish which in this case is obtaining the optimal

solution of problem (5.1). Assumptions on the attack model are indicated below:

• Adversarial agents have complete knowledge of the algorithm and the objective of non-

adversarial agents.

• Consequently adversarial agents can perturb to result in a deviation of the optimal solution

non-adversarial agents are trying to obtain.

47



• Non-adversarial agents can detect adversarial agents in the network using a detection strategy

that will be explored later in the chapter.

When adversarial agents inject attack, they perturb and broadcast their estimates by the relationship

𝑥 𝑗 + 𝑒𝑖(𝑘) where 𝑒𝑖(𝑘) is the attack vector. Consequently, this also leads to the perturbation in the

optimal solution. This attack framework holds for complete and general graph structures and as

described, the non-adversarial agents receives the update and broadcast quantized information to

neighbors according to the following update:

𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘)− 𝒒𝑖(𝑘) +
∑︁

𝑗∈𝑁𝑖∪{𝑖}
𝑤𝑖 𝑗𝒒 𝑗 (𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙𝑖(𝑘))+𝒆𝑖(𝑘). (5.3)

We note that equation (5.3) is the update equation for all agents and that only the adversarial

agents inject attack in the network while the non-adversarial agents manage the bandwidth used

by adversarial agents via quantization. After the step in Equation (5.3), an iterative exchange of

information occurs amongst the agents until convergence is attained.

Now, we state the assumptions needed to prove the convergence of the optimization problem (5.1).

Assumption 7. The cost function 𝑓 (𝒙) in equation (5.1) is strongly convex, meaning that for

any vectors 𝒙, 𝒚 ∈ R𝑝, there exists a strong convexity constant, ` ∈ R+ (where ` ≤ 𝐿), such that:

𝑓 (𝒙) ≥ 𝑓 (𝒚) +∇ 𝑓 (𝒚)𝑇 (𝒙− 𝒚) + `

2 ∥𝒙− 𝒚∥2. where 𝐿 represents the Lipschitz constant.

Assumption 8. The gradient 𝒈𝑖(𝒙𝑖(𝑘)) = ∇ 𝑓𝑖(𝒙𝑖(𝑘)) of the objective 𝑓𝑖 at 𝒙𝑖 is uniformly bounded

by �̄�𝑖 in the feasible set X. This means that there exists �̄�𝑖 > 0 such that ∥𝑔𝑖(𝒙𝑖)∥≤ �̄�𝑖.

Assumption 9. The attack vector 𝑒𝑖(𝑘) is uniformly bounded. This means that a constant 𝐶 > 0

exists such that for all 𝑘 , ∥𝑒𝑖(𝑘)∥ ≤ 𝐶.

48



Consensus Update Equation for Non-Adversarial Agents

We re-write the update equation in (5.2) by ensuring feasibility of the error due to projection is

taken into account. Let 𝑋 = [𝒙1; 𝒙2; . . . 𝒙𝑛]𝑇 ∈ R𝑛𝑝, 𝑮 = [𝒈1; 𝒈2; . . . 𝒈𝑛]𝑇 ∈ R𝑛𝑝 and Δ are the

concatenation of 𝒙𝑖, 𝒈𝑖 and Δ𝑖 respectively, and 𝐼𝑝 is the identity matrix of dimension 𝑝. As

described, quantization of estimates by non-adversarial agents can lead to solutions not feasible

especially when subject to constraints according to problem (5.1). Hence, an error due to projection

unto the feasible set X, is taken into consideration in the analysis. Let 𝒉 ∈ R𝑝 and 𝝃(𝒉) be the error

due to projection of 𝒉 in X. Suppose 𝚵 = [𝝃1; 𝝃2; . . . 𝝃𝑛]𝑇 ∈ R𝑛𝑝 and 𝑯 denote the concatenation

of 𝝃𝑖 and 𝒉𝑖 respectively with 𝝃(𝒉) = 𝒉− [𝒉]X , we can re-formulate Equation (5.2) as:

𝒙𝑖(𝑘 + 1) = [𝒉𝑖(𝑘)]X = 𝒉𝑖(𝑘)− 𝝃𝑖(𝒉𝑖(𝑘)). (5.4)

The matrix form of the above update equation is:

𝑯(𝑘) = 𝑾𝑿(𝑘)+(𝑰−𝑾)(𝑿(𝑘)−𝑸(𝑘))−𝛼(𝑘)𝑮(𝑿(𝑘)),

𝑿(𝑘 + 1) = 𝑯(𝑘)−𝚵(𝑯(𝑘)), (5.5)

provided 𝑾 is a doubly stochastic weight matrix.

We introduce some variables to denote the average of the estimates of 𝒙𝑖(𝑘), 𝝃𝑖(𝒉𝑖(𝑘)), Δ𝑖(𝑘) and

𝑒𝑖(𝑘) as follows:

�̄�(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

𝒙𝑖(𝑘) =
1
𝑛
𝑿𝑇1 ∈ R𝑝,

49



𝝃(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

𝝃𝑖(𝒉𝑖(𝑘)) =
1
𝑛
(𝚵(𝑘))𝑇 1 ∈ R𝑝, (5.6)

Δ̄(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖(𝑘).

𝑒(𝑘) =
1
𝑛

𝑛∑︁
𝑖=1
𝑒𝑖(𝑘).

This leads to the relationship: �̄�(𝑘) = �̄�(𝑘)− 𝛼(𝑘)
𝑛

∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘)), and �̄�(𝑘 + 1) = �̄�(𝑘)−𝝃(𝑘). Conse-

quently, we obtain the following update:

�̄�(𝑘 + 1) = �̄�(𝑘)− 𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− 𝝃(𝑘). (5.7)

The following Lemmas are essential to prove algorithm (5.1). First, we begin with the error due to

projection bounds.

Lemma 5.0.1. Suppose Assumptions 7, 8 and 9 hold, the error due to projection satisfy the bounds:

∥𝝃(𝑘)∥≤
√

8Δ̄(𝑘) +
√

2
�̄�

𝑛
𝛼(𝑘).

Proof. Refer to [56] for the proof.

Lemma 5.0.2. Let Assumptions 7, 8 and 9 hold with the resolution of a uniform quantizer satisfying

𝛿 = 𝑝

𝑧𝑖(𝑘) (adaptive quantizer) where 𝑝 is the constant of proportionality and 𝛿 = 𝑙𝑖
2𝑏 , the quantization

error is bounded by: Δ𝑖(𝑘) ≤ 𝑝

2𝑧𝑖(𝑘) .

Proof. There are two different expressions for the resolution of the uniform quantizer; one from the

adaptive quantizer in terms of the attack vector and the other from the general resolution formula

of a uniform quantizer. By setting the two relationships of the resolution to each other, we obtain

50



the relationship:
𝑝

𝑧𝑖(𝑘)
=
𝑙𝑖

2𝑏
. (5.8)

By multiplying both sides of equation (5.8) by 1
2 , we obtain the relationship 𝑝

2𝑧𝑖(𝑘) = 𝑙𝑖
2𝑏+1 . By

using the fact that the upper bound of a uniform quantizer is Δ𝑖 ≤ 𝛿
2 = 𝑙𝑖

2𝑏+1 , we obtain the result

Δ𝑖(𝑘) ≤ 𝑝

2𝑧𝑖(𝑘) .

Convergence to a neighborhood of the optimal solution will be proved by using the relationship:

∥𝑥𝑖(𝑘)− 𝑥∗∥= ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥+∥�̄�(𝑘)− 𝑥∗∥. First, we examine the bound on ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥ and we

note that the bound captures the information on the spectral gap.

Lemma 5.0.3. Let Assumptions 7, 8 and 9 hold with 𝛽 being the second biggest value of the

eigenvalues of the weights 𝑊 (which has one eigenvalue equal to 1 and others have values less

than 1), the distance between the individual estimates and the averaged estimates is bounded by the

following:

∥𝑥𝑖(𝑘)− �̄�(𝑘)∥≤ 𝛼𝑖(𝑘)�̄�𝑖
1− 𝛽 . (5.9)

Proof. See [12] for the proof.

Now we analyze convergence of our proposed method (DISGAQAAM) in the next section.

Main Result

We examine the convergence to the neighborhood of the optimal solution of problem (5.1) and

update (5.3) using the distributed gradient descent algorithm. In the following analysis, we account

for the impact of non-adversarial agents (via the attack vector) on the quantized update in equation

(5.7). The analysis is in two parts: First, each agent 𝑖 sends its estimate (quantized or malicious)

51



to his neighbors after which a consensus is reached. For the purpose of this analysis, we assume

that consensus is reached when the distance between each individual agent’s estimates and the

average estimates is bounded according to Lemma 5.0.3. Second, we prove convergence to the

neighborhood of the optimal solution, 𝑥∗ by bounding the distance between the averaged consensus

value and the optimal solution 𝑥∗.

The main result of the claims in Section 5 are formally stated in Theorem 5.0.4.

Theorem 5.0.4. Suppose Assumptions 7, 8 and 9 are satisfied, with 𝛼 satisfying 𝛼 ≤ 2
`+𝐿 . If

the gradient bound is upper-bounded by �̄� ≤ 1/
√

6𝛼, the iterates converge to a neighborhood

of the optimal solution, 𝑥∗ when ∥�̄�(0)− 𝒙∗∥≤ 𝑒(𝑘). The size of the neighborhood is given by:
√

3∥𝑒(𝑘)∥+
√︃

24
𝑛
∥∑𝑛

𝑖=1
𝑝

2𝑧𝑖(𝑘) ∥2 +
√

6�̄�𝛼. If however ∥�̄�(0)− 𝒙∗∥> 𝑒(𝑘), then adversarial agents can

force divergence or prevent convergence to the optimal solution.

Proof. We begin by noting that the adversarial agents solve the objective function min𝑥 𝑓 (𝒙), such

that the optimal solution to 𝑓 (𝑥) is 𝑥𝑎 = 𝑥∗ + 𝑒(𝑘). We show convergence to a neighborhood of the

optimal solution by establishing the relationship ∥𝑥𝑖(𝑘)− 𝑥∗∥= ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥+∥�̄�(𝑘)− 𝒙∗∥. The

analysis of ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥ is seen in Lemma 5.0.3. Now we show the analysis of ∥�̄�(𝑘)−𝒙∗∥ below.

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2= ∥�̄�(𝑘)− 𝒙∗− 𝑒(𝑘)− 𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− 𝝃(𝑘)∥2.

Alternatively, we can rewrite ∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2 as:

∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥2

= ∥�̄�(𝑘)−𝒙∗∥2+∥𝑒(𝑘)∥2+

𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

+ ∥𝝃(𝑘)∥2+2𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

−2(�̄�(𝑘)−𝒙∗)𝑇
(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
+ 2𝝃(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

+2𝑒(𝑘)𝝃(𝒌).

52



We will bound the last four terms of the preceding expression starting with the fifth term as follows.

2𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

≤ ∥𝑒(𝑘)∥2+

𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
2

−2(�̄�(𝑘)−𝒙∗)𝑇
(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
,

≤ ∥𝑒(𝑘)∥2+
𝛼2

𝑛2

 𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

+∥�̄�(𝑘)−𝒙∗∥2−𝛼
𝑛
𝑐1

 𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

−𝛼𝑐2∥�̄�(𝑘)−𝒙∗∥2,

with 𝑐1 =
2

`+ 𝐿
and 𝑐2 =

2`𝐿
`+ 𝐿

. We now bound the second term of the upper bound of

2𝑒(𝑘)
(
𝛼(𝑘)
𝑛

∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))− (�̄�(𝑘)− 𝒙∗)

)
. However, we need to first bound ∥∑𝑛

𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))∥ as the

following:  𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

 ≤ 𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥. (5.10)

Equation (5.10) can be re-written as: ∥∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))∥2≤ (∑𝑛

𝑖=1∥𝑔𝑖(𝒙𝑖(𝑘))∥)2 which leads to the

expression:

2𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

≤ ∥𝑒(𝑘)∥2+
𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+∥�̄�(𝑘)−𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)−𝒙∗∥2.

We note that ∥�̄�(𝑘 + 1)− 𝒙∗ − 𝑒(𝑘)∥2 is upper-bounded by eight terms. Now, the seventh term,

2𝝃(𝑘)(𝛼(𝑘)
𝑛

∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))− (�̄�(𝑘)− 𝒙∗)) can be bounded as:

2𝝃(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

≤ ∥𝝃(𝑘)∥2+
𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+∥�̄�(𝑘)−𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)−𝒙∗∥2.

53



Similarly, we bound 2𝑒(𝑘)𝝃(𝑘) as 2𝑒(𝑘)𝝃(𝑘) ≤ ∥𝑒(𝑘)∥2+∥𝝃(𝑘)∥2. Combining all bounded expres-

sions leads to:

∥�̄�(𝑘 + 1)− 𝒙∗−𝑒(𝑘)∥2

≤ ∥�̄�(𝑘)−𝒙∗∥2+∥𝑒(𝑘)∥2+
𝛼2

𝑛2 (
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥)2+∥𝝃(𝑘)∥2+∥𝑒(𝑘)∥2+
𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+∥�̄�(𝑘)−𝒙∗∥2

− 𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)− 𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)− 𝒙∗∥2+∥𝝃(𝑘)∥2

+
𝛼2

𝑛2

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

+∥�̄�(𝑘)−𝒙∗∥2−𝛼
𝑛
𝑐1

(
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

−𝛼𝑐2∥�̄�(𝑘)−𝒙∗∥2+∥𝑒(𝑘)∥2+∥𝝃(𝑘)∥2,

= (3−3𝛼𝑐2)∥�̄�(𝑘)−𝒙∗∥2+3∥𝑒(𝑘)∥2+3∥𝝃(𝒌)∥2+
(
3𝛼2

𝑛2 −3𝛼
𝑛
𝑐1

) (
𝑛∑︁
𝑖=1

∥𝑔𝑖(𝒙𝑖(𝑘))∥
)2

.

It can be easily verified that
(

3𝛼2

𝑛2 − 3𝛼
𝑛
𝑐1

)
≤ 0, provided that 𝛼 ≤ 𝑐1. We do this by equivalently

showing that 3𝛼2 − 3𝛼𝑛𝑐1 ≤ 0. Since 𝛼 ≤ 𝑐1 and 𝑛 ≥ 1, then 𝛼 can be upper-bounded according

to 𝛼 ≤ 𝑛𝑐1. Equivalently, 𝛼2 ≤ 𝛼𝑐1 and 3𝛼2

𝑛2 − 3𝛼𝑛𝑐1
𝑛

≤ 0, for 𝑛 > 0. This leads to the following

affirmation: (
3𝛼2

𝑛2 − 3𝛼𝑛𝑐1
𝑛

) (
𝑛∑︁
𝑖=1

∥𝒈𝑖(𝒙𝑖(𝑘))∥
)2

≤ 0,

from which we then obtain the bounds on ∥�̄�(𝑘 + 1)− 𝒙∗− 𝒆𝑖(𝑘)∥2 as the relationship below:

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2 ≤ (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+3∥𝝃(𝒌)∥2.

We need conditions such that 3− 3𝛼𝑐2 ≥ 0 by proving that 3𝛼𝑐2 ≤ 3 ⇒ 𝛼𝑐2 ≤ 1. If 𝛼 ≤ 1/`,

𝛼𝑐2 ≤ 1
`

2`𝐿
`+𝐿 = 2𝐿

`+𝐿 . If ` = 𝐿, it implies that ` + 𝐿 = 2𝐿⇒ 𝛼𝑐1 ≤ 1. Since it has been established

that 𝛼𝑐2 ≤ 1, then (3− 3𝛼𝑐2) ≥ 0. We need to ensure that 3− 3𝛼𝑐2 does not grow unbounded by

choosing 3−3𝛼𝑐2 in the domain (3−3𝛼𝑐2) ∈ (0,1), implying that 3(1−𝛼𝑐2) ≤ 1 or 𝛼 ≥ 2
3𝑐2

= `+𝐿
3`𝐿 .

If 𝛼 ∈
(
`+𝐿
3`𝐿 ,

1
`

)
, (3− 3𝛼𝑐2) will be bounded. By using the results from Lemma 5.0.1, we have:

54



∥𝝃(𝑘)∥2≤ 8∥Δ̄(𝑘)∥2+2�̄�2𝛼2. which yields:

∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥2≤ (3−3𝛼𝑐2)∥�̄�(𝑘)−𝒙∗∥2+3∥𝒆𝑖(𝑘)∥2+24∥Δ̄(𝑘)∥2+6�̄�2𝛼2.

By using the results from Lemma 5.0.2, specifically with Δ𝑖(𝑘) = 𝑝

2𝑧𝑖(𝑘) , we obtain the following

relationship:

∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥2 ≤ (3−3𝛼𝑐2)∥�̄�(𝑘)−𝒙∗∥2+3∥𝑒(𝑘)∥2+
24
𝑛
∥
𝑛∑︁
𝑖=1

𝑝

2𝑧𝑖(𝑘)
∥2+6�̄�2𝛼2.

We note that in equation (5.8), 𝑧𝑖(𝑘) can be expressed in terms of the number of bits 𝑏 by using the

relationship 𝑧𝑖(𝑘) = 2𝑏
𝑙𝑖

. If �̄�(𝑘 + 1)− 𝒙∗ < 0 < 𝑒(𝑘), we obtain the following relationship:

∥�̄�(𝑘 + 1)−𝒙∗− 𝑒(𝑘)∥≥ ∥�̄�(𝑘 + 1)− 𝒙∗∥.

Furthermore, ∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥≥ ∥�̄�(𝑘 + 1)− 𝒙∗∥ if 𝒆𝑖(𝑘) ≤ 0. We now obtain the relationship:

∥�̄�(𝑘 + 1)− 𝒙∗∥2 ≤ (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+
24
𝑛
∥
𝑛∑︁
𝑖=1

𝑝

2𝑧𝑖(𝑘)
∥2+6�̄�2𝛼2.

After applying recursion, we obtain the following inequality bound:

∥�̄�(𝑘 + 1)− 𝒙∗∥ ≤ (3−3𝛼𝑐2)
𝑘
2 ∥�̄�(0)− 𝒙∗∥+

√
3∥𝐶∥+

√︄
24
𝑛
∥
𝑛∑︁
𝑖=1

𝑝

2𝑧𝑖(𝑘)
∥2 +

√
6�̄�𝛼.

where 𝐶 is the bound on the attack vector. If
√

6�̄�𝛼 ≤ 1 or �̄� ≤ 1/
√

6𝛼, the neighborhood size is

given by the following:
√

3∥𝑒(𝑘)∥+

√︄
24
𝑛
∥
𝑛∑︁
𝑖=1

𝑝

2𝑧𝑖(𝑘)
∥2 +

√
6�̄�𝛼.

Using the results from 5.0.3 and 5, we obtain that the non-adversarial agents converge to the

neighborhood of the optimal solution, 𝒙∗ according to ∥𝑥𝑖(𝑘)− 𝑥∗∥= ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥+∥�̄�(𝑘)− 𝒙∗∥.

