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ABSTRACT

Deep learning has achieved tremendous success on various computer vision tasks. However, deep

learning methods and models are usually computationally expensive, making it hard to train and

deploy, especially on resource-constrained devices. In this dissertation, we explore how to improve

the efficiency and effectiveness of deep learning methods from various perspectives. We first pro-

pose a new learning method to learn computationally adaptive representations. Traditional neural

networks are static. However, our method trains adaptive neural networks that can adjust their

computational cost during runtime, avoiding the need to train and deploy multiple networks for

dynamic resource budgets. Next, we extend our method to learn adaptive spatiotemporal represen-

tations to solve various video understanding tasks such as video recognition and action detection.

Then, inspired by the proposed adaptive learning method, we propose a new regularization method

to learn better representations for the full network. Our method regularizes the full network by

ensuring that its predictions align with those of its sub-networks when fed with differently trans-

formed input data. This approach facilitates the learning of more generalized and robust represen-

tations by the full network. Besides learning methods, designing good network architecture is also

critical to learn good representations. Neural architecture search (NAS) has shown great potential

in designing novel network structures, but its high computational cost is a significant limitation.

To address this issue, we present a new short-training based NAS method that achieves superior

performance compared to previous methods, while requiring significantly less search cost. Finally,

with the recent advancements in large-scale image foundation models, we present an efficient fine-

tuning method to adapt pre-trained image foundation models for video understanding. Our method

significantly reduces training costs compared to traditional full fine-tuning, while delivering com-

petitive performance across multiple video benchmarks. It is both simple and versatile, making it

easy to leverage stronger image foundation models in the future.
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EXTENDED ABSTRACT

Deep learning has demonstrated promising performance over various visual perception tasks in-

cluding image classification, object detection, semantic segmentation and action recognition. How-

ever, deep neural networks are usually over-parameterized. They need to be trained on large-scale

dataset and the training can take hundreds of GPU hours. During inference, large neural networks

are also hard to be deployed on edge devices such as mobile phones and drones due to large mem-

ory cost and high computation complexity.

In this dissertation, we improve the efficiency of deep learning methods from multiple perspec-

tives such as training efficiency, inference efficiency and data efficiency. Besides improving the

model efficiency, our proposed methods also help deep neural networks learn better representa-

tions, which translates to better performance on various downstream tasks.

In Chapter 3, we propose a new method to train an adaptive neural network that can run at different

computation complexities during inference time. We highlight the importance of simultaneously

considering network width and input resolution for efficient network design. The proposed method

mutually learns from different network widths and input resolutions and enables one model to

meet different resource budgets during inference. Our method outperforms traditionally neural

networks on various tasks under different model complexities. It also bears the benefits of training

and deploying only one model.

In Chapter 4, we further extend the method in Chapter 3 to video understanding. Video understand-

ing requires both spatial modeling and temporal modeling. Previous works proposed to process

spatial and temporal dimensions asymmetrically for better performance and efficiency. Accord-

ingly, we asymmetrically sample subnetworks, input resolutions and frames to do mutual training.

After training, the adaptive network can run at different widths, resolutions and number of frames.
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We demonstrate its effectiveness and efficiency on multiple video understanding tasks including

video recognition and action detection.

Based on the results in Chapter 3 and 4, we find that the proposed method not only enables the

network to execute at adaptive complexity, but also facilitates more effective representation learn-

ing. In light of this, in Chapter 5, we propose a new representation learning method for deep

neural networks. Our idea is that a well-generalized network should provide consistent predictions

for the same image with different augmentations, both for its sub-networks and for the network

as a whole. Our method samples different sub-networks during training, feeds them with dif-

ferently augmented samples, and pulls close their predictions. Our method demonstrates better

performance than other state-of-the-art regularization and data augmentation methods on various

network backbones and tasks. The improvement is more significant when labeled data is limited.

Besides learning methods, designing good network architectures is also critical to learn good rep-

resentations. Neural architecture search (NAS) has demonstrated promising performance in de-

signing new network structures, but its computationally cost is prohibitively high. Recent works

have proposed training-free NAS metrics to accelerate the search process. However, in Chapter

6, we show that recent training-free NAS metrics are not fairly evaluated. Their performance is

no better than the trivial number-of-parameter metric while being much more complicated to com-

pute. Based on our observations, we proposed a new efficient training-based NAS method which

outperforms previous methods with significantly smaller search cost. Our method is also more

robust to different search spaces.

In Chapter 7, we propose an efficient finetuning methods to adapt recent large-scale image foun-

dation models to video understanding. The traditional “pre-training then finetuning” paradigm is

computationally expensive for video models, especially if we want to leverage large-scale image

foundation models. In contrast, our proposed method freezes the pre-trained image model and only
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introduces few light-weight Adapters to tune the model. The proposed method largely saves the

training cost of video models and achieves even better performance than traditional full finetuning.

It also brings the benefit of data efficiency compared to full finetuning.
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CHAPTER 1: INTRODUCTION

Learning good representations from data is critical for image and video understanding. Since

AlexNet’s tremendous success on the ImageNet 2012 Challenge, researchers have shifted atten-

tion from hand-crafted features to deep representation learning, where deep neural networks are

trained to learn representations from data automatically. A series of works have been proposed

to improve the power of deep neural networks by improving architectural designs, such as multi-

branch structure, stacking more layers, skip connection, dense connection, etc. New learning and

optimization methods are also proposed to train networks better. Although deep neural networks

have achieved state-of-the-art performance on various visual understanding tasks, their computa-

tional cost is prohibitively high, which makes them hard to train and deploy. First, deep neural

networks are often over-parameterized, requiring billions of multiply-add operations to forward

one sample. This makes the training process expensive in terms of both GPU memory and time

cost. Second, deep neural networks are prone to overfitting because of the large amount of model

parameters. Therefore, they need to be trained on sufficiently large datasets. However, collecting

a large-scale annotated dataset is a difficult task in many fields. Moreover, training on large-scale

data will increase the time cost further. Third, because of the large memory and computational

cost, it is hard to deploy deep neural networks on edge devices such as mobile phones.

To make the training and deployment of deep neural networks easier, in this dissertation, we im-

prove the efficiency of deep representation learning from three different perspectives: training

efficiency, inference efficiency, and data efficiency. By addressing these three aspects, we aim to

make the process of deep representation learning more efficient and effective. Firstly, we identify

the shortcomings of traditional deep neural networks and propose a new learning method to train

adaptive networks. The proposed method enables us to conduct training one time while getting

multiple well-performing networks at different complexities. Besides, when deploying the model
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in real-life scenarios, we only need to use a single model to meet varying resource budgets. Sec-

ondly, we introduce a new regularization method to enhance the representation learning of deep

neural networks. Our method significantly improves the performance and robustness of deep neu-

ral networks especially when annotated data is limited. Thirdly, we unveil the limitations of recent

training-free neural architecture search (NAS) metrics, which heavily rely on the number of model

parameters in ranking networks. To overcome this problem, we propose a new NAS metric which

is independent of the number of model parameters while achieving better performance at lower

search cost. Finally, we introduce a novel efficient finetuning method to adapt recent image foun-

dation models to video understanding tasks. Our method only tunes a small portion of model

parameters while achieving better performance than traditional full finetuning. The improvement

is more significant when labeled data is scarce.

In the following sections, we first introduce the differences between traditional deep neural net-

works and adaptive neural networks. Then, we introduce popular regularization and data augmen-

tation methods which aim to learn better representations from data. Next, we introduce neural

architecture search, which is a new way of designing network structures. Finally, we introduce

video understanding and parameter-efficient finetuning in both natural language processing and

computer vision.

1.1 Adaptive Neural Network

Deep neural networks have triumphed over various perception tasks including image classification

[64, 87, 70], object detection [107, 133], semantic segmentation [110, 19] and so on. However,

most existing deep neural networks are static, which means they can only run at a specific resource

constraint. For example, MobileNet [70] has 4.2M model parameters and 569M FLOPs. After

training, the model can only do inference at this specific complexity. If we want to reduce the model
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Table 1.1: Reducing the complexity of MobileNet by width or resolution at runtime. The model
performance drops dramatically if without re-training.

Width 1.0× 0.75× 0.5×
re-train ✓ ✗ ✓ ✗ ✓ ✗

Acc (%) 70.6 70.6 68.4 14.2 63.3 0.4

Resolution 224×224 160×160 128×128
re-train ✓ ✗ ✓ ✗ ✓ ✗

Acc (%) 70.6 70.6 67.2 65.0 64.4 57.7

complexity, we have to re-train a smaller model; otherwise, the performance will drop substantially.

As shown in Table 1.1, a regular MobileNet has 70.6% Top-1 accuracy on ImageNet. However, if

we only use half of its channels (width = 0.5×) to do inference, the performance drops to 0.4%.

This is almost the same accuracy as a simple random guess. But if we re-train the MobileNet-0.5×

from scratch, it can achieve 63.3% Top-1 accuracy [70]. A similar trend is observed if the network

width is unchanged (width = 1.0×) while the input image resolution is reduced. Although the

performance does not drop as dramatically as by reducing the network width, the gap between

the smaller resolution and full resolution is still quite large. These results indicate that regular

deep neural networks can not generalize well to other network widths and image resolutions, and

restrains their effectiveness to a specific resource budget.

In real-world applications, however, the computing capacity of different devices can vary signif-

icantly. A model may be small for a high-end GPU but too heavy to run on mobile devices. A

common practice is to adopt a global width multiplier [70, 136, 203] to adjust the model size,

but still, models of different scales need to be re-trained for many devices. Besides, even on the

same device, the resource budgets can change. For example, the battery condition of mobile de-

vices imposes constraints on the computational budget of many operations. Similarly, a task may

have specific priorities at any given time, requiring a dynamic computational budget throughout
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its deployment phases. To meet various resource constraints, one needs to deploy several different

scaled networks on the device and switch among them. However, this naive solution is highly

inefficient and not scalable. First, deploying several models will have a much higher memory foot-

print than a single model, and switching from one model to another is inefficient during runtime.

Second, if the device needs to cover a new resource constraint, a new model has to be re-trained

and deployed on the device. To address these issues, researchers have proposed the use of adaptive

networks [191, 189, 186]. Adaptive networks allow a single model to operate at varying levels of

complexity without requiring re-training.

1.2 Regularization and Data Augmentation

Deep neural networks are often over-parameterized and easily suffering from over-fitting. Reg-

ularization [142, 35] and data augmentation [87, 140] are widely used techniques to alleviate the

over-fitting problem. Many data-level regularization methods [35, 200, 195] have achieved promis-

ing performance in image classification. These methods are similar to data augmentation where

they put constraints on the input images. Although effective in image classification, these meth-

ods are hard to apply to downstream tasks such as object detection and segmentation due to their

special operations. For example, the state-of-the-art CutMix [195] can not be directly applied to

object detection because first, mixing samples will destroy the semantics in images; second, it is

hard to interpolate the labels in these tasks. Another category of regularization methods imposes

constraints on the network structures. [118] proposes that adding noises to the network gradients

can improve generalization. Other methods [142, 75, 89] randomly drop some connections in the

network, which implicitly introduce random noises in the training process. These methods are

usually more generic but not as effective as data-level regularization.

In this dissertation, we introduce Gradient Augmentation (GradAug), which generates meaningful
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disturbances to the gradients by the network itself rather than just adding random noises. The idea

is that when a random transformation (e.g., random rotation, random scale, random crop, etc.) is

applied to an image, a well-generalized network should still recognize the transformed image as

the same object. Different from the regular data augmentation technique which only regularizes

the full-network, we regularize the representations learned by a set of sub-networks, which are

randomly sampled from the full network in terms of the network width (i.e., number of channels

in each layer). Since the representation of the full network is composed of sub-networks’ repre-

sentations due to weights sharing during the training, we expect sub-networks to learn different

representations from different transformations, which will lead to a well-generalized and diversi-

fied full network representation.

1.3 Neural Architecture Search

Neural Architecture Search (NAS) [211, 132, 104, 124, 170, 106, 212] is becoming an impor-

tant technique in designing efficient and effective deep neural networks. Its effectiveness has

been demonstrated in various computer vision tasks such as classification [124, 170, 212], ob-

ject detection [29, 152] and semantic segmentation [21, 103]. Early NAS methods [211, 132, 150]

leverage reinforcement learning or evolutionary algorithm to search networks. But this process

is extremely expensive because they need to train thousands of candidate networks. Following

works [106, 24, 181] alleviate this problem using differentiable search with candidate networks

sampled from a supernet. During training, the network parameters and architecture parameters

are optimized alternatively. However, training supernet can still be very slow and the accuracy of

sub-networks in the supernet has a poor correlation with their ground truth accuracy [192]. To

further reduce the search cost, training-free metrics [113, 22, 2] are proposed to rank the candidate

networks without any training process. These metrics are largely inspired by the pruning methods
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[91, 161, 153] and theoretical findings in deep neural networks [90, 177, 180, 117]. They aim

to rank the networks from different aspects of the networks’ properties such as trainability and

expressivity. These metrics achieve competitive results with previous NAS methods at a much

smaller search cost.

However, these works overlooked a straightforward training-free metric, the number of parameters

(#Param) in a network, which is even faster to compute than those training-free metrics. In this

dissertation, we show that #Param is surprisingly good on NAS-Bench-101 [188] and NAS-Bench-

201 [37]. We further discover that these training-free metrics have a very high correlation with

#Param, which indicates that a large portion of their ranking ability may come from the correlation

with #Param. To validate our conjecture, we design systematic experiments to remove the impact

of #Param. The results show that without the #Param information, recent training-free metrics

[22, 113] cannot achieve a good performance.

Motivated by the above discovery, our objective is to develop a metric that has a weak correlation

with #Param while still being effective so that it can provide additional information on estimating

the performance of a network. Intuitively, a network’s final performance is indicated by the struc-

ture (e.g., #Param, #Layers), weight initialization, and the dynamics during training (e.g., loss,

gradients). We believe that metrics arise from the training dynamics should be weakly correlated

with #Param. Angle metric is a training dynamic which is first proposed in [13] to indicate the

network’s generalization ability. It is defined as the angle between the vectorized network weights

before and after training. We find that the angle metric at the final fully-connected (FC) layer has

a high correlation with the accuracy but a low correlation with the number of parameters. This

indicates that it can provide additional information other than #Param on estimating the network’s

performance. To reduce the computation for model training, we propose an extremely light-weight

training scheme with a small proxy dataset which is thousands times faster than traditional training.
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Figure 1.1: An illustration of the two popular directions in extending an image model to video
model. One is to add additional temporal modules to the image model, the other is to inflate the
image model to a 3D video model.

1.4 Video Understanding and Parameter-Efficient Finetuning

The “pre-training then finetuning” paradigm has played an important role in computer vision. The

key to this paradigm is a well pre-trained image model, which can provide strong transferability to

downstream tasks through finetuning. Recently, large foundation models [131, 193, 155, 77, 164]

can even demonstrate remarkable few-/zero-shot performance given their learned superior visual

representations.

In video understanding, a common practice is also bootstrapping from an image pre-trained model

and then finetuning on the video data. There are two dominating directions as shown in Figure

1.1, one is to extend an image model with additional temporal module [98, 208, 3], the other is to

inflate an image model to a video model [15, 109]. However, there exists at least two drawbacks

for the aforementioned methods. First, most approaches require full finetuning (i.e., updating all

the model parameters during training) to achieve promising results on common video benchmarks.

This is quite costly in terms of both computation and memory footprint, e.g., 1200 Tesla V100

GPU hours to train [109]. Second, it also remains questionable that whether it is necessary to full
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finetune pre-trained image models given that they have demonstrated excellent transferability. An

inadequate finetuning on downstream data might destroy the well generalized representations from

such foundation models.

To overcome the drawbacks, a research direction termed parameter-efficient transfer learning has

been trending in natural language processing (NLP) [68, 92, 6, 71]. The goal is to only finetune

a small number of (extra) parameters while keeping large pre-trained language models [34, 11]

frozen to attain strong performance. With the rise of large vision transformer (ViT) models, such

techniques have been recently introduced to computer vision for efficient transfer learning. How-

ever, existing works either focus on tuning a pre-trained image model for image tasks (image-

to-image) [4, 80, 78], or tuning a pre-trained video model for video tasks (video-to-video) [20].

Directly leveraging pre-trained image models for efficient transfer learning to video tasks (image-

to-video) is less explored, because image models lack the capability of temporal reasoning.

In this dissertation, we introduce a new way to Adapt pre-trained Image transformer Models (AIM)

for efficient video action recognition. By freezing the pre-trained image model and adding a few

lightweight adapters [68] during finetuning, we show that our proposed AIM can achieve compet-

itive or even better results than previous state-of-the-art methods with substantially fewer tunable

parameters. To be specific, we first introduce adapter after self-attention layer in a transformer

block to perform spatial adaptation. We show that a well pre-trained image model is sufficiently

good for spatial modeling in video understanding. Then for temporal modeling, we simply reuse

the image pre-trained self-attention layer but apply it to the temporal dimension of video input,

forcing it to model the relationship across different frames. An adapter is also appended for tem-

poral adaptation. Finally, we perform joint adaptation by adding another adapter in parallel to the

MLP layer in a transformer block.
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1.5 Organization

In Chapter 2, we conduct a comprehensive literature review on adaptive neural networks, as well

as related works in deep representation learning, neural architecture search, video understanding,

and parameter-efficient finetuning. In Chapter 3, we propose a new learning method to train adap-

tive networks for various image understanding tasks. In Chapter 4, we further extend our proposed

method to video understanding tasks. In Chapter 5, we introduce a novel deep representation learn-

ing method which improves the performance, robustness and data efficiency of modern deep neural

networks. In Chapter 6, we revisit recent training-free neural architecture search metrics and unveil

their shortcoming. Based on our discovery, we propose a new training-based neural architecture

search metric. In Chapter 7, we propose a novel parameter-efficient finetuning method to adapt

pre-trained image models for video understanding. In Chapter 8, we summarize the dissertation

and highlight potential directions for future work.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we provide a comprehensive literature review on works related to this dissertation.

We begin by reviewing previous works on efficient neural networks and adaptive neural networks.

Next, we examine popular representation learning methods including regularization and data aug-

mentation. We then discuss the new progress made by neural architecture search methods and their

limitations. Finally, we review recent image foundation models, video action recognition methods,

and parameter-efficient finetuning techniques.

2.1 Efficient Networks and Adaptive Networks

There has recently been a flurry of interest in designing light-weight networks. MobileNets [70,

136] factorize the standard 3×3 convolution into a 3×3 depthwise convolution and a 1×1 point-

wise convolution which reduces computation cost by several times. ShuffleNets [203, 112] separate

the 1×1 convolution into group convolutions and shuffle the groups to further improve accuracy-

efficiency trade-offs. ShiftNet [171] introduces a zero-flop shift operation to reduce computation

cost. AdderNet [16] trades the massive multiplications in deep neural networks for much cheaper

additions. GhostNet [57] leverages cheap linear transformations to generate more ghost feature

maps. Most recent works [170, 150, 69] also apply neural architecture search methods to search

efficient network structures. However, none of them consider the varying resource constraints dur-

ing runtime in real-world applications. To meet different resource budgets, these methods need to

train and deploy several models and switch among them, which is inefficient and not scalable.

Following a similar idea of 2D convolutional neural networks, spatiotemporal (3D) networks are

proposed to handle video data. The works reported in[157, 15, 58] build 3D networks by extending
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2D convolutional filters [87, 141, 147, 64] to 3D filters along the temporal axis; then the 3D filters

are used to learn spatio-temporal representations in a similar way to their 2D counterparts. Later

works [178, 129, 159, 45] propose to treat the spatial and temporal domains differently. The authors

in [178] posit that a bottom-heavy structure is better than naive 3D structures in both accuracy and

speed. In [129, 159], 3D filters are split into 2D+1D filters, which reduce the heavy computational

cost of 3D filters and improve the performance. SlowFast [45] further shows that space and time

should not be handled symmetrically and introduces a two-path structure to deal with slow and fast

motion separately. Several works [28, 111, 158] also leverage the group convolution and channel-

wise separable convolution in 2D networks to reduce computational cost. Recently, [125, 167,

123] explore neural architecture search (NAS) techniques to automatically learn spatio-temporal

network structures. However, all these structures are static. We are the first to achieve adaptive 3D

networks which also outperform state-of-the-art independently-trained models [45, 43].

In light of this, adaptive networks are proposed which can run at different complexities without re-

training. One category of methods [74, 185, 168, 114] perform dynamic inference conditioned on

the input. The core principle of these methods is to utilize less computation for easy samples and

reserve more computation for hard ones. MSDNet [74] proposes a multi-scale and coarse-to-fine

densenet framework. It has multiple classifiers and can make early predictions for easy instances.

