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ABSTRACT

A conventional wireless sensor networks (WSN), consisting of sensors powered by non-

rechargeable batteries, has a strictly limited lifetime. Energy harvesting (EH) from the

environment is a promising solution to address the energy constraint problem in conventional

WSNs, and to render these networks to self-sustainable networks with perpetual lifetimes.

In EH-powered WSNs, where sensors are capable of harvesting and storing energy, power

control is necessary to balance the rates of energy harvesting and energy consumption for

data transmission. In addition, wireless communication channels change randomly in time

due to fading. These together prompt the need for developing new power control strategies

for an EH-enabled transmitter that can best exploit and adapt to the random energy arrivals

and time-varying fading channels.

We consider parallel structure EH-powered WSNs tasked with solving a binary distributed

detection problem. Sensors process locally their observations, adapt their transmission ac-

cording to the battery and fading channel states, and transmit their data symbols to the

fusion center (FC) over orthogonal fading channels. We study adaptive transmission schemes

that optimize detection performance metrics at the FC, subject to certain battery and trans-

mit power constraints. In the first part, modeling the random energy arrival as a Poisson

process, we propose a novel transmit power control strategy that is parameterized in terms of

the channel gain quantization thresholds and the scale factors corresponding to the quanti-

zation intervals and we find the jointly optimal quantization thresholds and the scale factors

such that detection metric at the FC is maximized. We have assumed that the battery

operates at the steady-state and the energy arrival and channel models are independent and

identically distributed across transmission blocks. In the second part, we assume the bat-

tery is not at the steady-state and both the channel and the energy arrival are modeled as
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homogeneous finite-state Markov chains. Therefore, the power control optimization problem

at hand becomes a multistage stochastic optimization problem and can be solved via the

Markov decision process (MDP) framework. This is the first work that develops MDP-based

channel-dependent power control policy for distributed detection in EH-powered WSNs.
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CHAPTER 1: INTRODUCTION AND LITERATURE

REVIEW123.

The classical problem of binary distributed detection in a network, consisting of multiple dis-

tributed sensors and a fusion center (FC), has a long and rich history [4–7]. In this problem,

each sensor sends its locally processed observation to the FC, that is tasked with making a

reliable global decision about the underlying binary hypothesis testing problem. Distributed

detection using wireless sensor network (WSN) has applications in diverse domains, includ-

ing environmental monitoring, surveillance, healthcare, and transportation [8]. The classical

studies in [4–7] cannot be directly applied to WSNs, since the results are obtained based on

the assumption that the rate-constrained communication channels between sensors and FC

are error-free. The designs of wireless sensor networks to perform the task of distributed

detection are often based on the conventional battery-powered sensors, leading into designs

with a short lifetime, due to battery depletion [9–11]. Recently, energy harvesting, which

can collect energy from renewable resources in ambient environment (e.g., solar, wind, and

geothermal energy) has attracted much attention [12, 13]. Energy harvesting technology in

wireless sensor networks promises a self-sustainable system with a lifetime that is not limited

by the lifetime of the conventional batteries [10, 14]. Due to this reason, researchers have

studied how to re-design the local decision rules at the sensors and the fusion rule at the FC,

such that the effect of wireless communication channels between the sensors and the FC is

integrated into the designs [15–17]. Another challenge of performing distributed detection

task using a WSN is to provide an unvarying detection performance. In conventional WSNs,

1© 2018 IEEE. Part of this chapter is reprinted, with permission, from [1]

2© 2019 IEEE. Part of this chapter is reprinted, with permission, from [2]

3© 2022 IEEE. Part of this chapter is reprinted, with permission, from [3]
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Figure 1.1: Our system model and the schematic of battery state in time slot t.

sensors are powered by non-rechargeable batteries. A major limitation of these networks is

their limited lifetimes, due to the fact that sensors become inactive when the energy stored in

their batteries is exhausted. Motivated by this challenge, researchers have developed novel

adaptive signal transmission strategies that improve the energy efficiency and hence ex-

tend the lifetimes of these networks. These transmission strategies include optimal channel-

dependent power control [18, 19], censoring [17, 20], node sleep/wake mechanisms [21], and

ordered transmission [22], that attempt to curtail sensors’ transmission to the FC. However,

regardless of the adopted transmission strategy, the lifetime of a conventional WSN is still

bounded, leading to a detection performance degradation, due to discontinuities in sensor-FC

communication. Recently, the technology of harnessing energy from the renewable resources

of energy in ambient environment has attracted attention of many researchers, as a promis-

ing solution to address the challenging energy constraint problem in WSNs, and to render

these networks to self sustainable networks with perpetual lifetimes. In particular, energy

harvesting (EH)-powered sensors offer potential for transforming design and performance of

2



WSNs. In practice, the energy arrival of ambient energy sources is intrinsically time-variant

and often sporadic. To flatten the randomness of the energy arrival, the harvested energy is

stored in a battery, to balance the energy arrival and the energy consumption. Power/energy

management in EH-enabled WSNs with finite size batteries is necessary, in order to balance

the rates of energy harvesting and energy consumption for transmission. If the energy man-

agement policy is overly aggressive, sensors may stop functioning, due to energy outage. On

the other hand, if the policy is overly conservative, sensors may fail to utilize the excess

energy, due to energy overflow, leading into a performance degradation [23].

1.1 Literature Survey and Related Works

Energy harvesting has been also considered in the contexts of cooperative data communi-

cation [24], cognitive radio systems [25], distributed estimation [26], and distributed detec-

tion [1–3,8,10,27]. The authors in [18,19] have designed the optimal channel-dependent trans-

mit power control strategies that maximize J-divergence based detection metric for binary-

hypothesis and multiple-hypothesis distributed detection problems, respectively. Modeling

sensor-FC channels as deterministic and assuming each sensor knows its CSI in full precision,

the power control strategies in [18, 19] allow each sensor to adapt its transmit power based

on its CSI. However, CSI acquisition at the sensors in WSNs is difficult. In time division

duplexing systems, sensors need to perform training-based channel estimation to acquire

CSI [28–30]. In frequency division duplexing systems, sensors can acquire quantized CSI via

a limited feedback channel from the FC [31]. We note that signal adaptation at the sensors

according to the quantized CSI received from a limited feedback channel has been considered

before for data communications [32] and distributed estimation of a signal source [33]. It is

worth pointing out that, while the studies in [18,19] on optimal channel-dependent transmit

3



power control strategies for distributed detection problem can be applied to conventional

WSNs, they cannot be applied to EH-enabled WSNs. These works have not considered the

new challenges related to energy management imposed by the random nature of the energy

arrival and harvesting, i.e., the available energy for transmission in [18, 19] is fixed (non-

random). In the context of distributed detection, there are only few studies that consider

EH-powered sensors [8,10,27], among which [10] is the closest work to ours. Considering an

EH-powered node, that is deployed to monitor the change in its environment, the authors

in [27] formulated a quickest change detection problem, where the goal is to detect the time

at which the underlying distribution of sensor observation changes. Choosing error proba-

bility as the detection performance metric, the authors in [8] proposed ordered transmission

schemes, that can lead to a smaller average number of transmitting sensors, without compris-

ing the detection performance. Modeling the randomly arriving energy units during a time

slot as a Bernoulli process, the battery state as a K-state Markov chain, and choosing Bhat-

tacharya distance as the detection performance metric, the authors in [10] have investigated

the optimal local decision thresholds at the sensors, such that the detection performance is

optimized. We note that [8, 27] assumed sensor-FC channels are error-free and [10] consid-

ered a binary asymmetric channel model for sensor-FC links. The high level channel model

in [10], combined with the Bernoulli process model for random energy arrival is limiting.

Specifically, it does not allow one to study channel-dependent transmit power control strate-

gies. Such a study requires a more realistic channel model and a different stochastic energy

arrival model that matches the energy needed for a channel-dependent transmission. In the

following we provide a concise review of the most related literature to our work, highlight

how our present work fills the knowledge gap in the literature, and how it is different from

our previous works in [1, 2]. In our preliminary works [1, 2] we attempted to fill this knowl-

edge gap, and studied channel-dependent transmit power control policies, considering fading

channel model with additive Gaussian noise. In particular, in [1] we modeled random energy
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arrival as a Bernoulli process and assumed each sensor knows its CSI in full precision and

adapts its transmit power according to the channel-inversion power control policy in wire-

less communications (i.e., allocated power is inversely proportional to CSI). We found the

optimal decision thresholds at sensors such that Kullback-Leibler (KL) distance detection

metric at the FC is maximized. In [2], we modeled random energy arrival as an exponential

process. Similar to our present work, we assumed each sensor only knows its quantized CSI

and adapts its transmit power according to its battery state and its quantized CSI, such that

J-divergence based detection metric at the FC is maximized. However, the form of the power

control strategy in [2] is completely different from here, i.e., given the quantization thresholds

each sensor employs an offline determined lookup table that provides a power value for each

battery state and quantized CSI. We found the optimal lookup table through an exhaustive

(deterministic) search method. In [3], we consider a parallel network, consisting of several

distributed sensors and a FC, tasked with solving a binary distributed detection problem.

Each sensor is capable of harvesting energy from the ambient environment and is equipped

with a battery of finite size to store the harvested energy. Sensors process locally their obser-

vations and communicate directly with the FC over orthogonal fading channels Each sensor

only knows the quantized channel state information (CSI), via a limited feedback channel

from the FC. Our proposed transmission strategy combines the concepts of censoring and

channel-dependent power control, i.e., when the local log-likelihood ratio (LLR) is below a

given threshold, sensor is silent, when the LLR exceeds the threshold, sensor transmits a

symbol (one information bit), where the symbol power is variable (adaptive) and chosen ac-

cording to sensor’s battery state and its quantized CSI. The FC jointly processes the received

signals from all sensors and makes a reliable global decision about the underlying hypotheses

(see Fig. 1.1). Given our adopted WSN model (see Fig. 1.1), we aimed at developing an

adaptive channel-dependent transmit power control strategy for sensors such that a detec-

tion performance metric is optimized. We chose the J-divergence between the distributions

5



of the detection statistics at the FC under two hypotheses, as the detection performance

metric. Our choice is motivated by the fact that J-divergence is a widely adopted metric for

designing distributed detection systems [18, 19, 30, 31]. This is because the Bayesian error

probability Pe corresponding to the optimal Bayesian fusion rule at the FC for most prob-

lems does not have a closed-form expression, and minimizing Pe does not render a tractable

procedure for system design, even for small sized networks. We note that J-divergence

and Pe are related through Pe > Π0Π1e
−J/2, where Π0,Π1 are the a-priori probabilities

of the null and the alternative hypotheses, respectively [18, 19, 30, 31]. Hence, maximizing

the J-divergence is equivalent to minimizing the lower bound on Pe. Also, J-divergence is

related to Bhattacharya distance [10] and KL distance [1] that are used as optimization

criteria for distributed detection system designs. Furthermore, when sensors’ observations

conditioned on the true hypothesis are statistically independent, the total J-divergence of a

parallel network at the FC is the summation of the individual J-divergence corresponding to

individual sensors. Therefore, maximizing the total J-divergence at the FC is equivalent to

maximizing the individual J-divergence, i.e., maximizing the total J-divergence at the FC

enables distributed implementation of the design procedure at each sensor. This is different

from Pe, which cannot be decomposed into the individual error probabilities corresponding

to individual sensors.

In [3] We modeled the randomly arriving energy units during a time slot as a Poisson

process and the dynamics of the battery as a K-state Markov chain, and consider fading

channel model with additive Gaussian noise. Our proposed power control strategy in [3]

is parameterized in terms of the channel gain quantization thresholds and the scale factors

(corresponding to the quantization intervals). The scale factors play key roles in balancing

the rates of energy harvesting and energy consumption for transmission. We sought the

jointly optimal scale factors and and the quantization thresholds such that the J-divergence
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at the FC is maximized, subject to an average transmit power per sensor constraint. This

optimization problem can be solved offline at the FC and each sensor, given the statistical

information of fading channels and the energy arrival, and the solution is available a priori

at each sensor, such that each sensor can adapt its transmit power according to its battery

state and its quantized CSI that is received from the FC via the feedback channel.

Our work in [34] is different from our prior works in [1–3] in several aspects. The transmit

power control strategies in these works are intrinsically different from this work, since in [1–3]

we have assumed that the battery operates at the steady-state and the energy arrival and

channel models are independent and identically distributed (i.i.d) across transmission blocks.

Consequently, the power optimization problem in [1–3] became a deterministic optimization

problem, in terms of the optimization variables, and the obtained solutions are different. In

this work, the battery is not at the steady-state. Also, both the channel and the energy

arrival are modeled as homogeneous finite-state Markov chains (FSMCs). Therefore, the

power control optimization problem at hand becomes a multistage stochastic optimization

problem, and can be solved via the MDP framework. To the best of our knowledge, this is the

first work that develops MDP-based channel-dependent power control policy for distributed

detection in EH-WSNs. The MDP framework has been utilized before in [35,36] to address

a quickest change detection problem.

1.2 Motivation, Contributions and Dissertation Organization

Our main contributions can be summarized as follow:

In the Chapter 2, we consider the distributed detection of a known signal using a wireless

network with N energy harvesting sensors and a FC. Each sensor makes a noisy observation,
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corrupted additive and multiplicative observation noises. Each sensor applies an energy

detector, to compare its test statistic against a local decision threshold θn (to be optimized),

and transmits only if the test statistic exceeds θn, its channel gain exceeds a minimum

threshold ζn, and its battery state can afford transmission. Given our transmission and

battery state models, our goal is to investigate the optimal θn’s that optimize the detection

performance metric, subject to average transmit symbol energy constraint.

The main contributions of Chapter 3 can be summarized as follows:

• Given our adopted system model, we propose a novel parameterized channel-dependent

transmit power control strategy and formulate a constrained optimization problem to

optimize the parameters such that the J-divergence at the FC is maximized, subject

to an average transmit power per sensor constraint. Since the proposed problem is not

concave with respect to the optimization variables, and the objective function and the

constraints of the problem are not differentiable with respect to these variables, we

resort to grid-based search methods. In particular, we consider deterministic, random,

and hybrid deterministic-random search methods, and explore the trade-offs in their

performance and computational complexity. We show that the proposed hybrid search

methods have the lowest computational complexity and provide a close-to-optimal

performance.

• We derive an approximate expression for Pe, relying on Lindeberg Central Limit The-

orem (CLT) for large number of sensors.

• Our simulations reveal the importance of optimizing the parameters of the channel-

dependent transmit power control strategy, to maximize the detection performance.

We demonstrate that the optimized transmit power level is not a monotonically in-

creasing or decreasing function of the channel gain (given the battery state), i.e., it
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is different from water-filling or channel-inversion power control strategies in wireless

communication. We also numerically illustrate the trade-off between average transmit

power and detection performance, i.e., we show how much average transmit power is

required to provide a certain Pe value at the FC.

The main contributions of Chapter 4 can be summarized as follows:

• Modeling the channel fading process as a time- homogeneous finite-state Markov chain

and assuming that each sensor knows its current battery state and its quantized channel

state information (CSI) obtained by a limited feedback from the FC, our goal is to

find the optimal transmit power control policy such that the detection performance

metric of interest is maximized. We formulate the problem at hand as a finite-horizon

Markov decision process (MDP) problem and obtain the optimal policy via finite-

horizon dynamic programming.

The main contributions of Chapter 5 can be summarized as follows:

• Given our adopted system model, we develop the optimal power control policy, us-

ing dynamic programming and utilizing the Lagrangian approach to transform the

constrained MDP problem into an equivalent unconstrained MDP problem. For the

optimal policy, the local action (i.e., a sensor’s transmit power) depends on the net-

work state (i.e., all sensors’ battery states, quantized CSIs, and the arrived energies),

and the computational complexity of the algorithm grows exponentially in number of

sensors N . Implementing this solution requires each sensor to report its battery state

and arrived energy to the FC, which imposes a significant signaling overhead to the

sensors.
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• To eliminate the signaling overhead, we develop a sub-optimal power control policy,

using a uniform Lagrangian multiplier to transform the constrained MDP problem into

N unconstrained MDP problems. For the sub-optimal policy, the local action depends

on only the local state (i.e., a sensor’s battery state, quantized CSI, and the arrived

energy), and the computational complexity of the algorithm grows linearly in N .

• We numerically study the performance of our proposed algorithms and we show that,

the performance of the sub-optimal power control policy is very close to that of the

optimal policy.

• We study how our system setup and proposed solutions can be extended to the scenario

where sensors are randomly deployed in the field.

The main contributions of Chapter 6 can be summarized as follows:

• We extended our work in Chapter 3 to temporally correlated MIMO. Sensors commu-

nicate directly with a FC with limited feedback in a time-correlated channel. Markov

models are introduced for analyzing the effect of Doppler frequency on limited feedback

rate in a MIMO system with channel gain feedback.
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CHAPTER 2: OPTIMAL LOCAL THRESHOLDS FOR

DISTRIBUTED DETECTION IN ENERGY HARVESTING

WIRELESS SENSOR NETWORKS1

We consider a wireless sensor network, consisting of N heterogeneous sensors and a fusion

center (FC), that is tasked with solving a binary distributed detection problem. Each sen-

sor is capable of harvesting and storing energy for communication with the FC. For energy

efficiency, a sensor transmits only if the sensor test statistic exceeds a local threshold θn, its

channel gain exceeds a minimum threshold, and its battery state can afford the transmis-

sion. Our proposed transmission model at each sensor is motivated by the channel inversion

power control strategy in the wireless communication community. Considering a constraint

on the average energy of transmit symbols, we study the optimal θn’s that optimize two de-

tection performance metrics: (i) the detection probability PD at the FC, assuming that the

FC utilizes the optimal fusion rule based on Neyman-Pearson optimality criterion, and (ii)

Kullback-Leibler distance (KL) between the two distributions of the received signals at the

FC conditioned by each hypothesis. Our numerical results indicate that θn’s obtained from

maximizing the KL distance are near-optimal. Finding these thresholds is computationally

efficient, as it requires only N one-dimensional searches, as opposed to a N -dimensional

search required to find the thresholds that maximize PD.

1© 2020 IEEE. Part of this chapter is reprinted, with permission, from [1].
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2.1 Our system model and problem Statement

Let xn denote the local observation at sensor n during an observation period. We assume

the following signal model

H1 : xn = Agn + wn, H0 : xn = vn (2.1)

where vn and gn are additive and multiplicative observation noises, respectively. We assume

vn ∼ N (0, σ2
vn), gn ∼ N (0, γgn) and all observation noises are independent over time and

among N sensors. During each observation period, sensor n takes L samples of xn to measure

the received signal energy and applies an energy detector to make a binary decision, i.e.,

sensor n decides whether or not signal A is present. Let dn denote the binary decision of

sensor k, where dn=0 and dn=1, respectively, correspond to H0 and H1. The test statistic

for sensor n is

Λn =
1

L

L∑
l=1

|xn,l|2 ≷
dn=1

dn=0

θn (2.2)

where θn is local decision threshold to be optimized. For the signal model in (2.1)), con-

ditioned on each hypothesis xn is Gaussian, that is, xn|H0 ∼ N
(
0, σ2

vn

)
and xn|H1 ∼

N
(
Aγgn , σ2

vn

)
. The test statistic Λn in (2.2) has non-central Chi-square distribution [14]

as given below

H1 : Λn ∼ χ2
L(ηn), H0 : Λn ∼ χ2

L (2.3)
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where ηn=A2E{g2n,l}=A2γgn is the non-centrality parameter. Using (2.3), the false-alarm

probability Pfn and detection probability Pdn can be derived as following

Pfn =Pr(Λn > θn|H0) =
Γ
(
L/2, Lθn

σ2
vn

)
Γ (L/2)

(2.4)

Pdn =Pr(Λn > θn|H1) = QL/2

(√ηn
σvn

,

√
Lθn
σvn

)
(2.5)

where Γ(l) is the gamma function, Γ(l, x) =
∫∞
x
tl−1e−tdt is the upper incomplete gamma

function, Qn(a, b) =
∫∞
b
x(x

a
)l−1exp(x

2+a2

−2
)Il−1(ax)dx is the generalized Marcum-Q function,

and Il−1(·) is modified Bessel function of order l − 1 [37].