55



If �̄�(𝑘 + 1)− 𝒙∗ > 𝑒(𝑘), we obtain the relationship:

∥�̄�(𝑘 + 1)−𝒙∗− 𝑒(𝑘)∥≤ ∥�̄�(𝑘 + 1)− 𝒙∗∥.

which leads to the relationship:

∥�̄�(𝑘 + 1)− 𝒙∗∥2 ≥ (3−3𝛼𝑐2)∥�̄�(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+
24
𝑛
∥
𝑛∑︁
𝑖=1

𝑝

2𝑧𝑖(𝑘)
∥2+6�̄�2𝛼2.

After applying recursion, we obtain the following inequality bound:

∥�̄�(𝑘 + 1)− 𝒙∗∥ ≥ (3−3𝛼𝑐2)
𝑘
2 ∥�̄�(0)− 𝒙∗∥+

√
3∥𝐶∥+

√︄
24
𝑛
∥
𝑛∑︁
𝑖=1

𝑝

2𝑧𝑖(𝑘)
∥2 +

√
6�̄�𝛼.

Consequently, adversarial agents can force divergence and prevent convergence to the optimal

solution 𝑥∗.

Numerical experiments to bolster the proposed claims are shown in the next section.

Numerical Experiments

We validate our theoretical claims via numerical experiments over a network of 𝑛 = 10 agents (some

adversarial) and 100 iterations using the linear regression loss function as follows:

min
𝒙∈R𝑝

𝑓 (𝒙) =
𝑛∑︁
𝑖=1

1
2
∥𝐴𝑖𝒙− 𝑏𝑖∥2, (5.11)

solved in a distributed manner. In equation (5.11), the number of agents, 𝑛 = 10, 𝐴𝑖 is a 𝑛 by 𝑛matrix

and 𝑏𝑖 is an 𝑛 by 1 matrix. The gradient of the the function in equation (5.11) is 𝐴𝑇 (𝐴𝑖𝒙− 𝑏𝑖). It is

established that the Lipschitz constant 𝐿 is the largest eigenvalue of 𝐴𝑇 𝐴 and the strong convexity

56



constant ` is the smallest eigenvalue of 𝐴𝑇 𝐴. In this regard, we choose a step size such that 𝛼 < 2
`+𝐿

to satisfy the strong convexity assumptions.

We will show convergence to the neighborhood of the optimal solution despite the presence of

adversaries and an adaptive quantizer using the error. Different proportions of adversarial agents

will be used in the simulations to affirm the influence of the adversaries on the algorithm in

the communication-constrained network. The resolution of the adaptive quantizer used in the

simulations varies inversely as the size of the attack according to Lemma 5.0.2

Remark 4. As seen in Figures 5.2, 5.3 and 5.4, the error is least when there are less adver-

sarial agents and most when there are more adversarial agents in the network. Clearly, the

communication-constrained algorithm still converges to a neighborhood of the optimal solutions

even amidst the presence of adversarial agents. The relationship between the resolution of the

quantizer and the size of the attack vector ensures that the algorithm does not significantly diverge

even when the network is flooded with adversarial attack.

Remark 5. Clearly, the size of the neighborhood of the optimal solution depends on the attack

vector, the gradient bound, number of bits and the step size. The results in this paper still holds for

both positive and negative attack vector even with the adaptive quantization added as constraints.

It is seen that the adversarial agents greatly influence the convergence of the proposed algorithm.

If there were no misbehaviour by the adversarial agents, then a faster rate of convergence (be it

linear or better) would have been accomplished. Additionally, the results in this paper holds when

the objective function is strongly convex quadratic.

So far in this dissertation, it has been examined how non-adversarial agents can approach a neighbor-

hood of the optimal solution despite the presence of adversarial agents in a limited communication

niche. Next, a proposition to detect adversarial agents is shown in the following section.

57



0 10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

3

3.5

Error

Figure 5.2: Adaptive Simulations for 9 non-adversarial agents and 1 malicious agent.

Proposition to Detect Malicious Agents

We examine how adversarial agents can be detected in the network by considering two different

update equation. If the neighbor of agent 𝑖 is a non-adversarial agent, we use the following update

equation:

𝒙𝑖(𝑘 + 1) =
∑︁

𝑗∈𝑁𝑖∪{𝑖}
𝑤𝑖 𝑗𝒙 𝑗 (𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙𝑖(𝑘)) (5.12)

If the neighbor of agent 𝑖 is an adversarial agent, the update in equation (5.3) holds.

We will use the error difference between the neighborhood of the update equations (5.12) and (5.3)

58



0 10 20 30 40 50 60 70 80 90 100

3.5

4

4.5

5

5.5
Error

Figure 5.3: Adaptive Simulations for 5 non-adversarial agents and 5 malicious agents.

to derive a bound on the attack vector which will be used as a metric for detection. The analyses

for a scenario when the neighbor of agent 𝑖 is a non-adversarial agent is shown in the following

theorem.

Theorem 5.0.5. Let the neighbor of agent 𝑖 be a non-adversarial agent and suppose Assumptions 7,

8 and 9 are satisfied, with 𝛼 satisfying 𝛼 ≤ 2
`+𝐿 . If the gradient bound is bounded by �̄� ≤ 1/

√
6𝛼,

the iterates converge to a neighborhood of the optimal solution, 𝑥∗ and the size of the neighborhood

is given by:
√

24∥Δ̄(𝑘)∥2+
√

6�̄�𝛼.

59



0 10 20 30 40 50 60 70 80 90 100

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 Error

Figure 5.4: Adaptive Simulations for 1 non-adversarial agent and 9 malicious agents.

Proof. We show convergence to a neighborhood of the optimal solution by establishing the rela-

tionship ∥𝑥𝑖(𝑘)−𝑥∗∥= ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥+∥�̄�(𝑘)−𝒙∗∥. The analysis of ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥ is already shown

in Lemma 5.0.3. Now, we analyze ∥�̄�(𝑘)− 𝒙∗∥ below.

∥�̄�(𝑘 + 1)− 𝒙∗∥2= ∥�̄�(𝑘)− 𝒙∗− 𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− 𝝃(𝑘)∥2.

60



Alternatively, we can rewrite ∥�̄�(𝑘 + 1)− 𝒙∗∥2 as:

∥�̄�(𝑘 + 1)− 𝒙∗∥2

= ∥�̄�(𝑘 + 1)− 𝒙∗∥2+

𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

+ ∥𝝃(𝑘)∥2−2(�̄�(𝑘)− 𝒙∗)𝑇
(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
−2(�̄�(𝑘)− 𝒙∗)𝑇𝝃(𝒌) + 2

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
𝝃(𝒌).

By using strong convexity and simplification of like terms, we obtain the following bounds:

∥�̄�(𝑘 + 1)−𝒙∗∥2≤ (2−𝛼𝑐2)∥�̄�(𝑘)−𝒙∗∥2+(2𝛼2 −𝛼𝑐1)∥ 1
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))∥2+3∥𝝃(𝑘)∥2

with 𝑐1 =
2

`+ 𝐿
and 𝑐2 =

2`𝐿
`+ 𝐿

.

It has already been verified in Theorem 5.0.4 that 2𝛼2 −𝛼𝑐1 ≤ 0, provided that 𝛼 ≤ 𝑐1. Therefore,

we can deduce that (2𝛼2 −𝛼𝑐1)∥ 1
𝑛

∑𝑛
𝑖=1 𝒈𝑖(𝒙𝑖(𝑘))∥2≤ 0. The bounds reduces to the relationship:

∥�̄�(𝑘 + 1)− 𝒙∗∥2≤ (2− 2𝛼`𝐿
`+ 𝐿

)∥�̄�(𝑘)− 𝒙∗∥2+24∥Δ̄(𝑘)∥2+6�̄�2𝛼2.

We need to ensure that (2− 2𝛼`𝐿
`+𝐿 ) does not grow unbounded by choosing (2− 2𝛼`𝐿

`+𝐿 ) in the domain

(2− 2𝛼`𝐿
`+𝐿 ) ∈ (0,1), implying that (2− 2𝛼`𝐿

`+𝐿 ) ≤ 1.

After applying recursion, we obtain the following inequality bound:

∥�̄�(𝑘 + 1)− 𝒙∗∥≤ (2− 2𝛼`𝐿
`+ 𝐿

)
𝑘
2 ∥�̄�(0)− 𝒙∗∥+

√
24∥Δ̄(𝑘)∥+

√
6�̄�𝛼.

If
√

6�̄�𝛼 ≤ 1 or �̄� ≤ 1/
√

6𝛼, the neighborhood size is given by
√

24∥Δ̄(𝑘)∥+
√

6�̄�𝛼.

61



To achieve the proposed detection aim, we will use the convergence neighborhood in Theorem 5.0.4

and the neighborhood of Theorem 5.0.5 to obtain the error. Clearly the expressions
√

24∥Δ̄(𝑘)∥

and
√

6�̄�𝛼 are both common in the neighborhood bounds of Theorems 5.0.4 and 5.0.5. Therefore,

we can obtain the deviations of the two neighborhoods to be the expression (1− 𝛼`𝐿

`+𝐿 ) +
√

3∥𝑒𝑖(𝑘)∥.

Now, we let the deviation of the two neighborhoods be bounded by an expected convergence rate 𝐵

as follows:

(1− 𝛼`𝐿

`+ 𝐿
) +

√
3∥𝑒𝑖(𝑘)∥≤ 𝐵. (5.13)

By solving for ∥𝑒𝑖(𝑘)∥, we obtain the following relationship:

∥𝑒𝑖(𝑘)∥≤ 𝐵(`+ 𝐿)
√

3(`+ 𝐿−𝛼`𝐿)
. (5.14)

Based on the bound in equation (5.14), if an attack vector is chosen outside of the bound shown, it

can be detected.

Proposition for Resilience against Adversarial Attacks

Now that a detection method has been proposed, resilience methods against attacks are also shown

to mitigate the effects of adversarial agents in the network. In the update equation (5.3), a doubly

stochastic weight matrix 𝑤𝑖 𝑗 was used but a variation of equation (5.3) will be used in the problem

formulation in this section. The new update equation is:

𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘)− 𝒒𝑖(𝑘) +
∑︁

𝑗∈𝑁𝑖∪{𝑖}
𝐺𝑖 𝑗𝒒 𝑗 (𝑘)−𝛼𝑖∇ 𝑓𝑖(𝒙𝑖(𝑘))+𝒆𝑖(𝑘). (5.15)

62



where 𝐺𝑖 𝑗 is the doubly stochastic weight matrix that is a piecewise variation of the weights 𝑤𝑖 𝑗

depending on whether the neighbor of each agent 𝑖 is adversarial or not. We vary the weights

depending on who the neighbor of agent 𝑖 is. If the neighbor of agent 𝑖 is non-adversarial or if the

previous reading of agent 𝑖 is similar to current reading, we use the original weight 𝑤𝑖 𝑗 . Otherwise

if the neighbor of agent 𝑖 is malicious or if the previous reading of agent 𝑖 is far away from current

reading, we use a different weight matrix.

Consider a metric such that the approximation of the estimates of each agent to the average of the

estimates of the neighborhood as follows:

𝑃𝑖 𝑗 (𝑘) = ∥𝑥𝑖(𝑘)− 𝑥𝑎∥ (5.16)

where 𝑥𝑎 is the average of the estimates of the neighborhood of agent 𝑖. Let the threshold of attack

detection as seen in equation (5.13) be the following:

∥𝑥𝑖(𝑘)− 𝑥𝑎∥≤ (1− 𝛼`𝐿

`+ 𝐿
) +

√
3∥𝑒𝑖(𝑘)∥. (5.17)

After the weights are determined depending on the neighborhood of each agent 𝑖 in the network,

adversarial agents are excluded in the network. To quantify how this is done, we let agent 𝑖 be

connected to neighbors in a manner where the weight𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 in equation (5.15) is assigned when

the neighbor is a regular or good agent where 𝑤𝑖 𝑗 is the weight used in the convergence analysis

according to the result of Theorem 5.0.4. Let 𝐺𝑖 𝑗 = 𝑤𝑏 be the weight when the neighbor is a bad

agent. If the estimates obtained by using the update equation (5.15) with 𝐺𝑖 𝑗 = 𝑤𝑏 falls outside of

the threshold as seen in equation (5.17), then the weights of adversarial agents are excluded and

𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 −𝑤𝑏 in equation (5.15). We also take into account that non-adversarial agents do not

always make the correct decision during the detection process. The results for the proposition for

63



resilience against attacks are shown in the Theorem below:

Theorem 5.0.6. Suppose Assumptions 7, 8 and 9 are satisfied, with 𝛼 satisfying 𝛼 ≤ 2
`+𝐿 . If

the gradient bound is upper-bounded by �̄� ≤ 1/
√

6𝛼 and the weights of adversarial attackers are

removed from the estimates according to update equation (5.15), then the iterates converge to a

neighborhood of the optimal solution, 𝑥∗.

Proof. Analyses for the results of Theorem 5.0.6 follows the same pattern as that of Theorem 5.0.4

except that the weight in equation (5.15) is a concatenation of 𝑤𝑖 𝑗 −𝑤𝑏 instead of the regular 𝑤𝑖 𝑗

that is used in equation (5.3).

Let the probability that non-adversarial agents make a correct decision in detecting adversarial

agents be 𝑝. Then the probability that non-adversarial agents make an incorrect decision in

detecting adversarial agents is 1− 𝑝. Let 𝑝 ∈ [0.5,1] be the set of probabilities that non-adversarial

agents make a correct decision. Similarly according to Theorem 5.0.4, we show convergence to a

neighborhood of optimal solution by using the relationship ∥𝑥𝑖(𝑘)− 𝑥∗∥= ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥+∥�̄�(𝑘)−

𝒙∗∥. The bound of ∥𝑥𝑖(𝑘)− �̄�(𝑘)∥ is seen in Lemma 5.0.3. Now we proceed to the analysis of

∥�̄�(𝑘)− 𝒙∗∥ below.

∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2= ∥�̄�(𝑘)− 𝒙∗− 𝑒(𝑘)− 𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))− 𝝃(𝑘)∥2.

Alternatively, one can rewrite ∥�̄�(𝑘 + 1)− 𝒙∗− 𝑒(𝑘)∥2 as:

∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥2

= ∥�̄�(𝑘)−𝒙∗∥2+∥𝑒(𝑘)∥2+

𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

+ ∥𝝃(𝑘)∥2+2𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

−2(�̄�(𝑘)−𝒙∗)𝑇
(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
+ 2𝝃(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

+2𝑒(𝑘)𝝃(𝒌).

64



By taking expectation of both sides, we obtain the relationship:

𝐸 ∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥2

= 𝐸 ∥�̄�(𝑘)−𝒙∗∥2+𝐸 ∥𝑒(𝑘)∥2+𝐸

𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

2

+𝐸 ∥𝝃(𝑘)∥2

+2𝐸𝑒(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)
−2𝐸(�̄�(𝑘)−𝒙∗)𝑇

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))

)
+ 2𝐸𝝃(𝑘)

(
𝛼(𝑘)
𝑛

𝑛∑︁
𝑖=1

𝒈𝑖(𝒙𝑖(𝑘))−(�̄�(𝑘)−𝒙∗)
)

+2𝐸𝑒(𝑘)𝝃(𝒌).

By adapting the results from Theorem 5.0.4 and Lemma 5.0.2, specifically with Δ𝑖(𝑘) = 1
2𝑧𝑖(𝑘) , we

obtain the following relationship:

𝐸 ∥�̄�(𝑘 + 1)−𝒙∗−𝑒(𝑘)∥2 ≤ (3−3𝛼𝑐2)𝐸 ∥�̄�(𝑘)−𝒙∗∥2+3𝐸 ∥𝑒(𝑘)∥2+
24
𝑛
∥
𝑛∑︁
𝑖=1

1
2𝑧𝑖(𝑘)

∥2+6�̄�2𝛼2.

Equivalently, we obtain the following relationship:

𝐸 ∥�̄�(𝑘 + 1)− 𝒙∗∥2 ≤ (3−3𝛼𝑐2)𝐸 ∥�̄�(𝑘)− 𝒙∗∥2+3𝐸 ∥𝑒(𝑘)∥2+
24
𝑛
∥
𝑛∑︁
𝑖=1

1
2𝑧𝑖(𝑘)

∥2+6�̄�2𝛼2.

where 𝑐2 = 2`𝐿
`+𝐿 . By using the definition of 𝑝 being the probability of a correct decision made in

the detection process and also using the fact that 𝐸(𝑥) = ∑𝑛
𝑖=1 𝑥𝑝(𝑥), we obtain the relationship:

𝐸 ∥�̄�(𝑘 + 1)− 𝒙∗∥2 ≤ 𝑝(3−3𝛼𝑐2)∥�̄�𝒄(𝑘)− 𝒙∗∥2

+ (1− 𝑝)(3−3𝛼𝑐2)∥�̄� 𝒊(𝑘)− 𝒙∗∥2+3∥𝑒(𝑘)∥2+
24
𝑛
∥
𝑛∑︁
𝑖=1

1
2𝑧𝑖(𝑘)

∥2+6�̄�2𝛼2.

where 𝑥𝑐 denotes the averaged estimates when a correct decision is made and 𝑥𝑖 denotes the

averaged estimates when an incorrect decision is made. By using 𝑝 = 0.5 as the threshold of

correct/incorrect decision and also taking the square root of both sides, we obtain the following

65



bounds:

𝐸 ∥�̄�(𝑘 + 1)− 𝒙∗∥ ≤
√︁

0.5(3−3𝛼𝑐2)∥�̄�𝒄(𝑘)− 𝒙∗∥

+
√︁

0.5(3−3𝛼𝑐2)∥�̄� 𝒊(𝑘)− 𝒙∗∥+3∥𝑒(𝑘)∥+
√︂

24
𝑛
∥
𝑛∑︁
𝑖=1

1
2𝑧𝑖(𝑘)

∥+
√

6�̄�𝛼.

By applying recursion, we obtain the following:

𝐸 ∥�̄�(𝑘 + 1)− 𝒙∗∥ ≤ 0.5(3−3𝛼𝑐2)
𝑘
2 ∥�̄�𝑐(0)− 𝒙∗∥

+ 0.5(3−3𝛼𝑐2)
𝑘
2 ∥�̄� 𝒊(0)− 𝒙∗∥+3∥𝑒(𝑘)∥+

√︂
24
𝑛
∥
𝑛∑︁
𝑖=1

1
2𝑧𝑖(𝑘)

∥+
√

6�̄�𝛼.