RANet [185] motivates its design with the idea that low-resolution images are enough for classi-

fying easy samples, while only hard samples need high-resolution input. GFNet [168] processes a

sequence of small patches from the original images and terminates inference once the model is suf-

ficiently confident about its prediction. There are also many recent works [114, 176, 115, 122, 175]

aiming to reduce spatial and temporal redundancies in videos for action recognition by dynami-

cally processing input frames and fusing feature maps. Inspired by SENet [72], a series of works

[184, 26, 27] also propose to learn dynamic attention for different samples. Our method is closer

to another category of methods [191, 189, 84, 12, 190] where the dynamic routes are determined
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by the resource budgets. NestedNet [84] uses a nested sparse network consisting of multiple levels

to meet various resource requirements. SlimmableNet [191, 189] proposes to train several sub-

networks together and perform inference at different network widths. However, it fails to achieve

a strong accuracy-efficiency trade-off since it ignores the input dimension. Later works [12, 190]

further integrate other dimensions (e.g., depth and kernel size) into the training framework, but

they do so with neural architecture search (NAS) and thereby require a very complex and expen-

sive training process. Furthermore, their effectiveness is only evaluated on image classification,

while our method is thoroughly evaluated on image classification, detection, segmentation and

action recognition.

2.2 Training Regularization and Data Augmentation

Data augmentation [87, 140, 31] increases the amount and diversity of training data by linear or

non-linear transformations over the original data. In computer vision, it usually includes rotation,

flipping, etc. Recently, a series of regularization methods use specially-designed operations on

the input images to alleviate over-fitting in deep neural networks. These methods are similar to

data augmentation. Cutout [35] randomly masks out a squared region on the image to force the

network to look at other image context. Dropblock [49] shares a similar idea with Cutout but

it drops a region in the feature maps. Although they have achieved improvements over the reg-

ular data augmentation, such region dropout operations may lose information about the original

images. Mixup [200] mixes two samples by linearly interpolating both the images and labels.

CutMix [195] combines Cutout and Mixup to replace a squared region with a patch from another

image. Other mixed sample variants [143, 148] all share similar ideas. While effective in image

classification, the mixed sample augmentation is not natural to be applied to tasks such as detec-

tion and segmentation due to semantic and label ambiguities. In contrast, the proposed GradAug
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is a task-agnostic approach which leverages the most common image transformations to regularize

sub-networks. This allows the method to be directly applied to different vision tasks and easily

amenable for other applications.

Another category of regularization methods imposes constraints on the network weights and struc-

ture to reduce over-fitting. [118] points out that adding random noises to the gradients during

training can help the network generalize better. Dropout [142] randomly drops some connections

during training to prevent units from co-adapting. The random dropping operation also implic-

itly introduces random noises into the training process. Many following works share the idea of

Dropout by randomly dropping network layers or branches. Shake-Shake [48] assigns random

weights to residual branches to disturb the forward and backward passes. But it is limited to three-

branch architectures. ShakeDrop [182] extends Shake-Shake to two-branch architectures (e.g.,

ResNet [64] and PyramidNet [56]). However, its application is still limited. [75] randomly drops a

subset of layers during training. The final network can be viewed as an ensemble of many shallow

networks. Although these methods have shown improvements on image classification, they are

usually not as effective as data-level regularization strategies. Moreover, their generalization and

effectiveness are not validated on other tasks.

GradAug leverages the advantages of both categories of methods. It uses different augmentations

to regularize a set of sub-networks generated from the full network in the joint training process.

This introduces self-guided disturbances to the gradients of the full network rather than adding

random noises. The method is more effective and generic than previous techniques.
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2.3 Neural Achitecture Search

NAS is proposed to search network structures automatically for a given task instead of time-

consuming manual design. Early works [211, 132, 150, 105] leverage reinforcement learning or

evolutionary algorithms to explore architectures. The controller will generate some networks and

the network performance will be used as feedback information to update the controller. However,

training a large amount of networks is very expensive, costing thousands of GPU days. Following

works accelerate NAS algorithms by weight-sharing in a supernet. ENAS [124] proposes to share

the weights among candidate networks so that they can be trained simultaneously. DARTS [106]

concatenates all candidate operations into a supernet and each operation is assigned an architec-

ture parameter denoting its importance. During training, the architecture parameters and weight

parameters are optimized alternatively. Another kind of weight-sharing method is one-shot NAS

[7, 10, 55], where a supernet is trained with sub-networks stochastically sampled in each iteration.

However, recent study [192] shows that the network performance via weight-sharing has a poor

correlation with its actual performance.

To further speedup the search process, recent works [113, 22, 2] propose to predict network perfor-

mance without training. [2] evaluates the effectivenss of different pruning-at-initialization criteria

[161, 153, 91] for NAS. NASWOT [113] leverages the number of linear regions [180] to rank dif-

ferent networks. TE-NAS [22] further combines linear regions with neural tangent kernel (NTK)

[90] to rank a network by its expressivity and trainability. However, [116] shows that NTK-based

metrics are unstable across different search spaces and initializations. In this dissertation, we fur-

ther reveal that the effectiveness of training-free metrics (Linear Region and NTK) mainly come

from the high correlation with #Param, and #Param happens to be a good metric on the evaluated

benchmarks.
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2.4 Image Pre-trained Foundation Models

ViT [39] and its variants [108, 165, 194, 36] have been proposed to achieve state-of-the-art perfor-

mance on image recognition. Once trained, these models could also serve as good initialization for

transfer learning to downstream tasks. In terms of training techniques, they are commonly trained

on large-scale labeled datasests [33, 144, 198] in a supervised manner. To alleviate the labeling

cost, self-supervised learning methods [25, 5, 207, 60, 179] are introduced to learn effective rep-

resentations from unlabeled data. Recent works [131, 77, 193, 164] adopt large-scale multimodal

data (e.g., image-text pairs) for model training, which leads to even more powerful visual repre-

sentations. In this work, thanks to the simplicity of our proposed method, we could take advantage

of these well pre-trained image models and adapt them efficiently to solve video tasks.

2.5 Video Action Recognition

A paradigm shift from using convolutional networks [15, 160, 187, 98, 46] to transformers has been

observed for video action recognition. Most works use image pre-trained models as initialization

and extend them to video models by introducing new temporal modules [8, 3, 204, 183] or inflating

them to video models [109]. Another direction is to directly pre-train a video model in a self-

supervised manner [88, 44, 210, 149]. However, all these models are full finetuned on video

data, which makes the training cost unaffordable to most researchers and practitioners. There are

some recent works [119, 81, 173, 174] extending CLIP to perform action recognition, but they are

multimodal methods which requires additional text branch. Our proposed AIM leverages existing

pre-trained image models (no need for video model pre-training), only tunes a small number of

model parameters (much more efficient than full finetuning), and achieves comparable or even

better performance than previous state-of-the-arts.
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2.6 Parameter-efficient Finetuning

Parameter-efficient finetuning techniques [68, 71, 92, 95, 59, 6, 146, 128] are first proposed in

NLP since full finetuning the increasingly larger language models for various downstream tasks

becomes less feasible. Their goal is to reduce the number of trainable parameters thus lowering

the computation cost, while reaching or surpassing the performance of full finetuning. Recently,

parameter-efficient transfer learning is also studied in computer vision [78, 4, 20, 80, 47]. All

these methods focus on adapting models in the same domain (e.g., image-to-image or video-to-

video), while our method adapts an image model for video tasks. One concurrent work [102] also

studies how to adapt image pre-trained models for video action recognition. However, there are

several major differences. First, they add new trainable decoder branches, which consist of 3D

convolutions and cross-frame attention, to the frozen image encoder. We simply reuse image pre-

trained self-attention to perform temporal modeling, while enjoying better performance and less

tunable parameters. Second, our method is shown to be compatible with different image models,

while [102] only shows its effectiveness on CLIP image encoder.
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CHAPTER 3: ADAPTIVE NEURAL NETWORK FOR IMAGE

UNDERSTANDING

The work in this Chapter has been published in the following paper:

Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, Andrew Willis. "MutualNet: Adap-

tive ConvNet via Mutual Learning from Network Width and Resolution." European Conference on

Computer Vision. 2020.

Standard 2D models are trained at a fixed width-spatial configuration (e.g., 1.0×-224 on Ima-

geNet). However, the model does not generalize well to other configurations during inference as

shown in Table 1.1. In our method, we randomly sample different width-spatial configurations

during training, so the model can run effectively at various configurations during inference. Note

that the computation cost of a vanilla 2D convolutional layer is given by

K ×K ×Ci ×Co ×H ×W. (3.1)

Here, K denotes the kernel size, and Ci and Co respectively denote the input and output channels

of this layer, while H and W respectively denote the height and width of the output feature map.

For a smaller model configuration, e.g. 0.5×-160, the width is reduced by γw = 0.5 and the spatial

resolution is reduced by γs = 160/224 = 0.7. The computation cost is reduced to

K ×K × γwCi × γwCo × γsH × γsW, (3.2)

which is ρ = γ2
wγ2

s times that of the original in Eq. 3.1. The dynamic execution range of MutualNet
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is determined by the range of γw and γs. The detailed settings of γw,γs and ρ will be discussed in

the following sections.

This Chapter is organized as follows: in Section 3.1, we first show that distinct model configura-

tions focus on different semantic information in an image. Then, we introduce the training process

of our method by a concrete example. Section 3.3 explains the working mechanism of mutual

learning from the perspective of model gradients. Section 3.4 introduces how to deploy the model

and do inference at different resource budgets.

3.1 Knowledge in Different Model Configurations

We want to randomly sample different model configurations in each training iteration to allow them

to learn from each other. However, is there any unique knowledge in different model configurations

that is beneficial for transferring to others? The answer is yes. Fig. 3.1 shows the classification

activation maps (CAM) [206] of two model configurations. The models are trained independently

at the corresponding configuration. We can see that these two models focus on different semantic

regions of the same object. The larger model configuration (i.e., 1.0×-224) tends to focus on fine

details (e.g., face of the dog) while the smaller configuration learns the global structures (e.g., the

whole body). This can be partially attributed to the downsampling of the input resolution, where

Table 3.1: Weakly-supervised localization accuracy of different model configurations on ImageNet
validation set using CAM [206]. The backbone network is ResNet-50.

Model Config All Large Small
1.0×-224 37.9% 48.3% 8.7%
1.0×-160 25.2% 28.3% 12.9%

0.75×-128 24.8% 31.2% 8.3%
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1.0x-224 0.75x-128

Figure 3.1: Class activation maps (CAM) of different model configurations (the network is ResNet-
50 and is trained on ImageNet). Larger model configuration focuses more on details (e.g., face)
while the smaller one focuses more on the contour (e.g., body).

some fine-grained information is lost but the object contour is enhanced. To further demonstrate

that different model configurations have varied attention, we leverage their attention maps to con-

duct weakly-supervised object localization using CAM [206] on the ImageNet validation set and

compare their localization accuracy on large and small objects. We define small objects as those

with a ground truth bounding box smaller than 20% of the image size, and large objects as those

with a ground truth bounding box larger than 50% of the image size. A prediction is considered

correct if its IoU with the ground truth bounding box is larger than 0.5. The results are shown in

Table 3.1. We can see that 1.0×-224 achieves the highest accuracy on all objects and large ob-

jects, while 1.0×-160 performs better on small objects. Also, 0.75×-128 has lower performance

on small objects but higher performance on large objects compared to 1.0×-160. The results show
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Randomly select a resolution from {224, 192, 
160, 128} as input to each sub-network

Full network (1.0×)

Width (# of channels)

Sub-network 2 (𝜸𝒘𝟐×)

224x224 192x192 128x128160x160224x224

Ground truth
CE

Sub-network 1 (𝜸𝒘𝟏×) Sub-network 3 (0.25×)

…

KL KL KL

0.25 x (width of the full network)Two random width ratios 𝜸𝒘𝟏, 𝜸𝒘𝟐 ∈ (𝟎. 𝟐𝟓, 𝟏)
𝜸𝒘𝟏 𝜸𝒘𝟐

Figure 3.2: An example to illustrate the training process of MutualNet. The network width range
is [0.25×, 1.0×], input resolution is chosen from {224, 192, 160, 128}. This can achieve a com-
putation range of [13, 569] MFLOPs on MobileNet v1 backbone. We follow [189] to sample
4 networks, i.e., upper-bound full width network (1.0×), lower-bound width network (0.25×),
and two random width ratios γw1,γw2 ∈ (0.25,1). For the full-network, we constantly choose
224×224 resolution. For the other three sub-networks, we randomly select its input resolution.
The full-network is optimized with the ground-truth label using Cross Entropy loss (CE). Sub-
networks are supervised by the prediction of the full-network using Kullback–Leibler Divergence
loss (KL). Weights are shared among different networks to facilitate mutual learning.

that different configurations focus on different semantic regions. Inspired by this observation, we

leverage large configurations to supervise small ones during training. This further enhances the

knowledge transfer among different configurations and helps the model to learn more diversified

representations.

3.2 MutualNet Training

We present an example to illustrate our training process in Fig. 3.2. We set the adaptive width

range as [0.25×, 1.0×], and the adaptive resolutions as {224, 192, 160, 128}. Note that one can

adjust these settings according to the required dynamic resource budgets. The depth and resolu-

tion can even be larger than the default setting (1.0×-224) to scale up the model as we show in
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Section 7.3. As shown in Fig. 3.2, we first follow [189] to sample four sub-networks, i.e., the

smallest (0.25×), the largest (1.0×) and two random width ratios γw1,γw2 ∈ (0.25,1). Then, unlike

traditional ImageNet training with 224×224 input, we resize the input images to resolutions ran-

domly chosen from {224, 196, 160, 128} and feed them into different sub-networks. We denote

the weights of a sub-network as W0:w, where w ∈ (0,1] is the width of the sub-network and 0 : w

means the sub-network adopts the first w× 100% weights of each layer of the full network. IR=r

represents a r × r input image. Then N(W0:w, IR=r) represents the output of a sub-network with

width w and input resolution r× r. For the largest sub-network (i.e., the full-network in Fig. 3.2),

we always train it with the highest resolution (224×224) and ground truth label y. The loss for the

full network is

loss f ull =CrossEntropy(N(W0:1, IR=224), y). (3.3)

For the other sub-networks, we randomly pick an input resolution from {224, 196, 160, 128}

and supervise it with the output of the full-network. As demonstrated in Section 3.1, this can

transfer the unique knowledge in the full configuration to other configurations and benefit the

overall performance. The loss for the i-th sub-network is

losssubi = KLDiv(N(W0:wi, IR=ri), N(W0:1, IR=224)), (3.4)

where KLDiv is the Kullback-Leibler divergence which measures the distance between two distri-

butions. The total loss is the summation of the full-network and sub-networks, i.e.,

loss = loss f ull +
3

∑
i=1

losssubi. (3.5)

The reason for training the full-network with the highest resolution is that the highest resolution

contains more details. Also, the full-network has the strongest learning ability to capture the dis-
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Figure 3.3: An illustration of the mutual learning scheme. It allows the sub-network to learn multi-
scale representations, in terms of both network width and input image resolution.

criminatory information from the image data.

3.3 Gradient Analysis of Mutual Learning

To better understand why the proposed framework can mutually learn from different widths and

resolutions, we perform a gradient analysis of the mutual learning process. For ease of demonstra-

tion, we only consider two network widths 0.4× and 0.8×, and two resolutions 128 and 192 in this

example. As shown in Fig. 3.3, sub-network 0.4× selects input resolution 128, sub-network 0.8×

selects input resolution 192. Then we can define the gradients for sub-network 0.4× and 0.8× as
∂ lW0:0.4,IR=128

∂W0:0.4
and

∂ lW0:0.8,IR=192
∂W0:0.8

, respectively. Since sub-network 0.8× shares weights with 0.4×, we

can decompose its gradient as

∂ lW0:0.8,IR=192

∂W0:0.8
=

∂ lW0:0.8,IR=192

∂W0:0.4
⊕ ∂ lW0:0.8,IR=192

∂W0.4:0.8
, (3.6)

where ⊕ is vector concatenation. Since the gradients of the two sub-networks are accumulated

during training, the total gradients are computed as
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∂L
∂W

=
∂ lW0:0.4,IR=128

∂W0:0.4
+

∂ lW0:0.8,IR=192

∂W0:0.8

=
∂ lW0:0.4,IR=128

∂W0:0.4
+

(
∂ lW0:0.8,IR=192

∂W0:0.4
⊕ ∂ lW0:0.8,IR=192

∂W0.4:0.8

)
=

∂ lW0:0.4,IR=128 +∂ lW0:0.8,IR=192

∂W0:0.4
⊕ ∂ lW0:0.8,IR=192

∂W0.4:0.8

(3.7)

Therefore, the gradient for sub-network 0.4× is
∂ lW0:0.4,IR=128+∂ lW0:0.8,IR=192

∂W0:0.4
, which consists of two

parts. The first part is computed by itself (0 : 0.4×) with 128×128 input resolution. The second

part is computed by a larger sub-network 0.8× (i.e., 0 : 0.4× portion) with 192× 192 input res-

olution. Thus the sub-network is able to capture multi-scale representations from different input

scales and network scales. Due to the random sampling of network width, every sub-network is

able to learn multi-scale representations in our framework. This allows the model to significantly

outperform even independently-trained networks. Note that this is different from multi-scale data

augmentation as explained in Section 7.3.

3.4 MutualNet Inference

After training, the model is able to run at various width-resolution configurations. To deploy the

model, we need to find the best-performed model configuration under each particular resource

constraint. For evaluation, after following the training example in Section 3.2, we first sample

the network widths from 0.25× to 1.0× with a step-size of 0.05×. Then we sample the input

resolutions from {224, 192, 160, 128}. We evaluate all these width-resolution configurations on a

validation set which gives us a configuration-accuracy table. Similarly, we can evaluate the compu-

tational cost (e.g., FLOPs) of each model configuration which gives us a configuration-complexity

table. Note that different model configurations may have the same computational cost (e.g., on
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MobileNet v1, the computational cost of 0.6×-224 and 0.7×-192 are both ∼210 MFLOPs). So

the final step is to find the best-performing model configuration for each resource budget, from

which we can get the complexity-configuration query table. For real deployment, we only need

to deploy the MutualNet model (which is of the same size as a regular model) and the query ta-

ble. Then given a resource constraint, we can look up the query table and inference the model

at the corresponding optimal configuration. Note that the feature statistics (mean and variance)

are different across different model configurations, so we can not use one set of batch normaliza-

tion (BN) statistics for all configurations. We follow [189] to perform BN statistics calibration for

each model configuration. Before evaluation, we forward several batches of data to update the BN

statistics for a specific configuration. There is no re-training so that the whole process is fast

and only needs to be done once.

3.5 Experiments

We conduct extensive experiments to evaluate the effectiveness of MutualNet. We first present

our results on ImageNet [32] classification to illustrate the effectiveness of MutualNet. Next, we

conduct extensive ablation studies to analyze the mutual learning scheme. Finally, we apply Mu-

tualNet to transfer learning datasets and COCO [101] object detection and instance segmentation

to demonstrate its robustness and generalization ability.

3.5.1 Evaluation on ImageNet Classification

We compare MutualNet with SlimmableNet (S-Net [191] and US-Net [189]) and independently-

trained networks on the ImageNet dataset. We evaluate our framework on three popular network

structures, MobileNetv1 [70], MobileNetv2 [136] and ResNet-50 [64].
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Figure 3.4: Comparisons of Accuracy-FLOPs curves of MutualNet, S-Net and US-Net. In the ta-
bles, we compare some points on the curves by their configurations, the corresponding FLOPs and
accuracy. MutualNet consistently outperforms S-Net and US-Net at different model complexities.

Implementation Details. We follow the settings in SlimmableNet and make the comparison under

the same dynamic FLOPs constraints: [13, 569] MFLOPs on MobileNetv1, [57, 300] MFLOPs on

MobileNetv2 and [660, 4100] MFLOPs on ResNet-50. The input image resolution is randomly

picked from {224, 192, 160, 128} unless specified. We use width scale [0.25, 1.0]× on Mo-

bileNetv1, [0.7, 1.0]× on MobileNetv2 and [0.7, 1.0]× on ResNet-50. The width lower bound is

slightly higher than that in SlimmableNet because we perform multi-dimension trade-off during

training. The other training settings are the same as SlimmableNet.

Comparison with SlimmableNet. The Accuracy-FLOPs curves are shown in Fig. 3.4. We can

see that our method consistently outperforms S-Net and US-Net on MobileNetv1, MobileNetv2

and ResNet-50 backbones. Specifically, we achieve significant improvements under small compu-

tation costs. This is because our framework considers both network width and input resolution and

can find a better balance between them. For example, on MobileNet v1 backbone, if the resource

constraint is 150 MFLOPs, US-Net has to reduce the width to 0.5× given its constant input res-

olution 224, while MutualNet can meet this budget by a balanced configuration of (0.7× - 160),

leading to a better accuracy (65.6% (Ours) vs. 62.9% (US-Net) as listed in the table of Fig. 3.4).
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Figure 3.5: Comparisons of Accuracy-FLOPs curves of MutualNet, US-Net and I-Net. MutualNet
consistently outperforms US-Net and I-Net at different model complexities.