We assume each sensor is able to harvest energy from the environment and stores this

harvested energy in a battery that has the capacity of storing at most K units of energy.

The sensors communicate with the FC through orthogonal fading channels with channel

gains |hk|’s that are independent and have Rayleigh distribution with parameters γhn . The

sensors employ on-off keying (OOK) signaling for communication, where a dn=1 decision at

sensor n is conveyed at the cost of spending one or more energy units and a dn=0 decision

is conveyed through a no-transmission with no energy cost. We assume that only sending

a message costs units of energy, and the energy of making the observation and processing

is negligible. The number of energy units spent to convey a dn=1 decision depends on the

quality of the channel gain |hn| and the battery state of sensor n. Motivated by the channel-

inversion power control strategy developed in the wireless communication community [38] we

try to compensate for the fading and let the number of energy units spent to convey a dn=1

decision be (roughly) inversely proportional to |hn| (i.e., a smaller |hn| corresponds to a larger

number of energy units), albeit if the battery has sufficient number of stored energy units. To

avoid the battery depletion when |hn| is too small, we impose an extra constraint inspired

by the channel truncation technique in the channel-inversion power control strategy [38],
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to ensure that a dn = 1 decision is conveyed only if |hn| exceeds a minimum threshold ζn

(choice of ζn will be discussed later). Let t indicate the index of the observation period and

bn,t denote the battery state of sensor n in the observation period t. Let un,t represent the

sensor output corresponding to the observation period t. Based on the above explanations,

we define un,t as

un,t =


⌈ λ
|hn|⌉ Λn > θn, bn,t > ⌈ λ

|hn|⌉, |hn|
2 > ζn

0 Otherwise

(2.6)

where λ is a power regulation constant (that depends on the battery structure). We use the

round function ⌈.⌉ toward +∞, to ensure that un,t is a discrete symbol and the energy of this

symbol is equal to the number of consumed energy units to convey dn = 1. The constraint

Λn > θn in (2.6) comes directly from (2.2). We assume the average energy of the transmitted

symbol un,t is constrained, i.e., Pavn = E{⌈ λ
|hn|⌉

2
∣∣un = ⌈ λ

|hn|⌉}, where the expectation is taken

with respect to |hn|. We model bn,t in (2.6) as the following

bn,t = min
{
bn,t−1 − ⌈ λ

|hn|
⌉Iun,t−1 + Ωn,t , K

}
(2.7)

where bn,t−1 is the battery state of the previous observation period and Ωn,t ∈ {0, 1} is a

binary random variable, indicating whether or not sensor n harvests one unit of energy. We

assume Ωn,t is a Bernoulli random variable, with Pr(Ωn,t = 1) = pe, where pe depends on

the harvesting structure. This assumption is repeatedly used in the literature (see [39] and

references therein). The indicator function Iun,t−1 in (2.7) is defined as

Iun,t−1 =


1 un,t−1 > 0

0 Otherwise

(2.8)
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In the remaining, we focus on one observation period and we drop the subscript t from the

battery state bn,t and the sensor output un,t. Given our system model description above, our

goal is to investigate the optimal local decision thresholds θn’s in (2.2) that optimizes the

detection performance metric.

2.2 Optimizing Local Decision Thresholds

We consider two detection performance metrics to find the optimal θn’s: (i) the detec-

tion probability at the FC, assuming that the FC utilizes the optimal fusion rule based on

Neyman-Pearson optimality criterion, and (ii) the KL distance between the two distribu-

tions of the received signals at the FC conditioned on hypothesis H0, H1. In Section 2.2.1

we derive the optimal fusion rule and the expressions for the detection and false alarm prob-

abilities PD, PF at the FC. In Section 2.2.2 we derive two approximate expressions for the

KL distance at the FC. In Section 2.2.3 we discuss the choice of the threshold ζn in (2.6).

2.2.1 Optimal LRT Fusion Rule and PD, PF Expressions

The received signal at the FC from sensor n is yn = hnun + wn, where the additive commu-

nication channel noise wn ∼ N
(
0, σ2

wn

)
. The likelihood ratio at the FC is [40]

∆LRT = log

(
f (y1, ..., yN |H1)

f (y1, ..., yN |H0)

)
=

N∑
n=1

log

(∑
un
f (yn|un, H1) Pr (un|H1)∑

un
f (yn|un, H0) Pr (un|H0)

)
(2.9)

in which we use the fact that, given Hi the received signals at the FC are independent,

i.e., f(y1, ..., yN |Hi) =
∏N

n=1 f(yn|Hi). Examining (2.9), we note given un, yn and Hi are
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independent and hence f (yn|un, Hi)= f (yn|un) for i=0, 1. Also, given un, yn is Gaussian,

i.e., yn|un=0 ∼ N
(
0, σ2

nn

)
and yn|un=⌈ λ

|hn| ⌉
∼ N

(
⌈ λ
|hn|⌉hn, σ

2
nn

)
. The probabilities Pr(un|H1),

Pr(un|H0) in (2.9) are

Pr
(
un = ⌈ λ

|hn|
⌉
∣∣H1

)
= Pr

(
Λn>θn, bn>⌈ λ

|hn|
⌉, |hn|2>ζn

∣∣H1

)
= Pr

(
Λn > θn|H1

)
Pr
(
bn > ⌈ λ

|hn|
⌉
)
Pr
(
|hn|2 > ζn

)
= Pdnρnqn = αn (2.10)

Pr
(
un = ⌈ λ

|hn|
⌉|H0

)
= Pr

(
Λn > θn

∣∣H0

)
Pr
(
bn > ⌈ λ

|hn|
⌉
)
Pr
(
|hn|2 > ζn

)
= Pfnρnqn = βn (2.11)

where Pfn , Pdn are given in (2.4), (2.5), ρn = Pr(bn > ⌈ λ
|hn|⌉) and qn = Pr(|hn|2 > ζn) =

exp(−ζn/γhn).

Assuming bn in (2.7) is a stationary random process, one can compute the cumulative distri-

bution function (CDF) and the probability mass function (pmf) of bn in terms of K, pe, γhn .

Fig. 2.1a shows CDF of bn for K =20 and pe=0.5, 0.75, 0.82, and Fig. 2.1b depicts pmf of

bn for K=50 and pe=0.8. For our numerical results in Section 2.3 we use pmf of bn to find

ρn in (2.10) and (2.11). Combing all, we can rewrite ∆LRT as the following [29]

∆LRT=
N∑
n=1

log

(
αnf(yn|un=⌈ λ

|hn|⌉) + (1−αn)f(yn|un=0)

βnf(yn|un=⌈ λ
|hn|⌉) + (1−βn)f(yn|un=0)

)

=
n∑
n=1

log
αnexp

(
−

(yn−⌈ λ
|hn| ⌉hn)

2

2σ2
wn

)
+(1− αn)exp

(
− y2n

2σ2
wn

)
βnexp

(
−

(yn−⌈ λ
|hn| ⌉hn)2

2σ2
wn

)
+(1− βn)exp

(
− y2n

2σ2
wn

)
In low SNR regime as σ2

wn
→∞ taking a logarithm from ∆LRT and using the approximations

e−x ≈ 1 − x and log(1 + x) for small x, we can simplify ∆LRT to ∆LRT≈−Tn +
∑N

n=1 νnyn
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Figure 2.1: CDF of bn for K=20 and pe=0.5, 0.75, 0.82, pmf of bn for K=50 and pe=0.8.

where Tn=
∑K

n=1⌈
λ

|hn|⌉
2h2n(αn−βn)/2σ

2
wn

and νn=⌈ λ
|hn|⌉hn(αn−βn)/σ

2
wn
. Given a threshold

τ , the optimal likelihood ratio test (LRT) is ∆LRT ≷
H1

H0

τ . The false alarm and detection

probabilities PF , PD at the FC are

PF = Pr (∆LRT > τ |H0) = Q
(τ − µ∆|H0

σ∆|H0

)
(2.12)

PD = Pr (∆LRT > τ |H1) = Q

(
Q−1(a)σ∆|H0 + µ∆|H0 − µ∆|H1

σ∆|H1

)
(2.13)

where

µ∆|Hi
=−Tn+

N∑
n=1

νnµyn|Hi
, σ2

∆|Hi
=

n∑
n=1

ν2nσ
2
yn|Hi

, i = 0, 1

µyn|H0 = ⌈ λ

|hn|
⌉hnβn, σ2

yn|H0
=⌈ λ

|hn|
⌉2h2nβn(1−βn)+σ2

nn

µyn|H1 =⌈ λ

|hn|
⌉hnαn, σ2

yn|H1
=⌈ λ

|hn|
⌉2h2nαn(1−αn)+σ2

nn

The threshold τ is determined from the constraint on PF ≤ a in terms of a. We note that
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Figure 2.2: PD vs. PF , K = 20, pe = 0.75, Pav = 1dB.
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Figure 2.3: PD vs. PF , K = 20, pe = 0.75, Pav = 1 dB.

PD expression depends on all our optimization variables θn’s through αn, βn’s in µ∆Hi
and

σ2
∆|Hi

.

2.2.2 KL Expression

LetKLtot denote theKL distance between distributions f(y1, ..., yN |H1) and f(y1, ..., yN |H0)

at the FC. Since f(y1, ..., yN |Hi) =
∏N

n=1 f(yn|Hi), we have KLtot=
∑N

n=1KLn where KLn

by definition is [41]

KLn =

∫
yn

f(yn|H1) log

(
f(yn|H1)

f(yn|H0)

)
dyn (2.14)

We note that the distributions f(yn|Hi), i = 0, 1 are Gaussian mixtures and thus KLn in

(2.14) does not have a general closed-form expression [18] and approximations must be made.

One can approximate KLn in (2.14) by the KL distance of two Gaussian distributions with

the means µyn|H0 , µyn|H1 , and the variances σ2
yn|H0

and σ2
yn|H1

, respectively, i.e., KLn can be

approximated as [42]

KLn ≈ 1

2
log(

σ2
yn|H0

σ2
yn|H1

) +
σ2
yn|H1

− σ2
yn|H0

+ (µyn|H1 − µyn|H0)
2

2σ2
yn|H0

(2.15)

18



Another approximation for KLn in (2.14) can be found using the low SNR regime approxi-

mation in Section 2.2.1, as the following

KLn≈cn(βn−αn)
{
cn

√
π

2σ2
wn

(
(1− αn)(Q(

yn
σwn

)− 0.5)

+αnQ(
yn−cn
σwn

)
)
+αn exp

((cn−yn)2
−2σ2

wn

)
+ (1−αn) exp

(−y2n
2σ2

nn

)}
(2.16)

where cn = ⌈ λ
|hn|⌉hn. Different from PD expression that depends on all θn’s, KLtot is decou-

pled such that KLn depends on θn only through αn, βn’s in µyn|Hi
and σ2

yn|Hi
.

2.2.3 Choosing Threshold ζn in (2.6)

We find ζn in (2.6) via solving the constraint Pavn =E{⌈ λ
|hn|⌉

2
∣∣un = ⌈ λ

|hn|⌉}.

Recall hn has Rayleigh distribution. After some algebraic manipulations we obtain

Pavn =αn

∞∑
i=1

(i+ 1)

(
e

−1
γhn

max
{
ζn,

λ2

i+1

}
−e

−λ2

iγhn

)
u
[λ2
i
−ζn

]
(2.17)

where u[.] is the step function and αn is given in (2.10). Note αn depends on ζn through qn.

Although there is no explicit expression for ζn, for our numerical results in Section 2.3 we

use (2.17) to find ζn given Pavn via the interpolation technique.

2.3 Simulation results and Conclusions

In this section, we numerically (i) find θn’s which maximize PD in (2.13). Finding θn’s in

this case requires N -dimensional search, as N grows the computational complexity grows
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exponentially; (ii) θn’s which maximize KLtot =
∑N

n=1KLn, using the KLn approxima-

tions in (2.16), (2.16). Finding θn in this case requires only one dimensional search and is

computationally very efficient. We then compare PD evaluated at the θn’s obtained from

maximizing PD (refer to as scheme I in the plots), with PD evaluated at the θn’s obtained

from maximizing KLtot (refer to as scheme II in the plots). Our simulation parameters are

N=3, A=1, L=100, λ=1, γh = [1.5, 0.8, 1.4], γg = [1.3, 2, 0.9] and σ2
n = [0.9, 1.2, 0.8]. Note

that sensors are heterogeneous, in the sense that their statistical information parameters are

different. Given Pavn =Pav we first obtain numerically ζn’s using (2.17), where ζn’s are still

different since αn’s are different.

Fig. 2.2 plots PD versus PF , where for each PF we evaluate PD using θn’s which maximize

KLtot, based on the KLn approximations in (2.16) and (2.16). The fixed parameters in

Fig. (2.2) are K = 20 units, pe = 0.75, Pav = 1 dB. This figure shows that, these two

approximations have similar PD − PF behavior. Therefore, in the remaining figures, we use

the KLn approximation in (2.16).

Fig. 2.3 depicts PD versus PF for K=20 units, pe=0.75, Pav=1 dB. To plot Fig. 2.3, for

each PF we evaluate PD using θn’s that maximize PD (scheme I) and KLtot (scheme II).
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Comparing schemes I and II in Fig. 2.3, we observe that these schemes perform very closely,

indicating that using θn’s that are obtained from maximizing KLtot are near-optimal. In

Fig. 2.3, we also compare schemes I and II for the special case where we assume all sensors

employ the same local threshold θn = θ. For this special case, finding θ maximizing PD or

KLtot only needs one dimensional search. The performance gap between each scheme and its

corresponding special case indicates that when sensors are heterogeneous, it is advantageous

to use different local thresholds according to sensors’ statistics (i.e., γhn , γgn , σwn).

Fig. 2.4 plots PD versus Pav for K=20 units, pe=0.75, PF =0.5. As expected, PD increases

as Pav increases. The reason is as Pav increases ζn’s decrease, and sensors can afford to

transmit even when their channel gains are weaker.

Fig. 2.5 illustrates PD versus K for pe=0.8, Pav=1 dB, PF =0.5. As expected, PD increases

as K increases and it saturates after certain K, since PD is not limited by the battery size

anymore and instead is limited by the sensors’ statistics.

Comparing schemes I and II and their corresponding special cases in Figs. 2.4 and 2.5,

we make similar observations to those in Fig. 2.3. In summary, we studied a distributed

detection problem in a wireless network with N heterogeneous energy harvesting sensors and

investigated the optimal local decision thresholds for given transmission and battery state

models. Our numerical results indicate that the thresholds obtained from maximizing the

KL distance are near-optimal. Finding these thresholds is computationally very efficient, as

it requires only N one-dimensional searches, as opposed to a N -dimensional search required

to find the thresholds that maximize the detection probability.
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CHAPTER 3: ON ADAPTIVE TRANSMISSION FOR

DISTRIBUTED DETECTION IN ENERGY HARVESTING

WIRELESS SENSOR NETWORKS WITH LIMITED FUSION

CENTER FEEDBACK1

We consider a wireless sensor network tasked with solving a binary distributed detection

problem. Sensors communicate directly with a fusion center (FC) over orthogonal fading

channels, with additive Gaussian noise. Each sensor can harvest randomly arriving energy

units and store them in a battery. Also, it knows its quantized channel state information

(CSI), acquired via a limited feedback channel from the FC. Modeling the randomly arriving

energy units during a time slot as a Poisson process and the battery dynamics as a K-

state Markov chain (where K is the battery size), we propose a channel-dependent transmit

power control strategy such that the J-divergence based detection metric is maximized at

the FC, subject to an average transmit power per sensor constraint. The proposed strategy

is parameterized in terms of the channel gain quantization thresholds and the scale factors

corresponding to the quantization intervals. This strategy allows each sensor to adapt its

transmit power based on its battery state and its qunatized CSI. Finding optimal strategy

requires solving a non-convex optimization problem that is not differentiable with respect

to the optimization variables. We propose near-optimal strategies based on random search

methods that have a low-computational complexity and provide a close-to-optimal perfor-

mance.

1© 2021 IEEE. Part of this chapter is reprinted, with permission, from [3]
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3.1 System Model

3.1.1 Observation Model at Sensors

To describe our signal processing blocks at sensors and the FC as well as energy harvesting

model, we divide time horizon into slots of equal length Ts. Each time slot is indexed by

an integer t for t = 1, 2, ...,∞. We model the underlying binary hypothesis Ht in time slot

t as a binary random variable Ht ∈ {0, 1} with a-priori probabilities Π0 = Pr(Ht = 0) and

Π1 = Pr(Ht = 1) = 1 − Π0. We assume that the hypothesis Ht varies over time slots in an

independent and identically distributed (i.i.d.) manner. Let xn,t denote the local observation

at sensor n in time slot t. We assume that sensors’ observations given each hypothesis with

conditional distribution f(xn,t|Ht = ht) for ht ∈ {0, 1} are independent across sensors. This

model is relevant for WSNs that are tasked with detection of a known signal in uncorrelated

Gaussian noises with the following signal model

Ht = 1 : xn,t = A+ vn,t, Ht = 0 : xn,t = vn,t, for n = 1, . . . , N (3.1)

where Gaussian observation noises vn,t∼N (0, σ2
vn) are independent over time slots and across

sensors. Given observation xn,t sensor n forms local log-likelihood ratio (LLR)

Γn(xn,t) ≜ log

(
f(xn,t|ht = 1)

f(xn,t|ht = 0)

)
, (3.2)

and uses its value to choose its non-negative transmission symbol αn,t to be sent to the FC.

In particular, when LLR is below a given local threshold θn, sensor n does not transmit and

let αn,t = 0. When LLR exceeds the given local threshold θn, sensor n chooses αn,t according

to its battery state and the feedback information about its communication channel. choice

of αn,t will be explained later in Section 3.1.2.

23



3.1.2 Battery State, Harvesting and Transmission Models

We assume sensors are equipped with identical batteries of finite size K cells (units), where

each cell corresponds to bu Joules of stored energy. Therefore, each battery is capable of

storing at most Kbu Joules of harvested energy. Let Bn,t ∈ {0, 1, ..., K} denote the discrete

random process indicating the battery state of sensor n at the beginning slot t. Note that

Bn,t = 0 and Bn,t = K represent the empty battery and full battery levels, respectively.

Also, Bn,t = k implies that the battery is at state k, i.e., k cells of the battery is charged

and the amount of stored energy in the battery is kbu Joules.