Similarly, it follows that convergence to a neighborhood of the optimal solution is obtained and will

be corroborated via numerical simulations in the next section:

Numerical Experiments

We illustrate our claims via numerical experiments over a network of 𝑛 = 10 agents including some

malicious agents with 100 iterations using the linear regression loss function as follows:

min
𝒙∈R𝑝

𝑓 (𝒙) =
𝑛∑︁
𝑖=1

1
2
∥𝐴𝑖𝒙− 𝑏𝑖∥2, (5.18)

solved in a distributed manner. We will show how varying or excluding weights 𝐺𝑖 𝑗 in equation

(5.15) performs especially when 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 performs compared to 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 −𝑤𝑏. We consider a

scenario with 70% adversarial agents in the network for the two cases𝐺𝑖 𝑗 =𝑤𝑖 𝑗 and𝐺𝑖 𝑗 =𝑤𝑖 𝑗 −𝑤𝑏 =
𝑛𝑤𝑖 𝑗−1
𝑛2 where 𝑛 is the number of agents. To verify that 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 −𝑤𝑏 = 𝑛𝑤𝑖 𝑗−1

𝑛2 is indeed less than

66



𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 , it suffices to show that 𝑤𝑖 𝑗 −
𝑛𝑤𝑖 𝑗−1
𝑛2 ≥ 0. This leads to the following relationship:

𝑤𝑖 𝑗 −
𝑛𝑤𝑖 𝑗 −1
𝑛2 = 𝑤𝑖 𝑗 −

𝑤𝑖 𝑗

𝑛
+

1
𝑛2 . (5.19)

Clearly, the first two terms of the expressions in equation (5.19) is positive because 𝑤𝑖 𝑗 −
𝑤𝑖 𝑗

𝑛
=

𝑤𝑖 𝑗 (𝑛−1)
𝑛

is positive when 𝑛 ≥ 1.

Simulations are shown below:

0 10 20 30 40 50 60 70 80 90 100

4.5

5

5.5

6

6.5

7

7.5

8

8.5
Error

Figure 5.5: Simulations for regular adversarial weights 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 for more adversarial agents

67



0 10 20 30 40 50 60 70 80 90 100

3

3.5

4

4.5

5

5.5

Error

Figure 5.6: Simulations with weights of Adversarial agents removed 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 −𝑤𝑏 = 𝑛𝑤𝑖 𝑗−1
𝑛2

for more adversarial agents

Remark 6. As seen in Figures 5.5 and 5.6 when there are more adversarial agents in the network, the

error in Figure 5.6 is smaller than that of Figure 5.5 even when the weights are reduced. Moreover,

convergence to a neighborhood of optimal solution is still guaranteed. Similar conclusions can

be made when there are less adversarial agents in the network as seen in Figures 5.7 and 5.8

as the error in Figure 5.8 is smaller than that of Figure 5.7 when the weights are smaller. The

errors are also lower when there are less adversarial agents in the network as seen in Figures 5.7

and 5.8 compared to Figures 5.5 and 5.6. We can conclude that excluding or removing weights

68



0 10 20 30 40 50 60 70 80 90 100

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Error

Figure 5.7: Simulations for regular adversarial weights 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 for less adversarial agents

of adversarial agents result in a better performance. Although a better result is obtained when

the weights of adversarial agents are removed, it should be noted that convergence to the exact

optimal solution is still not guaranteed because the decisions on non-adversarial agents detecting

or suspecting adversarial agents are not always accurate.

So far, distributed gradient descent methods have been used to explore distributed optimization

methods with adversarial attack and quantization. In the pursuit of obtaining better performance of

distributed optimization algorithms under adversarial attack, some preliminary work using Quasi-

69



0 10 20 30 40 50 60 70 80 90 100

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1 Error

Figure 5.8: Simulations with weights of Adversarial agents removed 𝐺𝑖 𝑗 = 𝑤𝑖 𝑗 −𝑤𝑏 = 𝑛𝑤𝑖 𝑗−1
𝑛2

for less adversarial agents

Newton Barzilai-Borwein methods and their applications are explored in the next chapter. The

ease of computing the inverse of the hessian and fast convergence properties make the BB method

a suitable fit to perform well in a distributed optimization with adversarial attack and quantization.

We leave this topic to curious researchers to explore.

70



CHAPTER 6: IMPROVING CONVERGENCE RATES OF DISTRIBUTED

OPTIMIZATION ALGORITHMS UNDER ADVERSARIES: ONLINE

PERFORMANCE AND BARZILAI-BORWEIN QUASI-NEWTON

METHODS

Solving a distributed optimization problem with adversaries usually require a model with suitable

convergence properties. In this regard, a fully distributed algorithm for solving an unconstrained

optimization problem is presented in this chapter using uncoordinated BB step-sizes and Q-linear

convergence is obtained when the cost function is strongly convex. The Barzilai-Borwein Quasi-

Newton Method is explored in the following section.

Problem Formulation

Consider the unconstrained problem over a network of agents. The decision set of the agents is X,

and their objective is to

min
𝑥∈X

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝑓𝑖(𝑥), (6.1)

where X is a convex, feasible set. In Problem (6.1), 𝑓 is strongly convex and smooth. Each agent

𝑖 in the network has access to a 𝑓𝑖 a component of 𝑓 and the agents collectively seek to optimize

𝑓 (𝑥) by locally optimizing 𝑓𝑖(𝑥) iteratively.

The communication graph of the multi-agent network is represented by an undirected weighted

Graph 𝐺 = (V,E) in which V = 1,2, ...𝑛 is the set of nodes (agents) and E = (𝑖, 𝑗) is the set of

edges such that agents 𝑖, 𝑗 are connected in the edge set, where 𝑗 ̸= 𝑖. The neighbors of agent 𝑖 is

represented by the set 𝑁𝑖 = { 𝑗 : (𝑖, 𝑗) ∈ E}. Symmetry of the underlying graph implies that agents

71



𝑖 and 𝑗 for which (𝑖, 𝑗) ∈ E means that information flows in both directions between both agents.

The common approach to solve Problem (6.1) is to use first-order methods, which involves updating

the variable 𝑥(𝑘) iteratively using the gradient of the cost function with the following equation:

𝑥(𝑘 + 1) = 𝑥(𝑘)−𝛼∇ 𝑓 (𝑥(𝑘)). (6.2)

It is well known that with an appropriate choice of the step size 𝛼, the sequence {𝑥(𝑘)} generated

from Equation (6.2) converges to 𝑥∗.

The Newton method, which leverages curvature information of the cost function in addition to

direction; and are known to speed up the convergence in the neighborhood of the optimal solution.

The Newton-type methods have an update of the form:

𝑥(𝑘 + 1) = 𝑥(𝑘)−∇ 𝑓 (𝑥)(∇2 𝑓 (𝑥))−1. (6.3)

Though they have good convergence properties, there are computational costs associated with

building and computing the inverse hessian. In addition, some modification are needed if the

hessian is not positive definite [99].

Barzilai-Borwein Quasi-Newton Method

The Barzilai-Borwein method differs from other quasi-Newton methods because it only uses one

step size for the iteration as opposed to other quasi-Newton method that need approximations for

the inverse of the hessian, thus, increasing the computation overhead. Problem (6.1) is solved using

the iterative scheme, where a step-size 𝛼(𝑘) is computed in the gradient descent method (6.2) so

that 𝛼(𝑘)∇ 𝑓 (𝑥(𝑘)) approximates the (∇2 𝑓 (𝑥(𝑘)))−1∇ 𝑓 (𝑥(𝑘)) term in the Newton update (6.3).

72



Let 𝑠(𝑘 − 1) ≜ 𝑥(𝑘)− 𝑥(𝑘 − 1) and 𝑦(𝑘 − 1) = ∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘 − 1)). The first BB step size is

given by:

𝛼1(𝑘) =
𝑠(𝑘 −1)𝑇 𝑠(𝑘 −1)
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)

. (6.4)

Similarly, the second step size, 𝛼2(𝑘) is given by:

𝛼2(𝑘) =
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)
𝑦(𝑘 −1)𝑇 𝑦(𝑘 −1)

. (6.5)

In general, there is flexibility in the choice to use 𝛼1(𝑘) or 𝛼2(𝑘) [79]. In addition, both step sizes

can be alternated within the same algorithm after a considerable amount of iterations to facilitate

convergence. The procedure is summarized in Algorithm 1 below.

Algorithm 1 Algorithm for Centralized BB
Initialize: 𝛼1(0), 𝑥(0),∇ 𝑓 (𝑥(0)), Y.

1: while ∥∇ 𝑓 (𝑥(𝑘))∥≥ Y do
2: Compute

𝛼1(𝑘) =
𝑠(𝑘 −1))𝑇 𝑠(𝑘 −1)
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)

⊲ 𝛼2 in Equation (6.5) may also be used
3: Update 𝑥(𝑘 + 1) = 𝑥(𝑘)−𝛼1(𝑘)∇ 𝑓 (𝑥(𝑘))
4: end while

Before proceeding with the distributed BB algorithm and its convergence analyses, we first present

a convergence analysis of the centralized case, where the following assumptions are made about

Problem (6.1) and Algorithm 1.

Assumption 10. The decision set X is bounded.

Assumption 11. The objective function 𝑓 (𝑥) in Problem (6.1) is strongly convex and twice differ-

entiable. This implies that for 𝑥, 𝑦 ∈ R𝑛𝑝, there exists ` > 0 such that: 𝑓𝑖(𝑥) ≥ 𝑓𝑖(𝑦) +∇ 𝑓𝑖(𝑦)𝑇 (𝑥 −

𝑦) + `

2 ∥𝑥− 𝑦∥
2.

73



Assumption 12. The inner product between the iterates deviations, 𝑠, and the gradient deviations,

𝑦, is strictly positive for all time step 𝑘 . We make this assumption in both the centralized and

distributed case.

Assumption 13. The gradient of the objective function ∇ 𝑓 is Lipschitz continuous. This implies

that for all 𝑥 and 𝑦, there exists 𝐿 > 0 such that: ∥∇ 𝑓 (𝑥)−∇ 𝑓 (𝑦)∥≤ 𝐿∥𝑥− 𝑦∥.

The assumptions above are typical in the literature for distributed optimization problems; and in

fact, Assumption 12 was made in [86] as well.

Convergence Analysis of Centralized BB

We present a convergence analysis using the two BB step sizes for Problem (6.1) where strong

convexity of the cost function is assumed.

Convergence Analysis with step size 𝛼1

Lemma 6.0.1. Consider Algorithm 1 for Problem (6.1) and let Assumptions 10, 11, 12 and 13

hold. If 𝛼1(𝑘) in Equation (6.4) is such that 1/𝐿 ≤ 𝛼1(𝑘) ≤ 2/(` + 𝐿), the iterates generated from

Algorithm 1 converge Q-Linearly to the optimal point 𝑥∗.

Proof. From Equation (6.2), we first consider ∥𝑥(𝑘 + 1)− 𝑥∗∥2 to obtain bounds for convergence.

First, we let 𝑔(𝑘) = ∇ 𝑓 (𝑥(𝑘)) and we obtain that: ∥𝑥(𝑘 + 1)− 𝑥∗∥= ∥𝑥(𝑘)− 𝑥∗ −𝛼1(𝑘)𝑔(𝑘)∥. By

squaring both sides, we have:

∥𝑥(𝑘)−𝑥∗−𝛼1(𝑘)𝑔(𝑘)∥2= ∥𝑥(𝑘)−𝑥∗∥2+𝛼2
1(𝑘)∥𝑔(𝑘)∥2−2 (𝑥(𝑘)−𝑥∗)𝑇 (𝛼1(𝑘)𝑔(𝑘)) . (6.6)

74



Using the fact that for all vectors 𝑎, 𝑏, 2𝑎𝑇𝑏 ≤ ∥𝑎∥2+∥𝑏∥2. So we obtain the relationship:

2 (𝑥(𝑘)− 𝑥∗)𝑇 (𝑔(𝑘)) ≤ ∥𝑔(𝑘)∥2+∥𝑥(𝑘)− 𝑥∗∥2.

By using strong convexity, where ` and 𝐿 are strong convexity and Lipschitz parameters respectively

and 𝑐1, 𝑐2 are given by 𝑐1 = 2/(`+ 𝐿) and 𝑐2 = (2`𝐿)/(`+ 𝐿), we obtain:

∥𝑥(𝑘)−𝑥∗−𝛼1(𝑘)𝑔(𝑘)∥2≤ ∥𝑥(𝑘)−𝑥∗∥2+𝛼2
1(𝑘)∥𝑔(𝑘)∥2−𝛼1(𝑘)𝑐1∥𝑔(𝑘)∥2−𝛼1(𝑘)𝑐2∥𝑥(𝑘)−𝑥∗∥2,

≤(1−𝛼1(𝑘)𝑐2)∥𝑥(𝑘)−𝑥∗∥2+(𝛼2
1(𝑘)−𝛼1(𝑘)𝑐1)∥𝑔(𝑘)∥2,

≤(1−𝛼1(𝑘)𝑐2)∥𝑥(𝑘)−𝑥∗∥2.

(6.7)

and the last inequality is due to Theorem 2.1.12 from chapter 2 of [70]. We also note that in the

previous inequality, the term (𝛼2
1(𝑘)−𝛼1(𝑘)𝑐2)∥𝑔(𝑘)∥2≤ 0 provided 𝛼1(𝑘) ≤ 𝑐1. We establish that

the step size 𝛼1(𝑘) = 𝑐1 indeed is within the range of the BB step size bounds such that: 1
𝐿
≤ 𝑐1 ≤ 1

`
,

and refer readers to Appendix A for details.

Therefore the Barzilai-Borwein convergence can thus be analysed as:

∥𝑥(𝑘 + 1)− 𝑥∗∥2≤ (1−𝛼1(𝑘)𝑐2) ∥𝑥(𝑘)− 𝑥∗∥2. (6.8)

By dividing both sides of equation (6.8) by ∥𝑥(𝑘)− 𝑥∗∥2, we obtain the following:

∥𝑥(𝑘 + 1)− 𝑥∗∥2

∥𝑥(𝑘)− 𝑥∗∥2 ≤ 1−𝛼1(𝑘)𝑐2. (6.9)

By taking the square roots of both sides of equation (6.9), we obtain the following relationship:

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ ≤ (1−𝛼1(𝑘)𝑐2)

1
2 .

75



We will now analyze the right hand side of the above equation by bounding (1−𝛼1(𝑘)𝑐2)
1
2 . The

first Barzilai-Borwein step size 𝛼1(𝑘) is given by:

𝛼(𝑘) =
∥𝑠(𝑘 −1)∥2

[𝑥(𝑘)− 𝑥(𝑘 −1)]𝑇 [∇ 𝑓 (𝑥(𝑘)) −∇ 𝑓 (𝑥(𝑘 −1))]
.

By using Lipschitz continuity of ∇ 𝑓 (·), with 𝐿 as the Lipschitz constant, we obtain the lower bound

of the first BB step size as:

𝛼1(𝑘) >
∥𝑥(𝑘)− 𝑥(𝑘 −1)∥2

𝐿∥𝑥(𝑘)− 𝑥(𝑘 −1)∥2 =
1
𝐿
.

If 𝛼1(𝑘) and 𝑐2 are positive and 𝛼1(𝑘) > 1/𝐿, then −𝛼1(𝑘)𝑐2 < −𝑐2/𝐿. Since 𝛼1(𝑘) > 1/𝐿, it implies

that 0 < 1−𝛼1(𝑘)𝑐2 < 1− 𝑐2/𝐿. So we obtain the bound: 0 < (1−𝛼1(𝑘)𝑐2)
1
2 <

(
1− 𝑐2

𝐿

) 1
2 . We will

now show that 𝑐2/𝐿 < 1. If 𝑐2 = 2`𝐿/(`+ 𝐿), then it implies that 𝑐2/𝐿 = 2`/(`+ 𝐿). If ` < 𝐿, then

it implies that `+ ` < 𝐿 + ` and we obtain the fact that 2`/(`+ 𝐿) < 1.

Therefore we obtain the relationship:

lim
𝑘→∞

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ <

(
1− 𝑐2

𝐿

) 1
2
< 1,

from which we conclude that the iterates 𝑥(𝑘) converge 𝑄-linearly to the optimal point, 𝑥∗.

Remark 7. When strong convexity is assumed, it is shown that the algorithm converges Q-Linearly

to the optimal point 𝑥∗.

Convergence Analysis of Centralized BB with Second Step Size

Here, we state a similar result to Lemma 6.0.1 using the second BB step size in Equation (6.5).

Lemma 6.0.2. Consider Algorithm 1 for Problem (6.1) and let Assumptions 10, 11, 12 and 13

76



hold. If 𝛼2(𝑘) in Equation (6.5) is such that 1/𝐿 ≤ 𝛼2(𝑘) ≤ 2/(` + 𝐿), the iterates generated from

Algorithm 1 converge Q-Linearly to the optimal point 𝑥∗.

Proof. See Chapter A, Appendix A.

Distributed Barzilai-Borwein Quasi-Newton Method

We present a distributed solution to Problem (6.1), where Assumptions 10, 11, 12 and 13 hold. In

our proposed distributed algorithm, each agent in the network keeps a local copy of the decision

variable 𝑥𝑖(𝑘) and a local gradient ∇ 𝑓𝑖(𝑥𝑖(𝑘)) and updates them at each time-step using locally

computed step sizes 𝛼𝑖(𝑘). The step size computation is similar to the centralized case. Using the

local variables 𝑥𝑖(𝑘) and local gradient variables ∇ 𝑓𝑖(𝑥𝑖(𝑘)), each agent computes

𝑠𝑖(𝑘 −1) = 𝑥𝑖(𝑘)− 𝑥𝑖(𝑘 −1), (6.10)

𝑦𝑖(𝑘 −1) = ∇ 𝑓𝑖(𝑥𝑖(𝑘))−∇ 𝑓𝑖(𝑥𝑖(𝑘 −1)), (6.11)

and computes 𝛼𝑖(𝑘) in a manner that ensures

(𝛼𝑖(𝑘)−1𝐼)𝑠𝑖(𝑘 −1) ≈ 𝑦𝑖(𝑘 −1). (6.12)

Using the expressions in (6.10) and (6.11), we obtain the distributed form of the step size for each

agent 𝑖, which is given by:

𝛼𝑖1(𝑘) =
(𝑠𝑖(𝑘 −1))𝑇 𝑠𝑖(𝑘 −1)
(𝑠𝑖(𝑘 −1))𝑇 𝑦𝑖(𝑘 −1)

. (6.13)

and

𝛼𝑖2(𝑘) =
(𝑠𝑖(𝑘 −1))𝑇 𝑦𝑖(𝑘 −1)
(𝑦𝑖(𝑘 −1))𝑇 𝑦𝑖(𝑘 −1)

. (6.14)

77



To distribute the computations locally at each time step 𝑘 , each agent 𝑖 uses the following update

scheme 𝑥𝑖 ∈ R𝑛:

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘)−𝛼𝑖(𝑘)∇ 𝑓𝑖(𝑥𝑖(𝑘)). (6.15)

To ensure all agents converge to the optimal solution, each agent carries an iterative local com-

putation step and the interaction with neighbors lead to a consensus step. Each agent takes a

weighted average of the information received from its neighbors to compute its next update. With

this protocol, the local update at each agent 𝑖 is given by:

𝑥𝑖(𝑘 + 1) =
∑︁
𝑗∈𝑁𝑖∪𝑖

(𝑤𝑖 𝑗𝑥 𝑗 (𝑘)−𝛼𝑖(𝑘)∇ 𝑓𝑖(𝑥𝑖(𝑘))). (6.16)

where 𝑤𝑖 𝑗 are weights attached by agent 𝑖 to agent 𝑗’s estimate.