Also, our framework is able to learn multi-scale representations as demonstrated in Section 3.3,

which further boost the performance of each sub-network. We can see that even for the same con-

figuration (e.g., 1.0×-224) our approach clearly outperforms US-Net, i.e., 72.4% (Ours) vs. 71.7%

(US-Net) on MobileNet v1, 72.9% (Ours) vs. 71.5% (US-Net) on MobileNet v2, and 78.1% (Ours)

vs. 76.3% (US-Net) on ResNet-50. (Fig. 3.4).

Comparison with Independently Trained Networks. We compare the performance of Mutual-

Net and US-Net with independently-trained networks (denoted by I-Net) under different width-

resolution configurations in Fig. 3.5. In I-Net, the resolutions are selected from {224, 192, 160,

128}. Width are selected from {1.0×, 0.75×, 0.5×, 0.25×} on MobileNet v1&v2 and {1.0×

0.75×} on ResNet-50. From Fig. 3.5 we can see that US-Net only achieves comparable (in many

cases worse) performance compared to I-Net, while MutualNet consistently outperforms US-Net

and I-Net on three backbones. Even at the same width-resolution configuration, which may not be

the best configuration, MutualNet can achieve much better performance than I-Net. This demon-

strates that MutualNet not only finds the better width-resolution balance but also learns stronger

representations by the mutual learning scheme.

26



Figure 3.6: The width-resolution trade-offs at different resource constraints. The Accuracy-FLOPs
curves are based on MobileNet v1 backbone. We highlight the selected resolution under different
FLOPs with different colors. For example, the solid green line indicates that when the constraint
range is [41, 215] MFLOPs, our method constantly selects input resolution 160 but reduces the
width to meet the resource constraint. Best viewed in color.

Balanced Width-Resolution Configuration via Mutual Learning. One may apply different res-

olutions to US-Net during inference to yield improvement over the original US-Net. However,

this way the optimal width-resolution balance can be achieved due to lack of width-resolution

mutual learning. In one experiment, we evaluate US-Net at width scale [0.25, 1.0]× with in-

put resolutions {224, 192, 160, 128} and denote this improved model as US-Net+. In Fig. 3.6,

we plot the Accuracy-FLOPs curves of our method and US-Net+ based on MobileNet v1 back-

bone, and highlight the selected input resolutions with different colors. As we decrease the FLOPs

(569 → 468 MFLOPs), MutualNet first reduces network width to meet the constraint while keep-

ing the 224×224 resolution (red line in Fig. 3.6). After 468 MFLOPs, MutualNet selects lower

input resolution (192) and then continues reducing the width to meet the constraint. On the other

hand, US-Net+ cannot find such balance. It always slims the network width and uses the same

(224) resolution as the FLOPs decreasing until it goes to really low. This is because US-Net+ does
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Table 3.2: Comparison with EfficienNet to scale up MobileNetv1 by ×4 on ImageNet. d: depth,
w: width, r: resolution.

Model Best Model FLOPs Top-1 Acc
EfficientNet [151] d = 1.4,w = 1.2,r = 1.3 2.3B 75.6%

MutualNet w = 1.6,r = 1.3 2.3B 77.1%

not incorporate input resolution into the learning framework. Simply applying different resolutions

during inference cannot achieve the optimal width-resolution balance.

Comparison with EfficientNet. EfficientNet [151] acknowledges the importance of balancing

among network width, depth and resolution. But they are considered as independent factors. The

authors use grid search over these three dimensions and train each model configuration indepen-

dently to find the optimal one under certain constraint, while MutualNet incorporates width and

resolution in a unified training framework. To show the benefits of the mutual learning shceme,

we compare MutualNet with the best model scaling that EfficientNet finds for MobileNet v1 at 2.3

BFLOPs (scale up baseline by ×4.0). To cover this model scale we scale up MutualNet by using a

width range of [1.0×,2.0×], and select resolutions from {224, 256, 288, 320}. This makes Mutu-

alNet executable in the range of [0.57, 4.5] BFLOPs. We pick the best performing width-resolution

configuration at 2.3 BFLOPs. The results are compared in Table 3.2. Although EfficientNet claims

to find the optimal scaling compound, its performance is much worse than MutualNet. This is

because EfficientNet fails to leverage the information in other configurations, while MutualNet

captures multi-scale representations for each model configuration thanks to the width-resolution

mutual learning.

Comparison with Multi-scale Data Augmentation. In multi-scale data augmentation, the net-

work may take images of different resolutions in different training iterations. But within each
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Table 3.3: Comparison between MutualNet and multi-scale data augmentation. MutualNet outper-
forms simply multi-scale data augmentation.

Model ImageNet Top-1 Acc
MobileNet v2 (1.0× - 224) - Baseline 71.8%

Baseline + Multi-scale data augmentation 72.0%
MutualNet (MobileNet v2 backbone) 72.9%

iteration, the network weights are still optimized in the direction of the same resolution. In con-

trast, our method randomly samples several sub-networks which share weights with each other.

Since sub-networks can select different image resolutions, the weights are optimized in the direc-

tion of mixed resolution in each iteration as illustrated in Fig. 3.3. This enables each sub-network

to effectively learn multi-scale representations from both network width and resolution. To val-

idate the superiority of our mutual learning scheme, we apply multi-scale data augmentation to

I-Net and US-Net and explain the difference with MutualNet.

I-Net + Multi-scale data augmentation. We train MobileNetv2 (1.0× width) with multi-scale im-

ages. To have a fair comparison, input images are randomly sampled from scales {224, 192, 160,

128} and the other settings are the same as MutualNet. As shown in Table 3.3, multi-scale data aug-

mentation only marginally improves the baseline (MobileNetv2) while MutualNet (MobileNetv2

backbone) clearly outperforms both of them by considerable margins.

US-Net + Multi-scale data augmentation. Different from our framework which feeds different

scaled images to different sub-networks, in this experiment, we randomly choose a scale from

{224, 192, 160, 128} and feed the same scaled image to all sub-networks in each iteration. That

is, each sub-network takes the same image resolution. In this way, the weights are still optimized

towards a single resolution direction in each iteration. For example, as illustrated in Fig. 3.3,

the gradient of the sub-network 0.4× in MutualNet is
∂ lW0:0.4,IR=128+∂ lW0:0.8,IR=192

∂W0:0.4
, while in US-Net

29



US-Net+multi-scale
MultualNet

Figure 3.7: MutualNet and US-Net + multi-scale data augmentation. MutualNet achieves better
performance, which shows that the proposed mutual learning is different and more effective than
simple multi-scale data augmentation.

+ multi-scale it would be
∂ lW0:0.4,IR=128+∂ lW0:0.8,IR=128

∂W0:0.4
. With more sub-networks and input scales in-

volved, the difference between their gradient flows becomes more distinct. As shown in Fig. 3.7,

our method clearly outperforms US-Net + multi-scale data augmentation over the entire FLOPs

spectrum. This experiment is based on MobileNetv2 with the same settings as in Sec. 3.5.1. These

experiments demonstrate that the improvement comes from our mutual learning scheme rather

than the multi-scale data augmentation.

Combine with Dynamic Blocks. As reviewed in Section 2, there is a category of dynamic net-

works where the adaptive weights are determined by the input. We show that MutualNet can

be directly combined with these networks by applying our method to MobileNetV3 [69], where

the dynamic blocks are implemented by Squeeze and Excitation (SE) [72]. When sampling sub-

networks, we multiply the width factor to both the backbone network and SE block. Then the
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Figure 3.8: Comparison of independently-trained networks (I-Net) and MutualNet with the Mo-
bileNetV3 backbone. MutualNet can be applied to dynamic blocks such as the SE block.

full-network and sub-networks can be trained in the same way as other models. We compare Mu-

tualNet and independently trained MobileNetV3 (denoted by I-Net) at different configurations in

Fig. 3.8. Note that the results of MobileNetV3 are reproduced by us since we could not strictly

follow the settings in the original paper (the authors trained MobileNetV3 on 4×4 TPU Pod with

a batch size of 4096). We train the network on an 8-GPU server for 150 epochs with a batch size

of 1024. The initial learning rate is 0.4 with cosine decay schedule. Our reproduced performance

is 0.4% lower than that in the original paper. MutualNet is trained on the same codebase with

the same settings. As shown in Fig. 3.8, MutualNet does not outperforms independently-trained

MobileNetV3 at large model configurations. We conjecture this is caused by the SE block in Mo-

bileNetV3. In MutualNet, sub-networks and the full-network share the same SE block, but their

channel attention could be different (sub-networks do not have some channels). Fitting the chan-

nel attention to sub-networks may hurt the attention of the full-network, thus leading to decreased

31



0 100 200 300 400 500 600
FLOPs (Millions)

40

45

50

55

60

65

70

75

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y 

(%
)

w/ KL
w/o KL

Figure 3.9: Contribution of the KLDiv loss to the overall performance. KLDiv loss contributes
small improvements to the overall performance. Most improvements are coming from the proposed
mutual learning paradigm.

performance. But at smaller configurations, MutualNet is significantly better. Although the overall

improvement may not be as significant as on other backbones, MutualNet still has the advantage

of covering a wide range of resource constraints by a single model, which makes it easier to de-

ploy on resource-constrained devices. Still, we think that investigating the effective combination

of MutualNet with other dynamic inference methods is an interesting problem. We leave further

study on this for future work.

3.5.2 Ablation Study

Effects of KL Divergence. During training, we leverage the full-network to supervise sub-

networks to enhance knowledge transfer. Here we study how much does the KL Divergence loss
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Figure 3.10: Accuracy-FLOPs curves of different width lower bounds. Smaller lower bounds tend
to yield worse performance but achieves large adaptive range.

contribute to the overall performance. As shown in Fig. 3.9, w/ KL is the original training process

and w/o KL denotes that the sub-networks are supervised by the ground truth labels. The difference

is very marginal where the largest gap is less than 1%. This demonstrates that the KL Divergence

loss does benefit the performance, but the main contribution is coming from the mutual learning

scheme as explained in Section 3.3.

Effects of Width Lower Bound. The dynamic constraint is affected by the width lower bound.

To study its effects, we conduct experiments with three different width lower bounds (0.7×, 0.8×,

0.9×) on MobileNetv2. The results in Fig. 3.10 show that a higher lower bound gives better

overall performance, but the dynamic range is narrower. One interesting observation is that the

performance of the full-network (1.0×-224) is also largely improved as the width lower bound

increases from 0.7× to 0.9×. This property is not observed in US-Net. We attribute this to the
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Figure 3.11: The effect of the number of randomly sampled sub-networks during training. The
backbone network is MobileNetV2. n = 1 means one random width sub-network is sampled with
the full-network and the smallest sub-network (γw = 0.7).

robust and well-generalized multi-scale representations which can be effectively re-used by the

full-network, while in US-Net, the full-network cannot effectively benefit from sub-networks.

Effect of the number of sub-networks. Fig. 3.11 shows the performance with different numbers

of random sub-networks. The backbone network is MobileNetV2. We can see that a larger number

of sub-networks could slightly improve the performance over the whole FLOPs spectrum, but it

will also increase the training cost. The results also show that even one sub-network can achieve

respectable results.

Boosting Single Network Performance. As discussed above, the performance of the full-network

is greatly improved as we increase the width lower bound. Therefore, we can apply MutualNet to

improve the performance of a single full network if dynamic budgets is not the concern. We
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Table 3.4: Comparisons of the Top-1 Accuracy (%) of MutualNet and state-of-the-art techniques
for boosting a single network. The full network in MutualNet can even outperform state-of-the-art
data augmentation and regularization methods.

Method Cifar-10 Cifar-100 ImageNet
Baseline [196, 64] 96.1 81.2 76.5

Cutout [35] 96.9 81.6 77.1
SENet [72] / / 77.6

AutoAug [31] 97.4 82.9 77.6
ShakeDrop [182] 95.6 81.7 77.5

Mixup [201] 97.3 82.5 77.9
MutualNet 97.2 83.8 78.6

compare our method with the popular performance-boosting techniques (e.g., AutoAugmentation

(AutoAug) [31], SENet [72] and Mixup [201] etc.) to show its superiority. We conduct exper-

iments using WideResNet-28-10 [196] on Cifar-10 and Cifar-100 [86] and ResNet-50 [64] on

ImageNet [32]. MutualNet adopts the width range [0.9, 1.0]× as it achieves the best-performed

full-network in Fig. 3.10. The resolution is sampled from {32, 28, 24, 20} on Cifar-10 and Cifar-

100 and {224, 192, 160, 128} on ImageNet. WideResNet is trained for 200 epochs following

[196]. ResNet is trained for 120 epochs. The results are compared in Table 3.4. Surprisingly,

MutualNet achieves substantial improvements over other techniques even though it is designed to

achieve dynamic models. Note that MutualNet is model-agnostic and is as easy as regular train-

ing process, so it can take advantage of state-of-the-art network structures and data augmentation

techniques.

3.5.3 Transfer Learning Evaluation

To evaluate the representations learned by our method, we further conduct experiments on three

popular transfer learning datasets, Cifar-100 [86], Food-101 [9] and MIT-Indoor67 [130]. Cifar-

100 is for superordinate-level object classification, Food-101 is for fine-grained classification and
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Figure 3.12: Accuracy-FLOPs curves of different methods on different transfer learning datasets.
MobileNet is trained independently at different model configurations. MutualNet achieves consis-
tently better performance on different datasets.

MIT-Indoor67 is for scene classification. Such a large variety of datasets can strongly demonstrate

the robustness of the learned representations. We compare our approach with US-Net and Mo-

bileNetv1. We fine-tune ImageNet pre-trained models with a batch size of 256, initial learning

rate of 0.1 with cosine decay schedule and a total of 100 epochs. Both MutualNet and US-Net are

trained with width range [0.25, 1.0]× and tested with resolutions from {224, 192, 160, 128}. The

results are shown in Fig. 3.12. Again, our MutualNet achieves consistently better performance

compared to US-Net and MobileNet. This verifies that MutualNet is able to learn well-generalized

representations.

3.5.4 Object Detection and Instance Segmentation

We also evaluate our method on COCO object detection and instance segmentation [101]. The

experiments are based on Mask-RCNN-FPN [62, 100] and MMDetection [18] toolbox on VGG-

16 [141] backbone. We first pre-train VGG-16 on ImageNet following US-Net and MutualNet

respectively. Both methods are trained with width range [0.25, 1.0]×. Then we fine-tune the

pre-trained models on COCO. The feature pyramid network (FPN) neck and detection head are
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MutualNet
US-Net

Figure 3.13: mAP-FLOPs curves of MutualNet and US-Net on object detection (left) and instance
segmentation (right). The results are based on Mask-RCNN. All models follow the same training
settings.

shared among different sub-networks. For simplicity, each sub-network is trained with the ground

truth. The other training procedures are the same as training ImageNet classification. Following

common settings in object detection, US-Net is trained with image resolution 1000× 600. Our

method randomly selects resolutions from 1000×{600,480,360,240}. All models are trained

with 2× schedule for better convergence and tested with different image resolutions. The mean

Average Precision (AP at IoU=0.50:0.05:0.95) are presented in Fig. 3.13. These results reveal that

our MutualNet significantly outperforms US-Net under all resource constraints. Specifically, for

the full network (1.0×-600), MutualNet significantly outperforms both US-Net and independent

network. This again validates the effectiveness of our width-resolution mutual learning scheme.

Fig. 3.14 provides some visual examples which reveal that MutualNet is more robust to small-scale

and large-scale objects than US-Net.
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Figure 3.14: Visualization examples of MutualNet and US-Net on object detection and instance
segmentation. Detection and segmentation results are demonstrated by bounding boxes and masks
respectively. To facilitate comparison, we use yellow boxes to highlight the objects that MutualNet
detects but US-Net fails. [Best viewed with zoom-in.]

3.6 Summary

In summary, we highlight the importance of simultaneously considering network width and input

resolution for efficient network design. A new framework namely MutualNet is proposed to mu-

tually learn from network width and input resolution for adaptive accuracy-efficiency trade-offs.

Extensive experiments have shown that it significantly improves inference performance per FLOP

on various datasets and tasks. The mutual learning scheme is also an effective training strategy

for boosting single network performance. The generality of the proposed framework allows it to

translate well to generic problem domains.
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CHAPTER 4: ADAPTIVE NEURAL NETWORK FOR VIDEO

UNDERSTANDING

The work in this Chapter has been published in the following paper:

Taojiannan Yang, Sijie Zhu, Matias Mendieta, Pu Wang, Ravikumar Balakrishnan, Minwoo Lee,

Tao Han, Mubarak Shah, Chen Chen. "MutualNet: Adaptive ConvNet via Mutual Learning from

Different Model Configurations." IEEE Transaction on Pattern Analysis and Machine Intelligence.

2021.

In Chapter 3, we demonstrate the effectiveness of MutualNet in learning adaptive neural networks

for various image understanding tasks. In this chapter, we generalize the idea to video understand-

ing. We are the first to achieve adaptive spatiotemporal (3D) neural networks for video understand-

ing. A popular way to model spatiotemporal information in videos is to extend 2D convolutions to

3D convolutions. The computation cost of a vanilla 3D convolutional layer is given by

K ×K ×K ×Ci ×Co ×H ×W ×T. (4.1)

Here, K denotes the kernel size, and Ci and Co respectively are the input and output channels of this

layer. H, W , T denote the spatial-temporal size of the output feature map. Similar to 2D networks,

we sample model configurations by network width, spatial and temporal resolution. Following the

notations in Chapter 3, we denote a model configuration by width-spatial-temporal. The scaling

coefficients γw and γr are the same as defined before. γt is the temporal resolution coefficient where
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γt ∈ [0,1]. The computational cost is reduced to

K ×K ×K × γwCi × γwCo × γsH × γsW × γtT. (4.2)

The computational cost is now reduced by ρ = γ2
wγ2

s γt times. For single-branch structures [157,

15, 43], which are extended from 2D networks, our method can be easily applied by randomly

sampling both spatial and temporal dimensions during training. For two-branch structures such as

SlowFast [45], where spatial and temporal dimensions are processed asymmetrically, we conduct

asymmetric sampling.

In the following sections, we first show that the temporal dimension can bring additional knowl-

edge to be transferred among different model configurations. Then we explain MutualNet structure

on one-branch and two-branch video models.

4.1 Knowledge in Different 3D Model Configurations

Temporal modeling is essential in 3D networks. Following 2D MutualNet, we first demonstrate

that different model configurations will focus on different spatial-temporal semantic regions. Fig.

4.1 shows the spatial and temporal distributions of network activation following CAM [206].

Higher value means more contribution to the final logit value. Although both models generate

the prediction as “headbutting", their decisions are based on different areas of different frames.

The input of the left model has 8 frames, and the 2nd and 8th frames contribute the most to the

final prediction. While the right model only has 4 input frames, where those two key frames in the

left model are not sampled. So it has to learn other semantic information, forcing a change in both

temporal and spatial activation distributions. For example, the activation value of the 5th frame

exceeds that of the 3rd frame in the right model, which is the opposite case in the left model. The
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Figure 4.1: Class activation map along spatial and temporal dimensions of two network configura-
tions. X-axis is the frame index number and y-axis is the normalized activation value. The action
is “headbutting" from the Kinetics-400 dataset.

spatial attention areas are also unique in the two models. In the first frame, the attention is on the

shoulder in the left model, but shifts to the face in the right model indicating that a varied set of

visual cues is captured.

4.2 3D MutualNet Training

4.2.1 One-branch Structure

In one-branch structures, the 3D convolutions are directly extended from 2D convolutions so that

we can apply the mutual learning strategy in the same way as 2D networks. The left half of Fig.

4.2 shows how mutual training works in single pathway structures. In each training iteration, we

sample two sub-networks (by the width factor γw) in addition to the full-network. Sub-networks

share the parameters with the full-network in the same way as 2D networks. The full-network is

fed with the highest spatial-temporal resolution inputs, while sub-networks are fed with randomly

downsampled inputs. Similar to 2D MutualNet training, the full-network is supervised by the

ground-truth label while sub-networks are supervised by the full-network to facilitate knowledge

transfer. The total loss is the summation of the full-network’s loss and sub-networks’ losses.
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Figure 4.2: An overview of 3D MutualNet training. Left is for single-pathway structures, which is
similar to 2D MutualNet training. Right is for multiple-pathway structures, where only the Slow
branch is downsampled. The two branches are fused by the proposed Adaptive Fusion block.

4.2.2 Two-branch Structure

Recently, SlowFast [45] proposes that the temporal dimension should not be processed symmetri-

cally to the spatial dimension, as slow and fast motions contain different information for identifying

an action class. SlowFast shows that a lightweight fast pathway, which aims to capture fine motion

information, is a good complement to the slow pathway, which mainly captures spatial semantics.

This inspires us to leverage multiple-pathway trade-offs in 3D MutualNet. The structure is shown

in the right half of Fig. 4.2. Since the fast pathway is lightweight (about 10% of the overall com-

putation), reducing its spatial-temporal resolution or network width is not beneficial for the overall

computation-accuracy trade-off. In two-branch structures, we keep the respective γw,γs,γt = 1 for

the Fast pathway so that it can provide complementary information for the Slow path with its own

γw,γs,γt ≤ 1. Note that this complementary information is not only on temporal resolution but also

on spatial resolution.