Let En,t denote the randomly arriving energy units2 during time slot t at sensor n. We assume

En,t’s are i.i.d. over time slots and across sensors. We model En,t as a Poisson random variable

with parameter ρ, and probability mass function (pmf) pm ≜ Pr(En,t = m) = e−ρρm/m!

for m = 0, 1, . . . ,∞. Note that parameter ρ is the average number of arriving energy units

during one time slot at each sensor. Let Sn,t be the number of stored (harvested) energy

units in the battery at sensor n during time slot t. Note that the harvested energy Sn,t

cannot be used during slot t. Since the battery has a finite capacity of K cells, we have

Sn,t ∈ {0, 1, ..., K}. Also, Sn,t are i.i.d. over time slots and across sensors. The two random

variables Sn,t and En,t are related as the following

Sn,t =


En,t, if 0 ≤ En,t ≤ K − 1,

K, if En,t ≥ K.

(3.3)

Based on (3.3) we can find the pmf of Sn,t in terms of the pmf of En,t. Let qe ≜ Pr(Sn,t = e)

2Suppose each arriving energy unit measured in Joules is bu Joules.
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for e = 0, 1, . . . , K. We have 3

qe =


pe, if 0 ≤ e ≤ K − 1,∑∞

m=K pm, if e = K.

(3.4)

Let gn,t indicate the fading channel gain between sensor n and the FC during time slot t. We

assume block fading model and gn,t’s are i.i.d. over time slots and independent across sensors.

We assume there is a limited feedback channel from the FC to the sensors [31], through

which sensor n is informed of the quantization interval to which gn,t belongs. In particular,

suppose the positive real line is partitioned into L disjoint intervals In,l = [µn,l, µn,l+1) for

l = 0, ..., L − 1, using the quantization thresholds {µn,l}Ll=0, where 0 = µn,0 < µn,1 < . . . <

µn,L= ∞ (to be optimized). The quantization mapping rule follows: if the quantizer input

gn,t lies in the interval In,l then the quantizer output is µn,l. Let πn,l = Pr(gn,t ∈ In,l) be the

probability that gn,t lies in the interval In,l. This probability depends on the distribution of

fading model. For instance, for Rayleigh fading model g2n,t has exponential distribution with

the mean E{g2n,t} = γgn and we have

πn,l = Pr
(
(g2n,t ∈ [µ2

n,l, µ
2
n,l+1)

)
= e

−µ2n,l
γgn − e

−µ2n,l+1
γgn . (3.5)

Let Pn,t denote the transmit power of sensor n in time slot t. When LLR is below a given

local threshold θn, sensor n does not transmit, i.e., Pn,t = 0. When LLR exceeds θn, sensor

n chooses Pn,t according to its battery state k and its quantized CSI, received through a

limited feedback channel from FC. In particular, we choose a transmit power control strategy

3Equation (3.4) assumes that the energy storage process is lossless. For a lossy storage process, one needs
to model such loss via establishing a functional relationship between Sn,t and En,t, i.e., Sn,t = fn(En,t),
where the function fn(.) can be approximated using the battery type and specifications. Knowing fn(.) and
the pmf of En,t, one can find the pmf of Sn,t using transformation method.
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where Pn,t is proportional to the amount of stored energy in the battery, i.e., kbu Joules,

and the scale factor depends on the feedback information. Mathematically, we express Pn,t

as the following

Pn,t =



0, Γn(xn,t) < θn,

⌊cn,0k⌋bu/Ts, Γn(xn,t) ≥ θn, gn,t ∈ In,0,

...
...

⌊cn,L−1k⌋bu/Ts, Γn(xn,t) ≥ θn, gn,t ∈ In,L−1,

(3.6)

where ⌊.⌋ is the floor function and the scale factors {cn,l}L−1
l=0 are between zero and one. The

number of scale factors is equal to the number of quantization levels and scale factor cn,l

corresponds to the quantization interval In,l = [µn,l, µn,l+1). Given θn, the problem of opti-

mizing transmit power control strategy reduces to finding the best scale factors {cn,l}L−1
l=0 and

the quantization thresholds {µn,l}L−1
l=1 such that a specified performance metric is optimized.

We let the transmit symbol αn,t =
√

Pn,t. Considering the power control strategy in (3.6),

we note that the number of energy units consumed for transmitting symbol αn,t is ⌊cn,lk⌋,

which is an integer between zero and K and is always smaller than k. In other words, the

energy consumption for transmission cannot exceed the stored energy in the battery, and the

battery cannot be fully depleted after a transmission. It also implies that when ⌊cn,lk⌋ = 0

the sensor will not transmit. Note that the scale factors {cn,l}L−1
l=0 in (3.6) play key roles in

balancing the rates of energy harvesting and energy consumption for transmission. Given

the quantization thresholds µn,l’s, when cn,l’s are closer to one, such that the rate of energy

consumption for transmission is greater than the rate of energy harvesting, sensors may stop

functioning, due to energy outage, leading into discontinuities in sensor-FC communication.

When cn,l’s are closer to zero, such that the rate of energy consumption for transmission

is smaller than the rate of energy harvesting, sensors may fail to utilize the excess energy,
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Figure 3.1: Schematics of Markov chain corresponding to the battery state random process Bn,t.

due to energy overflow, leading into a performance degradation. The battery state at the

beginning of slot t+1 depends on the battery state at the beginning of slot t, the harvested

energy during slot t, and the number of stored energy units that is consumed for transmitting

symbol αn,t, i.e., Pn,tTs/bu. Mathematically, we express Bn,t+1 as the following

Bn,t+1 = min
{
[Bn,t + Sn,t − Pn,tTs/bu]+, K

}
, (3.7)

where [x]+ = max{0, x}. Considering the dynamic battery state model in (3.7) we note

that, conditioned on Sn,t and Pn,t the value of Bn,t+1 only depends on the value of Bn,t (and

not the battery states of time slots before t). Hence, the process Bn,t can be modeled as a

Markov chain. Fig. 3.1 is the schematic representation of this (K + 1)-state Markov chain.

Let Φn,t be the probability vector of battery state in slot t

Φn,t ≜
[
Pr(Bn,t = 0), . . . ,Pr(Bn,t = K)

]T
, (3.8)

where the superscript T indicates transposition. We note that Pr(Bn,t = k) in (3.8) depends

on Bn,t−1, Sn,t−1 and Pn,t−1. Assuming that the Markov chain is time-homogeneous4, we let

Ψn be the corresponding (K + 1)× (K + 1) transition probability matrix of this chain with

4A Markov chain is time-homogeneous (stationary) if and only if its transition probability matrix is time-
invariant. Adopting homogeneous Markov chain model for studying EH-enabled communication systems is
widely common [43].
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its (i, j)-th entry ψi,j ≜ Pr(Bn,t = j|Bn,t−1 = i) for i, j = 0, . . . , K. Defining the indicator

function Ii→j(Sn,t,Pn,tTs/bu) as

Ii→j(Sn,t,Pn,tTs/bu) =


1, if j=min

{
[i+ Sn,t − Pn,tTs/bu]+, K

}
,

0, o.w.

(3.9)

We can express ψi,j as below

ψi,j=Π̂n,1

K∑
k=0

L∑
l=0

πn,lqkIi→j(Sn,t, ⌊cn,li⌋) + Π̂n,0

K∑
k=0

qkIi→j(Sn,t, 0). (3.10)

The symbols Π̂n,0 and Π̂n,1 in (3.10) refer to the probabilities of events Pn,t = 0 and Pn,t ̸= 0,

respectively. In particular, we have

Π̂n,0 = Pr(Pn,t=0) = Π0(1−Pfn)+Π1(1−Pdn), Π̂n,1 = Pr(Pn,t ̸=0) = Π0Pfn +Π1Pdn , (3.11)

where the probabilities Pfn and Pdn can be determined using our signal model in (3.1) and

given the local threshold θn

Pfn =Pr(Pn,t ̸=0|ht=0)=Q
(θn+A2/2σ2

vn√
A2/σ2

vn

)
, Pdn =Pr(Pn,t ̸=0|ht=1)=Q

(θn−A2/2σ2
vn√

A2/σ2
vn

)
.

(3.12)

Instead of fixing θn, one can fix Pdn and let Pdn = P d, ∀n. Then the false alarm probability

in can be written as Pfn = Q
(
Q−1(P d) +A/σvn

)
. From a practical perspective, this im-

plies that our optimized power control strategy guarantees fixed detection and false alarm

probabilities at the sensors 5. Going back to the transition probability matrix Ψn, since the

5Our signal model in (3.1) can be extended to include temporally correlated observation noises. Suppose
during time slot t sensor n makes M samples, where the observation noises of these M samples are correlated.
The absence and presence of A can be represented by Ht=1 : xn,t ∼ N (A1,C), Ht=0 : xn,t ∼ N (0,C),∀n,
where xn,t and C, respectively, are M × 1 observation vector and M × M covariance matrix. One can

show Ht = 1 : Γn(xn,t) ∼ N (µ1, σ
2), Ht = 0 : Γn(xn,t) ∼ N (µ0, σ

2),∀n, where µ0 = −A2

2s2 , µ1 =
A2

2s2 , σ
2 =

A2

s2 , s
−2=1TΣ−11. Hence, we find Pfn =Q

( θn+A2/2s2

A/s

)
, Pdn

=Q
( θn−A2/2s2

A/s

)
. Comparing these with Pfn , Pdn

in (3.12) we realize that if σ2
v in (3.1) is equal to s2, then these two different signal models lead to the same

channel-dependent transmit power control strategy and the same detection performance at the FC.
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Markov chain characterized by Ψn is irreducible and aperiodic, there exists a unique steady

state distribution, regardless of the initial state [43]. Let Φn = [ϕn,0, ϕn,1, ..., ϕn,K ]
T be the

unique steady state probability vector with the entries ϕn,k = limt→∞ Pr(Bn,t = k). Note

that this vector satisfies the following eigenvalue equation

Φn = ΦnΨn. (3.13)

In particular, we let Φn be the normalized eigenvector of Ψn corresponding to the unit

eigenvalue, such that the sum of its entries is one [10]. The closed-form expression for Φn

can be written as [25]

Φn = −(ΨT
n − I−B)−11, (3.14)

where B is an all-ones matrix, I is the identity matrix, and 1 is an all-ones column vector.

From this point forward, we assume that the battery operates at its steady state and we

drop the superscript t.

For clarity of the presentation and to illustrate our transmit power control strategy in (3.6),

we consider the following simple example consisting of one sensor, i.e., N = 1, and let

L= 4, K = 6, ρ= 2 and γg1 = 1. To examine the effect of variations of the scale factors

and the quantization thresholds on Ψn and Φn and transmit power, we consider two sets of

values c
(a)
1 = [0.1, 0.3, 0.5, 0.7], µ

(a)
1 = [0, 0.2, 1.4, 3.6, ∞] and c

(b)
1 = [0.3, 0.5, 0.7, 0.9],

µ
(b)
1 = [0, 0.3, 2.5, 4.7, ∞]. The corresponding 7 × 7 transition matrices, denoted as Ψ

(a)
1

and Ψ
(b)
1 , as well as the corresponding 7×1 steady state probability vectors, denoted as Φ

(a)
1

and Φ
(b)
1 are
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Ψ
(a)
1 =



0.13 0.27 0.27 0.17 0.09 0.03 0.04

0 0.13 0.27 0.27 0.18 0.09 0.06

0 0.02 0.15 0.27 0.25 0.16 0.15

0 0 0.02 0.15 0.27 0.26 0.30

0 0 0.02 0.09 0.21 0.25 0.43

0 0 0 0.02 0.09 0.21 0.68

0 0 0 0.02 0.04 0.09 0.85



,

Ψ
(b)
1 =



0.14 0.28 0.28 0.16 0.07 0.04 0.03

0 0.14 0.28 0.28 0.16 0.09 0.05

0 0.06 0.19 0.27 0.22 0.13 0.13

0 0 0.07 0.20 0.27 0.22 0.24

0 0 0.06 0.15 0.22 0.22 0.35

0 0 0 0.07 0.15 0.21 0.57

0 0 0 0.07 0.12 0.14 0.67


.

Φ(a)
n = [0, 0.0004, 0.0027, 0.0290, 0.0640, 0.1195, 0.7844],

Φ(b)
n = [0, 0.0015, 0.0209, 0.1002, 0.1582, 0.1723, 0.5469]

Given these two sets of values, Fig. 3.2 illustrates the two corresponding transmit power

maps assuming bu = 10 mJ and Ts = 10 sec. The transmit power maps in (3.6) show how

much power the sensor should spend for its data transmission, given its battery state k

and the feedback information (i.e., the quantization interval to which the channel gain g1,t

belongs). For instance, for the parameters in Fig. 3.2a, when g1,t ∈ I1,2 and B1,t = 3, then

P1,t = 1 mW, whereas for the parameters in Fig. 3.2b, when g1,t ∈ I1,2 and B1,t = 3, then

P1,t = 2 mW.
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(a) µ
(a)
1 = [0, 0.2, 1.4, 3.6], c

(a)
1 = [0.1, 0.3, 0.5, 0.7] (b) µ

(b)
1 = [0, 0.3, 2.5, 4.7], c

(b)
1 = [0.3, 0.5, 0.7, 0.9]

Figure 3.2: This example shows how much power P1,t the single sensor should spend for its data transmission, given its battery
state and the feedback information.

3.1.3 Received Signals at FC and Optimal Bayesian Fusion Rule

In each time slot sensors send their data symbols to the FC over orthogonal fading channels.

The received signal at the FC from sensor n corresponding to time slot t is

yn,t = gn,t αn,t + wn,t, for n = 1, . . . , N (3.15)

where wn,t ∼ N (0, σ2
wn
) is the additive Gaussian noise and αn,t =

√
Pn,t. We assume wn,t’s

are i.i.d. over time slots and independent across sensors. Let yt = [y1,t, y2,t, . . . , yN,t] denote

the vector that includes the received signals at the FC from all sensors in time slot t. The

FC applies the optimal Bayesian fusion rule Γ0(.) to the received vector yt and obtains a

global decision u0,t = Γ0(yt), where u0,t ∈ {0, 1} [16]. In particular, we have

u0,t = Γ0(yt) =


1, ∆t > τ,

0, ∆t < τ,

(3.16)

where the decision threshold τ = log(Π0

Π1
) and

31



∆t = log

(
f(yt|ht = 1)

f(yt|ht = 0)

)
, (3.17)

and f(yt|ht) is conditional probability density function (pdf) of the received vector yt at

FC.

3.1.4 Our Proposed Constrained Optimization Problem

From Bayesian perspective, the natural choice to measure the detection performance corre-

sponding to the global decision u0,t at the FC is the error probability, defined as

Pe=Π0 Pr(u0,t=1|ht=0)+Π1 Pr(u0,t=0|ht=1)=Π0 Pr(∆t >τ |ht=0)+Π1 Pr(∆t<τ |ht=1).

(3.18)

However, finding a closed form expression for Pe is often mathematically intractable. Instead,

we choose the total J-divergence between the distributions of the detection statistics at the

FC under different hypotheses ( which will be defined in Section 3.2), as our detection

performance metric. This choice allows us to provide a more tractable analysis. Recall that

the J-divergence and Pe are related through Pe > Π0Π1e
−J/2 [18]. Hence, maximizing the

J-divergence is equivalent to minimizing the lower bound on Pe.

Our goal is to find the scale factors {cn,l}L−1
l=0 and the quantization thresholds {µn,l}L−1

l=1 in the

transmit power control strategy (3.6) for all sensors such that the total J-divergence at the

FC is maximized, subject to an average transmit power per sensor constraint. We assume

that this optimization problem is solved offline at the FC, given (i) the statistical informa-

tion of fading channels and noises (including communication channel noise and observation

noise) and randomly arriving energy units, and (ii) the battery parameter K, the number

32



of quantization levels L, and the given P d for local detectors at the sensors. The solutions

to this optimization problem is available a a priori at the FC and the sensors, to be utilized

for controlling and adapting transmit power according to (3.6). The idea of offline power

control optimization with a limited feedback channel has been used before for distributed

detection systems in WSNs [31]. Note that, from this point forward, we assume that the

battery operates at its steady state and we drop the superscript t.

3.2 Characterization of Total J-divergence and Error Probability

In this section, first we define the total J-divergence and then derive a closed-form expression

for it in Section III.A, using Gaussian distribution approximation. Next, considering Pe in

(3.18) we provide a closed-form approximate expression for it in Section III.B, using the

same Gaussian distribution approximation and Lindeberg central limit theorem (CLT).

3.2.1 Total J-Divergence Derivation

We start with the definition of J-divergence. Consider two pdfs of a continuous random

variable x, denoted as η1(x) and η2(x). By definition [18], [30], the J-divergence between

η1(x) and η0(x), denoted as J(η1, η0), is

J(η1, η0) = D(η1||η0) +D(η0||η1), (3.19)

where D(ηi||ηj) is the non-symmetric Kullback-Leibler (KL) distance between ηi(x) and

ηj(x). The KL distance D(ηi||ηj) is defined as

D(ηi||ηj) =
∫ ∞

−∞
log

(
ηi(x)

ηj(x)

)
ηi(x)dx. (3.20)
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Substituting (3.20) into (3.19) we obtain

J(η1, η0) =

∫ ∞

−∞
[η1(x)− η0(x)] log

(
η1(x)

η0(x)

)
dx. (3.21)

In our problem setup, the two conditional pdfs f(y|h = 1) and f(y|h = 0) play the role

of η1(x) and η0(x), respectively. Let Jtot denote the J-divergence between f(y|h = 1) and

f(y|h = 0). The pdf of vector y given h is

f(y|h) (a)
=

N∏
n=1

f(yn|h)
(b)
=

N∏
n=1

f(yn|αn, h) Pr(αn|h)
(c)
=

N∏
n=1

f(yn|αn) Pr(αn|h)︸ ︷︷ ︸
=f(yn|h)

, for h = 0, 1.

(3.22)

Equality (a) in (3.22) holds since the received signals from sensors at the FC, given h, are

conditionally independent, equality (b) in (3.22) is obtained from Bayes’ rule, and equality

(c) in (3.22) is found noting that H, αn, yn satisfy the Markov property, i.e., H → αn → yn

[18], [30] and hence yn and H, given αn, are conditionally independent. Let Jn represent the

J-divergence between the two conditional pdfs f(yn|h = 1) and f(yn|h = 0). Using (3.21)

we can express Jn as

Jn =

∫ ∞

−∞

[
f(yn|h = 1)−f(yn|h = 0)

]
log

(
f(yn|h = 1)

f(yn|h = 0)

)
dyn. (3.23)

Based on (3.22) we have Jtot =
∑N

n=1 Jn. To calculate Jn, we need to find the conditional

pdf f(yn|h). Considering (3.15) we realize that yn, given αn, is Gaussian. In particular, we

have
f(yn|αn = 0) = N (0, σ2

wn
), f(yn|αn ̸= 0) = N (gnαn, σ

2
wn
) (3.24)

Also, considering (3.12) and noting that αn =
√
Pn we find

Pr(αn ̸= 0|h = 0) = Pfn , Pr(αn ̸= 0|h = 1) = Pdn ,

Pr(αn = 0|h = 0) = 1−Pfn , Pr(αn = 0|h = 1) = 1−Pdn .
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Substituting (3.24) and (3.25) in (3.22), the conditional pdfs f(yn|h = 0) and f(yn|h = 1)

become

f(yn|h = 0) = f(yn|αn ̸= 0)Pfn + f(yn|αn = 0)(1− Pfn),

f(yn|h = 1) = f(yn|αn ̸= 0)Pdn + f(yn|αn = 0)(1− Pdn).