Given that𝑊 = [𝑤𝑖 𝑗 ], and if we let 𝑋 = [𝑥1, . . . , 𝑥𝑛] ∈ R𝑛𝑝 be the concatenation of local variables 𝑥𝑖,

𝐼𝑝 is the identity matrix of dimension 𝑝, ⊗ represents the Kronecker operation of matrix product

and 𝑊 = [𝑤𝑖 𝑗 ] is the doubly stochastic weight matrix that satisfies: 𝑊 ⊗ 𝐼𝑝 ∈ R𝑛𝑝×𝑛𝑝. We can

re-write Equation (6.16) as follows:

𝑋(𝑘 + 1) = (𝑊 ⊗ 𝐼𝑝)𝑋(𝑘)−𝛼𝑖∇ 𝑓 (𝑋(𝑘)). (6.17)

where 𝑋 is the concatenation of local 𝑥𝑖, and ∇ 𝑓 (𝑋(𝑘)) ∈ R𝑛𝑝 is the concatenated gradients.

Similarly we can denote the average of local estimates to be 𝑥(𝑘), the average of local estimates to

be 𝑔(𝑥(𝑘)), the average of the Lipschitz constants for agents to be 𝐿, and the average of the strong

convexity parameters for agents to be `. We also denote the averages of the two step sizes of agents

(𝛼𝑖1 and 𝛼𝑖1) to be 𝛼𝑖1 and 𝛼𝑖2 respectively. Because 𝑊 is doubly stochastic, it has one eigenvalue

_ = 1 and the other eigenvalues satisfy 0 < _ < 1.

In the distributed implementation of the BB algorithm, neighbors compute their local step sizes us-

78



ing local information and exchange decision estimates with their neighbors over the communication

network. The process is summarized in Algorithm 2.

Algorithm for Distributed BB

Algorithm 2 Algorithm for Distributed BB
Initialize: 𝛼𝑖(0), 𝑥𝑖(0),∇ 𝑓𝑖(𝑥𝑖(0))

1: while ∥𝑔(𝑥(𝑘))∥≥ Y do
2: Compute

𝑠𝑖(𝑘 −1) using (6.10),
𝑦𝑖(𝑘 −1) using (6.11),
𝛼𝑖(𝑘 + 1) using (6.13).

3: Local update in equation (6.16)
4: Communicate updates 𝑥𝑖(𝑘 + 1) with neighbors.
5: end while

Convergence Analysis of Distributed BB

We examine convergence of Algorithm 2 to the optimal point based on the local estimates.

Distributed BB Convergence Analysis with the First Step-Size

We present the main result of this section in Theorem 6.0.3.

Theorem 6.0.3. Consider Algorithm 2 for Problem (6.1) and let Assumptions 10, 11, 12 and

13 hold. If 𝛼𝑖1(𝑘) in Equation (6.13) is such that 1/𝐿𝑖 ≤ 𝛼𝑖1(𝑘) ≤ 2/(`𝑖 + 𝐿𝑖), the iterates of

each agent 𝑖 generated from Algorithm 3 converge Q-Linearly to the optimal point 𝑥∗; that is

∥𝑥𝑖(𝑘)− 𝑥∗∥≤ ∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥+∥𝑥(𝑘)− 𝑥∗∥. Moreover, each local estimate 𝑥𝑖(𝑘) converges to the

neighborhood of the optimal solution, 𝑥∗ based on the two step sizes 𝛼𝑖1 and 𝛼𝑖2.

79



To prove the main result in Theorem 6.0.3 we will take a two-step approach. First, we upper bound

the norm of the difference between the individual agent iterates and the average of the agents’

iterates in Lemma 6.0.4. Next, we show that the average of the agents’ iterates converges Q-linearly

to the optimal solution in Lemma 6.0.5.

Lemma 6.0.4. Consider Algorithm 2 with BB step size 𝛼𝑖1 in Equation (6.13) for Problem 6.1 and

suppose Assumptions 10, 11, 12 and 13 hold; and 𝐺 be the upper bound of the gradients, then

the norm of the difference between each local agent’s estimate and the average agents’ estimate is

bounded by the following:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ 𝐺
(
𝑘−1∑︁
𝑚=0

𝛼2
𝑖1(𝑚)

) 1
2
(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚)

) 1
2

,

where
(∑𝑘

𝑚=0𝛼
2
𝑖
(𝑚)

) 1
2 ≤

√
𝑘
`
, and

(∑𝑘−1
𝑚=0_

2(𝑘−1−𝑚)
) 1

2 ≤
(

1
1−_2

) 1
2

=
1

√
1−_2

≜ Q3. Moreover if the

following holds:
𝑘−1∑︁
𝑚=0

𝛼2
𝑖1(𝑚) ≤ 1

𝐺2 ∑𝑘−1
𝑚=0_

2(𝑘−1−𝑚)
,

then each local agent’s estimates converges Q-linearly to its average; that is ∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ 1.

Proof. The proof is presented in Chapter A, Appendix A

After obtaining the norm of the difference between local estimates and the consensus average

estimates, we now examine the convergence attribute of the average estimates 𝑥(𝑘) to the optimal

solution 𝑥∗. Before proceeding, we state an important lemma that leads to the convergence behavior

of average estimates to the optimal point.

Lemma 6.0.5. Consider Algorithm 2 for Problem (6.1) and let Assumptions 10, 11, 12 and 13 hold.

If the average of the first distributed BB step size 𝛼𝑖1 is such that 1/𝐿 ≤ 𝛼𝑖1 ≤ 2/(` + 𝐿), For finite

80



values of 𝑖 and 𝑘 , and bounded gradients, the consensus average estimate converges Q-Linearly to

the optimal point. Moreover, the local agent estimates converge to the neighborhood of the optimal

point, 𝑥∗.

Proof. Let 𝑥(𝑘) = 1
𝑛

𝑛∑
𝑖=1
𝑥𝑖(𝑘), 𝑔(𝑘) = 1

𝑛

𝑛∑
𝑖=1

∇ 𝑓𝑖 (𝑥𝑖(𝑘)), and 𝛼𝑖1(𝑘) = 1
𝑛

𝑛∑
𝑖=1
𝛼𝑖1(𝑘).

From equation 6.15, we first consider ∥𝑥(𝑘 + 1)− 𝑥∗∥2 to obtain bounds for convergence. First, we

let 𝑔(𝑘) be the average of gradient at local estimates and we let 𝛼𝑖1 be the average of the agents step

sizes corresponding to the average of the iterates.

∥𝑥(𝑘 + 1)− 𝑥∗∥= ∥𝑥(𝑘)− 𝑥∗−𝛼𝑖1𝑔(𝑘)∥.

By squaring both sides and evaluating the right hand side, we have:

∥𝑥(𝑘)−𝑥∗−𝛼𝑖1(𝑘)𝑔(𝑘)∥2=∥𝑥(𝑘)−𝑥∗∥2+𝛼𝑖12(𝑘)∥𝑔(𝑘)∥2−2 (𝑥(𝑘)−𝑥∗)𝑇 (𝛼𝑖1(𝑘)𝑔(𝑘)) . (6.18)

Using the fact that for all vectors 𝑎, 𝑏, 2𝑎𝑇𝑏 ≤ ∥𝑎∥2+∥𝑏∥2, we obtain the relationship:

2 (𝑥(𝑘)− 𝑥∗)𝑇 (𝑔(𝑘)) ≤ ∥𝑔(𝑘)∥2+∥𝑥(𝑘)− 𝑥∗∥2.

Just as we did for the centralized case, ` and 𝐿 are strong convexity and Lipschitz parameters

respectively and 𝑐1, 𝑐2 are given by 𝑐1 = 2/(`+ 𝐿) and 𝑐2 = 2`𝐿/(`+ 𝐿). We now obtain:

∥𝑥(𝑘+1)−𝑥∗−𝛼𝑖1(𝑘)𝑔(𝑘)∥2≤∥𝑥(𝑘)−𝑥∗∥2+𝛼𝑖12(𝑘)∥𝑔(𝑘)∥2−𝛼𝑖1(𝑘)𝑐1∥𝑔(𝑘)∥2−𝛼𝑖1(𝑘)𝑐2∥𝑥(𝑘)−𝑥∗∥2,

≤(1−𝛼𝑖1(𝑘)𝑐2)∥𝑥(𝑘)−𝑥∗∥2+(𝛼𝑖12(𝑘)−𝛼𝑖1(𝑘)𝑐1)∥𝑔(𝑘)∥2,

≤(1−𝛼𝑖1(𝑘)𝑐2)∥𝑥(𝑘)−𝑥∗∥2.

(6.19)

We note that the last inequality is due to Theorem 2.1.12 from chapter 2 of [70]. We also

81



note that in the previous inequality, the term that contains the distributed form of the step size,

(𝛼𝑖12(𝑘)−𝛼𝑖1(𝑘)𝑐1)∥𝑔(𝑘)∥2≤ 0 provided 𝛼𝑖1(𝑘) ≤ 𝑐1. We show that the step size 𝛼𝑖1(𝑘) = 𝑐1 is

within the range of the BB step size bounds below:

Corollary 1. Let 𝐿 and ` be the Lipschitz and strong convexity parameters respectively with ` ≤ 𝐿.

The range of the average of the distributed BB step size 𝛼𝑖1(𝑘) is given by:

1
𝐿
≤ 𝛼𝑖1(𝑘) ≤ 2

`+ 𝐿
≤ 1
`
. (6.20)

where the condition 𝛼𝑖1(𝑘) ≤ 1
`

is assumed. See Chapter A, Appendix A for details.

Therefore the distributed BB convergence using the first BB step size can be analysed as the

following:

∥𝑥(𝑘 + 1)− 𝑥∗∥2≤ (1−𝛼𝑖1(𝑘)𝑐2) ∥𝑥(𝑘)− 𝑥∗∥2. (6.21)

Dividing both sides of equation (6.21) by ∥𝑥(𝑘)− 𝑥∗∥2 yields:

∥𝑥(𝑘 + 1)− 𝑥∗∥2

∥𝑥(𝑘)− 𝑥∗∥2 ≤ 1−𝛼𝑖1(𝑘)𝑐2. (6.22)

Taking the square root of both sides of equation (6.22) yields the following:

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ ≤ (1−𝛼𝑖1(𝑘)𝑐2)

1
2 .

We will now bound: (1−𝛼𝑖1(𝑘)𝑐2)
1
2 . The distributed form of the first Barzilai-Borwein step size

𝛼𝑖1(𝑘) is given by:

𝛼𝑖1(𝑘) =
∥𝑠𝑖(𝑘 −1)∥2

[𝑥𝑖(𝑘)− 𝑥𝑖(𝑘 −1)]𝑇 [∇ 𝑓𝑖 (𝑥𝑖(𝑘)) −∇ 𝑓𝑖 (𝑥𝑖(𝑘 −1))]

82



By using Lipschitz continuity of ∇ 𝑓 (·) with 𝐿 as the Lipschitz constant, we obtain the lower bound

of distributed form of the first BB step size as:

𝛼𝑖1(𝑘) >
∥𝑥𝑖(𝑘)− 𝑥𝑖(𝑘 −1)∥2

𝐿∥𝑥𝑖(𝑘)− 𝑥𝑖(𝑘 −1)∥2 =
1
𝐿
.

We know that 𝛼𝑖1(𝑘) = 1
𝑛

𝑛∑
𝑖=1
𝛼𝑖1(𝑘), and it follows that 𝑛𝛼𝑖1(𝑘) =

𝑛∑
𝑖=1
𝛼𝑖1(𝑘). But we know that

𝛼𝑖1(𝑘) > 1
𝐿
, and as a fact, 𝛼𝑖1(𝑘) <

𝑛∑
𝑖=1
𝛼𝑖1(𝑘). Therefore we obtain the relationship:

1
𝐿
< 𝛼𝑖1(𝑘) <

𝑛∑︁
𝑖=1
𝛼𝑖1(𝑘). (6.23)

From equation (6.23), 𝑛𝛼𝑖1(𝑘) =
𝑛∑
𝑖=1
𝛼𝑖1(𝑘) > 1

𝐿
and we obtain the fact that 𝛼𝑖1(𝑘) > 1

𝑛𝐿
.

If 𝛼𝑖1(𝑘) and 𝑐2 are positive and 𝛼𝑖1(𝑘) > 1/𝑛𝐿, then −𝛼𝑖1(𝑘)𝑐2 < −𝑐2/𝑛𝐿. Since 𝛼𝑖1(𝑘) > 1/𝑛𝐿.

it implies that 0 < 1−𝛼𝑖1(𝑘)𝑐2 < 1− 𝑐2/𝑛𝐿, Therefore we obtain the bound 0 < (1−𝛼𝑖1(𝑘)𝑐2)
1
2 <(

1− 𝑐2
𝑛𝐿

) 1
2 . We will now show that 𝑐2/𝑛𝐿 < 1. If 𝑐2 = 2`𝐿/(` + 𝐿), then it implies that 𝑐2/𝑛𝐿 =

2`/𝑛(`+𝐿). If ` ≤ 𝐿, then we have `+` ≤ 𝐿+` and we obtain that 2`/𝑛(`+𝐿) ≤ 1 for all positive

values of 𝑛. We obtain the convergence bounds as the following:

lim
𝑘→∞

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ ≤

(
1− 𝑐2

𝑛𝐿

) 1
2 ≤ 1,

and we conclude that the average of the estimates converges Q-linearly to the optimal point, 𝑥∗.

83



Distributed BB with Second Step-Size

Lemma 6.0.6. Suppose Assumptions 10, 11, 12 and 13 hold. Let the second BB step size be given

by:

𝛼𝑖2 =
𝑠𝑖(𝑘 −1)𝑇 𝑦𝑖(𝑘 −1)
𝑦𝑖(𝑘 −1)𝑇 𝑦𝑖(𝑘 −1)

.

For finite values of 𝑖 and 𝑘 , and bounded gradients, where 𝐺 is the upper bound of the gradients,

the norm of the difference between the local agents estimate and the consensus average estimate is

bounded and given by the following:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ 𝐺
(
𝑘−1∑︁
𝑚=0

𝛼2
𝑖2(𝑚)

) 1
2
(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚)

) 1
2

. (6.24)

Where:
(∑𝑘

𝑚=0𝛼
2
𝑖
(𝑚)

) 1
2 ≤

√
𝑘
`
. and:

(∑𝑘−1
𝑚=0_

2(𝑘−1−𝑚)
) 1

2 ≤
(

1
1−_2

) 1
2

=
1

√
1−_2

≜ Q3.

Proof. The proof is similar to the proof of Lemma 6.0.4; see Chapter A, Appendix A.

Now, we bound the convergence of average of local estimates to the optimal point using the second

step size.

First let us consider ∥𝑥(𝑘 + 1)− 𝑥∗∥2: We will state a lemma before we proceed to the convergence

analysis.

Lemma 6.0.7. Consider Algorithm 2 for Problem (6.1) and let Assumptions 10, 11, 12 and 13 hold.

If the average of the second distributed BB step size 𝛼𝑖2 is such that 1/𝐿 ≤ 𝛼𝑖2 ≤ 2/(`+𝐿), For finite

values of 𝑖 and 𝑘 , and bounded gradients, the consensus average estimate converges Q-Linearly to

the optimal point. Moreover, the local agent estimates converge to the neighborhood of the optimal

point, 𝑥∗.

84



Proof. See Chapter A, Appendix A.

Numerical Experiments

We show some simulation for results in Theorem 6.0.3 (the distributed case). We consider the

following objective function, which is separable per agent:

𝑓 (𝑥) =
1
2

𝑛∑︁
𝑖=1
𝑥𝑇 𝐴𝑖𝑥 + 𝑏𝑇𝑖 𝑥, (6.25)

where 𝐴𝑖 ∈ R𝑝×𝑝, 𝑏𝑖 ∈ R𝑝 are used by each agent 𝑖 for their own computation, and 𝑛 is the number

of agents in the network and its dimension is 𝑚 = 10. In equation (6.25), the gradient function is

given by:

∇ 𝑓 (𝑥) =
1
2

(𝐴𝑖 + 𝐴𝑇𝑖 )𝑥 + 𝑏𝑖 . (6.26)

We note that the function (6.25) is strongly convex and its gradient function in (6.26) is Lipschitz

continuous for an appropriate value of 𝐴. We verify this through its strong convexity parameters `𝑖

and Lipschitz parameter values 𝐿𝑖, where `𝑖 ≤ 𝐿𝑖 for each agent 𝑖 in the network. We also note that

`𝑖 is the maximum of all the eigenvalues of matrix (𝐴𝑖 + 𝐴𝑇𝑖 ) and 𝐿𝑖 is the spectral norm of matrix

(𝐴𝑖 + 𝐴𝑇𝑖 ). We will use a scenario where there are 100 nodes in the network and the matrix 𝑊 is a

positive, symmetric, random doubly stochastic matrix. Our simulations aim to compare different

step sizes with the distributed Barzilai-Bowein in equations (6.13) and (6.14). Specifically, we use

the following step sizes of 𝛼𝑖 = 1
𝐿𝑖

, 𝛼𝑖 = 1
`𝑖

, and 𝛼𝑖 = 2
𝐿𝑖+`𝑖 according to Lemmas 6.0.5 and 6.0.7,

and the BB step size as seen in equation (6.13). In Figure 6.1, the label 𝑐1 = 2
`+𝐿 bound curve

(the circular curve) is the step size according to convergence result in Lemma 6.0.5. The label BB

step size in figure 6.1 (the curve beneath all other curves) is the actual BB step size in equation

(6.13) and the labels BB-Upperbound step size curve (the one in asterisk) and BB-Lowerbound

85



step size curve ( triangular) are the lower and upper bounds of the BB step sizes (𝛼𝑖 = 1
𝐿𝑖

, 𝛼𝑖 = 1
`𝑖

)

respectively. Our simulations affirm that the step size 𝛼𝑖 = 2
𝐿𝑖+`𝑖 lies in between the lower and upper

bounds of the BB step size and also agrees with the theoretical result in Corollary 1. We apply

these step sizes to the iteration shown in equation (6.16) to compare the rates at which each step

size converges to the optimal point. By setting the gradient function in equation (6.26), to zero, we

obtain the optimal solution 𝑥∗ given by the following equation:

𝑥∗ = −2(𝐴𝑖 + 𝐴𝑇𝑖 )−1𝑏. (6.27)

The optimal solution in equation (6.27) is then obtained for the three different step sizes we used for

simulation. Though convergence is attained for the three step sizes used, we run the simulations for

10 iterations to compare convergence speeds. We compare convergence rates by first initializing 𝑥,

𝐴 and 𝑏 as zeros between time step 𝑘 = 1 to the total number of iterations 𝑇 = 10. We plot the error

curve for the three step sizes indicated by the expression ∥𝑥(𝑘 + 1)−𝑥∗∥ and compare the results. It

should be noted that the Barzilai-Borwein method is not necessarily monotone decreasing at each

time-step [100] as seen in Figure 6.1 where the curve increases from the seventh to ninth time step.