Adaptive Fusion. Given fixed temporal resolutions for two pathways, the fusion is conducted by

lateral connections with time-strided convolution in SlowFast [45]. However, since all the three
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Figure 4.3: An illustration of adaptive fusion on network channels.

dimensions (γw, γs, γt) of the Slow pathway can change during training, directly applying the time-

strided convolution does not work for our framework. Therefore, we design an adaptive fusion

block for multiple-pathway 3D MutualNet.

Following SlowFast [45], we denote the feature shape of a standard Slow pathway as {T,S2,C},

where S is the spatial resolution and C is the number of channels. Then the feature shape of adaptive

Slow pathway is {γtT,(γsS)2,γwC}. The feature shape of Fast pathway remains {αT,S2,βC} as in

[45] (α,β are hyperparameters defined in [45]. α = 8,β = 1/8 for SlowFast 4×16). Following the

settings in [45], we first perform a 3D convolution of 5×12 kernel with 2βC output channels and

a stride of α . The output feature shape of this convolution layer is {T,S2,2βC}. To fuse it with the

adaptive Slow pathway (whose shape is {γtT,(γsS)2,γwC}), we perform a spatial interpolation and

temporal down-sampling to make the output shape {γtT,(γsS)2,2βC}. Then the final feature shape

after the fusion is {γtT,(γsS)2,(γw + 2β )C}. As shown in Fig. 4.3, normal convolution layers of

adaptive Slow pathway have γwC channels indexing from the left, while the first convolution layer

after each fusion has γwC+ 2βC input channels. The last 2βC channels are always kept for the

output of Fast pathway, while the first γwC channels from the left can vary for each iteration.

This operation enforces an exact channel-wise correspondence between the fusion features and the

parameters in convolution layers.
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Table 4.1: Training cost of 2D MutualNet and independent 2D models of different scales. The
backbone is MobileNet v1. ∗ indicates expected values.

MobileNet v1 Independent MutualNet
Scale ×0.1 ×0.3 ×0.5 ×0.7 ×0.9 ×1.0 ×0.02 ∼×1.0

MFLOPs 57 171 284 398 512 569 910∗

Total 1991 910∗

Mins/epoch 1∗ 3∗ 5∗ 7∗ 9∗ 10 20
Total 35∗ 20

Table 4.2: Training cost of 3D MutualNet and independent 3D models of different scales. The
backbone is Slow-8×8. ∗ indicates expected values.

Slow-8×8 Independent MutualNet
Scale ×0.1 ×0.3 ×0.5 ×0.7 ×0.9 ×1.0 ×0.06 ∼×1.0

GFLOPs 5.5 16.4 27.3 38.2 49.1 54.5 74.8∗

Total 191 74.8∗

Mins/epoch 5.8∗ 17.4∗ 29.0∗ 40.6∗ 52.2∗ 58 69
Total 203∗ 69

4.3 3D Model Inference

Similar to 2D networks, we need to find the best-performing configuration at each resource con-

straint. We evaluate different width-spatial-temporal configurations on a validation set. Then the

complexity-configuration table can be obtained by following the steps in Section 3.4. For real de-

ployment, the model and the table need to be maintained, and therefore the memory consumption

is essentially the same as a single model. The model can be adjusted according to the table to meet

different resource budgets.
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4.4 Complexity of MutualNet Training

Since we additionally sample sub-networks during training, MutualNet consumes more computa-

tional cost than training a single model. However, we show that the training cost is several times

less than training many independent models. In Table 4.1, we measure the theoretical complexity

(i.e., FLOPs) and practical wall-clock time of training MutualNet and independent models. The

network backbone is MobileNetv1 [70]. In MutualNet, the width range is [0.25, 1.0]× and the res-

olution range is {224, 192, 160, 128}. This achieves a dynamic constraint of [13, 569] MFLOPs,

which corresponds to a model scale from ×0.02 to ×1.0. Note that we use 1.0× to denote the

network width coefficient while ×1.0 to denote the overall model scale. For independent training,

we train a set of models where the smallest one is ×0.1 and the stepsize is ×0.2. The FLOPs of

MutualNet training is estimated by taking the expectation of Eq. 3.2. The wall-clock time of the

full model (×1.0) and MutualNet is measured on an 8×2080TI GPU sever with a batch-size of

1024. Other models’ training time is estimated by the model FLOPs because the practical time

depends on the manner the model is scaled down. However, it should be higher than the estimated

values because the data loading/processing time does not decrease if the model is scaled down.

Table 4.1 shows that the training cost of MutualNet is around 2 times of the full-model, but it is

much smaller than independently training each model.

We also evaluate the training cost on 3D networks (Slow-8×8 [45]) in Table 4.2. The training

time is measured on an 8×2080TI GPU sever with a batch-size of 64. In MutualNet, the width

range is [0.63, 1.0]×, spatial resolution is {142, 178, 224} and temporal resolution is {3, 5, 8}.

This achieves a model scale from ×0.06 to ×1.0. We also evaluate a group of independent models

from ×0.1 to ×1.0. We can see that although the theoretical complexity of MutualNet is about 1.4

times of the full-model, the wall-clock time is only slightly higher. This is because the data load-

ing/processing is time-consuming in 3D networks, the additional cost introduced by sub-networks
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is therefore not that significant. In summary, MutualNet saves time compared to independently

training several models, and it only needs to deploy one model to meet dynamic resource con-

straints during inference.

4.5 Experiments

To the best of our knowledge, we are the first to achieve adaptive 3D networks. So we only

compare our method with independently-trained networks. We conduct experiments based on

Slow/SlowFast [45] and X3D [43] backbones, which are state-of-the-art 3D network structures.

Following previous works [45, 43], we evaluate the method on the following three video datasets.

Kinetics-400 [82] is a large scale action classification dataset with ∼240k training videos and 20k

validation videos trimmed as 10s clips. However, since some of the YouTube video links have

expired, we can not download the full dataset. Our Kinectic-400 only has 237,644 out of 246,535

training videos and 19,761 validation videos. The training set is about 4% less than that in SlowFast

[45] and some of the videos have a duration less than 10s. This leads to an accuracy drop of 0.6%

on Slow-8×8, 1.2% on SlowFast-4×16 and 0.93% on X3D-M as we reproduce the results with the

officially released codes [40]. Charades [139] is a multi-label action classification dataset with

longer activity duration. The average activity duration is ∼30 seconds. The dataset is composed

of ∼9.8k training videos and 1.8k validation videos in 157 classes. The evaluation metric is mean

Average Precision (mAP). AVA [54] is a video dataset for spatio-temporal localization of human

actions. It consists of 211k training and 57k validation video segments. We follow previous works

[45] to report the mean Average Precision (mAP) on 60 classes using an IoU threshold of 0.5.

Implementation Details. For single-pathway structures, we adopt Slow 8×8 and X3D-M as our

backbone. For multiple-pathway structures we use SlowFast 4×16 due to the limitation of GPU
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memory. For Slow and SlowFast, the width factor γw is uniformly sampled from [0.63,1.0]×.

The spatial resolution factor is γs ∈ {0.63,0.80,1.0} (corresponding to {142,178,224}) and the

temporal resolution factor is γt ∈ {0.4,0.63,1.0} (corresponding to {3,5,8}). For X3D-M, the

width factor γw is uniformly sampled from [0.63,1.0]×. The spatial resolution factor is γs ∈

{0.63,0.71,0.86,1.0} (corresponding to {142,160,192,224}) and the temporal resolution factor

is γt ∈ {0.4,0.6,0.8,1.0} (corresponding to {6,9,12,16}). Other training settings are the same as

the official codes [40].

4.5.1 Main Results

Evaluation on Kinetics-400. In Fig. 4.4, we report the results of MutualNet on different back-

bones along with its separated trained counterparts. The original results (reported in paper) are

denoted as “-P” and our reproduced results using official code [40] are denoted as “-R”. We report

both results to have a fair comparison since we can not reproduce the original results due to lack

of data. For results of MutualNet, we use different line colors to show different dimensions for

accuracy-efficiency trade-off. Red means the spatial resolution is reduced to meet the dynamic

resource budget in this range. Similarly, green stands for temporal resolution and blue stands for

network width. Black indicates multiple dimensions are involved for one trade-off step.

As shown in Fig. 4.4, MutualNet consistently outperforms its separately trained counterparts on

three network backbones. It achieves significant improvements over our reproduced results and

shows clear advantages over the reported results in the paper. The improvement is even more sig-

nificant (3.5% on Slow backbone and 1.6% on SlowFast backbone) for small resource budgets.

This is because our method allows the model to find a better width-spatial-temporal trade-off at

each resource budget. And the mutual learning scheme can transfer the knowledge in large con-

figurations to small models to further improve its performance. On X3D-M backbone, our method
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Figure 4.4: Comparison of MutualNet and its independently trained counterparts under different
computational constraints for video action recognition. Both the results in the corresponding pa-
pers and our reproduced results are reported for a fair comparison. Our reproduced results are
lower because of lack of training data.

achieves consistent improvements under different budgets. Note that X3D finds the best-performed

model configuration by a search process. It trains many model configurations independently and

choose the best one, while MutualNet train all configurations jointly which saves training time and

improves the overall performance.

Comparison with state-of-the-art. Based on X3D-M backbone, we compare MutualNet with

state-of-the-art methods [158, 99, 45, 43] for action recognition in Fig. 4.5. The results are based

on 10-view testing. Note that the x-axis is in log-scale for better visualization. We can see that

based on the state-of-the-art structure (X3D), MutualNet substantially outperforms previous works

(including X3D). This reveals MutualNet is a general training framework and can benefit from

improved model structures.

4.5.2 Ablation Study

Contribution of Temporal Dimension. To investigate the effect of the temporal dimension, we

train MutualNet-Slow-8×8 without a temporal trade-off. To reduce the computation by 16×

(around [0.06,1]), the lower bounds of γs,γt ,γw are 0.63,0.4,0.63. However, if we keep γt = 1,
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Figure 4.5: Comparison of MutualNet-X3D-M with state-of-the-art 3D networks. MutualNet out-
performs other video models at different model complexities. X-axis is in log-scale.

Table 4.3: The contribution of temporal dimension in mutual training. w/o T indicates remove
temporal dimension. Including temporal dimension in 3D MutualNet achieves better performance.

Model S2 ×T,γw top-1 GFLOPs×views Param

×1

Slow-8×8-P[45] 2562 ×8,1.0 74.8 54.5×30 32.5M
Slow-8×8-R 2562 ×8,1.0 74.2 54.5×30 32.5M
MutualNet-Slow-8×8 w/o T 2562 ×8,1.0 75.1 54.5×30 32.5M
MutualNet-Slow-8×8 2562 ×8,1.0 75.6 54.5×30 32.5M

×0.25
Slow-2×32-P [45] 2562 ×2,1.0 70.1 13.6×30 32.5M
MutualNet-Slow-8×8 w/o T 2242 ×8,0.6 73.3 15.4×30 11.8M
MutualNet-Slow-8×8 2242 ×5,0.73 73.6 14.1×30 17.5M

×0.06
A3D-Slow-8×8 w/o T 1122 ×8,0.5 67.8 2.8×30 8.3M
MutualNet-Slow-8×8 1422 ×3,0.63 68.7 2.7×30 13.0M

then the lower bounds of γs,γw have to be 0.5,0.5 to provide the same coverage range. Table 4.3

shows that removing the temporal dimension in 3D MutualNet leads to a lower accuracy for both

the full-network (×1) and sub-networks (×0.25, ×0.06).
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Table 4.4: Comparison between 3D MutualNet and multi-scale training on Slow-8×8 backbone.
MutualNet significantly outperforms multi-scale training

Model top-1 top-5
Slow-8×8-P [45] 74.8 91.6
Slow-8×8-R 74.2 91.3
Slow-8×8-multi-scale 73.4 90.8
MutualNet-Slow-8×8 ×1 75.6 91.8

Effectiveness of Mutual Learning. As explained in Chapter 3, our proposed mutual learning

paradigm is different from multi-scale training. To show the effectiveness of our mutual learn-

ing paradigm, we train a Slow-8×8 with randomly sampled spatial-temporal resolutions. The

candidate resolutions are the same as those of MutualNet-Slow-8×8. As shown in Table 4.4,

simply applying spatial-temporal multi-resolution training does not improve the performance, be-

cause the network is partly trained with low resolution inputs while the testing resolution is always

the highest. On the contrary, our mutual training always feeds the full-network with the high-

est spatial-temporal resolution, but allows sub-networks to learn multi-resolution representations.

This procedure will not hurt the performance of the full-network.

4.5.3 Transfer Learning Evaluation

Evaluation on Chrades. We finetune the models trained on Kinetics-400 on Charades. For Slow-

Fast models, we use the pre-trained models reproduced by us for a fair comparison. For MutualNet

models, we do not perform adaptive training during finetuning. That means both SlowFast mod-

els and MutualNet models follow the same finetuning process on Charades. The only difference

is the pre-trained models. We follow the training settings in the released codes [40]. Since we

train the model on 4 GPUs, we reduce the batch-size and base learning rate by half following the
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Table 4.5: Comparison of different models on Charades. MutualNet achieves better performance
than independently-trained models.

Model Pretrain mAP GFLOPs×views
CoViAR, R-50 [172] ImageNet 21.9 N/A
Asyn-TF, VGG16 [138] ImageNet 22.4 N/A
MultiScale TRN [205] ImageNet 25.2 N/A
Nonlocal, R-101 [166] ImageNet+Kinetics 37.5 544×30
Slow-8×8 Kinetics 34.7 54.5×30
MutualNet-Slow-8×8 Kinetics 35.6 54.5×30

linear scaling rule [52]. All other settings remain unchanged. As can be seen in Table 4.5, Mutual-

Net model outperforms its counterpart (Slow-8×8) by 0.9% without increasing the computational

cost. Note that the only difference lies in the pre-trained model, so the improvement demonstrate

that our method helps the network learn effective and well-generalized representations which are

transferable across different datasets.

Evaluation on AVA Detection. Similar to the experiments in Charades, we follow the same train-

ing settings as the released SlowFast codes [40]. The detector is similar to Faster R-CNN [133]

with minimal modifications adopted for video. The region proposals are pre-computed by an off-

the-shelf person detector. Experiments are conducted on AVA v2.1. All models are trained on a

4-GPU machine for 20 epochs with a batch-size of 32. The base learning rate is 0.05 with linear

warm-up for the first 5 epochs. The learning rate is reduced by a factor of 10 at the 10th and

15th epochs. Both SlowFast pre-trained models and MutualNet pre-trained models are finetuned

following the standard training procedure; the only difference is the pre-trained models. As shown

in Table 4.6, MutualNet pre-trained model also outperforms SlowFast and previous methods. Note

that only the pre-trained weights are different in the experiments, so the improvements are not

marginal and clearly demonstrate the effectiveness of the learned representations.
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Table 4.6: Comparison of different models on AVA v2.1. MutualNet achieves better performance
than independently-trained models.

Model Flow Pretrain mAP
I3D [15] Kinetics-400 14.5
I3D [15] ✓ Kinetics-400 15.6
ACRN, S3D [145] ✓ Kinetics-400 17.4
ATR, R-50+NL [79] Kinetics-400 20.0
Slow-8×8 Kinetics-400 20.2
MutualNet-Slow-8×8 Kinetics-400 20.6

4.6 Summary

In this chapter, we present how to apply MutualNet to train adaptive 3D networks. To the best of

our knowledge, we are the first to achieve adaptive 3D network. 3D MutualNet considers network

width and input spatiotemporal resolution and randomly samples different spatial-temporal-width

configurations in network training. A spatial-temporal distillation scheme is developed to facilitate

knowledge transfer among different configurations. The training paradigm is generic and applica-

ble to any 3D networks. Using the same backbone, 3D MutualNet outperforms the state-of-the-art

SlowFast [45] networks under various computation constraints on Kinetics. Extensive evaluations

also validate the effectiveness of the learned representations of 3D MutualNet for cross dataset and

task transfer.
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CHAPTER 5: IMPROVED REPRESENTATION LEARNING BY

SELF-REGULARIZATION

The work in this Chapter has been published in the following paper:

Taojiannan Yang, Sijie Zhu and Chen Chen. "GradAug: A New Regularization Method for Deep

Neural Networks." Neural Information Processing Systems. 2020.

Learning good representations from data are fundamental for downstream visual tasks. In this

work, we define good representations as those that can generalize well to various samples. Moti-

vated by this, we propose a new representation learning method. The idea is that when a random

transformation (e.g., random rotation, random scale, random crop, etc.) is applied to the input

image, a well-generalized network should still recognize the transformed image as the same ob-

ject. Moreover, when we sample a sub-network from the full network, the sub-network should

also make the same prediction as the full network. To this end, during training, we sample sev-

eral sub-networks from the full network and feed them with differently augmented images and

regularize their predictions to be consistent. We show that this self-regularization paradigm will

introduce meaning disturbance to the gradients of full network, which is termed as Gradient Aug-

mentation (GradAug). In contrast, other popular regularization methods only add random noises

to the original gradients.

This chapter is organized as follows: Section 5.1.1 introduces the details of our proposed repre-

sentation learning method GradAug. Section 5.1.2 provides an in-depth analysis on how GradAug

and other regularization methods influence the gradients of the full network during training. In

Section 5.2, we conduct comprehensive experimental evaluation and ablation study to demonstrate
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the effectiveness of the proposed method. Section 5.3 provides a summary for this chapter.

5.1 Methodology

5.1.1 GradAug

When applying some random transformations to an image, human can still recognize it as the same

object. We expect deep neural networks to have the same generalization ability. GradAug aims to

regularize sub-networks with differently transformed training samples. There are various of meth-

ods to generate sub-networks during training. Previous works [142, 75, 89] usually stochastically

drop some neurons, layers or paths. In GradAug, we expect the final full-network to take advantage

of the learned representations of the sub-networks. Therefore, we sample sub-networks in a more

structured manner, that is by the network width. We define θ as the model parameter. Without loss

of generality, we use convolutional layers for illustration, then θ ∈ Rc1×c2×k×k, where c1 and c2

are number of input and output channels, k is the convolution kernel size. We define the width of

a sub-network as w ∈ [α,1.0], where α is the width lower bound. The weights of the sub-network

is θw. Different from random sampling, we always sample the first w×100% channels of the full-

network and the sub-network weights are θw ∈ Rwc1×wc2×k×k. In this way, a larger sub-network

always share the representations of a smaller sub-network in a weights-sharing training fashion,

so it can leverage the representations learned in smaller sub-networks. Iteratively, sub-networks

can construct a full-network with diversified representations. Figure 5.1 shows the class activation

maps (CAM) [206] of the sub-network and full-network. The full-network pays attention to several

regions of the object because it can leverage the representation of the sub-network. For example,

when the sub-network (w = 0.9) focuses on one dog in the image, the full-network shares this

attention and uses the other network part to capture the information of another dog. Therefore,

the full-network learns richer semantic information in the image, while the baseline model only
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Figure 5.1: Class activation maps (CAM) of the network trained by GradAug and the baseline. The
full-network shares the attention of the sub-network and focuses on multiple semantic regions.

models a single region and does not fully comprehend the salient information of the image. To

make the method simple and generic, we choose among the most commonly used transformations

such as random scales, random rotations, random crops, etc. In the experiments, we show that

a simple random scale transformation can already achieve state-of-the-art performance on image

classification, and it can be directly applied to other applications. Moreover, we can use more

powerful augmentations such as CutMix for further enhanced performance.

Training procedure. The training procedure of GradAug is very similar to the regular network

training. In each training iteration, we train the full-network with the original images, which is

the same as the regular training process. Then we additionally sample n sub-networks and train

them with randomly transformed images. Finally, we accumulate the losses of full-network and

sub-networks to update the model weights. This naive training approach achieves good training

accuracy but the testing accuracy is very low. This is caused by the batch normalization (BN)

[76] layers. The BN layer will collect a moving average of training batches’ means and variances
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Algorithm 1 Gradient Augmentation (GradAug)
Input: Network Net. Training image img. Random transformation T . Number of sub-networks n. Sub-
network width lower bound α .
▷ Train full-network.
Forward pass, out put f = Net(img)
Compute loss, loss f = criterion(out put, target)
▷ Regularize sub-networks.
for i in range(n) do

Sample a sub-network, subneti = Sample(Net,α)
Fix BN layer’s mean and variance, subnet i.track_running_stats = False
Forward pass with transformed images, out puti = subnet i(T i(img))
Compute loss with soft labels, lossi = criterion(out puti,out put f )

end for
Compute total loss, L = loss f +∑

n
i=1 lossi

Compute gradients and do backward pass

during training. The collected mean and variance will be used during inference. However, the

batch mean and variance in the sub-networks can be very different from those in the full-network

because the training samples are randomly transformed. This will cause the final BN mean and

variance to be inappropriate for the full-network during inference. But in the training phase, BN

uses the mean and variance of the current batch, so the training behaves normally. To obtain the

correct BN statistics for the full-network, we do not update BN mean and variance when training

the sub-networks. Only the full-network is allowed to collect these statistics. However, the weights

in BN layer are still updated by sub-networks because they can be shared with full-network. To

further improve the performance, we also leverage two training tricks in [189]. First, we use the

output of the full-network as soft labels to train the sub-networks. Second, we always sample the

smallest sub-network (i.e., w = α) during training if n > 1. The Pytorch-style pseudo-code of

GradAug is presented in Algorithm 1.
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5.1.2 Analysis of Gradient Property

We provide an in-depth analysis of GradAug from the perspective of gradient flow. For simplicity,

we consider a fully connected network with 1-D training samples. We define the network as N.