Although f(yn|αn = 0) and f(yn|αn ̸= 0) in (3.25) are Gaussian, f(yn|h = 0) and f(yn|h = 1)

are Gaussian mixtures, due to Pdn and Pfn . Unfortunately, the J-divergence between two

Gaussian mixture densities does not have a general closed-form expression. Similar to [18],

[30] we approximate the J-divergence between two Gaussian mixture densities by the J-

divergence between two Gaussian densities fG(yn|h) ∼ N (mn,h,Υ
2
n,h), where the mean mn,h

and the variance Υ2
n,h of the approximate distributions are obtained from matching the first

and second order moments of the actual and the approximate distributions. For our problem

setup, one can verify that the parameters mn,h and Υ2
n,h become

mn,0=gnαnPfn , Υ
2
n,0=g

2
nα

2
nPfn(1−Pfn)+σ

2
wn
,

mn,1=gnαnPdn , Υ
2
n,1=g

2
nα

2
nPdn(1−Pdn)+σ

2
wn
.

(3.25)

The J-divergence between two Gaussian densities, represented as J
(
fG(yn|h = 1), fG(yn|h =

0)
)
, in terms of their means and variances is [18]

J
(
fG(yn|h = 1), fG(yn|h = 0)

)
=

Υ2
n,1+(mn,1−mn,0)

2

Υ2
n,0

+
Υ2
n,0+(mn,0−mn,1)

2

Υ2
n,1

. (3.26)

Substituting mn,h and Υ2
n,h into Jn in (3.26) we approximate Jn as the following

Jn =
σ2
wn

+ Ang
2
nα

2
n

σ2
wn

+Bng2nα
2
n

+
σ2
wn

+ Cng
2
nα

2
n

σ2
wn

+Dng2nα
2
n

, (3.27)
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where

An = Pfn(1−Pdn) + Pdn(Pdn−Pfn), Bn = Pdn(1− Pdn)

Cn = Pdn(1− Pfn)− Pfn(Pdn − Pfn), Dn = Pfn(1− Pfn).

3.2.2 Error Probability Approximation

In this section, we provide a closed-form approximate expression for Pe in (3.18). To find

the approximate expression for Pe, we approximate ∆ in (3.17) using a similar Gaussian

distribution approximation as we conducted in Section 3.2.1. In Section 3.2.1 we approxi-

mated the conditional pdf f(yn|h) with fG(yn|h) = N (mn,h,Υ
2
n,h), where the mean mn,h and

the variance Υ2
n,h of the approximate distribution are provided in (3.25). Relying on this

Gaussian distribution approximation, we can also approximate the conditional pdf f(y|h).

In particular, since the received signals at the FC, conditioned on h, are independent across

sensors (see (3.22-a)), we can approximate f(y|h) with fG(y|h) = N (φh,Λh), where φh and

Λh are the mean vector and the diagonal covariance matrix with elements mn,h and Υ2
n,h, re-

spectively. Using this Gaussian distribution approximation, we can approximate ∆ in (3.17)

as

∆ ≈ log

(
fG(y|h = 1)

fG(y|h = 0)

)
= log

(√
detΛ0exp

(
−1

2
(y − φ1)

TΛ−1
1 (y − φ1)

)
√
detΛ1exp

(
−1

2
(y − φ0)TΛ

−1
0 (y − φ0)

))

=R− 1

2
(y−φ1)

TΛ−1
1 (y−φ1) +

1

2
(y−φ0)

TΛ−1
0 (y−φ0),

where R = log
(√

detΛ0√
detΛ1

)
. Since the covariance matrices Λ0 and Λ1 are diagonal, the approx-

imate expression for ∆ in (3.28) can be rewritten as

∆ ≈ R +
1

2
∆′
N , ∆

′
N =

N∑
n=1

zn, zn =
(yn −mn,0)

2

Υ2
n,0

− (yn −mn,1)
2

Υ2
n,1

, (3.28)
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With the Gaussian distribution approximation, the optimal fusion rule in (3.16) can be

approximated with

u0 =


1, ∆′

N > τ ′,

0, ∆′
N < τ ′,

(3.29)

where ∆′
N is given in (3.28) and τ ′ = 2(τ − R). The error probability corresponding to the

fusion rule in (3.29) is

Pe = Π0 Pr(∆
′
N > τ ′|h = 0) + Π1 Pr(∆

′
N < τ ′|h = 1). (3.30)

To find Pe in (3.30) we need the pdf of ∆′
N given h. We note that zn in (3.28) can be

rewritten as a quadratic function of yn

zn = ay2n + byn + c, where a =
1

Υ2
n,0

− 1

Υ2
n,1

, b =
2mn,1

Υ2
n,1

− 2mn,0

Υ2
n,0

, c =
m2
n,0

Υ2
n,0

−
m2
n,1

Υ2
n,1

. (3.31)

Let µzn|h and σ2
zn|h, denote the mean and variance of zn in (3.31) given h, respectively. To

find µzn|h, σ
2
zn,h

we recall the following fact.

Fact: Let x ∼ N(µ, σ2) be a Gaussian random variable with the mean E{x} = µ and the

variance σ2 = E{x2} − µ2. Then we have [44]:

E{x2} = µ2 + σ2, E{x3} = µ(µ2 + 3σ2), E{x4} = µ4 + 6µ2σ2 + 3σ4. (3.32)

Using this fact, we find

µzn|h = a(m2
n,h+Υ2

n,h) + bmn,h+ c, σ2
zn|h = 2a2(2m2

n,h+Υ4
n,h) + bΥ2

n,h(b+4 amn,h), (3.33)

where a, b, c are given in (3.31) and mn,h,Υ
2
n,h are given in (3.25). Relying on the Gaussian

distribution approximation of yn given h, we can derive the pdf of zn given h, where the pdf

expression is provided in (3.34).
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f(zn|h) =
1

g(zn)

{
fGyn|h

(Υ2
n,0Υ

2
n,1

2
g(zn)+mn,0Υ

2
n,1−mn,1Υ

2
n,0

)
+fGyn|h

(−Υ2
n,0Υ

2
n,1

2
g(zn)+mn,0Υ

2
n,1−mn,1Υ

2
n,0

)}
,

g(zn) =
2

Υn,1Υn,1

√
(mn,0 −mn,1)2 + zn(Υ2

n,1 −Υ2
n,0). (3.34)

Since given h, zn’s are independent, the pdf of ∆′
N given h, is convolution of these N

individual pdfs, which does not have a closed-form expression. This indicates that, even

with the Gaussian distribution approximation, finding a closed-form expression of Pe in

(3.30) for finite N remains elusive. Hence, we resort to the asymptotic regime when N grows

very large and invoke the central limit theorem (CLT) to approximate Pe in (3.30).

Lindeberg CLT is a variant of CLT, where the random variables are independent, but not

necessarily identically distributed [45]. Let µ∆′
N |h and σ2

∆′
N |h indicate the mean and variance

of ∆′
N in (3.28) given h. We have µ∆′

N |h =
∑N

n=1 µzn|h and σ2
∆′

N |h =
∑N

n=1 σ
2
zn|h. Assuming

Lindeberg’s condition, given below, is satisfied

lim
N→∞

1

σ2
∆′

N |h

N∑
n=1

E{(zn − µzn|h)
2} = 0, (3.35)

then, as N goes to infinity, the normalized sum (1/σ2
∆′

N |h)
∑N

n=1(zn − µzn|h) converges in

distribution toward the standard normal distribution

1

σ2
∆′

N |h

N∑
n=1

(zn − µzn|h)
d→ N (0, 1), (3.36)

where
d→ indicates convergence in distribution. Using (3.36) we can approximate Pe in (3.30)

using Q-function

Pe = Π0Q
(τ ′ − µ∆′

N |0

σ2
∆′

N |0

)
+Π1

[
1−Q

(τ ′ − µ∆′
N |1

σ2
∆′

N |1

)]
. (3.37)
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3.3 Formulating Our Optimization Problem

As we stated before, our objective is to find the scale factors {cn,l}L−1
l=0 and the quantization

thresholds {µn,l}L−1
l=1 in the transmit power control strategy (3.6) for all sensors such that

the total J-divergence at the FC is maximized, subject to an average transmit power per

sensor constraint. We formulate the optimization problem, via writing the cost function and

the constraints in terms of the optimization variables. Recall total J-divergence at the FC

is Jtot =
∑N

n=1 Jn, where Jn in given in (3.27), and transmit power per sensor Pn is given

in (3.6). We note that Jn depends on gn value, whereas Pn depends on the quantization

interval to which gn belongs. The dependency of Jn on gn stems from the fact that the FC

has full knowledge of all channel gains gn’s, and the optimal Bayesian fusion rule utilizes

this full information. Hence, the error probability Pe and its bound Jtot depend on this full

information. On the other hand, sensor n only knows the quantization interval to which gn

belongs, and adapts its transmit power Pn according to this partial knowledge as well as its

battery state. We seek the best {cn,l}L−1
l=0 and {µn,l}L−1

l=1 , such that the solutions we obtain

that do not depend on the specific channel gain realizations. Hence, we take the average of

Jn and Pn over gn, conditioned that gn ∈ [µn,i, µn,i+1). By taking such a conditional average

over gn, the solutions we obtain do not depend on the specific channel gain realizations

and are valid, as long as the channel gain statistics remain unchanged. The problem can be

solved offline and its solutions can become available a a prioriat the FC and the sensors. Let

J̄
(i)
n =E{Jn|gn ∈ [µn,i, µn,i+1)} and P̄(i)

n =E{Pn|gn ∈ [µn,i, µn,i+1)}, respectively, denote the

expectations of Jn and Pn over gn and, conditioned that gn ∈ [µn,i, µn,i+1). In the following,

we compute the two conditional expectations J̄
(i)
n and P̄(i)

n , in terms of the optimization

variables. To compute J̄
(i)
n we use the following fact.
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Fact: Suppose random variable x has an exponential distribution with parameter λ, i.e., the

pdf of x is f(x) = λe−λx. Consider the function h(x) = a+bx
c+dx

, with given constants a, b, c

and d. Then, the average of h(x), conditioned on x being in the interval [µi, µi+1) is

E{h(x)|x ∈ [µi, µi+1)} =

∫ µi+1

µi

h(x)f(x)dx

=
1

d

[
aβ(µi+1)−

bc

d
β(µi+1)− be−λµi+1 − aβ(µi)−

bc

d
β(µi)− be−λµi

]
,

where

β(x) = λexp(
cλ

d
) Ei

(
− λx− cλ

d

)
, Ei(z) =

∫ ∞

−z

e−t

t
dt.

Using this fact and letting a1 = a2 = c1 = c2 = σ2
wn
, b1 = Anα

2
n, b2 = Cnα

2
n, d1 = Bnα

2
n and

d2 = Dnα
2
n, where An, Bn, Cn, Dn are given in (3.27), we reach at

J̄ (i)
n =

K∑
k=0

ϕn,kπn,i

[
Ω(⌊cn,ik⌋, µ2

n,i+1)− Ω(⌊cn,ik⌋, µ2
n,i)
]
, (3.38)

where the two dimensional function Ω(x, y) in (3.38) is

Ω(x, y) ≜
1

Bnx

[
σ2
wn
β1(x, y)−

An
Bn

σ2
wn
β1(x, y)− Anxe

(−yγgn )
]

+
1

Dnx

[
σ2
wn
β2(x, y)−

Cn
Dn

σ2
wn
β2(x, y)− Cnxe

(−yγgn )
]
, (3.39)

and the two dimensional functions β1(x, y) and β2(x, y) in (3.39) are

β1(x, y)≜γgnexp
(σ2

wn
γgn

xBn

)
Ei
(
−γgny−

σ2
wn
γgn

xBn

)
, β2(x, y)≜γgnexp

(σ2
wn
γgn

xDn

)
Ei
(
−γgny−

σ2
wn
γgn

xDn

)
.

We can compute P̄(i)
n using (3.6) as the following

P̄(i)
n = Π̂n,1

K∑
k=0

ϕn,kπn,i⌊cn,ik⌋ (3.40)
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We formulate our problem, denoted as (3.P1), as the following

max
{cn,l}L−1

l=0 ,{µn,l}L−1
l=1 ,∀n

N∑
n=1

L−1∑
i=0

J̄ (i)
n(3.P1)

s.t. cn,l ∈ [0, 1], l = 0, ..., L− 1,∀n, 0 < µn,l <∞, l = 1, ..., L− 1,∀n,
L−1∑
i=0

P̄(i)
n ≤ P0, ∀n, Φn = −(ΨT

n − I−B)−11, ∀n

Regarding the implementation of (3.P1) a remark follows.

Remark: We note that cost function and the constraints in (3.P1) are decoupled across

sensors. Hence, (3.P1) can be decomposed into n sub-problems, denoted as (3.P2), as the

following

max
{cn,l}L−1

l=0 ,{µn,l}L−1
l=1

L−1∑
i=0

J̄ (i)
n(3.P2)

s.t. cn,l ∈ [0, 1], l = 0, ..., L− 1, 0 < µn,l <∞, l = 1, ..., L− 1,

L−1∑
i=0

P̄(i)
n ≤ P0, Φn = −(ΨT

n − I−B)−11.

This implies that solving (3.P1) is equivalent to solving (3.P2) N times for n = 1, ..., N . It

also implies that solving 3.(P1) can lend itself to a distributed implementation, where sensor

n solves its corresponding (3.P2) independent of the other sensors. For implementing our

proposed power control strategy, we assume that the FC solves (3.P1) once. Based on the

obtained solution, in each time slot t the FC quantizes gn,t’s and informs sensor n of the

quantization interval to which gn,t belongs, via a limited feedback channel. Sensor n solves its

corresponding (3.P2) once, and based on the obtained solution it sets up its transmit power

control strategy in (3.6) once. Then, in each time slot t sensor n chooses its transmit power

41



Pn,t according to (3.6), considering its battery state and the received feedback information.

It is worth mentioning the difference between optimizing the total J-divergence and the

approximate Pe expression in (3.37). Different from (3.P1), the approximate Pe expression

in (3.37) cannot be decoupled across sensors. Therefore, constrained minimization of Pe does

not render itself to a distributed implementation, i.e. each sensor needs to solve (3.P1), with

Pe in (3.37) being the cost function, which ensues a much higher computational complexity.

Remark 2: With respect to the power allocation optimization problem in [18] for orthogonal

channels, our (3.P1) has a different objective function, different constraints, and different

optimization variables. In particular, our objective function and average transmit power per

sensor constraint depend on (i) the battery size K and the number of quantization levels

L, (ii) the stochastic energy arrival model, through the battery steady state probabilities

ϕn,k = limt→∞ Pr(Bn,t = k) for k = 1, ..., K, and (iii) the fading channel model through the

probabilities πn,i for i=0, ..., L− 1.

3.4 Solving Problem (3.P1)

Since solving (3.P1) is equivalent to solving (3.P2) N times, in this section we focus on

solving (3.P2). Let examine how the cost function and the constraints in (3.P2) depend on

the optimization variables.

• Dependency of J̄
(i)
n : Considering (3.38), its explicit dependency on {cn,l, µn,l}’s is clear. It

also depends implicitly on {cn,l, µn,l}’s through the probabilities πn,l’s and the vector entries

ϕn,k’s. Recall that ϕn,k’s are the entries of vector Φn given in (3.14). This vector depends

on the matrix Ψn, whose entries are given in (3.10) and depend on {cn,l, µn,l}’s.

• Dependency of P̄(i)
n : Considering (3.40), its explicit dependency on cn,l’s is clear. It also

42



depends implicitly on {cn,l, µn,l}’s through πn,l’s and ϕn,k’s.

• Dependency of Φn: It depends implicitly on {cn,l, µn,l}’s. We note that problem (3.P2)

is not concave with respect to the optimization variables. Moreover, the objective func-

tion and the constraints in (3.P2) are not differentiable with respect to the optimization

variables. Hence, existing gradient-based algorithms for solving non-convex optimization

problems cannot be used to solve (3.P2).

3.4.1 Deterministic Search Method

We resort to a grid-based search method, which requires (2L − 1)-dimensional search over

the search (parameter) space [0, 1]L × (0,∞)L−1. To curb the computational complexity of

this grid-based search, we can limit µn,l’s to a maximum value, denoted as µmax. We refer

to the solution obtained from solving (P2) using this method the optimal solution, in the

sense that it is the best attainable solution for (P2). Clearly, the accuracy of this solution

depends on the resolution of the grid-based search. Suppose the intervals [0, 1] and (0, µmax]

are divided into Nc and Nµ sub-intervals, respectively. Therefore, the search space of (P2),

denoted as D, consists of (Nc)
L(Nµ)

L−1 discrete points in the original (2L− 1)-dimensional

search space.

• Computational complexity of obtaining the optimal solution for (P2): We note that the

solver unit (either FC or sensor n) needs to perform two tasks for each point in D: task (i)

forming Ψn and solving (3.14) to find Φn, task (ii) calculating J̄
(i)
n and P̄(i)

n . Our numerical

results show that for a fixed {cn,l}L−1
l=0 and {µn,l}L−1

l=1 the computational complexity of task (i)

and task (ii) are O(K3.2) and O(K1.1), respectively. Hence, the computational complexity

of finding the optimal solution for (P2) is O
(
NL
c N

L−1
µ (K3.2 +K1.1)

)
.
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3.4.2 Random Search Method

Finding the optimal solution of (P2) using the grid-based search, as described above, requires

searching search space D deterministically. In contrast, in a random search algorithm, only

a randomly chosen subset of the points in D is searched to find a solution. The size of

this subset can be chosen to be smaller than (Nc)
L(Nµ)

L−1, and hence, the computational

complexity of finding a solution using a random search algorithm can be significantly lowered.

We refer to the solution obtained from solving (P2) using a random search algorithm the

c-optimal solution, in the sense that it is a close-to-optimal solution.

Among the random search algorithms in the literature, we choose the so-called “Recursive

Random Search (RRS) algorithm” [46]. Our reason for this choice is that the authors in [46]

showed that RRS algorithm outperforms significantly the traditional search algorithms (e.g.,

genetic algorithms, multi-start hill climbing algorithms, and simulated annealing algorithm)

for most optimization problems. RRS algorithm consists of two phases: exploration (global)

phase and exploitation (local) phase. In exploration phase, the algorithm performs random

sampling from the entire sample spaceD, to inspect the overall form of the objective function,

and to identify “promising areas” in D [46]. In exploitation phase, the algorithm continues to

search only within the identified “promising areas”, using recursive random sampling. As the

search continues, the sample space is shrunk gradually (according to the previously drawn

samples), and the algorithm learns more details of the objective function, until it finally

converges to a local optimum, which will be considered as the solution of the optimization

problem in hand [46]. For our work to be self-contained, in the following we overview RRS

algorithm, with reference to the lines in the pseudo-code of Algorithm 1.