Our Numerical results are shown graphically below in Figure 6.1:

Now that the distributed representation using the Barzilai-Borwein Quasi-Newton method has

been illustrated, the next section applies the Barzilai-Borwein Quasi-Newton method in online

optimization. This work on online optimization is the preliminary result obtained and interested

researchers are welcome to explore adversarial problems in online optimization scenarios.

86



1 2 3 4 5 6 7 8 9 10

0.1

0.15

0.2

0.25

0.3
gradient

c
1
 Bound

BB Step size

BB-Upperbound step size

BB-Lowerbound step size

Figure 6.1: Distributed Simulations for 10 iterations

Sublinear Regret with Barzilai-Borwein Step Sizes

In this section, a regret analysis using the Barzilai-Borwein Quasi-Newton method in an online

optimization scenario is presented. Due to the fast convergence property of the Newton methods,

the work [97] is an improvement on existing online optimizations application problems in [94], [95],

[96], and [87]. However, the Quasi-Newton method using the BB step sizes presented in this paper

is better than Newton methods in dealing with convergence speeds and computing the inverse of the

87



hessian. Even though the author in [90] also obtained a similar sublinear regret result, BB Quasi-

Newton algorithm is known to be suitable for dealing with large-scale optimization bottleneck that

the Newton method is not appropriate for. Additionally, strong convexity assumption is not needed

in this paper to establish sublinear regret.

Problem Formulation

Consider an online optimization problem below

min
𝑥(𝑘)∈X

𝑓𝑘 (𝑥(𝑘)), (6.28)

in which the feasible decision set X ∈ R𝑛 is known, assumed to be convex quadratic, non-empty,

bounded, closed and fixed for all time 𝑘 = 1 . . . ,𝐾 . We assume the number of iterations during

which the online players make choices, 𝐾 , is unknown to the player. By convexity of the cost

function 𝑓𝑘 (·) and X, Problem (6.28) has an optimal solution 𝑥∗, which is the best possible choice

or decision agents can make at each time 𝑘 . A player (an online agent) at time 𝑘 uses some

algorithm to choose a point 𝑥(𝑘) ∈ X, after which the player receives a loss function 𝑓𝑘 (·). The

loss incurred by the player is 𝑓𝑘 (𝑥(𝑘)). These problems are common in contexts such as real time

resource allocation, online classification [88]. The goal of the online agent is to minimize the

aggregate loss by determining a sequence of feasible online solutions 𝑥(𝑘) at each time-step of the

algorithm.

Let the aggregate loss incurred by the online algorithm that solves Problem (6.28) at time 𝐾 be

given by: 𝑓 (𝐾) = ∑𝐾
𝑘=1 𝑓𝑘 (𝑥(𝑘)). To measure performance of the online player, we use the regret

framework. The static regret is a measure of the difference between the loss of the online player

and the loss from the static case min𝑥∈X 𝑓𝑘 (𝑥), where the single best decision 𝑥∗ is chosen with the

88



benefit of hindsight. Let the aggregate loss up to time 𝐾 incurred by the single best decision be

given by 𝑓𝑥(𝐾) = ∑𝐾
𝑘=1 𝑓𝑘 (𝑥). Then the static regret at time 𝐾 is defined as [88]:

𝑅(𝐾) = 𝑓 (𝐾)−min
𝑥∈X

𝑓𝑥(𝐾). (6.29)

Algorithms for Online Optimization Problem

A commonly used algorithm for solving the static case of Problem (6.28) is the gradient descent

method, which involves updating the variable 𝑥(𝑘) iteratively using the gradient of the cost function

with the following equation:

𝑥(𝑘 + 1) = 𝑥(𝑘)−𝛼∇ 𝑓 (𝑥(𝑘)). (6.30)

It is known that with an appropriate choice of the step size 𝛼, the sequence {𝑥(𝑘)} converges to

𝑥∗ in O(1/𝑘); that is, an Y-optimal solution is attained in about O( 1
Y
) iterations [70]. Moreover,

when the cost function is strongly convex, the update equation in (6.30) reaches an Y-optimal

solution in about O(1/Y2) iterations. Even though the update scheme of gradient method are easily

implementable in a distributed architecture as seen in [70] and [7], there have been a need for an

improvement in convergence rates of gradient methods as seen in [101]. Nonetheless techniques to

accelerate convergence lag behind the Newton and quasi-Newton methods [101].

To improve convergence rates in static optimization problems, algorithms that use second order

information (hessian of the cost function) have been introduced. These methods leverage curvature

information of the cost function in addition to direction; and are known to speed up the convergence

in the neighborhood of the optimal solution. The Newton-type method is an example used as

an improvement in enabling faster convergence rates than the regular gradient method. In fact,

when the cost function is quadratic, the Newton algorithm is known to converge in one time-step.

For non-quadratic, the Newton method still converges in just a few time steps [102]. Though

89



they have good convergence properties, there are computational costs associated with building

and computing the inverse hessian. In addition, some modification are needed if the hessian is not

positive definite [99]. To avoid the computation burden of second-order methods while maintaining

the structure of first-order methods, the BB Quasi-Newton methods will be used.

The BB Quasi-Newton Method

The Barzilai-Borwen (BB) Quasi-Newton method is an iterative technique suitable for solving

optimization problems that can yield superlinear convergence rates when the objective functions

are strongly convex and quadratic [79, 85]. It differs from other quasi-Newton methods because it

only uses one step size for the iteration as opposed to other quasi-Newton method that have more

computation overhead. The Barzilai-Borwein method solves Problem (6.28) iteratively using the

update in (6.30); however, the step-size 𝛼(𝑘) is computed so that 𝛼(𝑘)∇ 𝑓 (𝑥(𝑘)) approximates the

the inverse Hessian. We briefly introduce the two forms of the BB step-sizes used in Algorithm 3.

Consider the update 𝑥(𝑘 +1) = 𝑥(𝑘)−𝛼(𝑘)∇ 𝑓 (𝑥(𝑘)). The two forms of the BB step sizes [79] 𝛼1(𝑘)

and 𝛼2(𝑘) are given by:

𝛼1(𝑘) =
𝑠(𝑘 −1)𝑇 𝑠(𝑘 −1)
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)

. (6.31)

𝛼2(𝑘) =
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)
𝑦(𝑘 −1)𝑇 𝑦(𝑘 −1)

. (6.32)

and 𝑠(𝑘) and 𝑦(𝑘) are such that 𝑠(𝑘 −1) ≜ 𝑥(𝑘)− 𝑥(𝑘 −1) and 𝑦(𝑘 −1) = ∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘 −1).

In general, there is flexibility in the choice to use 𝛼1(𝑘) or 𝛼2(𝑘) [79], and both step sizes can

be alternated within the same algorithm after a considerable amount of iterations to facilitate

convergence. The rest of this work will characterize performance of the online Algorithm 3 using

90



the step sizes in Equations (6.31) and (6.32), which as we will show has a regret that is sublinear

in time with the average regret approaching zero.

Before stating the main result, we state some assumptions about Problem (6.28) and Algorithm 3.

Assumption 14. The decision set X is bounded.

Assumption 15. The decision set X is closed.

Assumption 16. For all decision iterates 𝑥(𝑘), the cost function 𝑓 (𝑥(𝑘)) is differentiable and the

gradient of the objective function ∇ 𝑓 is Lipschitz continuous. This means that for all 𝑥 and 𝑦, there

exists 𝐿 > 1 such that: ∥∇ 𝑓 (𝑥)−∇ 𝑓 (𝑦)∥≤ 𝐿∥𝑥− 𝑦∥.

Algorithm 3 Online Barzilai-Borwein Quasi-Newton Alg.
Given: Feasible set X and time horizon 𝐾
Initialize: 𝑥(0) and ∇ 𝑓0(𝑥(0)) arbitrarily

1: for 𝑘 = 1 to 𝐾 do
2: Agents predicts 𝑥(𝑘) and observes 𝑓𝑘 (·)
3: Update 𝑥(𝑘 + 1) = 𝑥(𝑘)−𝛼(𝑘)∇ 𝑓𝑘 (𝑥(𝑘))
4: end for

Regret Bounds

Before the results are presented (in Theorems 6.0.10 and 6.0.11), we first present two lemmas that

will be used in its proof. The first is a result in [90], which will be used in the definition of regret

and the other is the Sedrakyan’s inequality.

Lemma 6.0.8. ( [90]) Without loss of generality, for all iterates 𝑘 , there exists gradient 𝑔(𝑘) ∈ R𝑛

such that for all 𝑥, 𝑔𝑘 .𝑥 = 𝑓𝑘 (𝑥), where 𝑔𝑘 = ∇ 𝑓𝑘 (𝑥(𝑘)).

Proof. The proof can be seen in [90].

91



Lemma 6.0.9. (The Sedrakyan’s Inequality) For all positive reals 𝑎1, 𝑎2, ........𝑎𝑛 and 𝑏1, 𝑏2, ........𝑏𝑛,

the following inequality holds:
𝑛∑︁
𝑖=1

𝑎2
𝑖

𝑏𝑖
≥

(∑𝑛
𝑖=1 𝑎𝑖)

2∑𝑛
𝑖=1 𝑏𝑖

.

Proof. We refer readers to [103] for a proof.

Another result we will use is the static regret bounds for 𝑅(𝐾) which is shown in [90]:

𝑅(𝐾) ≤ ∥𝐷∥2 1
2𝛼(𝐾)

+
∥∇ 𝑓𝑚 ∥2

2

𝐾∑︁
𝑘=1

𝛼(𝑘), (6.33)

As seen in [90], 𝐷 denotes the maximum value of the diameter of X and ∥∇ 𝑓𝑚 ∥= max𝑥∈X ∥∇ 𝑓𝑘 (𝑥)∥.

We will now proceed to characterize the regret obtained from Algorithm 3 for Problem (6.28) with

the two BB step sizes.

Theorem 6.0.10. Consider Problem (6.28) and let:

𝛼(𝑘) =
𝑠(𝑘−1)𝑇 𝑠(𝑘−1)
𝑠(𝑘−1)𝑇 𝑦(𝑘−1)

in Algorithm 3. If
𝑒− 𝑑
𝑐− 𝑏 ≤ 𝑑

𝑏
,

where 𝑏 = (∥(𝑥(1)−𝑥(0)∥+∥(𝑥(2)−𝑥(1)∥)2, 𝑐 = 2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2), 𝑑 = ∑𝐾
𝑘=1(𝑥(𝑘)−

𝑥(𝑘 −1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘 −1))), and 𝑒 = ∑𝐾
𝑘=1 𝐿∥𝑥(𝑘)− 𝑥(𝑘 −1)∥2.

Also if 𝑃 = min(𝑃, 𝑍) where: 𝑃 = ∑𝐾
𝑘=1𝛼(𝑘) and

𝑍 =
2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2)
𝐿
∑𝐾
𝑘=1(∥𝑥(𝑘)∥2+∥𝑥(𝑘 −1)∥2)

,

92



then the average regret is bounded by the following relationship:

𝑅(𝐾)
𝐾

≤ ∥𝐷∥2 1
2𝐾𝛼(𝐾)

+
∥∇ 𝑓𝑚 ∥2

2𝐾
Ψ,

where Ψ =
2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2)
𝐿
∑𝐾
𝑘=1∥𝑥(𝑘)∥2+𝐿∑𝐾

𝑘=1∥𝑥(𝑘−1)∥2
,

𝐿 = max𝑘 𝐿𝑘 , 𝐿𝑘 is the Lipschitz parameter of ∇ 𝑓𝑘 (𝑥(𝑘), in Problem (6.28) and lim𝐾→∞
𝑅(𝐾)
𝐾

approaches 0.

Proof. First, by using the results of Lemma 6.0.8, the regret of Algorithm 3 can be expressed as:

𝑅(𝐾) = ∑𝐾
𝑘=1(𝑥(𝑘)− 𝑥∗)𝑔(𝑘). Then from Equation (6.30), the regret 𝑅(𝐾) = ∑𝐾

𝑘=1(𝑥(𝑘 −1)−𝛼(𝑘 −

1)∇ 𝑓 (𝑥(𝑘 − 1))− 𝑥∗)𝑔(𝑘), where 𝛼(𝑘) is as expressed in (6.31) . To prove Theorem 6.0.10, the

approach will be to upper-bound the aggregate sum of the step size 𝛼(𝑘) and use the generalized

bound for online gradient descent in Equation (6.33). This approach is possible since the gradient of

the cost function at each time in the sequence of problems is bounded (Assumption 16). Proceeding,

the running sum of the step sizes 𝛼(𝑘) up to time 𝐾 is expressed as

𝐾∑︁
𝑘=1

𝛼(𝑘) =
𝐾∑︁
𝑘=1

𝑠(𝑘 −1)𝑇 𝑠(𝑘 −1)
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)

=
𝐾∑︁
𝑘=1

∥𝑥(𝑘)−𝑥(𝑘−1)∥2

(𝑥(𝑘)−𝑥(𝑘−1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)))
.

By applying the result in Lemma 6.0.9 to the right hand side of the preceding inequality, we obtain

that:
𝐾∑︁
𝑘=1

𝛼(𝑘) ≥
(∑𝐾

𝑘=1∥(𝑥(𝑘)−𝑥(𝑘−1))∥)2∑𝐾
𝑘=1(𝑥(𝑘)−𝑥(𝑘−1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)))

(6.34)

By inspection, if write the first few terms of the numerator of equation (6.34), it is evident that

equation (6.34) can be further lower bounded according to the following:

𝐾∑︁
𝑘=1

𝛼(𝑘) ≥ (∥(𝑥(1)−𝑥(0)∥+∥(𝑥(2)−𝑥(1)∥)2∑𝐾
𝑘=1(𝑥(𝑘)−𝑥(𝑘−1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)))

(6.35)

93



Clearly because the terms ∥(𝑥(1)−𝑥(0)∥ and ∥(𝑥(2)−𝑥(1)∥ are positive, the numerator of equation

(6.35) can be upper-bounded according to the following:

(∥(𝑥(1)−𝑥(0)∥+∥(𝑥(2)−𝑥(1)∥)2 ≤ 2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2)

To bound the denominator of Equation (6.35), we use the Lipschitz continuity of the gradients of

𝑓 (·) with parameter 𝐿 > 1. Therefore,

𝐾∑︁
𝑘=1

(𝑥(𝑘)− 𝑥(𝑘 −1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘 −1))) ≤
𝐾∑︁
𝑘=1

𝐿∥𝑥(𝑘)− 𝑥(𝑘 −1)∥2.

If we represent the bounds in the numerator and denominator of equation (6.35) by the following

variables such that: 𝑏 = (∥(𝑥(1)−𝑥(0)∥+∥(𝑥(2)−𝑥(1)∥)2 , 𝑐 = 2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2), 𝑑 =∑𝐾
𝑘=1(𝑥(𝑘)− 𝑥(𝑘 − 1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘 − 1))), and 𝑒 = ∑𝐾

𝑘=1 𝐿∥𝑥(𝑘)− 𝑥(𝑘 − 1)∥2. It has been

shown that 𝑏 ≤ 𝑐 and 𝑑 ≤ 𝑒. Therefore to find an upper bound for equation (6.35), we use the

condition that if 𝑒−𝑑
𝑐−𝑏 ≤ 𝑑

𝑏
, then we obtain: 𝑏

𝑑
≤ 𝑐

𝑒
So we obtain the bounds of the right hand side of

(6.35) as:

(∥(𝑥(1)−𝑥(0)∥+∥(𝑥(2)−𝑥(1)∥)2∑𝐾
𝑘=1(𝑥(𝑘)−𝑥(𝑘−1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)))

≤ 2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2)
𝐿
∑𝐾
𝑘=1(∥𝑥(𝑘)∥2+∥𝑥(𝑘 −1)∥2)

If we let the left hand side of equation (6.35) be represented by 𝑃 = ∑𝐾
𝑘=1𝛼(𝑘) and we let the right

hand side of equation (6.35) be denoted as the following:

𝑄 =
(∥(𝑥(1)−𝑥(0)∥+∥(𝑥(2)−𝑥(1)∥)2∑𝐾

𝑘=1(𝑥(𝑘)−𝑥(𝑘−1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)))

Similarly if we let the derived upper bound of 𝑄 be given by:

𝑍 =
2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2)
𝐿
∑𝐾
𝑘=1(∥𝑥(𝑘)∥2+∥𝑥(𝑘 −1)∥2)

94



From the above analysis, we observe that 𝑃 ≥ 𝑄 and 𝑄 ≤ 𝑍 . Therefore, if 𝑃 = min(𝑃, 𝑍), then we

can deduce that 𝑃 ≤ 𝑍 .

By the established relationship between 𝑃 and 𝑍 and also using the triangle inequality, we obtain

the bound for using the first BB step size as:

𝐾∑︁
𝑘=1

𝛼(𝑘) ≤ 2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2)
𝐿
∑𝐾
𝑘=1∥𝑥(𝑘)∥2+𝐿∑𝐾

𝑘=1∥𝑥(𝑘−1)∥2

By using the regret bound equation in (6.33), we obtain: 𝑅(𝐾) ≤ ∥𝐷∥2 1
2𝛼(𝐾)+

∥∇ 𝑓𝑚∥2

2 Ψ,

where Ψ =
2(∥(𝑥(1)−𝑥(0)∥2+∥(𝑥(2)−𝑥(1)∥2)
𝐿
∑𝐾
𝑘=1∥𝑥(𝑘)∥2+𝐿∑𝐾

𝑘=1∥𝑥(𝑘−1)∥2
.

The average regret over 𝐾 time steps can then be expressed as

𝑅(𝐾)
𝐾

≤ ∥𝐷∥2 1
2𝐾𝛼(𝐾)

+
∥∇ 𝑓𝑚 ∥2

2𝐾
Ψ.

Since ∥𝐷∥ is constant based on its value in (6.33), and ∥∇ 𝑓𝑚 ∥2 is also constant, we conclude that

that the average regret lim𝐾→∞
𝑅(𝐾)
𝐾

approaches 0.

Next, we consider the performance of Algorithm 3 using the second BB step-size in Equation

(6.32).