The parameter of one layer in the full-network is θ ∈ Rc1×c2 . The parameter of sub-networks is

θw as explained in Section 5.1.1. x ∈ Rd is the training sample and y is its label. The output of

the network is denoted as N(θ ,x), and the training loss is l(N(θ ,x),y) where l is the loss function,

which is often the cross entropy in image classification. The loss and gradients in a standard

training process are computed as

Lstd = l(N(θ ,x),y), gstd =
∂Lstd

∂θ
, (5.1)

where gstd ∈ Rc1×c2 . Structure regularization methods [142, 75, 89] randomly drop some connec-

tions in the network, and their loss and gradients can be computed as

Lsr = l(N(θrand,x),y), gsr =
∂Lsr

∂θrand
. (5.2)

We can view gsr has the same shape as gstd where the gradients of disabled connections are 0.

Therefore, we can rewrite gsr as

gsr = gstd +gnoise, (5.3)

where gnoise ∈ Rc1×c2 is a random matrix which introduces some random disturbances to the gra-

dients. In contrast, GradAug applies more meaningful disturbances to the gradients. Let T be

the random transformation operation (e.g., random scale, random rotation, etc.) and T i be the
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transformation to sub-network i (i = [1, ...,n]). The loss and gradients are computed as:

LGA = l(N(θ ,x),y)+
n

∑
i=1

l(N(θwi,T
i(x)),N(θ ,x))

gGA =
∂ l(N(θ ,x),y)

∂θ
+

n

∑
i=1

∂ l(N(θwi,T
i(x)),N(θ ,x))

∂θwi

= gstd +g′.
(5.4)

gGA has a similar form with gsr. The first term is the same as the gradients in standard training.

But the second term g′ is derived by the sub-networks with transformed training samples. Since

sub-networks are part of the full-network, we call this term “self-guided”. It reinforces good

descent directions, leading to improved performance and faster convergence. g′ can be viewed as

an augmentation to the raw gradients gstd . It allows different parts of the network to learn diverse

representations.

The gradients of data-level regularization methods are similar to gstd , with the difference only in

the training sample. The gradients are

gdr =
∂ l(N(θ , f (x)),y)

∂θ
, (5.5)

where f is the augmentation method such as CutMix. GradAug can also leverage these augmen-

tations by applying them to the original samples and then following random transformations. The

gradients become

gGA =
∂ l(N(θ , f (x)),y)

∂θ
+

n

∑
i=1

∂ l(N(θwi,T
i( f (x))),N(θ , f (x)))

∂θwi

= gdr +g′. (5.6)

g′ is still an augmentation to gdr. Data augmentation can also be combined with other structure

regularization methods. However, similar to the derivations in Eq. 5.2 and Eq. 5.3, such combi-

nation strategy introduces random noises to gdr, which is not as effective as GradAug as shown in

Table 5.3.
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5.2 Experiments

We first evaluate the effectiveness of GradAug on image classification. Next, we show the general-

ization ability of GradAug on object detection and instance segmentation. Finally, we demonstrate

that GradAug can improve the model’s robustness to image distortions and adversarial attacks.

We also show GradAug is effective in low data settings and can be extended to semi-supervised

learning.

5.2.1 ImageNet Classification

Implementation details. ImageNet [32] dataset contains 1.2 million training images and 50,000

validation images in 1000 categories. We follow the same data augmentations in [195] to have

a fair comparison. On ResNet-50, we train the model for 120 epochs with a batch size of 512.

The initial learning rate is 0.2 with cosine decay schedule. We sample n = 3 sub-networks in

each training iteration and the width lower bound is α = 0.9. For simplicity, we only use random

scale transformation for sub-networks. That is the input images are randomly resized to one of

{224×224,192×192,160×160,128×128}. Note that we report the final-epoch accuracy rather

than the highest accuracy in the whole training process as is reported in CutMix[195].

We evaluate GradAug and several popular regularization methods on the widely used ResNet-50

[64]. The results are shown in Table 5.1. GradAug achieves a new state-of-the-art performance

of 78.79% based on ResNet-50. Specifically, GradAug significantly outperforms the structure

regularization methods by more than 1 point. As illustrated in Eq. 5.3 and Eq. 5.4, GradAug has a

similar form with structure regularization. The difference is that GradAug introduces self-guided

disturbances to augment the raw gradients. The large improvement over the structure regularization

methods clearly validates the effectiveness of our proposed method.
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As shown in Eq. 5.6, GradAug can be seamlessly combined with data augmentation. We combine

GradAug with CutMix (p=0.5) and denote this method as GradAug†. We compare GradAug†

with bag of tricks [65] at the bottom of Table 5.1. It is evident that GradAug† outperforms bag of

tricks both in model complexity and accuracy. Note that bag of tricks includes a host of advanced

techniques such as model tweaks, training refinements, label smoothing, knowledge distillation,

Mixup augmentation, etc., while GradAug is as easy as regular model training.

Due to the sub-networks in GradAug training, one natural question arises: Would the training cost

of GradAug increase significantly? As stated in [195], typical regularization methods [195, 200,

49] require more training epochs to converge, while GradAug converges with less epochs. Thus

the total training time is comparable. The memory cost is also comparable because sub-networks

do forward and back-propagation one by one, and only their gradients are accumulated to update

the weights. Table 5.2 shows the comparison on ImageNet. The training cost is measured on an

8× 1080Ti GPU server with a batch size of 512. We can see that the training time of GradAug is

comparable with state-of-the-art regularization methods such as CutMix.

5.2.2 CIFAR Classification

Implementation details. We also evaluate GradAug on CIFAR-100 dataset [86]. The dataset has

50,000 images for training and 10,000 images for testing in 100 categories. We choose WideRes-

Net [197] and PyramidNet [56] structures as they achieve state-of-the-art performance on CIFAR

dataset. We follow the training setting in [197, 56] in our experiments. For WideResNet, we train

the model for 200 epochs with a batch size of 128. The initial learning rate is 0.1 with cosine

decay schedule. Weight decay is 0.0005. PyramidNet is trained for 300 epochs with a batch size

of 64. The initial learning rate is 0.25 and decays by a factor of 0.1 at 150 and 225 epochs. Weight

decay is 0.0001. We use random scale transformation where input images are resized to one of
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Table 5.1: ImageNet classification accuracy of different techniques on ResNet-50 backbone.

Model FLOPs
Accuracy

Top-1 (%) Top-5 (%)

ResNet-50 [64] 4.1 G 76.32 92.95

ResNet-50 + Cutout [35] 4.1 G 77.07 93.34
ResNet-50 + Dropblock [49] 4.1 G 78.13 94.02
ResNet-50 + Mixup [200] 4.1 G 77.9 93.9
ResNet-50 + CutMix [195] 4.1 G 78.60 94.08

ResNet-50 + StochDepth [75] 4.1 G 77.53 93.73
ResNet-50 + Droppath [89] 4.1 G 77.10 93.50
ResNet-50 + ShakeDrop [182] 4.1 G 77.5 -

ResNet-50 + GradAug (Ours) 4.1 G 78.79 94.38

ResNet-50 + bag of tricks [65] 4.3 G 79.29 94.63
ResNet-50 + GradAug† (Ours) 4.1 G 79.67 94.93

{32× 32,28× 28,24× 24}. The number of sub-networks is n = 3 and the width lower bound is

α = 0.8.

The results are compared in Table 5.3. GradAug is comparable with the state-of-the-art CutMix,

and it clearly outperforms the best structure regularization method ShakeDrop, which validate the

effectiveness of the self-guided augmentation to the raw gradients. We further illustrate this by

comparing GradAug† with CutMix + ShakeDrop. On WideResNet, ShakeDrop severely degrades

the Top-1 accuracy of CutMix by 2.44%, while GradAug consistently improves CutMix by more

than 1 point. The reason is that ShakeDrop introduces random noises to the training process, which

is unstable and ineffective in some cases. However, GradAug is a self-guided augmentation to the

gradients, which makes it compatible with various structures and data augmentations.
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Table 5.2: Training cost of state-of-the-art regularization methods on ImageNet. Our method
requires less number of epochs to converge. Therefore, the total training cost is comparable with
other methods.

ResNet-50 #Epochs Mem (MB) Mins/epoch Total hours Top-1 Acc (%)

Baseline [200] 90 6973 22 33 76.5
Baseline [200] 200 6973 22 73 76.4
Mixup [200] 90 6973 23 35 76.7
Mixup [200] 200 6973 23 77 77.9
Dropblock [49] 270 6973 23 104 78.1
CutMix [195] 300 6973 23 115 78.6
GradAug 120 7145 61 122 78.8
GradAug 200 7145 61 203 78.8

Table 5.3: CIFAR-100 classification accuracy of different techniques on WideResNet and Pyra-
midNet.

Model
WideResNet-28-10 PyramidNet-200 (α̃ = 240)

Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)

Baseline [64] 81.53 95.59 83.49 94.31

+ Mixup [200] 82.5 - 84.37 96.01
+ CutMix [195] 84.08 96.28 84.83 86.73
+ ShakeDrop [182] 81.65 96.19 84.57 97.08
+ GradAug (Ours) 83.98 96.17 84.98 97.08

+ CutMix + ShakeDrop 81.64 96.46 85.93 97.63
+ GradAug† (Ours) 85.25 96.85 86.24 97.33

5.2.3 Ablation Study

We study the contribution of random width sampling and random transformation to the perfor-

mance, respectively. We also show the impact of the number of sub-networks n and the width
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Figure 5.2: Effect of number of sub-networks and width lower bound. Sampling more number of
sub-networks tend to yield better performance, but it plateaus after 3 sub-networks.

lower bound α . The experiments are conducted on CIFAR-100 based on the WideResNet-28-10

backbone.

Random width sampling and random transformation. We study the effect of one component

by abandoning the other one. First, we do not randomly sample sub-networks. Then GradAug

becomes multi-scale training in our experiments. In each iteration, we feed different scaled images

to the network. Second, we do not conduct random scale transformation. In each iteration, we

sample 3 sub-networks and feed them with the original images. The results are shown in Table 5.4.

Random scale and random width sampling only achieve marginal improvements over the baseline,

but GradAug remarkably enhances the baseline (+2.43%). This reaffirms the effectiveness of our

method, which unifies data augmentation and structure regularization in the same framework for

better performance.

Number of sub-networks and width lower bound. There are two hyperparameters in GradAug,

the number of sub-networks n and sub-network width lower bound α . We first explore the effect
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Table 5.4: Contribution of random width sampling and random scale on CIFAR-100. Random-
Scale and RandWidth can both slightly improve the model performance, while GradAug achieves
significant improvements.

WideResNet-28-10 Top-1 Acc Top-5 Acc

Baseilne 81.53 95.59
RandScale 82.27 96.16
RandWidth 81.74 95.56
GradAug 83.98 96.17

of n. Other settings are the same as Section 5.2.2. The results are shown in Figure 5.2. A larger

n tends to achieve higher performance since it involves more self-guided gradient augmentations.

The accuracy plateaus when n ≥ 3. Note that even one sub-network can significantly improve the

baseline. Then we investigate the impact of width lower bound α by fixing other settings. As

shown in Figure 5.2, α = 0.8 achieves the best accuracy, but all the values clearly outperform the

baseline. GradAug is not sensitive to these hyperparameters. Empirically, we can set n ≥ 3 and

α ∈ [0.7,0.9].

Effect of different transformations. As shown in experiments above, GradAug is very effective

when leveraging random scale transformation and CutMix. Here we further explore other trans-

formations, including random rotation transformation and the combination of random scale and

rotation transformations. We conduct the experiments on WideResNet-28-10 and ResNet-50 fol-

lowing the settings above. For random rotation, we randomly rotate the images by a degree of

{0◦,90◦,180◦,270◦}. For the combination, the input images are first randomly rotated and then

randomly resized. The results are shown in Table 5.5. It is clear that both transformations (ran-

dom scale and random rotation) and their combination achieve significant improvements over the

baseline. This validates our idea of regularizing sub-networks by different transformed images.
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Table 5.5: Top-1 Accuracy (%) of WideResNet-28-10 on CIFAR-100 and ResNet-50 on ImageNet
using different image transformations.

Model WideResNet ResNet
Baseline 81.53 76.32
RandScale 83.98 78.79
RandRot 83.36 77.62
Scale&Rot 84.21 78.66

Table 5.6: Sampling sub-networks by random depth in GradAug. We list the top-1 accuracy re-
ported in the paper and our re-implementation. Random depth sampling in GradAug still signifi-
cantly improves the performance.

ResNet-110
CIFAR-10 CIFAR-100

Reported Reimpl. Reported Reimpl.

Baseline 93.59 93.49 72.24 72.21
StochDepth [75] 94.75 94.29 75.02 75.20
GradAug - 94.85 - 77.01

Generating sub-networks by stochastic depth. In the experiments above, we generate sub-

networks by cutting the network width. Similarly, we can generate sub-network by shrinking

the network depth. We follow StochDepth [75] to randomly drop some layers during training.

The training settings are the same as [75] and we use random scale transformation to regular-

ize sub-networks. As shown in Table 5.6, GradAug significantly outperforms the baseline and

StochDepth. This demonstrates that GradAug can be generalized to depth-shortened sub-networks

and again verifies the effectiveness of our idea.
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Table 5.7: COCO object detection and instance segmentation based on Mask-RCNN-FPN.
GradAug shows better performance than state-of-the-art regularization methods.

Model ImageNet Cls Acc (%) Det mAP Seg mAP

ResNet-50 (Baseline) 76.3 (+0.0) 36.5 (+0.0) 33.3 (+0.0)

Mixup-pretrained 77.9 (+1.6) 35.9 (-0.6) 32.7 (-0.6)
CutMix-pretrained 78.6 (+2.3) 36.7 (+0.2) 33.4 (+0.1)
GradAug-pretrained 78.8 (+2.5) 37.7 (+1.2) 34.5 (+1.2)

GradAug 78.8 (+2.5) 38.2 (+1.7) 35.4 (+2.1)

5.2.4 Object Detection and Instance Segmentation

To evaluate the generalization ability of the learned representations by GradAug, we finetune its

ImageNet pretrained model for COCO [101] object detection and instance segmentation. The ex-

periments are based on Mask-RCNN-FPN [63, 100] framework and MMDetection toolbox [17]

on ResNet-50 backbone. Mixup and CutMix, two most effective methods in image classification,

are employed for comparison. As explained in Section 1.2, Mixup and CutMix are mixed sam-

ple data augmentation methods, which can not be applied to object detection and segmentation.

Therefore, we compare these methods by directly finetuning their ImageNet pretrained models on

COCO dataset. All models are trained with 1× schedule on COCO dataset. The image resolution

is 1000× 600. The mean Average Precision (AP at IoU=0.50:0.05:0.95) is reported in Table 5.7.

We can see that although Mixup and CutMix achieve large improvements on ImageNet classifica-

tion, the learned representations can barely benefit object detection and segmentation. In contrast,

GradAug-pretrained model considerably improves the performance of Mask-RCNN. This validates

that GradAug enables the model to learn well-generalized representations which transfer well to

other tasks.
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Figure 5.3: Object detection and instance segmentation visual examples. GradAug is more robust
to small scale and large scale objects.

Moreover, the training procedure of GradAug can be directly applied to the detection framework.

The result (last line of Table 5.7) shows that it further boosts the performance as compared with

GradAug-pretrained and can significantly improve the baseline by +1.7 det mAP and +2.1 seg

mAP. We also show some visual results of object detection and instance segmentation by using the

baseline model MaskRCNN-R50 and the model trained by GradAug. As depicted in Figure 5.3,

GradAug-trained model can effectively detect small scale and large scale objects. It is also robust

to occlusions. This indicates that GradAug helps the model learn well-generalized representations.

5.2.5 Model Robustness

Deep neural networks are easily fooled by unrecognizable changes on input images. Developing

robust machine learning models is pivotal for safety-critical applications. In this section, we eval-

uate the model robustness to two kinds of permutations, image corruptions and adversarial attacks.

Image corruption. ImageNet-C dataset [66] is created by introducing a set of 75 common visual

corruptions to ImageNet classification. ImageNet-C has 15 types of corruptions drawn from four

categories (noise, blur, weather and digital). Each type of corruption has 5 levels of severity.
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Table 5.8: Corruption error of ResNet-50 trained by different methods. The lower the better.

Model
Clean

Err
Noise Blur Weather Digital

mCE
Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.7 72 75 76 77 91 82 81 78 76 65 59 65 89 72 75 75.5

+ Cutout 22.9 72 74 77 77 91 80 80 77 77 65 58 64 89 75 76 75.5
+ Mixup 22.1 68 72 72 75 88 75 74 70 70 55 55 61 85 65 72 70.5
+ CutMix 21.4 72 74 76 77 91 78 78 77 75 62 56 65 87 77 74 74.6
+ GradAug 21.2 72 72 79 78 90 80 80 73 72 61 55 64 87 64 71 73.2
+ GradAug† 20.4 71 73 78 76 91 78 77 72 71 61 53 63 86 76 69 73.0
+ GradAug* 21.9 62 65 63 77 90 79 75 64 57 50 54 52 87 77 75 68.5

Corruptions are applied to validation set only. Models trained on clean ImageNet should be tested

on the corrupted validation set without retraining. We follow the evaluation metrics in [66] to

test ResNet-50 trained by different regularization methods. The mean corruption error (mCE) is

reported in Table 5.8. Mixup has lower mCE than other methods. We conjecture the reason is

that Mixup proportionally combines two samples, which is in a similar manner to the generation

of corrupted images. GradAug outperforms the second best competing method CutMix by 1.4%.

Note that GradAug can also be combined with Mixup and we denote it as GradAug*. The results

in Table 5.8 reveal that GradAug* further improves Mixup and achieves the lowest mCE. This

demonstrates that GradAug is capable of leveraging the advantages of different augmentations.

Adversarial attack. We also evaluate model robustness to adversarial samples. Different from

image corruption, adversarial attack uses a small distortion which is carefully crafted to confuse a

classifier. We use Fast Gradient Sign Method (FGSM) [51] to generate adversarial distortions and

conduct white-box attack to ResNet-50 trained by different methods. The classification accuracy

on adversarially attacked ImageNet validation set is reported in Table 5.9. Note that here Mixup is

not as robust as to image corruptions, which validates our aforementioned conjecture in the image

corruption experiment. GradAug and CutMix are comparable and both significantly outperform

other methods. GradAug† further gains improvements over GradAug and CutMix, manifesting

superiority of our self-guided gradient augmentation.
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Table 5.9: ImageNet Top-1 accuracy after FGSM adversarial attack. ε is the attack severity.
GradAug shows better robustness than other regularization methods

Model ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20 ε = 0.25

ResNet-50 27.90 22.65 19.50 17.04 15.09
+ Cutout 27.22 21.55 17.51 14.68 12.37
+ Mixup 30.76 25.59 21.63 18.44 16.19
+ CutMix 37.73 33.42 29.69 26.29 23.26
+ GradAug 36.51 31.44 27.70 24.93 22.33
+ GradAug† 40.26 35.18 31.36 28.04 25.12

Table 5.10: Top-1 accuracy on CIFAR-10 and STL-10 with limited labels. GradAug shows larger
advantages over other method when labeled data is limited.

Model
CIFAR-10 STL-10

250 1000 4000 1000

WideResNet-28-2 45.23±1.01 64.72±1.18 80.17±0.68 67.62±1.06
+ CutMix (p=0.5) 43.45±1.98 63.21±0.73 80.28±0.26 67.91±1.15
+ CutMix (p=0.1) 43.98±1.15 64.60±0.86 82.14±0.65 69.34±0.70
+ ShakeDrop 42.01±1.94 63.11±1.22 79.62±0.77 66.51±0.99
+ GradAug 50.11±1.21 70.39±0.82 83.69±0.51 70.42±0.81

+ GradAug-semi 52.95±2.15 71.74±0.77 84.11±0.25 70.86±0.71
Mean Teacher [154] 48.41±1.01 65.57±0.83 84.13±0.28 -

5.2.6 Low Data Setting

Deep neural network models suffer from more severe over-fitting when there is only limited amount

of training data. Thus we expect regularization methods to show its superiority in low data setting.

However, we find that state-of-the-art methods are not as effective as supposed. For a fair compari-

son, we follow the same hyperparameter settings in [120]. The backbone network is WideResNet-
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28-2. We first evaluate different methods on CIFAR-10 with 250, 1000 and 4000 labels. Training

images are sampled uniformly from 10 categories. We run each model on 5 random data splits

and report the mean and standard deviation in Table 5.10. We observe that CutMix (p=0.5) and

ShakeDrop even degrade the baseline model performance, especially when labels are very limited.