• Exploration Phase: To describe this phase and to illustrate the efficiency of RRS algo-

rithm in finding the solution of (3.P2), we need to first introduce the following notations
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and concepts. Suppose x=[cn,0, ..., cn,L−1, µn,1, ...µn,L−1] denote a sample (point) in D, and

Jmin, Jmax indicate the minimum and the maximum values of the objective function, respec-

tively. We define the distribution function of the objective function values as r = m(AD(r))
m(D)

,

for r ∈ [0, 1], where m(.) denotes the cardinality of the set. Given r value, set AD(r) ⊂ D

with the cardinality m(AD(r)) = r × m(D) is the set of points in D whose values of the

objective function exceed a threshold Jtr ∈ [Jmin, Jmax]. AD(r) =
{
x ∈ D|

∑L−1
i=0 J̄

(i)
n (x) ≥

Jtr(r)
}
, m(AD(r))=r×m(D). For this reason AD(r) is called the r-percentile set in D [46].

We note that AD(1) = D and limr→0AD(r) converges to the global optimum of the prob-

lem [46]. Now, consider the r-percentile set AD(r) in D and its corresponding Jtr(r) value.

The goal in exploration phase is to reach a point in AD(r) with probability p, via random

sampling. The question is: how many random samples of D should we draw, such that we

reach a point in AD(r) with probability p?

To answer this question, let X={xj}Q1

j=1 be the set of randomly drawn samples from D that

satisfy the average transmit power constraint in (P2), and x∗j ∈X provides the largest value

of the objective function. We have p = Pr
(
x∗j ∈ AD(r)

)
= 1−Pr

(
x∗j /∈ AD(r)

)
=1−(1−r)Q1 .

Solving p for r we reach at r = 1 − (1 − p)1/Q1 . Solving p for Q1 we obtain Q1 = ln(1−p)
ln(1−r) .

For any probability value p, as Q1 increases, r tends to 0 and limr→0AD(r) converges to the

global maximum of (3.P2).

Lines 2,3,4 of the pseudo-code correspond to this phase. We take Q1 random samples from

D, each denoted as xq1 , and put them in X t = {xq1}
Q1

q1=1 and initialize X = {}. For each

sample xq1 ∈ X t, we check whether the average transmit power constraint is held. If the

constraint is satisfied, xq1 is added to X. If the constraint is not satisfied, we take another

sample from the set D\X t and add this new sample to X t. We repeat this procedure until

m(X) reaches Q1. Using the samples in X={xj}Q1

j=1, the algorithm computes the threshold

Jtr.
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Having the setX, whose elements represent the “promising areas” in D, the algorithm enters

exploitation phase. Any future sample we encounter in the next phase that has a greater

value of the objective function than Jtr belongs to AD(r).

• Exploitation Phase: Consider X = {xj}Q1

j=1. For each sample xj ∈X we first determine

several neighborhoods6

Nρ(xj) for ρ=1, ..., ρ0, such that m(Nρ(xj))<m(Nρ+1(xj)). Given the parameter7 Q2, the

description of the recursive random search in these neighborhoods to find the solution of

(3.P2) follows.

For each sample xj ∈X, we start by letting the search space be S = Nρ0(xj), and search

S hoping to to find a better sample than xj. In particular, we take Q2 random samples

from Nρ0(xj), each denoted as xq2 , and put them in Y t= {xq2}
Q2

q2=1 and initialize Y j = {}.

For each sample xq2 ∈Y t, we check two conditions: (i) whether the average transmit power

constraint is held, (ii) whether the objective function evaluated at xq2 provides a lager value

than Jtr. If both constraints are satisfied, xq2 is added to Y j. After checking all samples in

Y t we examine Y j. Depending on whether Y j ̸={}, meaning there exists at least one better

sample than xj in S, or Y j = {}, meaning no better sample than xj is found in S, we take

two different actions.

If Y j ̸= {} we select the sample in Y j that provides the largest value of the objective

function, denoted as x∗i , and replace xj∈X with x∗i , and change S from Nρ0(xj) to Nρ0(x
∗
i ),

and continue with searching the new S. This procedure of changing the center of S (without

6The neighborhood Nρ(xj), for ρ = 1, ..., ρ0, is the set of samples that are neighbors of xj . Its size
m(Nρ(xj)) depends on the dimensionality of search space D ((2L − 1) here) and the resolution of the grid
(parameters Nc, Nµ here). To identify different neighborhoods of xj , we have used MATLAB’s function
neighbourND. For instance, for L = 2 and Nc = 10, Nµ = 100 we have m(N1(xj)) = 17, m(N2(xj)) = 60,
m(N3(xj))=139.

7To enable efficient random search even in the smallest neighborhood we choose Q2 < m(N1(.)).
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shrinking it) in exploitation phase is called “re-align sub-phase” [46]. However, if Y j={} we

shrink S by changing S to Nρ0−1(xj). This procedure of shrinking S (without changing its

center) in exploitation phase is called “shrink sub-phase” [46]. When searching Nρ0−1(xj),

if we find a better sample than xj, we replace xj∈X with this better sample. Otherwise, we

further shrink S by changing S to Nρ0−2(xj). We alternatively perform re-align and shrink

sub-phases for xj, until we get to search the smallest neighborhood N1(.) of a sample. Note

that we limit the number of times we perform re-align sub-phase during the exploitation

procedure for xj to Q1, relying on the fact that after drawing Q1 samples from D we reach

a point in AD(r) with probability p. At this point, the exploitation procedure for xj ends,

and xj ∈ X is either kept unchanged or replaced with a better sample that is found during

its exploitation procedure. We repeat the exploitation procedure for all samples in X,

and at the end we obtain a refined and fully exploited X. We let the solution of (P2) be

argmaxxj∈X(
∑L

i=0 J̄
(i)
n (xj)).

• Computational complexity of obtaining the c-optimal solution for (3.P2): We note that

during the exploitation phase the solver unit needs to perform repeatedly the same two

tasks, task (i) and task (ii) in Section 3.4.1, with computational complexity O (K3.2) and

O (K1.1), respectively. To find out the number of repetition of tasks, we focus on the ex-

ploitation procedure for xj ∈ X. After each performance of re-aligning S or shrinking

S, we randomly search S. i.e., we evaluate the objective function Q2 times. Hence, the

number of repetition of tasks for each xj ∈ X is equal to Q2×#(performing re-align)×

#(performing shrink). Since #(performing re-align) ≤ Q1 and #(performing shrink) ≤ ρ0,

the computational complexity corresponding to the exploitation procedure for xj ∈ X is

upper bounded by O (Q2Q1ρ0(K
3.2 +K1.1)). Therefore, the computational complexity of

finding the c-optimal solution for (P2) is upper bounded by O (Q2Q
2
1ρ0(K

3.2 +K1.1)).
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Algorithm 1: pseudo-code of RRS algorithm
1: Initialization phase:

• Set parameter space D with (Nc)
L × (Nµ)

L−1 points;

• Initialize exploration parameters (p, r) and let Q1 = ln (1− p)/ ln (1− r);

• Initialize exploitation parameter Q2 based on (Nc, Nµ, L);

2: Start exploration phase, take Q1 uniform random samples from D and put them in Xt = {xq1}
Q1

q1=1,

initialize X= {};
3: repeat

for xq1 ∈ Xt do

if
∑L−1

i=0 P̄(i)
n (xq1) ≤ P0 then

Put xq1 in X;
else

Take another sample from D\Xt and add it to Xt;
end

end

until m(X) = Q1;

4: Calculate the threshold using the samples in X = {xj}Q1

j=1, Jtr = 1/Q1

∑Q1

j=1

(∑L−1
i=0 J̄

(i)
n (xj)

)
;

5: Start exploitation phase, determine the neighborhoods of sample xj as N1(xj), N2(xj), ..., Nρ0
(xj);

for xj ∈ X do
Initialize Y j = {}, I = 0, Take Q2 uniform random samples from Nρ(xj) and put them in

Y t={xq2}
Q2

q2=1;

for xq2 ∈ Y t do

if
∑L−1

i=0 J̄
(i)
n (xq2)≥Jtr &

∑L−1
i=0 P̄(i)

n (xq2)≤P0 then
Add xq2 to Y j ;

end

end
if Y j ̸= {} & I < Q1 then

x∗
i =argmaxxi∈Y j

(
∑L−1

i=0 J̄
(i)
n (xi)), replace xj ∈ X with x∗

i , change the search space from
Nρ(xj) to Nρ(x

∗
i );

I = I + 1;

else
change the search space from Nρ(xj) to Nρ−1(xj) ;

end

end

6: xopt=argmaxxj∈X(
∑L−1

i=0 J̄
(i)
n (xj));

3.4.3 Hybrid Deterministic-Random Search Method

In this section we propose a hybrid method to find the optimization variable {cn,l, µn,l}’s.

In particular, we first obtain the quantization thresholds {µn,l}’s using a different objec-

tive function. Then given the optimized {µn,l}’s, we solve (3.P3), given below, using RRS

48



algorithm.

max
{cn,l}L−1

l=0

L−1∑
i=0

J̄ (i)
n(3.P3)

s.t. cn,l ∈ [0, 1], l = 0, ..., L− 1,
L−1∑
i=0

P̄(i)
n ≤ P0, Φn = −(ΨT

n − I−B)−11.

We refer to the solution we obtain using this hybrid method the sub-optimal solution, in the

sense that it is worse than the optimal solution. The sub-optimal solution is also worse than

c-optimal solution for two reasons: (i) we detangle optimizing {µn,l}’s and {cn,l}’s, (ii) we use

a different objective function to optimize {µn,l}’s. The main advantage of using this hybrid

method is that finding the sub-optimal solution has a lower computational complexity than

that of the c-optimal solution. Our numerical results in Section 3.5 show that the objective

function values at the c-optimal and the sub-optimal solutions are very close to each other

and also very close to that of the optimal solution.

In the following, we consider two different objective functions that we use to obtain the

optimal {µn,l}’s. To motivate these objective functions, we consider the input-output rela-

tionship of the quantizer in Section 3.1.2 ḡn = Q(gn). If the quantizer input gn lies in the

interval In,l then the quantizer output is ḡn = µn,l. The quantization error is en = gn − ḡn.

3.4.3.1 Finding {µn,l}’s via Minimizing Mean Absolute Error (MMAE)

The first objective function we consider is mean of absolute quantization error (MAE),

denoted as E{|gn − ḡn|}. We can express MAE as follows.

E{|gn − ḡn|} =
L−1∑
l=0

∫ µn,l+1

µn,l

(x− µn,l)fgn(x)dx (3.41)
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To find {µn,l}’s that minimize MAE, we take the first derivative of MAE with respect to µn,l

and set the derivative equal to zero. We reach at

Fgn(µn,l+1) = Fgn(µn,l) + (µn,l − µn,l−1)fgn(µn,l) (3.42)

Recall µn,0=0 and µn,L=∞, and hence Fgn(0)=0 and Fgn(∞) = 1. We initiate µn,1 and find

µn,2 using (3.42). Having µn,1, µn,2, we find µn,3 using (3.42). We repeat this until we find

all {µn,l}’s. At this point, we check whether the condition Fgn(∞) = 1 is met. If Fgn(∞) is

less (greater) than one, we increase (decrease) the initial value of µn,1 and find a new set of

values for {µn,l}’s. We continue changing the initial value of µn,1 and finding new values for

{µn,l}’s, until the condition Fgn(∞) = 1 is satisfied.

3.4.3.2 Finding {µn,l}’s via Maximizing output Entropy (MOE)

The second objective function we consider is the mutual information between gn and ḡn,

denoted as I(gn; ḡn). We have I(gn; ḡn)=H(ḡn)−H(ḡn|gn), where H(x) denotes the entropy

of discrete random variable x. To find {µn,l}’s that maximize I(gn; ḡn), we note thatH(ḡn|gn)

is zero, since ḡn = Q(gn) and hence, given gn, ḡn is also known. Furthermore, H(ḡn) is

maximized when ḡn follows a uniform distribution, i.e., we set πn,l=Pr(µn,l≤gn<µn,l+1)=

1
L+1

, and the threshold µn,l can be obtained as µn,l=γgn ln
(
1− l

L+1

)
.

• Computational complexity of finding the sub-optimal solution for (3.P2): This compu-

tational complexity is the sum of two terms. The first term is the computational com-

plexity of finding {cn,l}’s using RRS algorithm in Section 3.4.2, and is upper bounded by

O (Q2Q
2
1ρ0(K

3.2 +K1.1)). We note that Q2 in this section is chosen according to m(N1(.)),

which depends on (L,Nc), whereas Q2 in Section 3.4.2 is chosen according tom(N1(.)), which
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depends8 on (L,Nc, Nµ). Hence, Q2 here is smaller than Q2 in Section 3.4.2. The second

term is the computational complexity of finding {µn,l}’s via optimizing one of the two objec-

tive functions in this section. The computational complexity of finding {µn,l}’s via MMAE

is negligible, due to the simplicity of solving (3.42). Our simulations show that for different

L values, solving (3.42) takes only several msec. The computational complexity of finding

{µn,l}’s via MOE is almost zero, due to the available closed-form solutions. Therefore, the

computational complexity of finding the sub-optimal solution for (P2) is upper bounded by

O (Q2Q
2
1ρ0(K

3.2 +K1.1)), where Q2 here is smaller than Q2 in Section 3.4.2.

3.5 Simulation results and discussion

We corroborate our analysis with MATLAB simulations and investigate: (i) the effect of

the optimization variables on the objective function and the entries of Φ in (3.13), (ii) the

accuracy of different search methods in Section 3.4 in solving (P2) as well as the existing

trade-off between detection performance and average transmit power, , (iii) the behavior of

the optimized scale factors {cl}’s with respect to the fading channel gain gn,

(iv) the accuracy of the Pe approximate in (3.37).

(v) the dependency of the system error probability Pe (achieved with the optimized vari-

ables) on K, ρ, L, and the SNR corresponding to observation channel defined as SNRs =

20 log(A/σv).

• Effect of optimization variables: Considering one sensor and L=2, the optimization

variables are {c1,0, c1,1, µ1,1}. Fig. 3.3a illustrates the objective function
∑L−1

i=0 J̄
(i)
1 versus

8For instance, for L=2 and Nc=10, Nµ=100, we choose Q2 < 17 in Section 3.4.2 and we choose Q2 < 5
here.
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Figure 3.3: K = 5, c1,0 = 0.3, γg1 = 1.

Table 3.1: The values of Pr(B1=0),Pr(B1=50), B1,
∑2

i=0 J̄
(i)
1 for K=50, ρ=10, γg1 =1.

Pr(B1 = 0) Pr(B1 = 50) B̄1
∑2

i=0 J̄
(i)
1

(a)
µ1,l = [0, 0.8, 1.2,∞]
c1,l = [0.3, 0.4, 0.2]

≈ 0 0.0451 31.97 5.1

(b)
µ1,l = [0, 0.8, 1.2,∞]
c1,l = [0.5, 0.7, 0.9]

0.0318 0.0023 14.33 3.2

(c)
µ1,l = [0, 0.1, 2,∞]
c1,l = [0.4, 0.6, 0.3]

0.0265 0.0039 15.32 3.6

(d)
µ1,l = [0, 0.01, 0.1,∞]
c1,l = [0.4, 0.6, 0.3]

≈ 0 0.0357 28.32 4.5

(e)
µ∗
1,l = [0, 0.3, 1.1,∞]

c∗1,l = [0.2, 0.5, 0.4]
0.0014 0.0236 20.52 6.7

the scale factor c1,1. We observe that the objective function is not a concave function of

c1,1. Still there exists a point, denoted as c∗1,1, at which the function attains its maximum.

Starting from small values of c1,1, as c1,1 increases (until it reaches c∗1,1), the function value

increases, because the harvested energy can recharge the battery and can yield more power

for data transmission. However, when c1,1 exceeds c∗1,1, the harvested and stored energy

cannot support the data transmission and the function value decreases. Fig. 3.3b shows

the objective function versus the quantization threshold µ1,1. We observe that the objective

function is not a concave function of µ1,1. Still there exists a point, denoted as µ∗
1,1, at

which the function achieves its maximum. To accentuate the effect of the optimization
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variables on the entries of Φ we define the average energy stored at the battery of sensor n

as Bn =E{Bn}=
∑K

k=0 k ϕn,k, where the largest possible value for Bn is K. Considering

one sensor and L = 3, the optimization variables are {c1,0, c1,1, c1,2, µ1,1, µ1,2}. Table 3.1

shows Pr(B1 = 0), Pr(B1 = 50), B1 for four sets of arbitrary chosen values for the

optimization variables in (a), (b), (c), (d). Going from (a) to (b), we note that given µl’s, as

cl’s increase data transmit power in (3.6) increases. Due to large energy energy consumption

for data transmission B1 decreases and the chance of energy outage increases. Going from

(c) to (d), we note that given cl’s, as µl’s decrease, Pr(B1 = 50) increases and Pr(B1 = 0)

decreases, and B1 increases. Due to small energy consumption for data transmission, the

chance of having near full battery increases, indicating that sensor has failed to utilize the

excess energy. Both energy outage and energy overflow inevitably impact transmission and

detection performance, leading to a reduction in the objective function. The optimized

variables are listed in (e). Also, Table 3.1 tabulates the objective function value, showing

that the objective function attains its maximum when the variables are optimized. This

table shows that the optimization variables play a key role in balancing the rates of energy

harvesting and energy consumption for data transmission, such that the objective function

is maximized.

•Accuracy of different search methods in solving (3.P2) and detection performance-

transmit power trade-off:

Table 3.2: The exploitation parameter Q′
2 < Q2, and Q2Q2

1ρ0 ≪ NL
c N

L−1
µ .

Method
Features

computational complexity detection performance

deterministic O
(
NL

c NL−1
µ (K3.2 + K1.1)

)
lowest Pe

random O
(
Q2Q

2
1ρ0(K

3.2 + K1.1)
)

Pe(deterministic) < Pe(random) < Pe(hybrid)

MMAE & MOE O
(
Q′

2Q
2
1ρ0(K

3.2 + K1.1)
)
Pe(random) < Pe(hybrid MOE) < Pe(hybrid MMAE)

First, we compare the accuracy of deterministic, random, and hybrid search methods in
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Figure 3.5: K = 5, L=6, ρ=2, σ2
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=1, γg1 =2, Pd1
=0.9, P0=2 mW, SNRs=2 dB.

Section 3.4 for solving (3.P2). Fig. 3.4 shows Pe versus P0 for L=2. To plot the curve labeled

as “deterministic” first we obtain the optimal solution, set transmit power control strategy in

(3.6) accordingly, and run Monte-Carlo simulation to find Pe. For Monte-Carlo we consider

10000 independent Monte Carlo runs, i.e., we generate 10000 realizations of random noises

and fading channels and count the errors, Pe is the number of errors occurred divided by

10000. Similarly, we plot the curves labeled as “random”, “hybrid MMAE”, “hybrid MOE”

using the c-optimal solution, the sub-optimal solution corresponding to MMAE, and the sub-
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Figure 3.6: Pe vs. P0 for N = 5, K = 5, L = 3, ρ =
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=1 γgn =2, Pdn =0.9, ∀n, SNRs = 3 dB.
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Figure 3.7: Pe vs. K for N = 5, L = 3, ρ = 5, σ2
wn

=
1, Pdn =0.9, ∀n,P0=3mW, SNRs=5dB.

optimal solution corresponding to MOE, respectively. When using RRS algorithm we choose

the parameters of exploration phase p= 0.99, r = 0.1, leading to Q1 = 44. For exploitation

phase, we choose Q2=10 for “random” and Q2=3 for “hybrid MMAE” and “hybrid MOE”.