Theorem 6.0.11. Consider Problem (6.28) and let Algorithm 3 be used to solve Problem (6.28)

where

𝛼(𝑘) =
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)
𝑦(𝑘 −1)𝑇 𝑦(𝑘 −1)

;

and 𝐿 is the maximum of all Lipschitz continuity parameters of all gradients of the cost function in

95



Problem (6.28), then, the regret is upper bounded by

𝑅(𝐾) ≤ ∥𝐷∥2 1
2𝛼(𝐾)

+
∥∇ 𝑓𝑚 ∥2

2
Z,

where Z = (∑𝐾
𝑘=1(((𝐴(𝑘)𝑇 )2) 1

2 (∑𝐾
𝑘=1((𝐵(𝑘))2) 1

2 (∑𝐾
𝑘=1((𝐶(𝑘))2) 1

2 . and the average regret lim𝐾→∞
𝑅(𝐾)
𝐾

approaches 0.

Proof. The approach to proving Theorem 6.0.11 will be similar to that of Theorem 6.0.10, where

we will obtain bounds for the aggregate sum of the step sizes in 𝑅(𝐾) and use the generalized bound

for online gradient descent algorithm. In this case, the sum of the aggregate step sizes is expressed

as
𝐾∑︁
𝑘=1

𝛼(𝑘) =
𝐾∑︁
𝑘=1

𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)
𝑦(𝑘 −1)𝑇 𝑦(𝑘 −1)

.

By using the relationship 𝑠(𝑘 − 1) ≜ 𝑥(𝑘)− 𝑥(𝑘 − 1) and 𝑦(𝑘 − 1) = ∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘 − 1)). By

noting that 𝑦(𝑘 − 1)𝑇 𝑦(𝑘 − 1) = ∥𝑦(𝑘 − 1)∥2, and also expressing as a product of three different

functions, we obtain the following relationship:

𝐾∑︁
𝑘=1

𝛼(𝑘) =
𝐾∑︁
𝑘=1

((𝑥(𝑘)−𝑥(𝑘 −1))𝑇 (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)))∥∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)∥−2) (6.36)

For the purpose of clarity, let 𝐴(𝑘) = ((𝑥(𝑘)−𝑥(𝑘 −1)), 𝐵(𝑘) = (∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1))) and 𝐶(𝑘) =

∥∇ 𝑓 (𝑥(𝑘))−∇ 𝑓 (𝑥(𝑘−1)∥−2. Applying the Cauchy-Schwarz inequality to the right hand side of

Equation (6.36), yields:

𝐾∑︁
𝑘=1

𝛼(𝑘) =
𝐾∑︁
𝑘=1

(𝐴(𝑘)𝑇𝐵(𝑘))𝐶(𝑘) ≤ (
𝐾∑︁
𝑘=1

(((𝐴(𝑘)𝑇 )2)
1
2 (

𝐾∑︁
𝑘=1

((𝐵(𝑘))2)
1
2 (

𝐾∑︁
𝑘=1

((𝐶(𝑘))2)
1
2 .

96



Applying the generalized regret bound as seen in Equation (6.33), we obtain the regret 𝑅(𝐾) as:

𝑅(𝐾) ≤ ∥𝐷∥2 1
2𝛼(𝐾)

+
∥∇ 𝑓𝑚 ∥2

2
Z,

where the value of Z is the upper bound of ∑𝐾
𝑘=1𝛼(𝑘) obtained above after applying Cauchy-Schwarz

inequality and it is given by:

Z = (
𝐾∑︁
𝑘=1

(((𝐴(𝑘)𝑇 )2)
1
2 (

𝐾∑︁
𝑘=1

((𝐵(𝑘))2)
1
2 (

𝐾∑︁
𝑘=1

((𝐶(𝑘))2)
1
2 .

Therefore the average regret is given by the bounds: 𝑅(𝐾)
𝐾

≤ ∥𝐷∥2 1
2𝐾𝛼(𝐾) + ∥∇ 𝑓𝑚∥2

2𝐾 Z Furthermore,

since ∥𝐷∥ is constant based on its value in (6.33), and the terms 𝐴(𝑘), 𝐵(𝑘) and 𝐶(𝑘) are also

positive, we conclude that the average regret lim𝐾→∞
𝑅(𝐾)
𝐾

approaches 0.

The Barzilai-Borwein step size in the gradient-based Algorithm 3 results in a regret that grows

sublinearly in time and yields an average regret of zero as time 𝐾 goes to infinity. This result differs

from the results obtained in [90,104,105] because the authors use online convex programming either

via gradient descent or distributed primal dual algorithms to obtain sublinear regret. However, the

result of this chapter uses the Barzilai-Borwein method to obtain sublinear regret.

Having explored distributed optimization algorithms and performance under adversarial attack, we

give the concluding remarks of this dissertation in the next chapter.

97



CHAPTER 7: CONCLUSION AND OPEN PROBLEMS

The performance of a distributed gradient algorithm with adversarial attack in a communication-

constrained environment is explored as a preventive measure that non-adversarial agents employ

to manage the communication resources used up by the adversarial agents. The communication

constraints are explored using both fixed and adaptive quantization scheme amidst the presence

of adversarial agents. The thesis is presented in a way that adversarial agents can choose to

perturb their iterates by either using either the same attack vector or different attack vector at each

iteration without affecting the convergence to a neighborhood of the optimal solution. Conditions

needed for convergence are established and corroborated via simulations. Detection strategies to

identify adversarial attack and resilience against those attacks are also explored in the course of the

dissertation.

The adaptive quantizer used by the non-adversarial agents performs well when the objective function

is strongly convex. Results show that the agents can detect the presence of adversarial agents using

an inverse relationship between resolution and the attack vector. Using a suitable step size, it is

shown that convergence to a neighborhood of the optimal solution of the distributed optimization

problem is attained despite quantization errors and attack vectors. Scenarios where adversarial

agents upscale their estimates using different vector at each iteration are explored and it is shown

that convergence to a neighborhood of the optimal solution is unaffected even with one bit of

information being exchanged by non-adversarial agents in a network.

Numerical experiments affirm that when adversarial agents send an attack vector at each iteration,

increasing the number of bits mostly leads to reduction of errors in approaching the optimal

solution despite the presence of attack values. However, as the number of adversarial agents

increase in the network, the convergence error increases. All the results on adversarial attack

98



and quantization presented in this dissertation assumes strong convexity and curious researchers

should consider exploring the problems described for convex functions. Finally, in addressing

the need to have models with suitable convergence properties that many distributed optimization

problems - including adversarial optimization- demands, this dissertation examines performance of

Quasi-Newton methods specifically the Barzilai-Borwein (BB) gradient method. The convergence

analysis explored in this dissertation regarding the BB method holds for strongly convex quadratic

functions and interested readers and researchers can explore the BB algorithm for strongly convex

functions and convex functions in general as research topics. Additionally, the analysis of the

BB method can be helpful in improving the convergence and performance of adversarial attack

problems, and interested researchers can also explore the BB method in such applications.

99



APPENDIX A: RANGE OF THE BARZILAI-BORWEIN STEP SIZE

BOUNDS

100



Proof of Corollary 1

Proof. We establish equation (6.20) in a manner that the range of step size bounds below holds:

1
𝐿
≤ 𝛼𝑖1(𝑘) ≤ 2

`+ 𝐿
≤ 1
`
.

We also note that the step size range also applied to both the centralized and distributed form of

the step sizes. First, according to [86], we first start by noting that the BB step size can be upper

and lower bounded according to: 1
𝐿
≤ 𝛼𝑖1(𝑘) ≤ 1

`
. To include 2/(`+𝐿) between the first distributed

step size, 𝛼𝑖1(𝑘) and 1/`, we prove that 2/(`+ 𝐿) ≤ 1/` and 2/(`+ 𝐿) ≥ 1/𝐿.

To prove that 2/(`+ 𝐿) ≤ 1/`, we show that 1
`
− 2
`+𝐿 > 0. To prove this, we need to solve :

1
`
− 2
`+ 𝐿

=
𝐿− `
`(`+ 𝐿)

.

We know that 𝐿 ≥ ` and 𝐿 and ` are positive, then we obtain that 1/`−2/(`+ 𝐿) > 0.

Now we will prove that 2/(`+ 𝐿) ≥ 1/𝐿. In doing this, it suffices to show that 2
`+𝐿 −

1
𝐿

is positive.

So we solve:
2

`+ 𝐿
− 1
𝐿

=
𝐿− `
𝐿(𝐿 + `)

.

Since 𝐿 ≥ ` and 𝐿 and ` are both positive, we have that 2/(`+ 𝐿) ≥ 1/𝐿. We obtain the upper and

lower bounds of 𝛼𝑖1(𝑘) as
1
𝐿
≤ 𝛼𝑖1(𝑘) ≤ 2

`+ 𝐿
≤ 1
`
.

So we conclude that the step size 𝛼𝑖1(𝑘) = 2/(`+ 𝐿) lies between the lower (1/𝐿) and lower bounds

(1/`) of the BB step sizes. The fact that 𝛼𝑖1(𝑘) = 1
𝑛

𝑛∑
𝑖=1
𝛼𝑖1(𝑘) and 𝛼𝑖1(𝑘) ≤ 1

`
hold completes the

proof.

101



Proof of Lemma 6.0.2

Proof. From Equation (6.2), we first consider ∥𝑥(𝑘 + 1)− 𝑥∗∥2 to obtain bounds for convergence.

First, we let 𝑔(𝑘) = ∇ 𝑓 (𝑥(𝑘)) and we obtain that: ∥𝑥(𝑘 + 1)− 𝑥∗∥= ∥𝑥(𝑘)− 𝑥∗ −𝛼2(𝑘)𝑔(𝑘)∥. By

squaring both sides of the preceeding equation, we have:

∥𝑥(𝑘)− 𝑥∗−𝛼2(𝑘)𝑔(𝑘)∥2= ∥𝑥(𝑘)− 𝑥∗∥2+𝛼2
2(𝑘)∥𝑔(𝑘)∥2−2 (𝑥(𝑘)−𝑥∗)𝑇 (𝛼2(𝑘)𝑔(𝑘)) . (A.1)

For all vectors 𝑎, 𝑏, 2𝑎𝑇𝑏 ≤ ∥𝑎∥2+∥𝑏∥2. We now have the relationship:2 (𝑥(𝑘)−𝑥∗)𝑇 (𝑔(𝑘)) ≤

∥𝑔(𝑘)∥2+∥𝑥(𝑘)−𝑥∗∥2. By strong convexity assumption with parameter `, Lipschitz constant 𝐿, and

constants 𝑐1, 𝑐2 expressed as 𝑐1 = 2/(`+ 𝐿) and 𝑐2 = 2`𝐿/(`+ 𝐿), we obtain:

∥𝑥(𝑘)−𝑥∗−𝛼2(𝑘)𝑔(𝑘)∥2≤ ∥𝑥(𝑘)−𝑥∗∥2+𝛼2
2(𝑘)∥𝑔(𝑘)∥2−𝛼2(𝑘)𝑐1∥𝑔(𝑘)∥2−𝛼2(𝑘)𝑐2∥𝑥(𝑘)− 𝑥∗∥2,

≤(1−𝛼2(𝑘)𝑐2)∥𝑥(𝑘)− 𝑥∗∥2.

(A.2)

where the last inequality is due to Theorem 2.1.12 from chapter 2 of [70] and the term (𝛼2
2(𝑘)−

𝛼2(𝑘)𝑐2)∥𝑔(𝑘)∥2≤ 0 provided 𝛼2(𝑘) ≤ 𝑐1. According to the verification as seen in a similar manner

in the proof of corollary A, the second step size bounds satisfies the bound: 1
𝐿
≤ 𝛼2(𝑘) ≤ 2

`+𝐿 ≤ 1
`
.

Therefore we have the bounds:

∥𝑥(𝑘 + 1)− 𝑥∗∥2≤ (1−𝛼2(𝑘)𝑐2) ∥𝑥(𝑘)− 𝑥∗∥2. (A.3)

By dividing both sides of equation (A.3) by ∥𝑥(𝑘)− 𝑥∗∥2, the following holds:

∥𝑥(𝑘 + 1)− 𝑥∗∥2

∥𝑥(𝑘)− 𝑥∗∥2 ≤ 1−𝛼2(𝑘)𝑐2. (A.4)

102



Taking the square roots of both sides of equation (A.4) yields the following bounds:

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ ≤ (1−𝛼2(𝑘)𝑐2)

1
2 .

Now we analyse the right hand side of the above equation by bounding (1−𝛼2(𝑘)𝑐2)
1
2 . The second

Barzilai-Borwein step size 𝛼2(𝑘) is given by:

𝛼2(𝑘) =
𝑠(𝑘 −1)𝑇 𝑦(𝑘 −1)
𝑦(𝑘 −1)𝑇 𝑦(𝑘 −1)

. (A.5)

By using Lipschitz continuity of ∇ 𝑓 (·), with 𝐿 as the Lipschitz constant, we obtain according

to [86] that the second BB step size is lower bounded by 1/𝐿. If 𝛼2(𝑘) and 𝑐2 are positive and

𝛼2(𝑘) > 1/𝐿, then −𝛼2(𝑘)𝑐2 < −𝑐2/𝐿. Since 𝛼2(𝑘) > 1/𝐿, and

0 < 1−𝛼2(𝑘)𝑐2 < 1− 𝑐2
𝐿
,

This implies that

0 < (1−𝛼2(𝑘)𝑐2)
1
2 <

(
1− 𝑐2

𝐿

) 1
2
.

To prove that 𝑐2/𝐿 < 1, if 𝑐2 = 2`𝐿/(` + 𝐿), then we obtain the fact that 𝑐2/𝐿 = 2`/(` + 𝐿). If

` < 𝐿, it implies that `+ ` < 𝐿 + ` and we obtain 2`/(`+ 𝐿) < 1. Therefore we have the following

relationship:

lim
𝑘→∞

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ <

(
1− 𝑐2

𝐿

) 1
2
< 1,

from which we conclude that the iterates 𝑥(𝑘) converge 𝑄-linearly to the optimal point, 𝑥∗.

103



Proof of Lemma 6.0.4

Proof. We first consider the first step size 𝛼𝑖1 as expressed in equation (6.13), and for notation

simplicity, we denote 𝑍 =𝑊 ⊗ 𝐼𝑝 ∈ R𝑛𝑝×𝑛𝑝. Then the distributed iteration at time step 𝑘 is:

𝑋(𝑘 + 1) = 𝑍𝑋(𝑘)−𝛼𝑖1(𝑘)∇ 𝑓 (𝑋(𝑘)). (A.6)

where ⊗ is the kronecker product. From the definitions of 𝑥(𝑘) as the average of local estimates,

we have the expression: 𝑥(𝑘) = 1
𝑛

𝑛∑
𝑖=1
𝑥𝑖(𝑘). Likewise, from the definition of 𝑔(𝑥(𝑘)) as the average

of local gradients, we obtain the relationship: 𝑔(𝑥(𝑘)) = 1
𝑛

𝑛∑
𝑖=1

∇ 𝑓𝑖 (𝑥𝑖(𝑘)) . If we solve for 𝑋(𝑘) in

equation (A.6) where 𝛼𝑖1 is the BB step size, we obtain the expression:

𝑋(𝑘) = −
𝑘−1∑︁
𝑚=0

𝛼1(𝑚)
(
𝑊 (𝑘−1−𝑚) ⊗ 𝐼

)
∇ 𝑓 (𝑥(𝑚)) . (A.7)

Suppose 𝑋(𝑘) is the average of all concatenated 𝑥𝑖(𝑘), then we obtain the expression below:

𝑋(𝑘) =
1
𝑛

((
1𝑛1𝑇𝑛

)
⊗ 𝐼

)
𝑥(𝑘). (A.8)

Also, we know that the following relationship holds:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ ∥𝑋(𝑘)− 𝑋(𝑘)∥. (A.9)

104



where the distributed form of the first BB step size is given in 𝛼𝑖1 as expressed in equation (6.13).

From equations (A.7) and (A.8), we obtain:

∥𝑥𝑖(𝑘)−𝑥(𝑘)∥≤∥𝑋(𝑘)−𝑋(𝑘)∥=∥𝑋(𝑘)−1
𝑛

((
1𝑛1𝑇𝑛

)
⊗ 𝐼

)
𝑋(𝑘)∥=∥−

𝑘−1∑︁
𝑚=0

𝛼𝑖1(𝑚)(𝑊 (𝑘−1−𝑚) ⊗ 𝐼)∇ 𝑓 (𝑥(𝑚))

+
1
𝑛

((1𝑛1𝑇𝑛 )⊗ 𝐼)
𝑘−1∑︁
𝑚=0

(𝛼𝑖1(𝑚)(𝑊 (𝑘−1−𝑚) ⊗ 𝐼)∇ 𝑓 (𝑥(𝑚)))∥,

=∥−
𝑘−1∑︁
𝑚=0

(𝛼𝑖1(𝑚)(𝑊 (𝑘−1−𝑚) ⊗ 𝐼)∇ 𝑓 (𝑥(𝑚))) +
𝑘−1∑︁
𝑚=0

𝛼𝑖1(𝑚)
𝑛

((1𝑛1𝑇𝑛 )⊗ 𝐼)∇ 𝑓 (𝑥(𝑚))∥.

(A.10)

Because𝑊 is doubly stochastic, then we have the relationship:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤−
𝑘−1∑︁
𝑚=0

∥𝛼𝑖1(𝑚)((𝑊 (𝑘−1−𝑚) − 1
𝑛

1𝑛1𝑇𝑛 )⊗ 𝐼)∇ 𝑓 (𝑥(𝑚)).∥

If

𝛼𝑖1(𝑘) =
𝑠𝑖(𝑘 −1)𝑇 𝑠𝑖(𝑘 −1)
𝑠𝑖(𝑘 −1)𝑇 𝑦𝑖(𝑘 −1)

,

then

𝛼𝑖1(𝑚) =
𝑠𝑖(𝑚−1)𝑇 𝑠𝑖(𝑚−1)
𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)

.

Therefore we have the expression:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥ ≤ −
𝑘−1∑︁
𝑚=0

∥𝑠𝑖(𝑚−1)∥2

𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)
∥𝑊 (𝑘−1−𝑚) − 1

𝑛
1𝑛1𝑇𝑛 ∥∥∇ 𝑓 (𝑥(𝑚))∥.

So we obtain that the following expression:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤
𝑘−1∑︁
𝑚=0

∥𝑠𝑖(𝑚−1)∥2

𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)
_(𝑘−1−𝑚)∥∇ 𝑓 (𝑥(𝑚)).

105



If ∇ 𝑓 (𝑥(𝑚)) is bounded meaning that ∥∇ 𝑓 (𝑥(𝑚)∥≤ 𝐺 where 𝐺 is positive, then we have:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤
𝑘−1∑︁
𝑚=0

𝐺∥𝑠𝑖(𝑚−1)∥2

𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)
_(𝑘−1−𝑚). (A.11)

The eigenvalues _ of the weight matrix 𝑊 satisfies the bounds, 0 < _ ≤ 1. From equation (A.11)

and by Cauchy-Schwarz on sums, we obtain:

∥𝑥𝑖(𝑘)−𝑥(𝑘)∥≤ 𝐺
(
𝑘−1∑︁
𝑚=0

𝛼2
𝑖1(𝑚)

) 1
2
(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚)

) 1
2

. (A.12)

We know that the BB step size is upper bounded such that 𝛼𝑖 < 1/`. By squaring both sides,

𝛼2
𝑖
≤ 1

`2 and we obtain the relationship

𝑘∑︁
𝑚=0

𝛼2
𝑖 (𝑚) ≤ 𝑘

`2 .