CutMix mixes images and their labels, which introduces strong noises to the data and ground truth

labels. This is effective when there is enough clean labels to learn a good baseline. But when the

baseline is weak, this disturbance is too severe. We reduce the impact of CutMix by setting p=0.1,

where CutMix is barely used during training. CutMix still harms the baseline when there are only

250 labels, but it becomes beneficial when there are 4000 labels. ShakeDrop has a similar trend

with CutMix since it introduces noises to the structure. In contrast, GradAug significantly and con-

sistently enhances the baseline in all cases because it generates self-guided augmentations to the

baseline rather than noises. Moreover, GradAug can be easily extended to semi-supervised learn-

ing (SSL). We can leverage the full-network to generate labels for unlabeled data and use them to

train the sub-networks. Our GradAug-semi can further improve the performance over GradAug.

It even achieves comparable performance with Mean Teacher [154], which is a popular SSL algo-

rithm. We also evaluate the methods on STL-10 dataset [30]. The dataset is designed to test SSL

algorithms, where the unlabeled data are sampled from a different distribution than labeled data.

Similarly, CutMix and ShakeDrop are not effective while GradAug and GradAug-semi achieve

clear improvements.

5.3 Summary

In summary, we propose GradAug which introduces self-guided augmentations to the network

gradients during training. The method is easy to implement while being effective. It achieves a

new state-of-the-art accuracy on ImageNet classification. The generalization ability is verified on

70



COCO object detection and instance segmentation. GradAug is also robust to image corruption

and adversarial attack. We further reveal that current state-of-the-art methods do not perform well

in low data setting, while GradAug consistently enhances the baseline in all cases.
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CHAPTER 6: EFFICIENT NEURAL ARCHITECTURE SEARCH VIA

SHORT TRAINING

The work in this Chapter has been published in the following paper:

Taojiannan Yang, Linjie Yang, Xiaojie Jin and Chen Chen.. "Revisiting Training-free NAS Met-

rics: An Efficient Training-based Method." Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision. 2023.

Recent neural architecture search (NAS) works proposed training-free metrics to rank networks

which largely reduced the search cost in NAS. However, after an in-depth evaluation of these

training-free metrics, we find that: (1) the number of parameters (#Param), which is the most

straightforward training-free metric, is overlooked in previous works but is surprisingly effective,

(2) recent training-free metrics largely rely on the #Param information to rank networks. Our

experiments show that the performance of recent training-free metrics drops dramatically when

the #Param information is not available. Motivated by these observations, we argue that metrics

less correlated with the #Param are desired to provide additional information for NAS. We propose

a light-weight training-based metric which has a weak correlation with the #Param while achieving

better performance than training-free metrics at a lower search cost.

This chapter is organized as follows: In Section 6.1, we first revisit several existing training-free

metrics and #Param. We demonstrate that #Param is an effective search metric on NAS-Bench-

101 and NAS-Bench-201, and that existing training-free metrics rely on #Param to achieve high

performance. Then we introduce our light-weight training-based metric and short-training strategy

in Section 6.2.1 and Section 6.2.2, respectively. Section 6.5 provides a summary for this chapter.
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6.1 Revisiting Training-free Metrics

The number of linear regions (LR) is used in [113, 22] to rank networks at initialization. Linear

region is a well-studied theoretical criteria [180, 117] to indicate the learning capacity of a network.

It is defined as how many regions a network could split the input space into. A larger number of

linear regions indicates that the network has higher performance. The number of LR is estimated

differently in TE-NAS [22] and NASWOT [113]. TE-NAS calculates LR by forwarding a batch

of samples to the network and count how many samples have different activation patterns, while

NASWOT feeds a batch of samples to the network and compute the Hamming distance between

different activation patterns. The Hamming distance between these activation patterns is used to

define a kernel matrix K. The ranking metric is defined as the determinant of K. To distinguish

these two metrics, we denote the LR estimated by TE-NAS and NASWOT as LR1 and LR2,

respectively.

TE-NAS further leverages the neural tangent kernel (NTK) to score networks. [90, 177] point out

that the network’s convergence speed is determined by the condition number of NTK. Intuitively,

a faster convergence speed indicates that the network has a higher performance. So the condition

number of NTK can be used to rank networks. Note that in [22], NTK is negtively correlated with

the accuracy while in this paper we use negative NTK to make it positive.

These theoretical indicators describe a network’s property from different perspectives. However,

the most naive indicator to describe a network would be the number of parameters (#Param).

Intuitively, a larger model tends to have better performance. This makes us wonder whether the

number of parameters is a good training-free metric? The answer is yes. In Table 6.1, we show the

comparison of #Param and training-free metrics on NAS-Bench-101 [188] and NAS-Bench-201

[37]. We evaluate these metrics based on random search. Specifically, we randomly sample 100

networks from the search space and use the metrics to select the best one. We run each experiment 5
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Table 6.1: Comparison of #Param and training-free metrics on NAS-Bench-101 and NAS-Bench-
201. Each experiment is repeated 5 times and mean accuracy and standard deviation are reported.
#Param is comparable with training-free metrics.

Metrics
NAS-Bench-101 NAS-Bench-201

CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120
#Param 92.6(1.3) 93.2(0.5) 70.1(0.8) 41.6(4.1)
LR1 91.6(0.9) 92.3(1.1) 66.2(5.0) 43.1(2.5)
NTK 91.2(0.9) 91.9(1.7) 66.6(4.3) 41.4(4.9)
LR2 92.8(1.2) 92.6(0.9) 69.3(1.4) 43.3(2.9)

Table 6.2: Correlation (Kendall’s Tau) of different training-free metrics with the number of param-
eters (#Param). Training-free metrics have a high correlation with #Param.

Correlation with #Param LR1 NTK LR2
NAS-Bench-101 0.46 0.36 0.62
NAS-Bench-201 0.39 0.30 0.56

times and report mean accuracy and standard deviation. Surprisingly, the results show that #Param

achieves comparable performance with other training-free metrics on different datasets.

The good performance of #Param further motivates us to investigate whether these training-free

metrics are correlated with #Param. We compute the Kendall rank correlation coefficient (Kendall’s

Tau) [83] between different training-free metrics and #Param on NAS-Bench-101 (10000 net-

works) and NAS-Bench-201 (15625 networks) in Table 6.2. As a reference, the correlation be-

tween LR1 and LR2 is 0.56 on NAS-Bench-201. Note that they are the same metric just estimated

differently, thus a correlation of 0.56 is high. The results show that all these training-free metrics

have high correlations with #Param, especially the two linear region metrics. This is intuitively

plausible because the number of linear regions is upper bounded by 2#activations, while the number

of activation units is highly correlated with the number of parameters. These results imply that

the ranking ability of these training-free metrics may mainly come from the high correlation with
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#Param. In Section 6.3, we validate this conjecture by evaluating training-free metrics on networks

of the same number of parameters. Their performance drops dramatically in this situation.

What are the drawbacks of metrics having high correlation with #Param? Firstly, these

training-free metrics claim to rank networks by estimating the model’s capacity and convergence,

but their functionality is in fact similar to #Param while being unnecessarily complicated. Sec-

ondly, #Param is not always a good metric. In the scenarios where the #Param is not helpful (e.g.,

MLP vs. CNN, Residual vs. Plain structure, networks with similar #Param as in Section 6.3), the

performance of such metrics will drop dramatically.

Motivated by these observations, we explore a new type of metric in this work, which is weakly

correlated with the number of parameters while providing additional information on estimating the

performance of the neural networks. Our proposed metric is introduced in the following sections.

6.2 Short-training NAS

6.2.1 Angle Metric

Since existing training-free metrics all have a high correlation with the number of parameters based

on the observations in Section 6.1, we shift our attention to the training dynamics. Angle metric

is a training dynamic which is first proposed in [13] to indicate the generalization ability of a

network and later used in [73, 202] as a metric to rank candidate networks in NAS. Considering all

the weights of a network as a one-dimensional vector, angle metric is defined as the angle between

the weight vectors before and after training. Specifically, let W0 denote the weights of a network
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Table 6.3: Comparison of Kendall’s Tau of θ f eat and θpred on 50 random networks with different
sizes (different #Param) or the same size (same #Param), respectively. θpred is less affected when
#Param information is not available.

Sampled Networks θ f eat θpred
diff. #Param 0.37 -0.50
same #Param -0.09 -0.25

N at initialization, and Wt denote the weights after training. Then the angle metric is defined as

θ(N) = arccos
(

W0 ·Wt

∥W0∥2∥Wt∥2

)
, (6.1)

where W0 ·Wt is the inner product of W0 and Wt . [202] shows that the angle metric is positively

correlated with a network’s final performance.

However, we find that the angle metric behaves differently at different network stages. Specifi-

cally, the angle metric computed with the weights from the feature extraction layers is positively

correlated with the network’s final accuracy, while the angle metric computed with the weights of

the prediction layer (the final fully-connected layer) is negatively correlated with the performance.

In most NAS search spaces [188, 37, 106], the feature extraction stage is mainly constructed by a

stack of network modules. We denote the angle metric of the feature extraction stage θ f eat and the

angle metric of the prediction layer θpred for brevity.

In Tab .6.3, we demonstrate the impact of model parameters on above two variants of angle metrics

through two kinds of network settings. We randomly sample 50 networks with different sizes

(setting 1) and the same size (setting 2) from NAS-Bench-201, and fully train them on CIFAR-

10. Then we compute the Kendall’s Tau of θ f eat and θpred for these two scenarios. In setting 1,

it shows that θ f eat is positively correlated with the accuracy, which is consistent with [73, 202],

but θpred is negatively correlated and has a higher correlation than θ f eat . However, in setting 2,
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the Kendall’s Tau of θ f eat degrades dramatically to around 0, which means θ f eat fails to rank the

networks without the #Param information. But the Kendall’s Tau of θpred degenerates less and is

still able to rank the networks of the same number of parameters. Therefore, θpred is a metric with

weak dependency on the number of parameters.

6.2.2 Short-training Scheme

In Section 6.2.1, we show θpred is a good metric at ranking networks even without the #Param

information. However, fully training all candidate networks is too expensive in NAS. To alleviate

this problem, we propose an extremely light-weight short-training scheme by using a small proxy

dataset from the original target dataset. Specifically, we first randomly sample a sub-set of classes

from the target dataset. Then for each sampled class, we randomly sample a small amount of

images, generating a highly condensed proxy dataset. We train networks on the proxy dataset for

a limited number of iterations. This training procedure is thousands times faster than fully training

a network. We find our θpred metric is effective under such a compact setting in different search

spaces and datasets.

Besides θpred , we also use another training dynamic, the training loss, as an additional metric to

evaluate networks. Note that training loss comes for free in our method. In Section 6.3, we show

that training loss also has weak correlation with the number of parameters. Combining training loss

with θpred gives richer information on model performance without increasing the computational

cost.

Since the scales of θpred and training loss are different, directly adding their values will cause

one dominating the other. To avoid this problem, we first use these two metrics to rank networks

respectively. Then we add their ranking index as the final ranking index of each network. Note that

both θpred and training loss are negatively correlated with the model accuracy. For clarity, we take
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Algorithm 2 ST-NAS
Input: Number of candidate networks N. Search space S . Target dataset D . Training iterations m.
Output: Model with the highest rank.
▷ Initialization
θpred = zeros(N), loss = zeros(N)
sampler = RandomSampler()
Sample proxy dataset D̃ from D
▷ Evaluate candidate networks
for i in 0,1, ...,N −1 do

network = sampler(S )
W0 = network.fc.weights
Train the network for m iterations with D̃.
loss[i] = - compute_loss(network, D̃)
Wt = network.fc.weights
θpred[i] = - compute_angle_metric(W0, Wt)

end for
▷ Combine two metrics
Rθpred = get_rankings(θpred)
Rloss = get_rankings(loss)
R = Rθpred + Rloss
max_idx = model index with the highest rank in R
return: S [max_idx]

the negative value of the two metrics to make them positive in the following experiments. Since

the proposed metric employs a short period of training, we name our NAS method combined with

this metric as Short-Training NAS (ST-NAS). A pipeline of ST-NAS based on random search is

shown in Algorithm 2.

6.3 Empirical Study

As discussed in Section 6.1, recent training-free metrics are highly correlated with the number

of parameters, which implies their effectiveness comes from the high correlation with number of

parameters. To further validate our claim, we thoroughly evaluate different training-free metrics

and our metric on curated search spaces with the same number of parameters. This prevents metrics

from leveraging the parameter information to evaluate networks. In the following sections, Angle
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Figure 6.1: Test accuracy (%) of different metrics when evaluated on networks of the same number
of parameters. X-axis is the number of parameters (M) in each network group. Each experiment is
repeated 5 times and the mean accuracy and standard deviation are reported.

denotes searching with θpred , Loss denotes searching with training loss and AngleLoss denotes

searching with the combination of the two metrics.

We craft several search spaces based on NAS-Bench-201 [37]. NAS-Bench-201 defines a cell-

based search space. Each cell is represented as a densely-connected directed acyclic graph (DAG).

Each cell has 4 nodes and 6 edges, where each edge represents an operation. There are 5 candidate

operations, including zeroize, skip-connect, 1×1 conv, 3×3 conv, and 3×3 avg pooling. Different

models may have the same number of parameters but with different structures and performances.

We choose 8 groups of models, and models in the same group has the same number of parameters,

i.e. {0.37, 0.40, 0.59, 0.62, 0.64, 0.83, 0.86, 1.05} M, respectively. The number of networks in each
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Table 6.4: Kendall’s Tau between our metrics and #Param. Our proposed metrics have less corre-
lation with #Param compared to training-free metrics.

Metrics Angle Loss AngleLoss
Correlation 0.20 -0.11 0.07

group is {1602, 540, 1602, 810, 180, 540, 180, 135}, respectively. We evaluate the effectiveness

of different metrics on each of these network groups. We compute the training-free metrics using

the settings in the original papers [22, 113]. Our training scheme is detailed in Section 6.2.2. We

randomly sample 10 classes and 10 images from each class. The network is trained for 50 iterations

with a fixed learning rate of 0.2. Other settings follow those in NAS-Bench-201 [37]. Note this is

the default setting throughout our experiments if not specified.

We compare the performance of previous training-free metrics and our metrics using random

search. We randomly sample 100 networks from each network group and select the best-performing

network per the metric. We also add a baseline which randomly selects a network from candidate

networks. Each experiment is repeated 5 times and the mean accuracy and standard deviation are

reported. As shown in Figure 6.1, LR2, which has the highest correlation with #Param in Table

6.2 and the best performance in Table 6.1, performs the worst in this scenario. It is even worse

than the random baseline. Our AngleLoss metric consistently outperforms training-free metrics

on all the network groups on three datasets. In most cases, AngleLoss is higher than training-free

metrics by more than 1%. We also show our metrics’ Kendall’s Tau with #Param in Table 6.4.

As can be seen, the correlations are much lower than that of the training-free metrics in Table 6.2.

Above experiment evidences that training-free metrics largely rely on the parameter information

to rank networks, and that our metric is advantageous by having weak correlation with the number

of parameters, providing additional useful information to estimate a network’s performance.
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6.4 Experiments

In Section 6.4.1, we first show the comparisons of training-free metrics and our metric on NAS-

Bench-101 and NAS-Bench-201. We apply metrics to both random search method and pruning-

based search method. Then we compare our metric with other methods on DARTS search space in

Section 6.4.2. Finally, we conduct ablation studies to show the impact of short-training hyperpa-

rameters.

6.4.1 Results on NAS-Bench-101/201

Random Search. We first evaluate different metrics based on random search. We randomly

sample 100 networks from the search space and use different metrics to select the best one. We

follow the default settings in [113, 22] to compute training-free metrics LR1, LR2, and NTK. Our

training settings are the same as in Section 6.3. We run each experiment 5 times and report the

mean accuracy and standard deviation. The search cost is measured on a single GTX-1080Ti GPU.

The results are shown in Table 6.5. We add #Param as a baseline metric in Table 6.5. It is shown

that #Param performs well on both NAS-Bench-101 and NAS-Bench-201. It is even slightly better

than training-free metrics on CIFAR-10 and CIFAR-100. Note that #Param is very easy to com-

pute, with a search cost of only 3 seconds on 100 networks. The linear region based metrics (LR1

and LR2) are better and more stable than NTK. The performance of NTK is low and has a very

large variance. Although both LR1 and LR2 are based on linear regions, LR2 is slightly better

and more stable. Note the effectiveness of training-free metrics could be attributed to their high

correlation with #Param.

Surprisingly, our metric AngleLoss does not perform well on the overall search space of NAS-

Bench-201, although we have demonstrated in Section 6.3 that it is significantly better than other
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Table 6.5: Comparison of the test accuracy of different metrics on NAS-Bench-101 and NAS-
Bench-201 based on random search (N = 100). Each experiment is repeated 5 times to compute
its mean and standard deviation.

Metrics Search Cost (s)
NAS-Bench-101 NAS-Bench-201

CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120
#Param 3 92.58(1.26) 93.21(0.49) 70.15(0.83) 41.58(4.07)
LR1 60 91.98(1.31) 92.30(1.07) 66.23(4.96) 43.12(2.52)
LR1+#Param 60 92.52(1.37) 92.96(0.55) 69.83(0.43) 43.71(2.20)
NTK 181 91.23(1.11) 91.94(1.70) 66.63(4.29) 41.38(4.88)
NTK+#Param 181 91.48(1.52) 93.12(0.48) 69.82(0.73) 42.39(1.61)
LR2 48 91.95(1.16) 92.65(0.93) 69.28(1.40) 43.33(2.91)
LR2+#Param 48 92.58(1.39) 93.33(0.13) 70.10(1.22) 42.83(1.49)
AngleLoss 437 92.86(0.77) 84.65(5.88) 58.06(0.40) 28.08(0.31)
AngleLoss+#Param 437 93.60(0.46) 93.46(0.59) 70.58(0.82) 43.74(1.48)
AngleLoss+LR2 462 93.47(0.47) 93.08(0.66) 69.62(0.59) 43.43(1.62)

training-free metrics in different network groups. By visualizing the searched network structures,

we find that our Angle metric could collapse to some trivial structures, where most of the connec-

tions are zeroize, skip-connect or avg_pooling. Our conjecture is that in these trivial structures,

the feature extraction layers are not learning anything meaningful, and the prediction layer is opti-

mized towards random directions in each training iteration. So the weight vector of the prediction

layer almost does not change after training, which means Angle metric will give a high score to

these structures. However, this problem could be easily resolved if we combine our metric with

#Param to avoid the structures with a small number of parameters. It can also be avoided when we

use a pruning-based search method. In Table 6.5, we see that our metric is significantly boosted by

around 10% when combined with #Param, and it achieves higher performance than other training-

free metrics. On NAS-Bench-101, we don’t have the collapse problem because there are fewer

trivial structures. We achieve significantly better performance than training-free metrics.

We also combine training-free metrics with #Param. It shows that these training-free metrics can

also slightly benefit from #Param, but the improvement is marginal. Taking #Param as the base-

82



Table 6.6: Comparison of the test accuracy on NAS-Bench-201 based on pruning-based search in
[22]. † indicates the results are reproduced by us using the official released codes [1]. The search
cost of our method and TE-NAS is measured on 1080Ti GPU while LGA is measured on Tesla
A40 GPU. The best and second best results are bold and underlined, respectively.

Method Search Cost (s) CIFAR-10 CIFAR-100 ImageNet16-120
RSPS [94] 8007 87.66(1.69) 58.33(4.34) 31.14(3.88)
DARTS (1st) [106] 10889 54.30(0.00) 15.61(0.00) 16.32(0.00)
GDAS [38] 28925 93.61(0.09) 70.70(0.30) 41.84(0.90)
LGA [116] 5400 93.94(N/A) 72.42(N/A) 45.17(N/A)
TE-NAS [22] 1558 93.90(0.47) 71.24(0.56) 42.38(0.46)
TE-NAS† [22] 682 93.20(0.29) 70.44(1.34) 42.34(0.63)
AngleLoss 508 93.16(0.37) 70.48(1.04) 43.04(1.82)
AngleLoss+#Param 508 93.36(0.26) 70.87(0.41) 43.77(1.33)

line, combined with training-free metrics will even degrade its performance on NAS-Bench-201

CIFAR-10 and CIFAR-100. However, our metric achieves consistent improvements upon #Param

on three datasets. We also show that when combined with LR2, AngleLoss+LR2 improves upon

LR2 on all datasets. These experiments demonstrate that our metric provides orthogonal infor-

mation to #Param and training-free metrics. They can be combined together to achieve better

performance.

Pruning-based Search. We also apply our metric to pruning-based search used in TE-NAS [22].

All the settings are the same as in Section 6.3, except that we train the supernet for 100 iterations

because it takes longer for the supernet to converge. Each experiment is repeated 5 times and the

mean and standard deviation are reported.

We compare our method with TE-NAS in Table 6.6. The performances of some other NAS meth-

ods are cited from [37] for reference. We report two results for TE-NAS, one is reported in the

original paper [22] and the other is reproduced by us using the official codes [1] since we cannot

reproduce the results in the original paper using the default setting. The reproduced performance is
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Table 6.7: Comparison with state-of-the-art on DARTS CIFAR-10. The best and second best
results are bold and underlined, respectively.