Note that for all curves, as P0 increases Pe decreases, which is expected. Fig. 3.4 shows (i)

“determistic” has the lowest Pe, followed by “random”, followed by “hybrid MOE”, followed

by “hybrid MMAE”, (ii) “random”, “hybrid MMAE” and “hybrid MOE” perform very close

to “determistic”. Fig. 3.4 also allows us to examine the existing trade-off between the average

transmit power and the detection performance. Consider the curve labeled “Pe-power trade-

off” in Fig. 3.4, which shows how much average transmit power is required to provide a

certain Pe value. This curve is obtained from examining the points on “deterministic” and

checking whether the power constraint in (3.P2) is active or inactive. At a given point, when

this constraint is active (inactive), the average transmit power is equal to (less than) P0. Note

that as P0 increases and Pe reaches an error floor, the average transmit power is less than

P0. Table 3.2 compares the computational complexity and detection performance of these

methods. Since finding the sub-optimal solution has the lowest computational complexity,

and its performance is very close to the optimal solution, from this point forward, we focus

on “hybrid MMAE” and “hybrid MOE”.
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=
1, γgn =3,∀n,P0=3 mW, SNRs=3 dB.
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Figure 3.9: Pe vs. SNRs for K = 5, ρ = 2, σ2
wn

=
1, γgn =2, Pdn =0.9,∀n,P0=2 mW.

• Behavior of the optimized scale factors: Considering one sensor and L=6, the op-

timization variables are {c1,l}5l=0, {µ1,l}5l=1. Fig. 3.5a and Fig. 3.5b depict the optimized

{c1,l, µ1,l}’s corresponding to “hybrid MMAE” and “hybrid MOE”. We note that, as l in-

creases (i.e., channel gain gn,t increases), the length of quantization interval (µ1,l+1 − µ1,l)

becomes larger. Also, c1,l first increases and then decreases. Considering (3.6) this implies

that, given the battery state k, as gn,t increases Pn,t first increases and then decreases.

• Accuracy of Pe approximate in (3.37): To examine the accuracy of Pe approximate

in (3.37), we focus on “hybrid MMAE” and “hybrid MOE”. Fig. 3.6 plots Pe versus P0, in

which Pe values obtained from Monte-Carlo simulations are denoted as “Monte-Carlo”, and

Pe values obtained from (3.37) are denoted as “approx”.

• Dependency of Pe on different parameters: Fig. 3.7- 3.10 plot Pe corresponding to

“hybrid MMAE” and “hybrid MOE” in terms of different system parameters.

Fig. 3.7 depicts Pe versus K as γgn changes. As K increases Pe decreases, until it reaches an

error floor. This is because for large K, power Pn,t in (3.6) is no longer restricted by K, and

instead it is restricted by ρ. Also, the communication channel noise σ2
wn

becomes dominant

and leads to an error floor. Clearly, the error floor becomes smaller when γgn increases. Also,
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Figure 3.10: Pe vs. SNRs for K=5, N = 5, ρ=2, σ2
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=1, γgn =2, Pdn =0.9, ∀n,P0=2mW.

“hybrid MOE” outperforms “hybrid MMAE”. Fig. 3.8 shows Pe versus ρ as P d changes. As

ρ increases Pe decreases, until it reaches an error floor. This is because for large ρ, power Pn,t

is no longer limited by the amount of harvested energy. Instead, σ2
wn

becomes the dominant

factor and leads to an error floor. Also, increasing P d lowers the error floor. Fig. 3.9

shows Pe versus SNRs as N,L vary. Fig. 3.9 indicates that Pe reduces when (i) given the

pair (N,L), SNRs increases; (ii) given the pair (SNRs, N), L increases; (iii) given the pair

(SNRs, L), N increases. To highlight the effect of increasing L, Fig. 3.10 shows Pe versus

SNRs for N = 5 as L varies. We note that as L increases, the performance gap between

“hybrid MMAE” and “hybrid MOE” decreases. Also, the performance improvement due

to increasing L reduces (i.e., the Pe difference between L = 11 and L = 9 is much smaller

than the Pe difference between L=5 and L=3). This is expected, since as L increases Pe

approaches to the clairvoyant scenario where perfect CSI is available at the sensors.

3.6 Conclusions

We developed a power control strategy for an EH-enabled WSN, that is tasked with solving

a binary distributed detection problem. Our proposed strategy is parameterized in terms
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of the channel gain quantization thresholds and the scale factors, which play key roles in

balancing the rates of energy harvesting and energy consumption for transmission. We

explored the optimal and sub-optimal strategies such that the J-divergence based detection

metric is maximized, subject to an average transmit power per sensor constraint. These

optimization problems can be solved offline and allow each sensor to adapt its power based

on its battery state and its quantized CSI (acquired via limited feedback from the FC). Since

our non-convex optimization problem is not differentiable with respect to the optimization

variables, we explored deterministic, random, and hybrid grid-based search methods, and

showed that our proposed hybrid search methods have a low-computational complexity and

near-optimal performance. The structure of the optimized scale factors reveals that, given

the battery state, the optimized power level is not a monotonic function of the channel gain.

We examined the existing trade-off between the average transmit power and the detection

performance. We also demonstrated that increasing K or ρ do not necessarily lower the

detection error, and it depends on the communication channel noise. We plan to extend

our work to multiple access channels, where sensors transmit over a channel simultaneously.

Further, we note that the widely adopted signal model in (3.1) relies on the assumption

that the distances between the signal source to be detected and the sensors in the field are

known [4–7], i.e., the signal model applies to an arbitrary, but fixed sensor deployment. We

plan to study how our work can be expanded to incorporate random deployment of sensors.

Finally, we note that having CSI at the FC requires channel estimation, which is possible

when sensors send training symbols. We plan to study channel-dependent power control

strategies that consider the combined effects of channel estimation and channel quantization.
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CHAPTER 4: LEARNING-BASED DISTRIBUTED

DETECTION WITH ENERGY HARVESTING 1

We consider a wireless network, consisting of several sensors and a fusion center (FC), that

is tasked with solving a binary distributed detection problem. Each sensor is capable of

harvesting randomly arrived energy and storing it in a finite-size battery. Modeling the

channel fading process as a time-homogeneous finite-state Markov chain and assuming that

each sensor knows its current battery state and its quantized channel state information (CSI)

obtained by a limited feedback from the FC, our goal is to find the optimal transmit power

control policy such that the detection performance metric of interest is maximized. We

formulate the problem at hand as a finite-horizon Markov decision process (MDP) problem

and obtain the optimal policy via finite-horizon dynamic programming. Our simulations

demonstrate that the proposed policy outperforms Greedy-based policy, in which each sensor

uses all its available energy for transmission.

4.1 System Model

4.1.1 Observation Model at Sensors

Our system model consists of N spatially distributed sensors and a FC that is tasked with

solving a binary hypothesis testing problem. Each sensor is capable of harvesting energy from

the ambient environment and is equipped with a battery of finite size to store the harvested

energy. We divide time horizon into slots of equal length Ts. Each time slot is indexed by

an integer t for t = 1, 2, ..., T . We model the underlying binary hypothesis Ht in time slot

1© 2021 IEEE. Part of this chapter is reprinted, with permission, from [47].
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t as a binary random variable Ht ∈ {0, 1} with a-priori probabilities Π0 = Pr(Ht = 0) and

Π1 = Pr(Ht = 1) = 1 − Π0. Let xn,t denote the local observation at sensor t during an

observation period. We assume the following signal model

Ht = 1 : xn,t = A+ vn,t,

Ht = 0 : xn,t = vn,t, for n = 1, . . . , N (4.1)

where Gaussian observation noises vn,t∼N (0, σ2
vn) are independent over time slots and across

sensors. Given observation xn,t sensor n finds local log-likelihood ratio (LLR) and uses its

value to choose its non-negative transmission symbol αn,t (to be optimized) to be sent to

the FC. When LLR is below a given local threshold θn, sensor n does not transmit and

let αn,t = 0. When LLR exceeds the given local threshold θn, sensor n chooses αn,t. In

particular, we have

Π̂n,0 = Pr(αn,t=0) = Π0(1−Pfn) + Π1(1−Pdn),

Π̂n,1 = Pr(αn,t ̸=0) = Π0Pfn +Π1Pdn , (4.2)

where the probabilities Pfn and Pdn denote, respectively, the false alarm and detection prob-

abilities at sensor n can be determined as

Pfn =Pr(αn,t ̸=0|ht = 0)=Q
(θn +A2/2σ2

vn√
A2/σ2

vn

)
,

Pdn =Pr(αn,t ̸=0|ht = 1)=Q
(θn −A2/2σ2

vn√
A2/σ2

vn

)
. (4.3)
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Slot 1 Slot 2 . . . . . . Slot T

Ts Ts Ts

en,1 en,2 en,3 en,T

Figure 4.1: Our adopted time frame structure for harvesting and transmission.

4.1.2 Battery State, Harvesting and Transmission Models

We assume sensors are equipped with identical batteries of finite size K cells (units), where

each cell corresponds to bu Joules of stored energy. Therefore, each battery is capable of

storing at most Kbu Joules of harvested energy. Let bn,t ∈ {0, 1, ..., K} denote the discrete

random process indicating the battery state of sensor n. Let en,t be the state of stored and

harvested energy units in the battery at sensor n during time slot t (see Fig. 4.1). Note

that the harvested energy en,t cannot be used during slot t. We assume, en,t is a stationary

first-order Markov process. This assumption is justified by empirical measurements in the

case of solar energy [48], [49]. For each time slot t we assume that the random variable

en,t takes values from a finite set E = {E1, E2, . . . EM} where Em ∈ Z+, Em < Em+1. This

Markov chain is characterized with the transition probability denoted as Pr(en,t|en,t−1). Let

gn,t indicate the narrow-band (flat) fading channel gain between sensor n and the FC during

time slot t. We assume gn,t’s are independent across sensors. We consider a coherent FC

with the knowledge of all channel gains and assume that the FC quantizes the gn,t ’s using a

quantizer with L quantization thresholds {µn,l}Ll=0, where 0= µn,0< µn,1< . . .< µn,L= ∞.

Let In,l = [µn,l, µn,l+1) for l = 1, . . . , L denote L intervals obtained from partitioning the

positive real line with this quantizer. A bandwidth-limited feedback channel from the FC

to sensor n conveys the information about which interval gn,t belongs to. The channel gain

quantization rule at the FC for sensor n follows: if gn,t ∈ In,l then gn,t is quantized to µn,l.

We define G = {0, µn,l, ..., µn,L} and the probability πn,l = Pr(gn,t ∈ In,l), which can be found
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P1,0 P2,1 P3,2

gn,t∈In,0 gn,t∈In,1 gn,t∈In,2 gn,t∈In,3

P0,0 P1,1 P2,2 P3,3

Figure 4.2: Our adopted FSMC model for channel fading process.

based on the distribution of fading model in terms of the two quantization thresholds µn,l

and µn,l+1. For instance, for Rayleigh fading model g2n,t has exponential distribution with

the mean E{g2n,t} = γgn and we have

πn,l = Pr
(
g2n,t ∈ [µ2

n,l, µ
2
n,l+1)

)
= e

−µ2n,l
γgn − e

−µ2n,l+1
γgn . (4.4)

Further, we assume the channel fading process is a time-homogeneous finite-state Markov

chain (FSMC) [50], the channel state remains unchanged in each time slot [51], and the

channel fluctuation is slow. Thus, the transition only happens between adjacent states [48]

(see Fig. 4.2). For Rayleigh fading channel model, the state transition probability becomes

[52]

Pr
(
gn,t+1 ∈ In,k|gn,t ∈ In,l

)
= Pk,l =



G(µ2n,l+1)

πn,l
, k = l + 1, l = 1, ..., L−1

G(µ2n,l)

πn,l
, k = l−1, l = 2, ..., L

1− G(µ2n,l)

πn,l
− G(µ2n,l+1)

πn,l
, k = l, l = 2, ..., L− 1

1− G(µ2n,2)

πn,1
, k = 1, l = 1

1− G(µ2n,L)

πn,L
, k = L, l = L

where G(x) =
√

2πx/γgnfD exp (−x/γgn) is the level crossing rate, and fD (in Hz) is the

maximum Doppler frequency.
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Adaptive transmission is particularly important for efficient transmission of data in wireless

networks. As the name suggests, in the adaptive scheme the transmitter adapts its transmis-

sion strategy based on some side information about the quality of the fading channel [53].

The objective is often to devise an efficient adaptive scheme that maximizes the probability

of successful data transfer at a tolerable cost, such as power. The side information for adap-

tive transmission is often provided by the receiver via a feedback link. For example, side

information can be the fading level, which is obtained at the receiver by doing extra process-

ing/measurements such as channel estimation. The treatment of the fading channel as an

FSMC is attractive from a practical viewpoint. First, the receiver may need to estimate few

states for the fading level and send them back to the transmitter. This can greatly reduce

the bandwidth required for the feedback link. Second, only a finite number of transmission

strategies need to be devised. This simplifies the implementation of the adaptive transmitter.

The main characteristic of the fading channel under consideration is that it is a correlated

and time-varying random process. In other words, the communication channel is a dynamic

system with the fading channel gain being a random process that changes over time in a

correlated manner due to relative movements in the environment.

We formulate our problem of finding the optimal transmit power control strategy (i.e., op-

timizing αn,t) as a finite-horizon Markov decision process (MDP) problem by specifying

the system state, the action set, the state transition probability, and the reward functions.

At the beginning of time slot t, the system state of sensor n, denoted as sn,t, consists of

bn,t, gn,t, en,t−1, that is

sn,t = (bn,t, gn,t, en,t−1) (4.5)

Based on the current state sn,t at time slot t, sensor n chooses its transmission symbol

αn,t, i.e., for data transmission an action a(sn,t) = αn,t is taken from its feasible set Usn,t =

63



{
0,
√
bu/Ts, ...,

√
bn,tbu/Ts

}
which is discrete and finite. The state transition probability

Pr(sn,t+1|sn,t, αn,t) is the probability that the system enters state sn,t+1 if action a(sn,t) is

taken at state sn,t. We can simplify the state transition probability as the product of three

conditional probabilities

Pr(sn,t+1|sn,t, αn,t) = Pr(bn,t+1, gn,t+1, en,t|bn,t, gn,t, en,t−1, αn,t)

=Pr(bn,t+1|bn,t, gn,t+1, en,t, αn,t) Pr(en,t|en,t−1) Pr(gn,t+1|gn,t), (4.6)

where the second and the third conditional probabilities in (4.6) are the transition probabil-

ities of en,t and gn,t Markov chains, respectively. Assuming the consumed energy for sensing

is negligible, the battery state at the beginning of slot t+ 1 depends on the battery state at

the beginning of slot t, the harvested energy during slot t, and the transmission symbol αn,t,

i.e.,

bn,t+1 = min
{
[bn,t + en,t − α2

n,tTs/bu]
+, K

}
, (4.7)

where [x]+ = max{0, x}. Considering the dynamic battery state model in (4.7) we note that,

conditioned on en,t and αn,t the value of bn,t+1 only depends on the value of bn,t. Hence, the

process bn,t can be modeled as a Markov chain. Therefore, the first conditional probability

in (4.6) becomes

Pr(bn,t+1|bn,t, gn,t+1, en,t, αn,t) =


1 if bn,t+1 = min

{
[bn,t + en,t − α2

n,tTs/bu]
+, K

}
,

0 otherwise.
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4.1.3 Received Signals at FC and Optimal Bayesian Fusion Rule

The received signal at the FC from sensor n corresponding to time slot t is

yn,t = gn,t αn,t + wn,t, for n = 1, . . . , N (4.8)

where wn,t ∼ N (0, σ2
wn
) is the additive Gaussian noise. We assume wn,t’s are i.i.d. over

time slots and independent across sensors. Let yt = [y1,t, y2,t, . . . , yN,t] denote the vector

that includes the received signals at the FC from all sensors in time slot t. The FC applies

the optimal binary Bayesian fusion rule to the received vector yt and obtains a global de-

cision, u0,t, about the underlying hypothesis [16]. From Bayesian perspective, the natural

choice to measure the detection performance corresponding to the u0,t at the FC is the error

probability, defined as

Pe = Π0 Pr(u0,t = 1|ht = 0) + Π1 Pr(u0,t = 0|ht = 1).

However, finding a closed form expression for Pe is often intractable. Instead, we choose

the total J-divergence between the distributions of the detection statistics at the FC under

different hypotheses, as our detection performance metric. This choice allows us to provide

a more tractable analysis.
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4.2 Total J-Divergence Derivation

We define the total J-divergence and derive a closed-form expression for it, using Gaussian

approximation. For sensor n the J-divergence between f(yn,t|ht = 1) and f(yn,t|ht = 0) is

Jn,t =

∫ ∞

−∞

[
f(yn,t|ht=1)−f(yn,t|ht=0)

]
log

(
f(yn,t|ht=1)

f(yn,t|ht=0)

)
dyn,t. (4.9)

Note that f(yn,t|ht = 0)= f(yn,t|αn,t ̸= 0)Pfn+f(yn,t|αn,t=0)(1−Pfn) and f(yn,t|ht = 1)=

f(yn,t|αn,t ̸= 0)Pdn +f(yn,t|αn,t = 0)(1−Pdn) are Gaussian mixtures and the J-divergence

between two Gaussian mixture densities does not have a closed-form expression [18]. Similar

to [2,3,18], we approximate the J-divergence between two Gaussian mixture densities by the

J-divergence between two Gaussian densities fG(yn,t|ht) ∼ N (mn,h,Υ
2
n,h), where mn,h and

Υ2
n,h are obtained from matching the first and second order moments of the actual and the

approximate distributions [3]. For our problem setup, mn,h and Υ2
n,h are

mn,0 = gnαnPfn , Υ2
n,0=g

2
nα

2
nPfn(1−Pfn)+σ

2
wn
,

mn,1=gnαnPdn , Υ2
n,1=g

2
nα

2
nPdn(1−Pdn)+σ

2
wn
. (4.10)

The J-divergence between two Gaussian densities, represented as J
(
fG(yn,t|ht = 1), fG(yn,t|ht =

0)
)
, in terms of their means and variances is [18]

J
(
fG(yn,t|ht = 1), fG(yn,t|ht = 0)

)
=

Υ2
n,1+(mn,1−mn,0)

2

Υ2
n,0

+
Υ2
n,0+(mn,0−mn,1)

2

Υ2
n,1

. (4.11)

Substituting mn,h and Υ2
n,h into Jn,t in (4.11) we approximate Jn,t as the following

J(gn,t, αn,t) =
σ2
wn

+ Ang
2
n,tα

2
n,t

σ2
wn

+Bng2n,tα
2
n,t

+
σ2
wn

+ Cng
2
n,tα

2
n,t

σ2
wn

+Dng2n,tα
2
n,t

, (4.12)
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where

An = Pfn(1−Pdn) + Pdn(Pdn−Pfn), Cn = Pdn(1− Pfn)− Pfn(Pdn − Pfn),

Bn = Pdn(1− Pdn), Dn = Pfn(1− Pfn).