Equivalently, we obtain the result (
𝑘∑︁

𝑚=0
𝛼2
𝑖 (𝑚)

) 1
2

≤
√
𝑘

`
.

In equation (A.12),

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ 𝐺
(
𝑘−1∑︁
𝑚=0

𝛼2
𝑖1(𝑚)

) 1
2
(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚)

) 1
2

. (A.13)

where

(
𝑘∑︁

𝑚=0
𝛼2
𝑖 (𝑚))

1
2 ≤

√
𝑘

`
,

and

(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚))
1
2 ≤ (

1
1−_2 )

1
2 =

1
√

1−_2
≜ Q3.

106



Moreover if
𝑘−1∑︁
𝑚=0

𝛼2
𝑖1(𝑚) ≤ 1

𝐺2 ∑𝑘−1
𝑚=0_

2(𝑘−1−𝑚)

holds, then each local agent’s estimates converges Q-linearly to its average; that is ∥𝑥𝑖(𝑘)−𝑥(𝑘)∥≤ 1.

Proof of Lemma 6.0.6

Proof. We consider the second step size 𝛼𝑖2 as expressed in equation (6.14), and for notation

simplicity, we denote 𝑍 =𝑊 ⊗ 𝐼𝑝 ∈ R𝑛𝑝×𝑛𝑝. Then the distributed iteration at time step 𝑘 is:

𝑋(𝑘 + 1) = 𝑍𝑋(𝑘)−𝛼𝑖2(𝑘)∇ 𝑓 (𝑋(𝑘)). (A.14)

Similarly based on the definition of 𝑥(𝑘) as the average of local estimates, then we have 𝑥(𝑘) =
1
𝑛

𝑛∑
𝑖=1
𝑥𝑖(𝑘). Because 𝑔(𝑥(𝑘)) to be the average of local gradients, So we obtain the expression

𝑔(𝑥(𝑘)) = 1
𝑛

𝑛∑
𝑖=1

∇ 𝑓𝑖(𝑥𝑖(𝑘)). If we solve equation (A.14) for 𝑋(𝑘) where 𝛼𝑖2 is the second BB step

size, we obtain the expression:

𝑋(𝑘) = −
𝑘−1∑︁
𝑚=0

𝛼2(𝑚)
(
𝑊 (𝑘−1−𝑚) ⊗ 𝐼

)
∇ 𝑓 (𝑥(𝑚)) . (A.15)

Let 𝑋(𝑘) be the average of all concatenated 𝑥𝑖(𝑘), then we obtain:

𝑋(𝑘) =
1
𝑛

((
1𝑛1𝑇𝑛

)
⊗ 𝐼

)
𝑥(𝑘). (A.16)

Also, we know that the following relationship holds.

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ ∥𝑋(𝑘)− 𝑋(𝑘)∥. (A.17)

107



We note that in equation (A.15), 𝛼𝑖2 is expressed in equation (6.14). From equations (A.16) and

(A.17), we obtain the result:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤∥𝑋(𝑘)− 𝑋(𝑘)∥= ∥𝑋(𝑘)− 1
𝑛

((
1𝑛1𝑇𝑛

)
⊗ 𝐼

)
𝑋(𝑘)∥= ∥−

𝑘−1∑︁
𝑚=0

𝛼𝑖2(𝑚)(𝑊 (𝑘−1−𝑚) ⊗ 𝐼)∇ 𝑓 (𝑥(𝑚))

+
1
𝑛

((1𝑛1𝑇𝑛 )⊗ 𝐼)
𝑘−1∑︁
𝑚=0

(𝛼𝑖2(𝑚)(𝑊 (𝑘−1−𝑚) ⊗ 𝐼)∇ 𝑓 (𝑥(𝑚)))∥,

=∥−
𝑘−1∑︁
𝑚=0

(𝛼𝑖2(𝑚)(𝑊 (𝑘−1−𝑚) ⊗ 𝐼)∇ 𝑓 (𝑥(𝑚))) +
𝑘−1∑︁
𝑚=0

𝛼𝑖2(𝑚)
𝑛

((1𝑛1𝑇𝑛 )⊗ 𝐼)∇ 𝑓 (𝑥(𝑚))∥.

(A.18)

Because𝑊 is doubly stochastic, then we obtain the following bounds:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤−
𝑘−1∑︁
𝑚=0

∥𝛼𝑖2(𝑚)((𝑊 (𝑘−1−𝑚) − 1
𝑛

1𝑛1𝑇𝑛 )⊗ 𝐼)∇ 𝑓 (𝑥(𝑚))∥.

If the second BB step size is given by:

𝛼𝑖2(𝑘) =
𝑠𝑖(𝑘 −1)𝑇 𝑦𝑖(𝑘 −1)
𝑦𝑖(𝑘 −1)𝑇 𝑦𝑖(𝑘 −1)

,

then we have the relationship:

𝛼𝑖2(𝑚) =
𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)
𝑦𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)

.

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥ ≤ −
𝑘−1∑︁
𝑚=0

𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)
∥𝑦𝑖(𝑚−1)∥2 ∥𝑊 (𝑘−1−𝑚) − 1

𝑛
1𝑛1𝑇𝑛 ∥∥∇ 𝑓 (𝑥(𝑚))∥.

We now obtain the bound:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤
𝑘−1∑︁
𝑚=0

𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)
∥𝑦𝑖(𝑚−1)∥2 _(𝑘−1−𝑚)∥∇ 𝑓 (𝑥(𝑚))∥.

108



If ∇ 𝑓 (𝑥(𝑚)) is bounded meaning that ∥∇ 𝑓 (𝑥(𝑚))∥≤ 𝐺 where 𝐺 is positive, then we obtain:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤
𝑘−1∑︁
𝑚=0

𝑠𝑖(𝑚−1)𝑇 𝑦𝑖(𝑚−1)
∥𝑦𝑖(𝑚−1)∥2 _(𝑘−1−𝑚)𝐺. (A.19)

and _ is the second largest eigenvalue of W. We also note that the weight matrix 𝑊 satisfies the

inequality, 0 < _ ≤ 1. From equation (A.19) and by Cauchy-Schwarz on sums, we obtain:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ 𝐺
(
𝑘−1∑︁
𝑚=0

𝛼2
𝑖2(𝑚)

) 1
2
(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚)

) 1
2

. (A.20)

We know that the second BB step size is upper bounded such that 𝛼𝑖 < 1
`
. By squaring both sides,

𝛼2
𝑖2 ≤

1
`2 and we obtain

𝑘∑︁
𝑚=0

𝛼2
𝑖 (𝑚) ≤ 𝑘

`2 .

Equivalently, we obtain the result (
𝑘∑︁

𝑚=0
𝛼2
𝑖2(𝑚)

) 1
2

≤
√
𝑘

`
.

In equation (A.12), the following expression holds:

∥𝑥𝑖(𝑘)− 𝑥(𝑘)∥≤ 𝐺
(
𝑘−1∑︁
𝑚=0

𝛼2
𝑖2(𝑚)

) 1
2
(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚)

) 1
2

, (A.21)

where

(
𝑘∑︁

𝑚=0
𝛼2
𝑖2(𝑚))

1
2 ≤

√
𝑘

`
,

and

(
𝑘−1∑︁
𝑚=0

_2(𝑘−1−𝑚))
1
2 ≤

(
1

1−_2

) 1
2

=
1

√
1−_2

≜ Q3.

109



Proof of Lemma 6.0.7

Proof. Let the variables 𝑥(𝑘), 𝑔(𝑘), and 𝛼𝑖2(𝑘) be defined just as they were in Lemma 6.0.5 except

that 𝛼𝑖2(𝑘) is now the average of the second distributed BB step size. We consider ∥𝑥(𝑘 +1)−𝑥∗∥2 to

obtain bounds for convergence. So we start with the iterate: ∥𝑥(𝑘 + 1)−𝑥∗∥= ∥𝑥(𝑘)−𝑥∗−𝛼𝑖2𝑔(𝑘)∥.

Squaring both sides and simplifying the right hand side of the above equation yields:

∥𝑥(𝑘)−𝑥∗−𝛼𝑖2(𝑘)𝑔(𝑘)∥2=∥𝑥(𝑘)−𝑥∗∥2+𝛼𝑖22(𝑘)∥𝑔(𝑘)∥2−2 (𝑥(𝑘)−𝑥∗)𝑇 (𝛼𝑖2(𝑘)𝑔(𝑘)) . (A.22)

By using vector norm principles, for vectors 𝑎, 𝑏, 2𝑎𝑇𝑏 ≤ ∥𝑎∥2+∥𝑏∥2, therefore we obtain:

2 (𝑥(𝑘)− 𝑥∗)𝑇 (𝑔(𝑘)) ≤ ∥𝑔(𝑘)∥2+∥𝑥(𝑘)− 𝑥∗∥2. Just as was defined in Lemma 6.0.5, ` and 𝐿 are

strong convexity and Lipschitz parameters respectively and 𝑐1, 𝑐2 are given by 𝑐1 = 2/(` + 𝐿) and

𝑐2 = 2`𝐿/(`+ 𝐿). Therefore we have the relationship:

∥𝑥(𝑘+1)−𝑥∗−𝛼𝑖2(𝑘)𝑔(𝑘)∥2≤∥𝑥(𝑘)−𝑥∗∥2+𝛼𝑖22(𝑘)∥𝑔(𝑘)∥2−𝛼𝑖2(𝑘)𝑐1∥𝑔(𝑘)∥2−𝛼𝑖2(𝑘)𝑐2∥𝑥(𝑘)−𝑥∗∥2,

≤(1−𝛼𝑖2(𝑘)𝑐2)∥𝑥(𝑘)−𝑥∗∥2+(𝛼𝑖22(𝑘)−𝛼𝑖2(𝑘)𝑐1)∥𝑔(𝑘)∥2,

≤(1−𝛼𝑖2(𝑘)𝑐2)∥𝑥(𝑘)−𝑥∗∥2.

(A.23)

We note that the last inequality is due to Theorem 2.1.12 from chapter 2 of [70]. We also note

that (𝛼𝑖22(𝑘)−𝛼𝑖2(𝑘)𝑐1)∥𝑔(𝑘)∥2≤ 0 provided 𝛼𝑖2(𝑘) ≤ 𝑐1. We also note that 𝛼𝑖2(𝑘) = 𝑐1 is within

the range of the BB step size bounds below and the details are shown in Chapter A, Appendix A:

Therefore the distributed BB convergence using the second BB step size can be finalized as:

∥𝑥(𝑘 + 1)− 𝑥∗∥2≤ (1−𝛼𝑖2(𝑘)𝑐2) ∥𝑥(𝑘)− 𝑥∗∥2. (A.24)

110



Dividing both sides of equation (A.24) by ∥𝑥(𝑘)− 𝑥∗∥2 yields the following bounds:

∥𝑥(𝑘 + 1)− 𝑥∗∥2

∥𝑥(𝑘)− 𝑥∗∥2 ≤ 1−𝛼𝑖2(𝑘)𝑐2. (A.25)

By taking the square roots of both sides of equation (A.25), we obtain the relationship:

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ ≤ (1−𝛼𝑖2(𝑘)𝑐2)

1
2 .

We will now bound: (1−𝛼𝑖2(𝑘)𝑐2)
1
2 where 𝛼𝑖2(𝑘) is expressed in equation (6.14) and 𝛼𝑖2(𝑘) =

1
𝑛

𝑛∑
𝑖=1
𝛼𝑖2(𝑘). By using Lipschitz continuity of ∇ 𝑓 (·) with 𝐿 as the Lipschitz constant, the distributed

form of the second BB step size is lower bounded by 1
𝐿
. Now, 𝛼𝑖2(𝑘) = 1

𝑛

𝑛∑
𝑖=1
𝛼𝑖2(𝑘), and it results to

𝑛𝛼𝑖2(𝑘) =
𝑛∑︁
𝑖=1
𝛼𝑖2(𝑘).

Also, 𝛼𝑖2(𝑘) > 1
𝐿
, 𝛼𝑖2(𝑘) <

𝑛∑
𝑖=1
𝛼𝑖2(𝑘) and we obtain the result:

1
𝐿
< 𝛼𝑖2(𝑘) <

𝑛∑︁
𝑖=1
𝛼𝑖2(𝑘). (A.26)

From equation (A.26),

𝑛𝛼𝑖2(𝑘) =
𝑛∑︁
𝑖=1
𝛼𝑖2(𝑘) >

1
𝐿
,

and we have 𝛼𝑖2(𝑘) > 1
𝑛𝐿

. If 𝛼𝑖2(𝑘) and 𝑐2 are positive and 𝛼𝑖2(𝑘) > 1/𝑛𝐿, then−𝛼𝑖2(𝑘)𝑐2 < −𝑐2/𝑛𝐿.

Therefore, 𝛼𝑖2(𝑘) > 1/𝑛𝐿. it implies that 0 < 1−𝛼𝑖2(𝑘)𝑐2 < 1− 𝑐2/𝑛𝐿, So we obtain the bounds:

0 < (1−𝛼𝑖2(𝑘)𝑐2)
1
2 <

(
1− 𝑐2

𝑛𝐿

) 1
2
.

111



It has been established in Lemma 6.0.5 that 𝑐2/𝑛𝐿 ≤ 1 for all positive values of 𝑛. The convergence

analysis is finalized according to the following relationship:

lim
𝑘→∞

∥𝑥(𝑘 + 1)− 𝑥∗∥
∥𝑥(𝑘)− 𝑥∗∥ ≤

(
1− 𝑐2

𝑛𝐿

) 1
2 ≤ 1,

Therefore we conclude that the average of the estimates converges Q-linearly to the optimal point,

𝑥∗.

112



APPENDIX B: ERROR DUE TO PROJECTION BOUNDS PROOF

113



Proof of Lemma 1

Proof. We begin with the relationship:

𝝃((𝑘) =
1
𝑛

𝑛∑︁
𝑖=1

𝝃𝑖(𝒉𝑖(𝑘)). (B.1)

By squaring both sides of equation (B.1), and using the bound of ∑𝑛
𝑖=1 ∥𝝃𝑖(𝒉𝑖(𝑘))∥2 shown in [40],

we obtain

𝑛∑︁
𝑖=1

∥𝝃𝑖(𝒉𝑖(𝑘))∥2 ≤ 8
𝑛∑︁
𝑖=1

∥Δ𝑖(𝑘)∥2+2�̄�2𝛼2(𝑘). (B.2)

Equivalently, the expression below holds:

∥𝝃((𝑘)∥≤
√

8
𝑛

(
𝑛∑︁
𝑖=1

∥Δ𝑖(𝑘)∥2

)1/2

+
√

2�̄�𝛼
𝑛

. (B.3)

If ℓ ≤ 1, then ∥Δ𝑖(𝑘)∥≤ 1 and ∥Δ𝑖(𝑘)∥2≤ 1. So we obtain the bounds below:

𝑛∑︁
𝑖=1

∥Δ𝑖(𝑘)∥2≤
𝑛∑︁
𝑖=1

1 = 𝑛.

From equation (B.3),
√

8
𝑛

(
𝑛∑︁
𝑖=1

∥Δ𝑖(𝑘)∥2

)1/2

≤
√

8
√
𝑛

𝑛
=
√

8
√
𝑛

=
√︂

8
𝑛
.

When 𝑛 ≥ 1, we obtain the following bound:

√
8

(
𝑛∑︁
𝑖=1

∥Δ𝑖(𝑘)∥2

)1/2

≤
√

8
𝑛∑︁
𝑖=1

Δ𝑖(𝑘). (B.4)

114



By dividing both sides of equation (B.4) by 𝑛, we obtain the bounds:

√
8
𝑛

(
𝑛∑︁
𝑖=1

∥Δ𝑖(𝑘)∥2

)1/2

≤
√

8
𝑛

𝑛∑︁
𝑖=1

Δ𝑖(𝑘) =
√

8Δ(𝑘),

and the norm of the error due to projection is bounded as:

∥𝝃(𝑘)∥≤
√

8Δ(𝑘) +
√

2
�̄�

𝑛
𝛼. (B.5)

By squaring both sides of equation (B.5), we obtain

∥𝝃(𝑘)∥2≤ 8∥Δ(𝑘)∥2+2�̄�2𝛼2(𝑘),

which consequently proves Lemma 5.0.1.

115



LIST OF REFERENCES

[1] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-computation

tradeoffs in decentralized optimization,” Proceedings of the IEEE, vol. 106, no. 5, pp. 953–976, 2018.

[2] S. Yang, Q. Liu, and J. Wang, “Distributed optimization based on a multiagent system in the presence

of communication delays,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,

no. 5, pp. 717–728, 2016.

[3] E. Montijano and A. R. Mosteo, “Efficient multi-robot formations using distributed optimization,” in

53rd IEEE Conference on Decision and Control. IEEE, 2014, pp. 6167–6172.

[4] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed optimization: Practical

issues and applications in large-scale machine learning,” in 2012 50th annual allerton conference on

communication, control, and computing (allerton). IEEE, 2012, pp. 1543–1550.

[5] Y. Zeng and R. Zhang, “Energy-efficient uav communication with trajectory optimization,” IEEE

Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747–3760, 2017.

[6] Y. Arjevani and O. Shamir, “Communication complexity of distributed convex learning and optimiza-

tion,” in Advances in neural information processing systems, 2015, pp. 1756–1764.

[7] I. Emiola, L. Njilla, and C. Enyioha, “On distributed optimization in the presence of malicious agents,”

2021.

[8] S. Sundaram and B. Gharesifard, “Distributed optimization under adversarial nodes,” IEEE Transac-

tions on Automatic Control, vol. 64, no. 3, pp. 1063–1076, 2018.

[9] N. Ravi, A. Scaglione, and A. Nedić, “A case of distributed optimization in adversarial environment,”

in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2019, pp. 5252–5256.

116



[10] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alternating

direction method of multipliers. Now Publishers Inc, 2011.

[11] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer Science &

Business Media, 2013, vol. 87.

[12] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei, “Balancing communication and computation

in distributed optimization,” IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3141–3155,

2018.

[13] X. Zhang, J. Liu, Z. Zhu, and E. S. Bentley, “Compressed distributed gradient descent:

Communication-efficient consensus over networks,” in IEEE INFOCOM 2019-IEEE Conference on

Computer Communications. IEEE, 2019, pp. 2431–2439.

[14] H. Li, H. Zhang, Z. Wang, Y. Zhu, and Q. Han, “Distributed consensus-based multi-agent convex

optimization via gradient tracking technique,” Journal of the Franklin Institute, vol. 356, no. 6, pp.