Method
Search Cost
(GPU days) Params (M) Top-1 Acc (%) Search Method

NASNet-A [212] 2000 3.3 97.35 RL
ENAS [124] 0.5 4.6 97.11 RL
AmoebaNet-A [132] 3150 3.2 96.66 evolution
Random baseline [106] 4 3.2 96.71 random
DARTS (1st) [106] 0.4 3.3 97.00 gradient
DARTS (2nd) [106] 1.0 3.3 97.24 gradient
GDAS [38] 0.17 2.5 97.18 gradient
P-DARTS [24] 0.3 3.4 97.50 gradient
PC-DARTS [181] 0.1 3.6 97.43 gradient
SDARTS-ADV [23] 1.3 3.3 97.39 gradient
TE-NAS [22] 0.05 3.8 97.37 training-free
AngleLoss 0.09 3.2 97.37 short-training
AngleLoss+#Param 0.09 3.2 97.44 short-training

lower while the search cost is also cheaper (we evaluate it on a 1080Ti GPU, which is the same as

in TE-NAS). In Table 6.6, we can see that our short-training method is even faster than TE-NAS.

This is because TE-NAS needs to compute two metrics (LR1 and NTK), and for each metric it

repeats 3 times and takes the average value to have a better and stable performance. However, we

only compute our metric once with an extremely short training scheme.

Under the pruning-based search, our metric does not show the collapse problem as in random

search. This is because pruning-based method starts from a supernet, which is definitely non-

trivial. With a limited number of pruning steps, the network almost never reach a trivial structure

with large numbers of empty operations. As shown in Table 6.6, the original results of TE-NAS are

better than ours on CIFAR-10 and CIFAR-100, but the search cost is 3× of ours. Our performance

is comparable with the reproduced results of TE-NAS at a lower search cost. On ImageNet16-

120, our metric is better than TE-NAS in both cases. We also combine our metric with #Param
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with negligible additional search cost. It further improves our performance on all three datasets by

0.2%−0.7%.

Trivial Structures in Random Search. As shown in the Random Search based experiments

above, our metric (AngleLoss) does not perform well on the overall search space. The reason

is that the Angle metric may give a very high score to trivial structures where most of the connec-

tions are zeroize, skip-connect or avg_pool. Our conjecture is that in these trivial structures, the

feature extraction layers do not learn anything meaningful, and the prediction layer is optimized

towards random directions in each training iteration. So the weight vector of the prediction layer

almost does not change after training, which means Angle metric will give a high score to these

structures. Here we show an example of the trivial structure and how it is resolved when Angle met-

ric is combined with #Param. Figure 6.2 shows the rank index and accuracy of different structures

on NAS-Bench-201 CIFAR-100. We randomly select 100 networks and rank them using Angle

metric. The orange dot in Figure 6.2 has the highest score. However, its accuracy is very low. We

visualize its cell structure on the right. We find that the orange dot is a trivial structure which is

only composed of zeroize, skip-connect and avg_pool. As explained above, Angle metric may give

a high score to such structures, therefore the performance on the overall search space is not good

and has a very large variance. However, such trivial structures can be easily removed when Angle

metric is combined with #Param. In Fig. 6.3, we show the rank index of the combined metric on

the same set of structures. The trivial structure (orange dot) is now ranked around the middle of all

networks because it has a very low rank index in terms of #Param. As a result, #Param could help

remove the trivial solution improperly discovered by Angle metric.
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Figure 6.2: Rank index of different structures using Angle metric. The orange dot has the highest
score. Its structure is visualized on the right. This is based on NAS-Bench-201 CIFAR-100 dataset
and random search.
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Figure 6.3: Rank index of different structures using Angle+#Param. The orange dot is the one that
has the highest score in Figure 6.2. Adding #Param help alleviate the effect of trivial structures.
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Normal Cell Reduction Cell

Figure 6.4: Normal and Reduction cells discovered by AngleLoss metric on DARTS CIFAR-10.

Normal Cell Reduction Cell

Figure 6.5: Normal and Reduction cells discovered by AngleLoss+#Param metric on DARTS
CIFAR-10.

6.4.2 Results on DARTS Search Space

We apply our metric to the pruning-based search method used in TE-NAS [22] for the following

experiments.

Results on CIFAR-10. We first compare our metric with other methods on CIFAR-10 dataset.

As shown in Table 6.7, our metric completes the search process in 0.09 days (i.e., 2.16 hours)

on a single 1080Ti GPU. Different from the results on NAS-Bench-201, our search cost is higher

than TE-NAS in this case. This is because TE-NAS uses a smaller batch-size to compute NTK on

DARTS CIFAR-10, resulting in less computation. Nevertheless, our search cost is still much lower

than other NAS methods. Our metric also achieves comparable performance with TE-NAS, but the

searched network size is much smaller. When combined with #Param, our metric again achieves a

lower test error of 2.56%, which is competitive with state-of-the-art methods. The searched neural

network structures by our method are visualized in Figure 6.4 and 6.5.
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Table 6.8: Comparison with state-of-the-art NAS methods on DARTS search space ImageNet-1K
dataset. Our method outperforms state-of-the-art NAS methods and uses even less search cost than
training-free metrics.

Method
Search Cost
(GPU days) Params (M) Top-1 (%) Top-5 (%) Search Method Search Dataset

NASNet-A [212] 2000 5.3 74.0 91.6 RL

CIFAR-10

AmoebaNet-C [132] 3150 6.4 75.7 92.4 evolution
DARTS (2nd) [106] 4.0 4.7 73.3 91.3 gradient
GDAS [38] 0.21 5.3 74.0 91.5 gradient
P-DARTS [24] 0.3 4.9 75.6 92.6 gradient
PC-DARTS [181] 0.1 5.3 74.9 92.2 gradient
TE-NAS [22] 0.05 6.3 73.8 91.7 training-free
AngleLoss 0.09 4.7 75.3 92.5 short-training
AngleLoss+#Param 0.09 4.7 74.8 92.3 short-training
ProxylessNAS [104] 8.3 7.1 75.1 92.5 gradient

ImageNet-1K
PC-DARTS [181] 3.8 5.3 74.8 92.7 gradient
TE-NAS [22] 0.17 5.4 75.5 92.5 training-free
AngleLoss 0.11 4.8 74.5 91.9 short-training
AngleLoss+#Param 0.11 5.9 75.9 92.9 short-training

Table 6.9: Ablation study of different training hyper-parameters on NAS-Bench-201 CIFAR-100.

(a) Number of training iterations.

#Iters 10 25 50 75
Cost (s) 99 230 437 673
Acc (%) 70.22(1.08) 70.33(0.91) 70.58(0.82) 70.37(0.57)

(b) Number of sampled classes.

#Classes 5 10 20
Cost (s) 332 437 641
Acc (%) 70.02(0.74) 70.58(0.82) 70.30(0.74)

(c) Network initialization.

Init. Kaiming_uniform Kaiming_normal Xavier_uniform
Cost (s) 437 437 437
Acc (%) 70.58(0.82) 70.40(0.70) 70.25(1.00)

(d) Number of sampled images.

#Images 5 10 20
Cost (s) 347 437 627
Acc (%) 70.26(1.08) 70.58(0.82) 70.28(0.97)

Results on ImageNet-1K. We compare our metric with state-of-the-art NAS methods on ImageNet-

1K [32] in Table 6.8. Our short-training setting is the same as in CIFAR-10. For evaluation, we

follow [22] to stack the network with 14 cells and the initial number of channel is 48. In the top

half of Table 6.8, the networks are searched on CIFAR-10 and then evaluated on ImageNet-1K.

We can see that our metric is competitive with state-of-the-art NAS methods with a much lower
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Normal Cell Reduction Cell

Figure 6.6: Normal and Reduction cells discovered by AngleLoss metric on DARTS ImageNet.

Normal Cell Reduction Cell

Figure 6.7: Normal and Reduction cells discovered by AngleLoss+#Param metric on DARTS
ImageNet.

search cost. Compared to TE-NAS, our performance is significantly better and the network size

is much smaller. The bottom half of Table 6.8 shows the results with different methods searched

directly on ImageNet-1K. Pruning-based search with our metric completes in only 0.11 GPU days

(i.e., 2.64 GPU hours), which is even faster than TE-NAS. Our metric is more than 30× faster than

the other NAS methods. The performance of our metric alone is slightly lower than other methods

but with a smaller model size. When combined with #Param, the performance of our metric is

largely improved and reaches a competitive top-1/top-5 error rate of 24.1%/7.1%, outperforming

listed differentiable and training-free methods. Note that our search cost is also significantly lower

than other methods. We also visualize the searched architectures in Figure 6.6 and 6.7.

6.4.3 Ablation Study

Here we study the impact of different hyper-parameters in our short-training scheme, including

number of training iterations, sampled classes, images per class and weight initialization methods.
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We conduct experiments on CIFAR-100. The results of different settings are shown in Table 6.9.

We use the random search method in Table 6.4.1 as the baseline. We can see that longer training

iterations tend to achieve better performance. This is because longer training iterations allow the

network to converge better, which yields more informative angle metric and training loss. But even

only 10 training iterations can achieve a decent performance. Increasing the number of classes

does not always improve the performance. We speculate that although more classes could provide

more information about the target dataset, it also makes the proxy dataset harder, which makes the

network harder to converge in the limited iterations and yields less informative angle metric and

training loss. Similarly, increasing the number of images does not guarantee better performance

either. To achieve the optimal accuracy-efficiency trade-off, one may need to tune the training

hyper-parameters. But the performance is not very sensitive to the hyper-parameters and it is

feasible to tune hyper-parameters because our method is highly efficient.

6.5 Summary

In summary, We conduct a systematic study to explore the relationship between recent training-free

metrics and #Param. Our empirical study shows that recent training-free metrics works similarly

to #Param while being unnecessarily complicated. Motivated by this discovery, we propose a

light-weight training-based metric which provides orthogonal information than #Param on esti-

mating model performance. Our method achieves competitive performance with state-of-the-art

NAS methods, while being even faster than training-free metrics. On the search spaces where

the #Param information is not useful, the performance of training-free metrics drops dramatically

while our method significantly outperforms them on different datasets. We hope our work could in-

spire future works to design new metrics which provide more parameter-independent information

on estimating the network’s performance.
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CHAPTER 7: ADAPTING FROZEN IMAGE MODELS FOR EFFICIENT

VIDEO UNDERSTANDING

The work in this Chapter has been published in the following paper:

Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen and Mu Li.. "AIM: Adapting

Image Models for Efficient Video Action Recognition." International Conference on Learning Rep-

resentations. 2023.

Recent vision transformer based video models mostly follow the “image pre-training then fine-

tuning" paradigm and have achieved great success on multiple video benchmarks. However, full

finetuning such a video model could be computationally expensive and unnecessary, given the pre-

trained image transformer models have demonstrated exceptional transferability. In this chapter,

we propose a novel method to Adapt pre-trained Image Models (AIM) for efficient video under-

standing. By freezing the pre-trained image model and adding a few lightweight Adapters, we

introduce spatial adaptation, temporal adaptation and joint adaptation to gradually equip an image

model with spatiotemporal reasoning capability. We show that our proposed AIM can achieve

competitive or even better performance than prior arts with substantially fewer tunable parameters

on four video action recognition benchmarks. Thanks to its simplicity, our method is also gen-

erally applicable to different image pre-trained models, which has the potential to leverage more

powerful image foundation models in the future.

This chapter is organized as follows: we first briefly describe ViT and video baselines in Section

7.1. Then we introduce spatial adaptation in Section 7.2.1, temporal adaptation in Section 7.2.2

and joint adaptation Section 7.2.3, to show how we adapt a pre-trained image model for effective
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video modeling step-by-step. Section 7.3 demonstrates the effectiveness of the proposed method

by comprehensive experiments on different datasets. Section 7.4 provides ablation studies and

discussions about the proposed method. Section 7.5 summarizes this chapter.

7.1 Preliminary

After the seminal work of Vision Transformer (ViT) [39], transformer-based models have been

widely adopted in various computer vision tasks, including video action recognition. In this work,

we focus on adapting pre-trained image transformer models and compare them to full finetuned

video transformer models, unless otherwise stated.

More specifically, ViT handles an image as a sequence of small patches. Given input image x ∈

RH×W×C, ViT first splits the image to N non-overlapping patches and maps each patch to a D-dim

patch embedding via a trainable linear projection [126, 127]. Here, (H,W ) is the image resolution

and C is the number of channels. Patch embeddings xp ∈RN×D, where N =HW/P2 and P denotes

the patch size. Then a learnable [class] token is prepended to xp as x0 = [xclass; xp] ∈ R(N+1)×D.

To encode positional information, positional embeddings Epos ∈ R(N+1)×D are added to x0 as

z0 = x0 +Epos, where z0 is the final input being fed to a sequence of transformer blocks. Each

transformer block is composed of a multiheaded self-attention (MSA) and a MLP layer, together

with Layernorm (LN) and skip connections, see Figure 7.1(b). The computation of a standard

transformer block can be written as

z′
l = zl−1 +MSA(LN(zl−1)), (7.1)

zl = z′
l +MLP(LN(z′

l)), (7.2)
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where zl−1 and zl denotes the input and output of the l-th transformer block, respectively. Finally,

the learned [class] token xclass from the last transformer block is used as global visual representa-

tion and fed into a classification head to make the prediction.

Space-only and space-time models for video. A video is a stack of frames with temporal struc-

ture. Hence, video understanding requires the model to learn both good appearance representations

in each frame (spatial modeling) and also infer the temporal information across frames (temporal

modeling). In order to leverage an image transformer model for video tasks, one key thing is how

to perform temporal modeling. A simple baseline, termed space-only model, process each video

frame independently by an image model. Given x∈RT×H×W×C, where T is the number of frames,

space-only model will get T [class] tokens where each [class] token stands for the representation

of each frame. These T [class] tokens will be averaged as a way of temporal modeling for fi-

nal prediction. In order to enhance the capability of temporal modeling, recent works [8, 3, 204]

introduce space-time model by adding new temporal modules to image models. These models

are now the top performers on most video action recognition benchmarks, however, their training

costs are prohibitively high due to full finetuning. Given the increasingly larger and more powerful

pre-trained image models, in this work, we study how to efficiently adapt them for video action

recognition.

7.2 Methodology

7.2.1 Spatial Adaptation

Since image pre-trained models have been trained on large-scale datasets and demonstrated strong

transferability to downstream tasks, we believe they could achieve good spatial modeling in video

action recognition with minimal finetuning.
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Frozen

Tuned

Figure 7.1: We show how we adapt a standard ViT block (b) for video action recognition, by
gradually adding spatial adaptation (c), temporal adaptation (d) and joint adaptation (e). Note that
S-MSA and T-MSA share weights but are applied to different input dimensions. During training,
only newly added Adapters are updated while all the other layers are frozen.

Inspired by efficient finetuning techniques [68, 92, 95, 6] in NLP, we adopt Adapter [68] due to

its simplicity. As shown in Figure 7.1(a), Adapter is a bottleneck architecture which consists of

two fully connected (FC) layers and an activation layer in the middle. The first FC layer projects

the input to a lower dimension and the second FC layer projects it back to the original dimension.

To adapt the pre-trained spatial features to target video data, we add an Adapter after the self-

attention layer as shown in Figure 7.1(c), which we term as spatial adaptation. During training,

all the other layers of the transformer model are frozen while only the Adapters are updated. In

Table 7.1, we show that our spatial adaptation strategy achieves comparable performance with the

full finetuned space-only baseline. This indicates that spatial adaptation helps the frozen image

model to learn good spatial representations from video data. However, there is still a large gap
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between the performance of spatial adaptation and a fully finetuned video model because spatial

adaptation alone lacks the ability to learn temporal information in videos.

7.2.2 Temporal Adaptation

To capture temporal information more effectively, previous methods usually incorporate new tem-

poral modules to pre-trained image models because it is commonly believed that image models

cannot infer temporal structured information in videos. However, adding new temporal modules,

either through temporal attention [8, 204] or temporal encoder/decoder [3, 102], will introduce siz-

able number of extra tunable parameters. In addition, these new modules require full finetuning,

which is inefficient.

To address this problem, we present a new strategy: reuse the pre-trained self-attention layer in

the image model to do temporal modeling. More specifically, we denote the original self-attention

layer as S-MSA for spatial modeling, and the reused self-atentnion layer as T-MSA for temporal

modeling. As shown in Figure 7.1(d), we put T-MSA in front of S-MSA. Now given the video

patch embedding z ∈ RT×(N+1)×D, we first reshape it into zT ∈ R(N+1)×T×D, where N = HW/P2

is the number of spatial patches and T is the number of frames. Then we feed zT into the T-MSA

where it tries to learn the relationship among the T frames. Note that T-MSA and S-MSA are the

same layers (i.e., pre-trained MSA in the image model) and kept frozen during model tuning, but

just applied to different input dimensions. This explicit operation helps our model with enhanced

temporal modeling, while keeping the number of parameters fixed. In the end, similar to spatial

adaptation, we add another Adapter after the reused temporal attention layer to adapt its features

on video data, which we term as temporal adaptation. The structure of the Adapter is the same as

in spatial adaptation but without the skip connection. The reason is that we want to initialize the

adapted model to be close to the original model [68], thus we need to initialize the adapter to zero
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and remove the skip connection here to detach the effect of temporal adaptation at the beginning

of training. As seen in Table 7.1, temporal adaptation helps to close the gap to full finetuned video

models while only introducing another lightweight Adapter into the transformer block.

7.2.3 Joint Adaptation

Spatial and temporal adaptation are performed sequentially to different input dimensions with their

individual purposes. It would be desirable to jointly tune the representations for spatiotemporal

reasoning. To this end, we further introduce an Adapter in parallel to the MLP layer, which we

term as joint adaptation. This Adapter has the same structure as the one in temporal adaptation.

The final structure of a transformer block in our proposed AIM is presented in Figure 7.1(e). The

computation of the adapted block can be written as

zT
l = zl−1 +Adapter(T-MSA(LN(zl−1))), (7.3)

zS
l = zT

l +Adapter(S-MSA(LN(zT
l ))), (7.4)

zl = zS
l +MLP(LN(zS

l ))+ s ·Adapter(LN(zS
l )), (7.5)

where zT
l , zS

l , zl denotes the temporal adapted, spatial adapted, and jointly adapted output in the

l-th transformer block, respectively. Here, s is a scaling factor to control the weight of the output

from Adapter. For the final prediction, we simply take the average of the [class] tokens of each

input frame and feed it to the classification head.
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7.3 Experiments

Datasets. We evaluate the proposed method on four widely adopted video action recognition

benchmarks, Kinetics-400 (K400) [82], Kinetics-700 (K700) [14], Something-something-v2 (SSv2)

[53] and Diving-48 [96]. K400 contains around 240K training videos and 20K validation videos in

400 human action classes. The videos are all trimmed to around 10 seconds. K700 is an extended

version of K400 which contains around 530K training videos and 34K validation videos in 700

classes. SSv2 contains 168.9K training videos and 24.7K validation videos in 174 classes. SSv2 is

more challenging because it requires stronger temporal modeling [209, 137]. Diving-48 contains

15.9K training videos and 2K validation videos in 48 fine-grained diving actions. It is designed to

be unbiased towards static representations, which means a model cannot simply rely on the objects

or background to determine the action.

7.3.1 Effectiveness of Components

To demonstrate the effectiveness of our proposed components in Section 7.2, we compare our

method to three baselines. The first baseline is a frozen space-only model. Recall in Section 7.1,

space-only model processes input frames independently and performs temporal average pooling

in the end. We freeze the image backbone and only tune the classification head, which is also

known as linear probing [61]. The second baseline is a full finetuned space-only model. It should

be able to learn spatial information from video data, but still has difficulties in capturing temporal

information. The third baseline is a full finetuned space-time video model, which should serve as

oracle. Here we choose TimeSformer [8] because we are based on the same ViT-B backbone and

share a similar structure (i.e., divided space-time attention).

In the experiments, we use the ViT-B/16 pre-trained on IN-21K as image backbone, and we com-
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Table 7.1: Effectiveness of proposed components. We compare to three baselines on Something-
something-v2 dataset. Spatial adaptation, temporal adaptation and joint adaptation gradually add
spatiotemporal reasoning to the frozen image model. Views = #frames × #temporal × #spatial.

Methods Pretrain Param (M)
Tunable

Param (M) Top-1 Top-5 Views

Frozen space-only IN-21K 86 0.1 15.1 36.9 8×1×3
Finetuned space-only IN-21K 86 86 36.2 68.1 8×1×3
Finetuned space-time [8] IN-21K 121 121 59.5 85.6 8×1×3
Frozen space-only + spatial adaptation IN-21K 89 3.7 36.7 68.3 8×1×3

+ temporal adaptation IN-21K 97 10.8 61.2 87.7 8×1×3
+ joint adaptation (AIM) IN-21K 100 14.3 62.0 87.9 8×1×3

AIM CLIP 100 14.3 66.4 90.5 8×1×3

pare the proposed method with the baselines on SSv2 [53] where temporal modeling is critical.