The notation J(gn,t, αn,t) in (4.12) is to emphasize that J-divergence depends on both αn,t

and gn,t.

4.3 Finite-Time Horizon Optimal Power Control Policy with causal Quantized CSI

information

The problem of finding the optimal power control policy, such that the average total J-

divergence is maximized (averaged over the channel gains), can be formulated as below

max
{a(sn,t); 1≤t≤T}

T∑
t=1

N∑
n=1

Egn,t

{
J
(
gn,t, a(sn,t)

)
|gn,t−1

}
s.t. a(sn,t) ∈ Usn,t , ∀n, 1 ≤ t ≤ T

(4.P1)

in which the average total J-divergence value in each time slot is adopted as the reward

function. For time slot t, given the current state sn,t and the corresponding action a(sn,t)

the reward is

r
(
sn,t, a(sn,t)

)
= Pr(αn,t ̸=0)Egn,t

[
J
(
gn,t, a(sn,t)

)
|gn,t−1

]
=Π̂n,1

∑
gn,t∈G

Pr(gn,t|gn,t−1)J
(
gn,t, a(sn,t)

)
.

Let ω =
{
a(sn,t) ∈ Usn,t , t ∈ {1, 2, . . . , T}

}
be a feasible policy and Ω be the set of all

feasible policies. Our goal is to find the optimal policy ω∗, i.e., the policy that maximizes

the expected total reward summed over a finite horizon by choosing a suitable sequence of
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actions. Suppose for a given initial system state sn,1 = {bn,1, gn,1, en,0 : n = 1, . . . , N}, sensor

n solves the following optimization problem

V ∗ = max
ω∈Ω

T∑
t=1

E
[
r
(
sn,t, a(sn,t)

)
|sn,1, ω

]
, a(sn,t) ∈ Usn,t , (4.13)

where V ∗ denotes the maximum total expected reward accrued starting from current time

slot with an initial state sn,1 and continuing with the policy ω from then on until T time slots.

The expectation is taken over all relevant random variables given initial state sn,1 and the

policy ω. In general, the optimization problem in (4.13) cannot be solved independently for

each time slot, because there is a temporal correlation between different variables. Therefore,

we use finite horizon dynamic programming to solve the sequential decision problem in

(4.13). We use V (sn,t) to denote the maximum expected reward from time slot t to T − 1,

given that the system state is sn,t at time slot t. Based on the Bellman’s equations, the

optimization problem V ∗ in (4.13) can be recursively computed from t = T − 1 to t = 1 as

follows

V (sn,t) = max
a(sn,t)∈Usn,t

{
r
(
sn,t, a(sn,t)

)
+
∑
i=0,1

Π̂n,i

∑
∀sn,t+1

Pr(sn,t+1|sn,t, αn,t)V (sn,t+1)
}
, ∀s, 1 ≤ t ≤ T−1 (4.14)

The first term on the right hand side of (4.14) represents the expected immediate reward

for time slot t, while the second term indicates the total expected future reward from t + 1

to T − 1 in the case where action a(sn,t) is chosen. The terminal condition is given by

V (sn,T ) := max
a(sn,t)∈Usn,T

{
r
(
sn,t, a(sn,t)

)}
(4.15)

68



Algorithm 2: Optimal transmit power control policy

1: Calculate V (sn,T ) according to (4.15);
2: Set t = T − 1
3: while t ≥ 1 do

Calculate V (sn,t) according to (4.14);
Find the optimal action aopt(sn,t), using (4.16);
Set t := t− 1;

end

4: Obtain the optimal policy ω∗ =
{
aopt(sn,t) ∈ Usn,t , t ∈ {1, 2, . . . , T}

}
.

where all available energy is used for data transmission in the final time slot T . The solution

to (4.P1) is then given by

aopt(sn,t) = arg max
a(sn,t)∈Usn,t

V (sn,t), for t = 1, 2, ..., T (4.16)

Algorithm 2 shows how we find the optimal transmit power control policy.

4.4 Simulation Results and Conclusions

In our simulations, we consider T = 20, E = {2bu, 4bu, 6bu} and the transition probability

matrix of en,t is PE =


0.5 0.5 0

0.25 0.5 0.25

0 0.5 0.5

. For fDTs = 0.04, G = {0, 0.5, 1.5, 2.5} and the

transition probability matrices of gn,t for γgn = 2 and γgn = 2.5, respectively, are PG =

0.87 0.13 0 0

0.13 0.56 0.31 0

0 0.27 0.52 0.21

0 0 0.28 0.72


and PG =



0.85 0.15 0 0

0.16 0.52 0.32 0

0 0.38 0.40 0.22

0 0 0.31 0.69


. We obtain the average total J-

divergence corresponding to the optimal power control policy from averaging the results over

5000 independent Monte Carlo runs. Fig. 4.3 illustrates the average J-divergence versus bu

for K = 10, 20, 30. We observe that, given a K value, the average J-divergence increases
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Figure 4.3: The average J-divergence versus bu for K = 10, 20, 30.

in bu, however, it remains almost the same after bu reaches and exceeds a certain value.

This is due to the fact that, for larger bu values transmit power is not limited by energy

harvesting. Instead, it is limited by the communication channel noise. As K increases, the

saturation of the average J-divergence occurs at a larger value of bu. Fig. 4.4 shows the

average J-divergence versus K for bu=0.5, 1, 2. The average J-divergence can be enhanced

by enlarging the battery capacity to store more energy units. Given a bu value asK increases,

transmit power is no longer restricted by K, and instead it is restricted by energy harvesting.

To demonstrate the effectiveness of our proposed power control policy in striking a balance

between energy harvesting and energy consumption for data transmission, Fig. 4.5 compares

its Pe performance against that of a Greedy-based policy, in which sensor n in time slot t

uses all its available energy for transmission, i.e., αn,t =
√
bn,tbu/Ts. Fig. 4.5 depicts Pe

versus K for γgn =2, 2.5. Clearly, our proposed policy outperforms the Greedy-based policy.

As K increases Pe decreases, until it reaches an error floor. This is because for large K,

transmit power no longer restricted by K, and instead the communication channel noise σ2
wn

becomes dominant and leads to an error floor. Clearly, the error floor becomes smaller when

γgn increases.

In summary, we considered a binary distributed detection system where each sensor is ca-
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Figure 4.4: The average J-divergence versusK for bu =
[0.5, 1, 2].
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Figure 4.5: Pe versus K for bu = 1, γgn = 2, 2.5.

pable of harvesting and storing randomly arrived energy in its battery. We formulated the

problem of finding the optimal power control policy that optimizes the detection perfor-

mance as a finite-horizon MDP problem, and solved the problem via finite horizon dynamic

programming. The optimal policy allows each sensor to adapt its transmission symbol based

on its current quantized CSI and battery state.
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CHAPTER 5: ON DISTRIBUTED DETECTION IN EH-WSNS

WITH FINITE-STATE MARKOV CHANNEL AND LIMITED

FEEDBACK

We consider a network, tasked with solving binary distributed detection, consisting of N

sensors, a fusion center (FC), and a feedback channel from the FC to sensors. Each sensor

is capable of harvesting energy and is equipped with a finite size battery to store randomly

arrived energy. Sensors process their observations and transmit their symbols to the FC

over orthogonal fading channels. The FC fuses the received symbols and makes a global

binary decision. We aim at developing adaptive channel-dependent transmit power control

policies such that J-divergence based detection metric is maximized at the FC, subject to

total transmit power constraint. Modeling the quantized fading channel, the energy arrival,

and the battery dynamics as time-homogeneous finite-state Markov chains, and the network

lifetime as a geometric random variable, we formulate our power control optimization prob-

lem as a discounted infinite-horizon constrained Markov decision process (MDP) problem,

where sensors’ transmit powers are functions of the battery states, quantized channel gains,

and the arrived energies. We utilize stochastic dynamic programming and Lagrangian ap-

proach to find the optimal and sub-optimal power control policies. We demonstrate that our

sub-optimal policy provides a close-to-optimal performance with a reduced computational

complexity and without imposing signaling overhead on sensors.
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5.1 System Model

5.1.1 Observation Model at Sensors

We consider a WSN tasked with solving a binary distributed detection problem (see Fig.

5.1). To describe our signal processing blocks at sensors and the FC as well as energy

harvesting model, we divide time horizon into slots of equal length Ts. Each time slot is

indexed by an integer t for t = 1, 2, ..., T (see Fig. 5.2). We model the underlying binary

hypothesisHt in time slot t as a binary random variableHt ∈ {0, 1} with a-priori probabilities

ζ0 = Pr(Ht = 0) and ζ1 = Pr(Ht = 1) = 1 − ζ0. We assume that the hypothesis Ht varies

over time slots in an independent and identically distributed (i.i.d.) manner. Let xn,t denote

the local observation at sensor n in time slot t. We assume that sensors’ observations given

each hypothesis with conditional distribution f(xn,t|Ht = ht) for ht ∈ {0, 1} are independent

across sensors. This model is relevant for WSNs that are tasked with detection of a known

signal in uncorrelated Gaussian noises with the following signal model

Ht = 1 : xn,t = A+ vn,t, Ht = 0 : xn,t = vn,t, for n = 1, . . . , N, (5.1)

where Gaussian observation noises vn,t∼N (0, σ2
vn) are independent over time slots and across

sensors. Given observation xn,t sensor n forms local log-likelihood ratio (LLR)

Γn(xn,t) ≜ log

(
f(xn,t|ht = 1)

f(xn,t|ht = 0)

)
, (5.2)

and uses its value to choose its non-negative transmission symbol αn,t to be sent to the FC.

In particular, when LLR is below a given local threshold θn, sensor n does not transmit and

let αn,t = 0. When LLR exceeds the given local threshold θn, sensor n chooses αn,t according
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Figure 5.1: Our system model and the schematic of
battery state in time slot t.
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Figure 5.2: Our adopted time frame structure for har-
vesting and transmission.

to the available information (will be explained later). In particular, we have

ζ̂n,0 = Pr(αn,t=0) = ζ0(1−Pfn) + ζ1(1−Pdn), ζ̂n,1 = Pr(αn,t ̸=0) = ζ0Pfn + ζ1Pdn , (5.3)

where the probabilities Pfn and Pdn can be determined using our signal model in (5.1) and

given the local threshold θn

Pfn =Pr(Pn,t ̸=0|ht=0)=Q
(θn+A2/2σ2

vn√
A2/σ2

vn

)
, Pdn =Pr(Pn,t ̸=0|ht=1)=Q

(θn−A2/2σ2
vn√

A2/σ2
vn

)
.

(5.4)

Instead of fixing θn, one can fix Pdn and let Pdn = P d, ∀n. Then the false alarm probability

in (5.4) can be written as Pfn = Q
(
Q−1(P d) +

√
A2/σ2

vn

)
.

Note that sensors are typically deployed in hostile outdoor environments (e.g., for forestry

fire and volcano monitoring and detection, and battlefield surveillance) in an unattended

and distributed manner. Therefore, they are highly susceptible to physical destruction. We

include this factor into our modeling by letting η ∈ [0, 1) be the probability that a sensor

can survive physical destruction or hardware failure and continue to function in time slot

t. Defining the network lifetime T as the time until the first sensor fails, we find that T
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becomes a geometrically distributed random variable with mean E{T}=1/(1− η) [54].

5.1.2 Battery State, Energy Harvesting and Transmission Models

We assume sensors are equipped with identical batteries of finite size K cells (units), where

each cell corresponds to bu Joules of stored energy. Therefore, each battery is capable of

storing at most Kbu Joules of harvested energy. Let bn,t ∈ B={0, 1, ..., K} denote the energy

state of battery of sensor n at the beginning time slot t (also referred to as the battery state).

Note that bn,t = 0 and bn,t =K represent energy states of empty battery and full battery,

respectively.

Let en,t be the number of energy units that are harvested and stored at sensor n during

time slot t, i.e., at the beginning of time slot t, sensor n knows the value of en,t−1 but not

en,t, and hence the harvested energy en,t cannot be used during slot t. We assume en,t’s are

independent across sensors, and model en,t as a set of independent stationary first-order

homogeneous Markov process with transition probability matrix ΦE . For each time slot t

we assume that the random variable en,t takes values from a finite set E = {E1, E2, . . . EM}

where Em ∈ Z+, Em < Em+1. Therefore, matrix ΦE is M × M and its (i, j)-th entry is

[ΦE ]i,j = Pr(en,t = Ei|en,t−1 = Ej). This modelling for the harvested energy processes is

justified by empirical measurements in the case of solar energy [48].

Let gn,t indicate the narrow-band (flat) fading channel gain between sensor n and the FC

during time slot t. We assume gn,t’s are independent across sensors. We consider a coherent

FC with the knowledge of all channel gains. The FC quantizes gn,t to ḡn,t and informs sensor

n of ḡn,t, through a bandwidth-limited feedback channel from the FC to sensor n. Suppose

the quantizer has L quantization thresholds Ḡ = {µ1, µ2, ..., µL}, where 0= µ1< µ2< . . . <

µL= ∞, and Il = [µl, µl+1) for l = 1, . . . , L denote the corresponding quantization intervals.
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Suppose ḡn,t = Q(gn,t) indicates the input-output relationship of the quantizer. If gn,t ∈ Il

then ḡn,t=µl. We define the probability ϕn,l=Pr(ḡn,t=µl), which can be found based on the

distribution of fading model in terms of the two quantization thresholds µl and µl+1. We

assume ḡn,t is a homogeneous finite-state Markov chain (FSMC) [50] with an L×L transition

probability matrix Ψ
(n)

Ḡ and its (k, l)-th entry is [Ψ
(n)

Ḡ ]k,l = Pr(ḡn,t = µk|ḡn,t−1 = µl). Fig.

5.3 is the schematic representation of this L-state Markov chain. Suppose that the channel

fluctuation due to Doppler is slow enough such that the transition in ḡ only happens between

adjacent channel states [48]. For Rayleigh fading model, g2n,t is modeled as an exponential

random variable with the mean E{g2n,t} = γgn and we have

ϕn,l = Pr(ḡn,t = µl) = e
−µ2l
γgn − e

−µ2l+1
γgn . (5.5)

Furthermore

[Ψ
(n)

Ḡ ]k,l =



G(µ2l+1)

ϕn,l
, k = l+1, l = 1, ..., L−1

G(µ2l )

ϕn,l
, k = l − 1, l = 2, ..., L

1− G(µ2l )+G(µ2l+1)

ϕn,l
, k = l, l = 2, ..., L−1

1− G(µ22)

ϕn,1
, k = 1, l = 1

1− G(µ2L)

ϕn,L
, k = L, l = L

0, O.W.

(5.6)

whereG(x) =
√

2πx/γgnfDTs exp (−x/γgn) is the level crossing rate, and fD is the maximum

Doppler frequency. We assume the feedback channel from the FC to sensor n has a delay,

i.e., at the beginning of time slot t, sensor n only knows ḡn,t−1 but not ḡn,t.

Let sn,t denote the state of sensor n during time slot t. We characterize sn,t by a three-tuple
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[Ψ
(n)

Ḡ ]0,1 [Ψ
(n)

Ḡ ]1,2 [Ψ
(n)

Ḡ ]2,3

gn,t∈I0 gn,t∈I1 gn,t∈I2 gn,t∈I3 ...

[Ψ
(n)

Ḡ ]0,0 [Ψ
(n)

Ḡ ]1,1 [Ψ
(n)

Ḡ ]2,2 [Ψ
(n)

Ḡ ]3,3

Figure 5.3: Our adopted FSMC model for channel fad-
ing process.

sTsT−1· · ·s1s0

P0,0 P1,1

P2,1 PT−1,T−2

PT−1,T−1

PT ,T−1

PT−1,0

PT ,T

P1,T

Figure 5.4: Schematics of Markov chain corresponding
to the global state st. In this figure we have Pt,t+1 =
Pr

(
st+1|st,αt

)
.

sn,t = (bn,t, ḡn,t−1, en,t−1). We denote the state space as S =B × Ḡ × E , where B is the set

of battery energy states, Ḡ is the set of communication channel states and E is the set of

energy harvesting states. Let st = (s1,t, s2,t, ..., sN,t) denote the network state during time

slot t and S̄ = S × S × . . .S denote the network state space, where S = B × Ḡ × E . We

refer to sn,t ∈ S and st ∈ S̄ as the local state and the global (network) state, respectively.

Clearly, S, S̄ are discrete and finite. Let the dimensions of S, S̄ be denoted as |S|, |S̄|. We

have |S̄| = |S|N = ((K + 1)LM)N .

In time slot t, if LLR exceeds a given local threshold θn, sensor n chooses its non-negative

transmission symbol αn,t according to the available information (either the local state sn,t

or the global state st). Note that the amount of energy consumed for transmitting non-

negative symbol αn,t cannot be more than the energy stored in the battery, i.e., αn,t must

satisfy the inequality α2
n,tTs/bu ≤ bn,t. This implies that αn,t ∈ Un,t where the feasible set

Un,t=
{
0,
√
bu/Ts, ...,

√
bn,tbu/Ts

}
is discrete and finite. Let αt =

(
α1,t, α2,t, ..., αN,t

)
contains

transmission symbols by all sensors. We have αt ∈ Ūt = U1,t × U2,t × . . .UN,t. Further, we

assume that the nodes in the network must satisfy a total transmit power constraint. Such

power constraint can be translated into
∑N

n=1 α
2
n,t ≤ Ptot. Our goal is to develop (sub-

)optimal adaptive power control strategy such that the detection performance at the FC is

optimized.

In Section 5.2 we formulate the constrained optimization of transmission symbol αn,t as a
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discounted infinite-horizon constrained MDP problem. In this problem formulation, αn,t

is the action taken by sensor n, and αt is the collection of actions taken by all sensors,

during time slot t. We refer to αn,t as the local action and αt as the global (network) action,

respectively. We use dynamic programming to solve the problem and provide two types

of solutions: (i) the optimal policy, in which local action αn,t depends on the global state

st = (s1,t, s2,t, ..., sN,t) where sn,t = (bn,t, ḡn,t−1, en,t−1), i.e., during time slot t sensor n has

access to the global state st and determines its action αn,t according to st, and (ii) the sub-

optimal policy, in which local action αn,t depends on the local state sn,t only, i.e., during time

slot t sensor n has access to the local state sn,t only and determines its action αn,t according

to sn,t.

Let the global state transition probability Pr
(
st+1|st,αt

)
denote the probability of en-

tering network state st+1 if network action αt is taken at network state st. Define bt =

(b1,t, b2,t, ..., bN,t), ḡt = (ḡ1,t, ḡ2,t, ..., ḡN,t), et = (e1,t, e2,t, ..., eN,t). We can simplify the global

state transition probability as the product of three conditional probabilities (see Fig. 5.4)

Pr
(
st+1|st,αt

)
=Pr

(
bt+1, ḡt, et|bt, ḡt−1, et−1,αt

)
=Pr

(
bt+1|bt, ḡt, et,αt

)
Pr(et|et−1)Pr(ḡt|ḡt−1).