3733–3761, 2019.

[15] M. Maybury, “Detecting malicious insiders in military networks,” MITRE CORP BEDFORD MA,

Tech. Rep., 2006.

[16] M. Yemini, A. Nedić, A. J. Goldsmith, and S. Gil, “Characterizing trust and resilience in distributed

consensus for cyberphysical systems,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 71–91, 2021.

[17] Y. Chen, S. Kar, and J. M. Moura, “Resilient distributed estimation through adversary detection,”

IEEE Transactions on Signal Processing, vol. 66, no. 9, pp. 2455–2469, 2018.

[18] C. Zou, F. Yang, J. Song, and Z. Han, “Underwater wireless optical communication with one-bit

quantization: A hybrid autoencoder and generative adversarial network approach,” IEEE Transactions

on Wireless Communications, pp. 1–1, 2023.

117



[19] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear iterative strategies

in the presence of malicious agents,” IEEE Transactions on Automatic Control, vol. 56, no. 7, pp.

1495–1508, 2010.

[20] J. S. Baras and X. Liu, “Trust is the cure to distributed consensus with adversaries,” in 2019 27th

Mediterranean Conference on Control and Automation (MED). IEEE, 2019, pp. 195–202.

[21] C. Zhao, J. He, and Q.-G. Wang, “Resilient distributed optimization algorithm against adversary

attacks,” in 2017 13th IEEE International Conference on Control & Automation (ICCA). IEEE,

2017, pp. 473–478.

[22] S. Sundaram and B. Gharesifard, “Secure local filtering algorithms for distributed optimization,” in

2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016, pp. 1871–1876.

[23] A.-Y. Lu and G.-H. Yang, “Distributed secure state estimation in the presence of malicious agents,”

IEEE Transactions on Automatic Control, 2020.

[24] S. Marano, V. Matta, and L. Tong, “Distributed detection in the presence of byzantine attacks,” IEEE

Transactions on Signal Processing, vol. 57, no. 1, pp. 16–29, 2008.

[25] Q. Yan, M. Li, T. Jiang, W. Lou, and Y. T. Hou, “Vulnerability and protection for distributed consensus-

based spectrum sensing in cognitive radio networks,” in 2012 Proceedings IEEE INFOCOM. IEEE,

2012, pp. 900–908.

[26] J. Zhang, P. Jaipuria, A. Chakrabortty, and A. Hussain, “A distributed optimization algorithm for

attack-resilient wide-area monitoring of power systems: Theoretical and experimental methods,” in

International Conference on Decision and Game Theory for Security. Springer, 2014, pp. 350–359.

[27] B. Kailkhura, S. Brahma, and P. K. Varshney, “Consensus based detection in the presence of data

falsification attacks,” arXiv preprint arXiv:1504.03413, 2015.

[28] R. Duo, X. Nie, N. Yang, C. Yue, and Y. Wang, “Anomaly detection and attack classification for train

real-time ethernet,” IEEE Access, vol. 9, pp. 22 528–22 541, 2021.

118



[29] L.-N. Liu and G.-H. Yang, “A resilient distributed optimization strategy against false data injection

attacks,” Optimal Control Applications and Methods, 2022.

[30] R. R. Nuiaa, S. Manickam, A. H. Alsaeedi, and E. S. Alomari, “A new proactive feature selection

model based on the enhanced optimization algorithms to detect drdos attacks,” Int. J. Electr. Comput.

Eng, vol. 12, no. 2, pp. 1869–1880, 2022.

[31] J. Yang, P. Ning, X. S. Wang, and S. Jajodia, “Cards: A distributed system for detecting coordinated

attacks,” in Information Security for Global Information Infrastructures: IFIP TC11 Sixteenth Annual

Working Conference on Information Security August 22–24, 2000, Beijing, China 15. Springer,

2000, pp. 171–180.

[32] S. Magnússon, C. Enyioha, N. Li, and C. Fischione, “Practical coding schemes for bandwidth limited

one-way communication resource allocation,” in 2016 IEEE 55th Conference on Decision and Control

(CDC). IEEE, 2016, pp. 221–226.

[33] J. Lei, H.-F. Chen, and H.-T. Fang, “Primal–dual algorithm for distributed constrained optimization,”

Systems & Control Letters, vol. 96, pp. 110–117, 2016.

[34] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE

Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[35] I. Emiola, L. Njilla, and C. Enyioha, “On distributed optimization in the presence of malicious agents,”

in 2021 55th Annual Conference on Information Sciences and Systems (CISS), 2021, pp. 1–6.

[36] N. Ravi, A. Scaglione, and A. Nedić, “A case of distributed optimization in adversarial environment,”

in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2019, pp. 5252–5256.

[37] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed subgradient methods and

quantization effects,” in 2008 47th IEEE Conference on Decision and Control, 2008, pp. 4177–4184.

119



[38] M. Rabbat and R. Nowak, “Quantized incremental algorithms for distributed optimization,” IEEE

Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 798–808, 2005.

[39] Y. Pu, M. N. Zeilinger, and C. N. Jones, “Quantization design for distributed optimization,” IEEE

Transactions on Automatic Control, vol. 62, no. 5, pp. 2107–2120, 2017.

[40] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates of distributed subgradient methods

with adaptive quantization,” IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2191–2205,

2021.

[41] S. Zhu, M. Hong, and B. Chen, “Quantized consensus admm for multi-agent distributed optimization,”

in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2016, pp. 4134–4138.

[42] C.-S. Lee, N. Michelusi, and G. Scutari, “Finite rate quantized distributed optimization with geometric

convergence,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018,

pp. 1876–1880.

[43] B. Wang, M. Safaryan, and P. Richtárik, “Theoretically better and numerically faster distributed

optimization with smoothness-aware quantization techniques,” Advances in Neural Information Pro-

cessing Systems, vol. 35, pp. 9841–9852, 2022.

[44] F. Alimisis, P. Davies, and D. Alistarh, “Communication-efficient distributed optimization with quan-

tized preconditioners,” in International Conference on Machine Learning. PMLR, 2021, pp. 196–206.

[45] J. Zhang, K. You, and L. Xie, “Innovation compression for communication-efficient distributed

optimization with linear convergence,” IEEE Transactions on Automatic Control, 2023.

[46] P. Yi and Y. Hong, “Quantized subgradient algorithm and data-rate analysis for distributed optimiza-

tion,” IEEE Transactions on Control of Network Systems, vol. 1, no. 4, pp. 380–392, 2014.

[47] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed optimization,”

IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 798–808, 2005.

120



[48] Y. Pu, M. N. Zeilinger, and C. N. Jones, “Quantization design for distributed optimization,” IEEE

Transactions on Automatic Control, vol. 62, no. 5, pp. 2107–2120, 2016.

[49] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized decentralized consensus

optimization,” in 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018, pp. 5838–

5843.

[50] H. Peng, J. Wu, Z. Zhang, S. Chen, and H.-T. Zhang, “Deep network quantization via error compen-

sation,” IEEE Transactions on Neural Networks and Learning Systems, 2021.

[51] S. Khirirat, S. Magnússon, and M. Johansson, “Compressed gradient methods with hessian-aided

error compensation,” IEEE Transactions on Signal Processing, vol. 69, pp. 998–1011, 2020.

[52] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized sgd and its applications

to large-scale distributed optimization,” in International Conference on Machine Learning. PMLR,

2018, pp. 5325–5333.

[53] M. Danilova and E. Gorbunov, “Distributed methods with absolute compression and error com-

pensation,” in Mathematical Optimization Theory and Operations Research: Recent Trends: 21st

International Conference, MOTOR 2022, Petrozavodsk, Russia, July 2–6, 2022, Revised Selected

Papers. Springer, 2022, pp. 163–177.

[54] X. Qian, P. Richtárik, and T. Zhang, “Error compensated distributed sgd can be accelerated,” Advances

in Neural Information Processing Systems, vol. 34, pp. 30 401–30 413, 2021.

[55] H. Tang, Y. Li, J. Liu, and M. Yan, “Errorcompensatedx: error compensation for variance reduced

algorithms,” Advances in Neural Information Processing Systems, vol. 34, pp. 18 102–18 113, 2021.

[56] I. Emiola and C. Enyioha, “Quantized and distributed subgradient optimization method with malicious

attack,” IEEE Control Systems Letters, vol. 7, pp. 181–186, 2023.

121



[57] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates of distributed subgradient methods

with adaptive quantization,” IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2191–2205,

2020.

[58] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,

and B.-Y. Su, “Scaling distributed machine learning with the parameter server,” in 11th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 14), 2014, pp. 583–598.

[59] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-efficient

distributed optimization,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[60] B. Li, S. Cen, Y. Chen, and Y. Chi, “Communication-efficient distributed optimization in networks

with gradient tracking and variance reduction,” The Journal of Machine Learning Research, vol. 21,

no. 1, pp. 7331–7381, 2020.

[61] Y. Yu, J. Wu, and L. Huang, “Double quantization for communication-efficient distributed optimiza-

tion,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[62] A. Agarwal, M. J. Wainwright, and J. C. Duchi, “Distributed dual averaging in networks,” in Advances

in Neural Information Processing Systems, 2010, pp. 550–558.

[63] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed optimization: Con-

vergence analysis and network scaling,” IEEE Transactions on Automatic control, vol. 57, no. 3, pp.

592–606, 2011.

[64] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE transactions

on information theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[65] A. Nedich, D. P. Bertsekas, and V. S. Borkar, “Distributed asynchronous incremental subgradient

methods,” Studies in Computational Mathematics, vol. 8, no. C, pp. 381–407, 2001.

[66] D. Mateos-Núnez and J. Cortés, “Distributed subgradient methods for saddle-point problems,” in

2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp. 5462–5467.

122



[67] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed subgradient methods and

quantization effects,” in 2008 47th IEEE Conference on Decision and Control. IEEE, 2008, pp.

4177–4184.

[68] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient push for distributed deep

learning,” in International Conference on Machine Learning, 2019, pp. 344–353.

[69] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar, B. Kaul, and

P. Dubey, “Distributed deep learning using synchronous stochastic gradient descent,” arXiv preprint

arXiv:1602.06709, 2016.

[70] Y. Nesterov, “Introductory lectures on convex programming volume i: Basic course,” Lecture notes,

vol. 3, no. 4, p. 5, 1998.

[71] A. Fischer, “A special newton-type optimization method,” Optimization, vol. 24, no. 3-4, pp. 269–284,

1992.

[72] B. T. Polyak, “Newton’s method and its use in optimization,” European Journal of Operational

Research, vol. 181, no. 3, pp. 1086–1096, 2007.

[73] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A distributed newton method for network optimization,”

in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009

28th Chinese Control Conference. IEEE, 2009, pp. 2736–2741.

[74] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method for network utility

maximization–i: Algorithm,” IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2162–

2175, 2013.

[75] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-newton methods,” IEEE Transactions

on Signal Processing, vol. 65, no. 10, pp. 2613–2628, 2017.

123



[76] Y. Li, Y. Gong, N. M. Freris, P. Voulgaris, and D. Stipanović, “Bfgs-admm for large-scale distributed

optimization,” in 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021, pp.

1689–1694.

[77] D. Pu and W. Tian, “The revised dfp algorithm without exact line search,” Journal of computational

and applied mathematics, vol. 154, no. 2, pp. 319–339, 2003.

[78] Q. Liu, R. Sang, and Q. Zhang, “Fpga-based acceleration of davidon-fletcher-powell quasi-newton

optimization method,” Transactions of Tianjin University, vol. 22, no. 5, pp. 381–387, 2016.

[79] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA journal of numerical

analysis, vol. 8, no. 1, pp. 141–148, 1988.

[80] D. Jakovetić, J. M. Moura, and J. Xavier, “Linear convergence rate of a class of distributed augmented

lagrangian algorithms,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 922–936, 2014.

[81] R. Xin and U. A. Khan, “A linear algorithm for optimization over directed graphs with geometric

convergence,” IEEE Control Systems Letters, vol. 2, no. 3, pp. 315–320, 2018.

[82] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed optimization

over time-varying graphs,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[83] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe, “Geometrically convergent distributed optimization

with uncoordinated step-sizes,” in 2017 American Control Conference (ACC). IEEE, 2017, pp.

3950–3955.

[84] Y.-H. Dai and L.-Z. Liao, “R-linear convergence of the barzilai and borwein gradient method,” IMA

Journal of Numerical Analysis, vol. 22, no. 1, pp. 1–10, 2002.

[85] Y.-H. Dai, “A new analysis on the barzilai-borwein gradient method,” Journal of the operations

Research Society of China, vol. 1, no. 2, pp. 187–198, 2013.

[86] J. Gao, X. Liu, Y.-H. Dai, Y. Huang, and P. Yang, “Geometric convergence for distributed optimization

with barzilai-borwein step sizes,” arXiv preprint arXiv:1907.07852, 2019.

124



[87] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization approach to proactive network

resource allocation,” IEEE Transactions on Signal Processing, vol. 65, no. 24, pp. 6350–6364, 2017.

[88] E. Hazan et al., “Introduction to online convex optimization,” Foundations and Trends® in Optimiza-

tion, vol. 2, no. 3-4, pp. 157–325, 2016.

[89] S. Shalev-Shwartz and S. M. Kakade, “Mind the duality gap: Logarithmic regret algorithms for online

optimization,” in Advances in Neural Information Processing Systems, 2009, pp. 1457–1464.

[90] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,” in Pro-

ceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 928–936.

[91] B. Mcmahan and M. Streeter, “No-regret algorithms for unconstrained online convex optimization,”

in Advances in neural information processing systems, 2012, pp. 2402–2410.

[92] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: online convex optimization with long

term constraints,” Journal of Machine Learning Research, vol. 13, no. Sep, pp. 2503–2528, 2012.

[93] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “Online optimization in dynamic

environments: Improved regret rates for strongly convex problems,” in 2016 IEEE 55th Conference

on Decision and Control (CDC). IEEE, 2016, pp. 7195–7201.

[94] Y. Zhang, R. J. Ravier, M. M. Zavlanos, and V. Tarokh, “A distributed online convex optimization

algorithm with improved dynamic regret,” in 2019 IEEE 58th Conference on Decision and Control

(CDC). IEEE, 2019, pp. 2449–2454.

[95] X. Yi, X. Li, L. Xie, and K. H. Johansson, “Distributed online convex optimization with time-varying

coupled inequality constraints,” IEEE Transactions on Signal Processing, vol. 68, pp. 731–746, 2020.

[96] P. Sharma, P. Khanduri, L. Shen, D. J. Bucci Jr, and P. K. Varshney, “On distributed online convex

optimization with sublinear dynamic regret and fit,” arXiv preprint arXiv:2001.03166, 2020.

[97] A. Lesage-Landry, J. A. Taylor, and I. Shames, “Second-order online nonconvex optimization,” IEEE

Transactions on Automatic Control, 2020.

125



[98] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[99] P. E. Gill and W. Murray, “Quasi-newton methods for unconstrained optimization,” IMA Journal of

Applied Mathematics, vol. 9, no. 1, pp. 91–108, 1972.

[100] Y. Huang, Y.-H. Dai, X.-W. Liu, and H. Zhang, “On the acceleration of the barzilai–borwein method,”

Computational Optimization and Applications, vol. 81, no. 3, pp. 717–740, 2022.

[101] W. Su, S. Boyd, and E. Candes, “A differential equation for modeling nesterov’s accelerated gradient

method: Theory and insights,” in Advances in Neural Information Processing Systems, 2014, pp.

2510–2518.

[102] I. Emiola and R. Adem, “Comparison of optimization methods with application to a network containing

malicious agents,” arXiv preprint arXiv:2101.10546, 2021.

[103] H. Sedrakyan and N. Sedrakyan, Algebraic inequalities. Springer, 2018.

[104] S. Lee and M. M. Zavlanos, “On the sublinear regret of distributed primal-dual algorithms for online

constrained optimization,” arXiv preprint arXiv:1705.11128, 2017.

[105] P. Sharma, P. Khanduri, L. Shen, D. J. Bucci, and P. K. Varshney, “On distributed online convex

optimization with sublinear dynamic regret and fit,” in 2021 55th Asilomar Conference on Signals,

Systems, and Computers. IEEE, 2021, pp. 1013–1017.

126


	Distributed Optimization with Limited Communication in Networks with Adversaries
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: LITERATURE REVIEW
	CHAPTER 3: DISTRIBUTED OPTIMIZATION IN THE PRESENCE OF MALICIOUS AGENTS
	Notations
	Problem Formulation and Attack Model
	Convergence Analysis
	Convergence Analysis Over a Complete Graph
	Convergence Analysis over General Graph Structures

	Numerical Experiments
	Complete Graph Case with Common Attack Vector
	General Graph Case with Different Attack Vectors


	CHAPTER 4: QUANTIZED AND DISTRIBUTED SUBGRADIENT OPTIMIZATION WITH MALICIOUS ATTACK
	Problem Formulation 
	Attack Model
	The Uniform Quantizer

	Distributed Subgradient Convergence Analysis with Quantization and Attack
	Main Result

	CHAPTER 5: DISTRIBUTED AND ADAPTIVE QUANTIZATION IN A NETWORK WITH ADVERSARIES
	Problem Formulation
	The Adaptive Quantizer
	Attack Model
	Consensus Update Equation for Non-Adversarial Agents

	Main Result
	Numerical Experiments
	Proposition to Detect Malicious Agents
	Proposition for Resilience against Adversarial Attacks
	Numerical Experiments


	CHAPTER 6: IMPROVING CONVERGENCE RATES OF DISTRIBUTED OPTIMIZATION ALGORITHMS UNDER ADVERSARIES: ONLINE PERFORMANCE AND BARZILAI-BORWEIN QUASI-NEWTON METHODS
	Problem Formulation
	Barzilai-Borwein Quasi-Newton Method
	Convergence Analysis of Centralized BB
	Convergence Analysis with step size _1
	Convergence Analysis of Centralized BB with Second Step Size

	Distributed Barzilai-Borwein Quasi-Newton Method
	Algorithm for Distributed BB

	Convergence Analysis of Distributed BB
	Distributed BB Convergence Analysis with the First Step-Size
	Distributed BB with Second Step-Size

	Numerical Experiments
	Sublinear Regret with Barzilai-Borwein Step Sizes

	Problem Formulation
	Algorithms for Online Optimization Problem

	The BB Quasi-Newton Method
	Regret Bounds

	CHAPTER 7: CONCLUSION AND OPEN PROBLEMS
	APPENDIX A: RANGE OF THE BARZILAI-BORWEIN STEP SIZE BOUNDS
	Proof of Corollary 1
	Proof of Lemma 6.0.2
	Proof of Lemma 6.0.4
	Proof of Lemma 6.0.6
	Proof of Lemma 6.0.7


	APPENDIX B: ERROR DUE TO PROJECTION BOUNDS PROOF
	Proof of Lemma 1

	LIST OF REFERENCES