The results for three baselines are shown in Table 7.1 top. We can see that the frozen space-only

model only needs to tune 0.1M parameters, but it also performs much worse than the full finetuned

video model (15.1% vs 59.5%). Full finetuning the space-only model allows it to learn improved

spatial representations from video data and largely improves the performance (15.1% → 36.2%).

However, it also significantly increases the number of tunable parameters and still has a large gap

from the full finetuned video model due to lack of temporal modeling. The third baseline, full

finetuned video model, achieves the highest accuracy due to its strong spatiotemporal reasoning

capability, but the number of tunable parameters increases again to 121M.

Our goal is to add a few tunable parameters to the frozen space-only model and close the gap to full

finetuned video model. As shown in Table 7.1 bottom, after spatial adaptation, the frozen space-

only model achieves comparable performance with the full finetuned space-only model (36.7% vs

36.2%), with significantly less number of tunable parameters (3.7M vs 86M). This means spatial

adaptation is able to help frozen image models to achieve good spatial modeling on video data.

In addition, adding temporal adaptation further boosts the performance to 61.2%, which is even
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higher than the full finetuned video model. This indicates that our temporal adaptation introduces

strong temporal modeling to the space-only model. Finally, joint adaptation is incorporated to

tune the features for improved spatiotemporal reasoning, which is our method AIM. We not only

close the gap to full finetuned space-time video model but obtain higher accuracy (62% vs 59.5%)

with fewer number of tunable parameters (14.3M vs 86M). These results successfully validate the

effectiveness of our proposed adaptation strategies.

Furthermore, our method could easily take advantage of stronger pre-trained image models and

adapt them for video action recognition. For example, simply switch the ViT-B/16 pre-trained on

IN-21K to CLIP pre-trained, we obtain another accuracy boost (62.0% → 66.4%)

7.3.2 Comparisons to the State of the Art

In this section, we compare the proposed method with state-of-the-art video models on four video

action recognition benchmarks. For all the experiments, we use the ViT models pre-trained by

CLIP [131]. We mostly follow the training settings in [109].

7.3.2.1 Results on Kinetics-400 and Kinetics-700

Table 7.2 presents the comparisons with state-of-the-art video models on K400 dataset. First, we

can see that with ViT-B/16 backbone, our method only needs to tune 11M parameters for compet-

itive performance, which is much smaller than previous video models. Taking input of 8 frames

as an example, AIM ViT-B/16 achieves 83.9% top-1 accuracy while only requiring 606 GFLOPs.

When using 16 input frames, our method even outperforms MTV-L [183], which requires more

than 10× computations (1214 vs 18050 GFLOPs). When switching to larger backbone ViT-L/14,

we achieve the highest accuracy 87.5% on K400 dataset, with 38M tunable parameters.
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Table 7.2: Comparison to state-of-the-art on Kinetics-400. Views = #frames × #temporal × #spa-
tial. AIM outperforms state-of-the-art video models while tuning much less number of parameters.

Methods Pretrain GFLOPs
Param
(M)

Tunable
Param (M) Top-1 Top-5 Views

MViT-B [41] - 4095 37 37 81.2 95.1 64×3×3
UniFormer-B [93] IN-1K 3108 50 50 83.0 95.4 32×4×3
TimeSformer-L [8] IN-21K 7140 121 121 80.7 94.7 64×1×3
ViViT-L/16×2 FE [3] IN-21K 3980 311 311 80.6 92.7 32×1×1
VideoSwin-L [109] IN-21K 7248 197 197 83.1 95.9 32×4×3
MViTv2-L (312 ↑) [97] IN-21K 42420 218 218 86.1 97.0 32×3×5
MTV-L [183] JFT 18050 876 876 84.3 96.3 32×4×3
TokenLearner-L/10 [135] JFT 48912 450 450 85.4 96.3 64×4×3
PromptCLIP A7 [81] CLIP - - - 76.8 93.5 16×5×1
ActionCLIP [162] CLIP 16890 142 142 83.8 97.1 32×10×3
X-CLIP-L/14 [119] CLIP 7890 420 420 87.1 97.6 8×4×3
EVL ViT-L/14 [102] CLIP 8088 368 59 87.3 - 32×3×1
AIM ViT-B/16 CLIP 606 97 11 83.9 96.3 8×3×1
AIM ViT-B/16 CLIP 1214 97 11 84.5 96.6 16×3×1
AIM ViT-B/16 CLIP 2428 97 11 84.7 96.7 32×3×1
AIM ViT-L/14 CLIP 2802 341 38 86.8 97.2 8×3×1
AIM ViT-L/14 CLIP 5604 341 38 87.3 97.6 16×3×1
AIM ViT-L/14 CLIP 11208 341 38 87.5 97.7 32×3×1

Note that several works also leverage CLIP pre-trained models to do video action recognition.

However, ActionCLIP [162] and X-CLIP [119] are multimodal methods which require additional

text branch and tune the whole model end-to-end. PromptCLIP [81] applies prompt tuning [92]

to CLIP and adds several temporal blocks for temporal modeling. EVL [102] introduces a new

decoder branch to learn temporal information. However, AIM simply re-uses image pre-trained

self-attention for temporal modeling. This makes AIM much simpler than previous methods, yet

achieving better performance at much less tunable parameters. The simplicity also makes AIM

much easier to adapt to different model architectures (single modal or multi-modal models). But

previous methods such as ActionCLIP/X-CLIP/PromptCLIP cannot leverage pure image backbone

because they need an additional text branch.
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Table 7.3: Comparison to state-of-the-art on Something-Something-v2. K400†/K600† indicates
the model is pre-trained on both IN-21K and K400/K600.

Methods Pretrain GFLOPs
Param
(M)

Tunable
Param (M) Top-1 Top-5 Views

TimeSformer-L [8] IN-21K 7140 121 121 62.4 - 64×1×3
MTV-B [183] IN-21K 4790 310 310 67.6 90.4 32×4×3
MViT-B [41] K400 510 37 37 67.1 90.8 32×1×3
MViTv2-B [97] K400 675 51 51 70.5 92.7 40×1×3
ViViT-L/16×2 [3] K400† 11892 311 311 65.4 89.8 16×4×3
VideoSwin-B [109] K400† 963 89 89 69.6 92.7 32×1×1
Omnivore [50] K400† - - - 71.4 93.5 32×1×3
MViTv2-L (312 ↑) [97] K400† 8484 213 213 73.3 94.1 32×1×3
UniFomer-B [93] K600† 777 50 50 71.2 92.8 32×1×3
CoVeR [199] JFT-3B - - - 70.9 - -
EVL ViT-B/16 [102] CLIP 2047 182 86 62.4 - 32×1×3
EVL ViT-L/14 [102] CLIP 9641 484 175 66.7 - 32×1×3
AIM ViT-B/16 CLIP 624 100 14 66.4 90.5 8×1×3
AIM ViT-B/16 CLIP 1248 100 14 68.1 91.8 16×1×3
AIM ViT-B/16 CLIP 2496 100 14 69.1 92.2 32×1×3
AIM ViT-L/14 CLIP 2877 354 50 67.6 91.6 8×1×3
AIM ViT-L/14 CLIP 5754 354 50 69.4 92.3 16×1×3
AIM ViT-L/14 CLIP 11508 354 50 70.6 92.7 32×1×3

Furthermore, we evaluate our method on K700 dataset in Table7.4. We can see that AIM ViT-B/16

with 11M tunable parameters is able to outperform MTV-L (875M) and MViTv2-B (51M). And

AIM ViT-L/14 (38M) achieves comparable performance with MaskFeat (218M) [169]. Note that

MaskFeat uses larger input resolution (312 vs 224) and more input frames (40 vs 32) than us. This

again justifies the effectiveness of our efficient adaptation pipeline.
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7.3.2.2 Results on Something-Something-v2

Table 7.3 presents the performance comparisons on SSv2. Based on CLIP ViT-L/14, our method

achieves competitive or better performance than most prior arts. In terms of fair comparison to

EVL, which also uses CLIP pre-trained image encoder, we achieve significantly higher accuracy

(70.6% > 66.7%), while introducing less tunable parameters (50M < 175M). Note that to in-

troduce temporal modeling into image model, EVL adds 12 layers of decoder blocks, while our

method simply reuse image pre-trained self-attention layers to achieve stronger temporal modeling

.

However, our method falls behind some full finetuned video models [50, 97, 93]. One reason is that

SSv2 is a “temporal-heavy" dataset [137], which requires model to really understand the temporal

evolution within a video. In order to obtain high accuracy, most previous video models are first pre-

trained on some video datasets (such as K400/K600) to learn good spatiotemporal representations,

then finetuned on SSv2. But our method still starts from the image pre-trained model. Another

reason is that simply reusing the image pre-trained self-attention for temporal modeling may not

be able to fully capture the complicated temporal information in SSv2 videos. This suggests that

we need to conduct more temporal adaptation for these challenging “temporal-heavy" datasets.

7.3.2.3 Results on Diving-48

A diving class in Diving-48 [96] is defined by the combination of takeoff, movements in flight and

entry, thus it requires the model to differentiate such fine-grained actions. As shown in Table 7.5,

our method with 11M tunable parameters outperforms all prior methods. AIM ViT-L/14 further

improves the top-1 accuracy to 90.6%. Comparing to ORViT [67], despite they leverage additional

object tracking model, our method still outperforms it with much less tunable parameters. This
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Table 7.4: Comparison to state-of-the-art on Kinetics-700. AIM achieves competitive performance
while using less tunable parameters and smaller input scale.

Method Pretrain
Tunable

Param (M) Top-1

VidTR-L [204] IN-21K 91 70.2
MTV-L [183] IN-21K 876 75.2
MViTv2-B [97] - 51 76.6
MViTv2-L (40×312 ↑) [97] IN-21K 218 79.4
MaskFeat (40×312 ↑) [169] K700 218 80.4
AIM ViT-B/16 CLIP 11 76.9
AIM ViT-L/14 CLIP 38 80.4

Table 7.5: Comparison to state-of-the-art on Diving-48. AIM outperforms previous best methods
while using less tunable parameters.

Method Pretrain
Tunable

Param (M) Top-1

TimeSformer-L [8] IN-21K 121 81.0
VideoSwin-B [109] IN-21K 88 81.9
BEVT [163] K400† 88 86.7
SIFAR-B-14 [42] IN-21K 87 87.3
ORViT [67] IN-21K 160 88.0
AIM ViT-B/16 CLIP 11 88.9
AIM ViT-L/14 CLIP 38 90.6

suggests that efficient finetuning can handle fine-grained action recognition.

7.4 Discussion

Different Pre-trained Models. Here we demonstrate the effectiveness of AIM on different pre-

trained models. In Table 7.6, we first show AIM based on ViT-B backbone. We compare AIM

to TimeSformer because we use the same backbone (ViT-B) and have a similar structure (i.e.,

both using divided space-time attention). As can be seen, AIM achieves better performance than
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Table 7.6: Performance of using different pre-trained image models on K400. AIM achieves
competitive or better performance with the corresponding fully finetuned videos on different back-
bones. AIM also largely saves training memory footprint and time cost.

Model Backbone Pretrain
Tunable

Param (M)
Mem
(G)

Time
(H) Top-1

TimeSformer ViT-B IN-21K 121 10 20 78.5
AIM ViT-B IN-21K 11 7 15 78.8
TimeSformer ViT-B CLIP 121 10 20 82.0
AIM ViT-B CLIP 11 7 15 83.9
VideoSwin-B Swin-B IN-21K 88 18 64 82.7
AIM Swin-B IN-21K 9.2 9 37 82.1

Table 7.7: Effect of position of Adapters. Skip means adding Adapters every two blocks.

Position
Tunable

Param (M) Top-1

Bottom 6 5.6 80.7
Top 6 5.6 83.3
Skip 5.6 83.2
All 11 83.9

full finetuned TimeSformer under both IN-21K and CLIP pre-trained weights. Then we apply

AIM to Swin-B backbone and compare it to VideoSwin when we both use Swin-B and IN-21K

pre-training. Similarly, AIM achieves comparable performance with full finetuned VideoSwin.

Data Efficiency. One advantage of our efficient tuning paradigm is that we can keep the well

pre-trained image representations intact. In the scenario where downtream data is insufficient, our

method will be less prone to over-fitting compared to full finetuning. In Figure 7.2, we compare

AIM with full finetuned TimeSformer under different amounts of training data on K400. For fair

comparison, both AIM and TimeSformer use CLIP pre-trained ViT-B/16 as backbone. We can

observe that under all scenarios, our method AIM outperforms full finetuned TimeSformer. In
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Figure 7.2: Data efficiency comparison. AIM outperforms full finetuned TimeSformer under all
scenarios, especially in low data regime.

Table 7.8: Effect of bottleneck ratio of Adapters.

Ratio
Tunable

Param (M) Top-1

0.0625 3 83.3
0.125 5.6 83.4
0.25 11 83.9
0.5 21 83.8

particular, when the amount of data becomes less, the advantage of AIM becomes larger. For

example, when there is only 1% of training data, we outperform TimeSformer by a significant

margin of 8.9%.

Training Cost. Table 7.6 also shows the training time (hours) and memory cost (GB) of our

method and full finetuning on different backbones. All metrics are measured on 8 Tesla V100

GPUs. Compared to TimeSformer, we reduce the memory cost by 30% and training time by 25%.

Compared to VideoSwin, we reduce the memory cost by 50% and training time by 42%.
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Position of Adapters. By default, we add Adapters to every ViT block (12 blocks in total). Here

we study the effect of adding Adapters in different layers. We add Adapters to the bottom 6

blocks (close to the input), top 6 blocks (close to the output) and one every two blocks. All

these variants have the same number of tunable parameters. As can be seen in Table 7.7, adding

Adapters to the bottom 6 blocks yields much worse performance than others. We hypothesize that

the shallow layers learn generic representations which do not need much adaptation, while deeper

layers learn task-specific features like temporal information thus feature adaptation is important.

Adding Adapters to the top 6 blocks achieves comparable performance with adding to all blocks

while saving half of the parameters. This could serve as a good candidate when training resources

are more limited.

Bottleneck Ratio of Adapters. By tuning the bottleneck ratio of Adapters, we can easily control

the number of tunable parameters. Here we study how the bottleneck ratio of Adapters affects the

final performance. The results in Table 7.8 reveal that a larger bottleneck ratio tends to achieve

better performance, but it will also introduce more tunable parameters. The performance plateaus

after bottleneck ratio goes beyond 0.25. Note that a small ratio of 0.0625 could still achieve 83.3%

top-1 accuracy on K400, which is competitive among state-of-the-art video models in Table 7.2

while introducing only 3M tunable parameters.

Per-class Analysis. In Table 7.3, we show that AIM still falls behind some SoTA full finetuned

video models on the “temporal-heavy” Something-Something-v2 (SSv2) dataset. We conjecture

one reason is that simply reusing the image pre-trained self-attention for temporal modeling may

not be able to fully capture the complicated temporal information in some nuanced action classes

in SSv2. To provide further insights, we compute the per-class accuracy differences of AIM and

TimeSformer on SSv2 and show the top-5 and bottom-5 classes in Figure 7.3. We can see that

the classes where AIM performs better are normal action classes with decent motion. The classes

where AIM performs worse are those with minor differences (e.g., “Pulling something from left to
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Figure 7.3: The figure shows the differences of each class’s accuracy of AIM and TimeSformer on
Something-Something-v2. Here we only plot the top-5 and bottom-5 classes.

right” vs. “Pulling something from right to left”). In order to tell these actions apart, the model

needs to distinguish between the nuances, especially in motion. Given most of model parameters

are frozen in our method, AIM may lack the capacity to capture such complex temporal informa-

tion.

Visualization. we present the attention map visualizations of the frozen space-only model, Spatial

Adaptation (SA) model, Spatial Adaptation plus Temporal Adaptation (TA) model, and the full

finetuned TimeSformer.

On Figure 7.4 left, we visualize an action “Brush Painting” from Kinetics-400 dataset. We can see

that the attention maps of the frozen space-only model are very scattered, and it doesn’t attend to

the brush region in the first two frames. Adding SA enhances the attention on the brush, but the

model still focuses on areas that are unrelated to the action. Further adding TA helps the model
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Figure 7.4: Attention map visualizations of AIM variants and the full finetuned TimeSformer. With
the help of temporal adaptation (TA), our method is able to focus on motion salient regions which
helps to make a correct prediction.

to learn temporal information. We can see that the model now focuses more on the brush painting

area, which is similar to what full finetuned TimeSformer does.

On Figure 7.4 right, we visualize an action “Something falling like a rock” from Something-

Something-v2 dataset. To correctly recognize this action, the model needs to learn how the object

moves in the input frames. We first observe that both the frozen space-only model and SA model

have good attention on the object, but they fail to model the movement of the object which leads

to wrong prediction. In contrast, TA helps the model to learn the relationship among input frames.

The attention map shows that the model not only focuses on the object but also learns the track of

the object. Instead, TimeSformer always attends to the bottom region without showing the object
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path.

7.5 Summary

In this work, we propose a new way to efficiently transfer pre-trained image models for video action

recognition. We introduce spatial adaptation, temporal adaptation and joint adaptation to gradually

add spatiotemporal reasoning to an image model. Since only newly added Adapters are updated,

our training cost is substantially lower than other full finetuned video models. Yet we achieve

comparable or even better performance than prior arts on four benchmarks. Our method is simple

and generally applicable, which has the potential to leverage more powerful image foundation

models in the future. Despite all the benefits, one limitation is that our simple strategy of reusing

spatial attention for temporal modeling might not be strong enough for temporally challenging

videos. Since video temporal modeling can be viewed as a form of sequence modeling, we might

be able to reuse pre-trained weights from text or audio models instead of image models in the

future.
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CHAPTER 8: CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, we improve the efficiency and effectiveness of deep representation learning

from multiple perspectives. The proposed methods not only improve the training efficiency, infer-

ence efficiency and data efficiency of previous learning methods, but also enhance the performance,

robustness and scalability of learned representations. We demonstrate the effectiveness of the pro-

posed methods on a wide range of tasks and domains such as image classification, object detection,

instance segmentation, video action recognition and action detection.

In Chapter 3, we point out that traditional neural networks are static, and we propose a new method

to learn adaptive representations. Our adaptive neural network can run at different computation

complexities during inference time. Therefore, we only need one network to meet the dynamic

resource budgets in real devices. Our method highlights the importance of simultaneously consid-

ering network width and input resolution for efficient representation learning and mutually train

different network configurations. It outperforms traditional neural networks on various tasks under

different model complexities. It also bears the benefits of training and deploying only one model

to meet diverse resource budgets.

In Chapter 4, we extend the method to learn adaptive spatiotemporal representations for video

understanding. We propose to asymmetrically sample subnetworks, input resolutions and frames

in the mutual training process. After training, the adaptive network can run at different widths,

resolutions and number of frames. We demonstrate its effectiveness and efficiency on multiple

video understanding tasks including video recognition and action detection.

In Chapter 5, we extend the mutual learning method to improve the representation learning of the
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target full network. We regularize the representation learning by ensuring that subnetworks make

consistent predictions with the full network when fed with differently transformed images. Our

method helps the network to learn robust and generalizable representations which achieves better

performance on multiple tasks.

Besides learning methods, we explore efficient neural architecture search (NAS) methods in Chap-

ter 6. We show that recent training-free NAS metrics are not fairly evaluated. Their performance

is no better than the trivial number-of-parameter metric while being much more complicated to

compute. Based on our observations, we proposed a new efficient training-based NAS method

which outperforms previous methods with significantly smaller search cost. Our method is also

more robust to different search spaces.

In Chapter 7, we propose a new spatiotemporal representation learning method by bootstraping

from image models. Our method freezes the pre-trained image model, re-uses spatial self-attention

for temporal modeling, and introduces few light-weight Adapters to tune the representations. It

largely saves the training cost compared to traditional full finetuning and achieves even better

performance. The method is also generally applicable to different model structures and future

stronger image foundation models.

8.2 Future Work

Chapter 3 and 4 introduce the methods to learn adaptive representations in convolutional neural

networks. With the increasing popularity and importance of the (Vision) Transformer structures, it

would be interesting and insightful to explore novel methods in learning adaptive representations

for Transformer structures.

The representation learning methods discussed in this dissertation primarily focus on supervised
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learning. However, it would indeed be intriguing to investigate the applicability and effectiveness

of the proposed methods, such as, adaptive mutual learning (Chapter 3 and 4), GradAug (Chapter

5), and AIM (Chapter 7), in the context of unsupervised representation learning.

Finally, in light of recent advancements in foundation models, such as Stable Diffusion [134],

Segment Anything [85], ChatGPT [121], and LLaMA [156], it has become crucial to explore

efficient methods for leveraging these models and customizing them to address specific tasks of

interest. Chapter 7 of this dissertation introduces AIM, which presents a means of adapting image

models for video action recognition. This concept holds potential for extension to other tasks, such

as adapting image generative models for video generation, video editing, and 3D object generation.

Moreover, it opens up possibilities for cross-modality model adaptation, such as adapting large

language models to large vision models.
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