(5.7)

The second and third conditional probabilities in (5.7) can be decomposed across sensors,

since ḡn,t’s and en,t’s are independent across sensors. In other words, we have

Pr(et|et−1)=
N∏
n=1

Pr(en,t|en,t−1), Pr(ḡt|ḡt−1)=
N∏
n=1

Pr(ḡn,t|ḡn,t−1) (5.8)

in which Pr(en,t|en,t−1),Pr(ḡn,t|ḡn,t−1) are the transition probabilities of en,t and ḡn,t Markov

chains, respectively. To find the first conditional probability in (5.7), we need to know the

dynamic battery state model. The battery state at the beginning of time slot t+ 1 depends

on the battery state at the beginning of time slot t, the harvested energy during time slot t,
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and the transmission symbol αn,t, i.e.,

bn,t+1 = min
{
[bn,t + en,t − α2

n,tTs/bu]
+, K

}
, (5.9)

where [x]+ = max{0, x}. Considering the dynamic battery state model in (5.9) we notice

that, conditioned on en,t and αn,t the value of bn,t+1 only depends on the value of bn,t (and

not the battery states before time slot t). Hence, the process bt can be modeled as a Markov

chain and the first conditional probability in (5.7) becomes

Pr
(
bt+1|bt, ḡt, et,αt

)
=


1 if (5.9) is satisfied ∀n

0 otherwise,

(5.10)

We define the reward function in Section 5.1.4.

5.1.3 Received Signals at FC and Optimal Bayesian Fusion Rule

In each time slot, sensors send their data symbols to the FC over orthogonal fading channels.

The received signal at the FC from sensor n corresponding to time slot t is

yn,t = gn,t αn,t + wn,t, for n = 1, . . . , N (5.11)

where wn,t ∼ N (0, σ2
wn
) is the additive Gaussian noise. We assume wn,t’s are i.i.d. over time

slots and independent across sensors. Let yt = [y1,t, y2,t, . . . , yN,t] denote the vector that

includes the received signals at the FC from all sensors in time slot t. The FC applies the

optimal Bayesian fusion rule Γ0(.) to the received vector yt and obtains a global decision

u0,t = Γ0(yt), where u0,t ∈ {0, 1}. In particular, we have

u0,t = Γ0(yt) =


1, ∆t > τ,

0, ∆t < τ,

(5.12)
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where the decision threshold is τ = log( ζ0
ζ1
) and

∆t = log

(
f(yt|ht = 1)

f(yt|ht = 0)

)
, (5.13)

and f(yt|ht) is the conditional probability density function (pdf) of the received vector yt at

the FC. From Bayesian perspective, the natural choice to measure the detection performance

corresponding to the global decision u0,t at the FC is the error probability, defined as

Pe=ζ0 Pr(u0,t=1|ht=0)+ζ1 Pr(u0,t=0|ht=1)=ζ0 Pr(∆t >τ |ht=0)+ζ1 Pr(∆t<τ |ht=1).

(5.14)

However, finding a closed form expression for Pe is mathematically intractable. Instead, we

choose the total J-divergence between the distributions of the detection statistics at the FC

under different hypotheses, as our detection performance metric. This choice allows us to

provide a tractable analysis. Next, we define the total J-divergence and derive a closed-form

expression for it, using Gaussian approximation.

5.1.4 Total J-Divergence Derivation and Reward Function

Consider two pdfs of a continuous random variable x, denoted as η1(x) and η2(x). By

definition [18], the J-divergence between η1(x) and η0(x), denoted as J(η1, η0), is J(η1, η0) =

D(η1||η0) +D(η0||η1), where D(ηi||ηj) is the non-symmetric Kullback-Leibler (KL) distance

between ηi(x) and ηj(x). The KL distance D(ηi||ηj) is defined as

D(ηi||ηj) =
∫ ∞

−∞
log

(
ηi(x)

ηj(x)

)
ηi(x)dx. (5.15)

Therefore, we obtain

J(η1, η0) =

∫ ∞

−∞
[η1(x)− η0(x)] log

(
η1(x)

η0(x)

)
dx. (5.16)
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In our problem setup, the two conditional pdfs f(yt|ht=1) and f(yt|ht=0) in (5.13) play the

role of η1(x) and η0(x), respectively. Let Jtot,t denote the J-divergence between f(yt|ht = 1)

and f(yt|ht = 0). The pdf of vector yt given ht is

f(yt|ht) =
N∏
n=1

f(yn,t|ht) for ht = 0, 1. (5.17)

where the equality in (5.17) holds since the received signals from sensors at the FC, given

ht, are conditionally independent. Let Jn,t represent the J-divergence between the two

conditional pdfs f(yn,t|ht = 1) and f(yn,t|ht = 0). We have

Jn,t =

∫ ∞

−∞

[
f(yn,t|ht=1)−f(yn,t|ht=0)

]
log

(
f(yn,t|ht=1)

f(yn,t|ht=0)

)
dyn,t. (5.18)

Based on (5.17), the total J-divergence, denoted as Jtot,t, is Jtot,t =
∑N

n=1 Jn,t. Note that

f(yn,t|ht = 0)=f(yn,t|αn,t ̸= 0)Pfn+f(yn,t|αn,t=0)(1−Pfn) and f(yn,t|ht = 1)=f(yn,t|αn,t ̸=

0)Pdn +f(yn,t|αn,t = 0)(1−Pdn) are Gaussian mixtures and the J-divergence between two

Gaussian mixture densities does not have a closed-form expression [3, 18]. We approximate

Jn,t in (5.18) using the Gaussian densities fG(yn,t|ht) ∼ N (mn,h,Υ
2
n,h), where mn,h and

Υ2
n,h are obtained from matching the first and second order moments of the actual and the

approximate distributions. For our problem setup, mn,h and Υ2
n,h are

mn,0 = gn,tαn,tPfn , Υ2
n,0=g

2
n,tα

2
n,tPfn(1−Pfn)+σ

2
wn
,

mn,1=gn,tαn,tPdn , Υ2
n,1=g

2
n,tα

2
n,tPdn(1−Pdn)+σ

2
wn
.

The J-divergence between two Gaussian densities, represented as J
(
fG(yn,t|ht = 1), fG(yn,t|ht =

0)
)
, in terms of their means and variances is [3, 18]

J
(
fG(yn|h = 1), fG(yn|h = 0)

)
=

Υ2
n,1+(mn,1−mn,0)

2

Υ2
n,0

+
Υ2
n,0+(mn,0−mn,1)

2

Υ2
n,1

. (5.19)
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Substitutingmn,h and Υ2
n,h of (5.19) into (5.19) we approximate Jn,t in (5.18) as the following

Jn,t(gn,t, αn,t) =
σ2
wn

+ Ang
2
n,tα

2
n,t

σ2
wn

+Bng2n,tα
2
n,t

+
σ2
wn

+ Cng
2
n,tα

2
n,t

σ2
wn

+Dng2n,tα
2
n,t

, (5.20)

where

An = Pfn(1−Pdn) + Pdn(Pdn−Pfn), Bn = Pdn(1− Pdn)

Cn = Pdn(1− Pfn)− Pfn(Pdn − Pfn), Dn = Pfn(1− Pfn).

(5.21)

The notation Jn,t(gn,t, αn,t) in (5.20) is to emphasize that J-divergence depends on both

transmission symbol αn,t and fading channel gain gn,t. The dependency on gn,t stems from the

fact that the FC has full knowledge of all channel gains gn,t’s, and the optimal Bayesian fusion

rule utilizes this full information to make the binary decision. On the other hand, sensor n

only knows ḡn,t−1=Q(gn,t−1). Hence, αn,t can only depend on ḡn,t−1. To resolve this issue, we

take the average of Jn,t over gn,t, conditioned on ḡn,t−1. Let Egn,t|ḡn,t−1{Jn,t(gn,t, αn,t)|ḡn,t−1}

denote the average of J-divergence over gn,t when action αn,t is taken according to the

available information at sensor n, conditioned on ḡn,t−1. Let r
(
αn,t
)
indicate the immediate

reward function of sensor n at time slot t. We define the immediate reward function of sensor

n as the average of J-divergence over gn,t when action αn,t ̸= 0 is taken according to the

available information at sensor n, conditioned on ḡn,t−1, i.e.,

r(αn,t) = ζ̂n,1Egn,t|ḡn,t−1{J(gn,t, αn,t)|ḡn,t−1} (5.22)

where ζ̂n,1=Pr(αn,t ̸=0) is given in (5.3). Note that when action αn,t=0 is taken from (3.27)

we find Jn,t(gn,t, 0) = 2. By defining the immediate reward as (5.22) we neglect the constant

term ζ̂n,0Egn,t|ḡn,t−1{J(gn,t, 0)|ḡn,t−1} = 2ζ̂n,0 and do not count it toward the immediate reward
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function. To compute the immediate reward function in (5.22), first we define the following

Ĵ
(l)
n,t = Egn,t|ḡn,t=µl{Jn,t

(
gn,t, αn,t

)
|ḡn,t = µl} (5.23)

J̄
(l)
n,t = Egn,t|ḡn,t−1=µl{Jn,t

(
gn,t, αn,t

)
|ḡn,t−1 = µl}

Hence, the immediate reward function in (5.22) can be rewritten in terms of J̄
(l)
n,t for l =

1, ..., L as

r(αn,t) = ζ̂n,1

( L−1∑
l=2

Pr(ḡn,t−1 = µl)︸ ︷︷ ︸
=ϕn,l

J̄
(l)
n,t + Pr(ḡn,t−1 = µ1)︸ ︷︷ ︸

=ϕn,1

J̄
(1)
n,t + Pr(ḡn,t−1 = µL)︸ ︷︷ ︸

=ϕn,L

J̄
(L)
n,t

)
(5.24)

To fully characterize the reward function in (5.24) we need to find J̄
(l)
n,t defined in (5.23) for

l = 1, ..., L. When ḡn,t−1=µl for l = 2, .., L− 1, from (5.6) we have

ḡn,t =


µl−1 with probability [Ψ

(n)

Ḡ ]l−1,l

µl with probability [Ψ
(n)

Ḡ ]l,l

µl+1 with probability [Ψ
(n)

Ḡ ]l+1,l

(5.25)

When ḡn,t−1=µ1, from (5.6) we have

ḡn,t =


µ1 with probability [Ψ

(n)

Ḡ ]1,1

µ2 with probability [Ψ
(n)

Ḡ ]2,1

(5.26)

and when ḡn,t−1=µL, from (5.6) we have

ḡn,t =


µL−1 with probability [Ψ

(n)

Ḡ ]L−1,L

µL with probability [Ψ
(n)

Ḡ ]L,L−1

(5.27)
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Therefore, J̄
(l)
n,t and Ĵ

(l)
n,t in (5.23) become related as the following

J̄
(l)
n,t =


[Ψ

(n)

Ḡ ]l−1,lĴ
(l−1)
n,t + [Ψ

(n)

Ḡ ]l,lĴ
(l)
n,t + [Ψ

(n)

Ḡ ]l+1,lĴ
(l+1)
n,t l ̸= 1, L

[Ψ
(n)

Ḡ ]1,1Ĵ
(1)
n,t + [Ψ

(n)

Ḡ ]2,1Ĵ
(2)
n,t l = 1

[Ψ
(n)

Ḡ ]L−1,LĴ
(L−1)
n,t + [Ψ

(n)

Ḡ ]L,LĴ
(L)
n,t l = L

(5.28)

Note that Ĵ
(l)
n,t in (5.23) can be obtained based on the distribution of fading model. For

Rayleigh fading model, we have [3]

Ĵ
(l)
n,t = ϕn,l

[
Ω(α2

n,t, µ
2
n,l+1)− Ω(α2

n,t, µ
2
n,l)
]
, (5.29)

where the two dimensional function Ω(x, y) in (5.29) is

Ω(x, y) ≜
1

Bnx

[
σ2
wn
β1(x, y)−

An
Bn

σ2
wn
β1(x, y)− Anxe

(−yγgn )
]

+
1

Dnx

[
σ2
wn
β2(x, y)−

Cn
Dn

σ2
wn
β2(x, y)− Cnxe

(−yγgn )
]
, (5.30)

Also, An, Bn, Cn and Dn are given in (5.21) and the two dimensional functions β1(x, y) and

β2(x, y) in (5.30) are

β1(x, y)≜γgnexp
(σ2

wn
γgn

xBn

)
Ei
(
−γgny−

σ2
wn
γgn

xBn

)
, β2(x, y)≜γgnexp

(σ2
wn
γgn

xDn

)
Ei
(
−γgny−

σ2
wn
γgn

xDn

)
.

In summary, the reward function in (5.24) can be written as

r(αn,t) = ζ̂n,1

( L−1∑
l=2

ϕn,lJ̄
(l)
n,t + ϕn,1J̄

(1)
n,t + ϕn,LJ̄

(L)
n,t

)
(5.31)
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in which J̄
(l)
n,t is given in (5.28). The immediate network reward function at time slot t,

denoted as r(αt), is the sum of the reward functions of all sensors

r(αt) =
N∑
n=1

r
(
αn,t
)
. (5.32)

where r
(
αn,t
)
is given in (5.31).

At every time slot t, sensor n decides the transmission symbol αn,t according to the available

information (either the local state sn,t or the global state st) such that the discounted sum

of reward is maximized, subject to two constraints: (i) the amount of energy consumed

for transmission symbol αn,t cannot be more than the energy stored in the battery bn,t,

i.e., α2
n,tTs/bu ≤ bn,t, or equivalently, αn,t ∈ Un,t, ∀n, t, (ii) the nodes in the network must

satisfy a total transmit power constraint, i.e.,
∑N

n=1 α
2
n,t ≤ Ptot, ∀t. In the next section we

formulate the constrained optimization of αn,t as a discounted infinite-horizon constrained

MDP problem. We use dynamic programming to solve the problem and provide two types

of solutions: (i) the optimal policy, in which the local action αn,t depends on the global state

st, and (ii) the sub-optimal policy, in which the local action αn,t depends on the local state

sn,t only.

5.2 Problem Formulation

We start our problem formulation by defining the set of feasible policies. Let δt denote a

general decision rule that describes how a network action αt is selected according to the

global state st in time slot t, i.e., αt = δt(st), and π = (δ1, δ2, ...δT ) be the corresponding

policy for t=1, ..., T , i.e., π is the sequence of decision rules to be employed for time slots

t = 1, ..., T [55, pp.21]. We say that a policy π is feasible if it satisfies the two constraints:
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(i) αt ∈ Ūt, ∀t, (ii)
∑N

n=1 α
2
n,t ≤ Ptot, ∀t. Let Π be the set of feasible policies π. Then, for

any given global state s1 at the first time slot t = 1, the expected network reward between

the first time slot until a sensor stops functioning with policy π ∈ Π is given by

Vπ(s1) = E

{
ET
{ T∑

t=1

r(αt)

}∣∣∣s1, π} , s.t. αt ∈ Ūt,
N∑
n=1

α2
n,t ≤ Ptot, ∀t (5.33)

where the outer expectation E{.} in (5.33) denotes the statistical expectation taken over all

relevant random variables given initial global state s1 and policy π. The inner expectation

ET{.} in (5.33) denotes the expectation with respect to the random variable T . Note that

with a different initial global state s1 and a different policy π, a different network action

αt will be selected in time slot t, which results in a different state transition probability

Pr
(
st+1|st,αt

)
when the outer expectation E{.} in (5.33) is computed. Since T is a geometric

random variable with mean E{T}=1/(1− η), (5.33) is equivalent to the objective function

of an infinite-horizon MDP with discounted reward given by [55, Proposition 5.3.1]

Vπ(s1) = E

{
∞∑
t=1

ηtr(αt)|s1, π

}
, s.t. αt ∈ Ūt,

N∑
n=1

α2
n,t ≤ Ptot, ∀t (5.34)

where η in (5.34) can be interpreted as the discount factor of the model and Vπ(s1) in (5.34)

can be interpreted as the long-term expected network reward starting from an initial global

state s1 and continuing with the policy π from then on [55]. Since the network will stop

functioning at some time in the future, the network reward at time slot t is discounted by

factor ηt. The problem in (5.34) is our discounted infinite-horizon constrained MDP problem.

One can easily show that that the objective function Vπ(s1) in (5.34) converges to a finite

value [55, pp. 121]. The proof follows. First, we note

sup
st∈S̄, αt∈Ūt

|r(αt)| ≤ sup
st∈S̄, αt∈Ūt

N∑
n=1

|r(αn,t)| (5.35)
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Next, we examine r(αn,t) in (5.31) and we note that ζ̂n,1, {ϕn,l}Ll=1 are probabilities and

{J̄ (l)
n,t}Ll=1 depend on the two dimensional Ω(., .), β1(., .), β2(., .) functions, which all take finite

values ∀st ∈ S̄, αt ∈ Ūt. Hence the right-hand side of (5.35) is finite. This completes the

proof. Due to Markovian property of MDP problems, it suffices to consider only Markovian

policies. Hence, our aim is finding an optimal Markovian policy π ∈ Π that maximizes Vπ(s1)

in (5.34). That is, given the initial global state s1, our goal is to obtain the optimal expected

total discounted network reward V ∗(s1) and the optimal Markovian policy π∗ ∈ Π defined

as follows:

V ∗(s1) = max
π∈Π

Vπ(s1), π∗ = argmax
π∈Π

Vπ(s1), s.t. αt ∈ Ūt,
N∑
n=1

α2
n,t ≤ Ptot, ∀t (5.36)

A Markovian policy π = (δ1, δ2, ...δT ) is said to be stationary deterministic if δt = δ for all

time slots such that π = (δ, δ, . . . , δ) and δ is deterministic [55, pp. 21]. The existence of

a stationary deterministic optimal policy is guaranteed when the network state space S̄ is

discrete and finite [55]. Thus, our objective is to find an optimal stationary deterministic

policy π ∈ Π that maximizes Vπ(s1) in (5.34).

5.2.1 Finding the Optimal Policy

To maximize Vπ(s1) in (5.34), we first utilize the Lagrangian approach [56,57] to transform

the constrained MDP optimization problem into an equivalent unconstrained MDP optimiza-

tion problem. For each global state st we introduce a Lagrangian multiplier λst associated

with the constraint
(∑N

n=1 α
2
n,t − Ptot

)
. We define the Lagrangian value function L(st, λst)
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L(st, λst) = max
π∈Π

{
L
(
st,αt, λst

)︸ ︷︷ ︸
= term 1

+η
(
Pr(αt=0)

∑
st+1

Pr
(
st+1|st, 0

)
L(st+1, λst+1)+Pr(αt ̸=0)

∑
st+1

Pr
(
st+1|st,αt

)
L(st+1, λst+1)

)
︸ ︷︷ ︸

= term 2

}
. (5.39)

using the dynamic programming [57]

L(st, λst) = max
π∈Π

{
L(st,αt, λst)︸ ︷︷ ︸

= term 1

+ η
∑
st+1

Pr
(
st+1|st,αt

)
L(st+1, λst+1)︸ ︷︷ ︸

= term 2

}
, (5.37)

where L(st,αt, λst) is defined as

L(st,αt, λst) = r(αt)− λst

(
N∑
n=1

α2
n,t − Ptot

)
. (5.38)

In fact, L(st,αt, λst) in (5.38) can be interpreted as the modified network reward function

at time slot t, where the cost of violating the constraint is subtracted from the immediate

reward r(αt) earned in time slot t. On the other hand, term 2 in L(st, λst) is the expected

total discounted future network reward if network action αt is chosen. Since αt can be zero or

non-zero, term 2 can be expanded as (5.39). Note that αt = 0 only if αn,t=0,∀n, i.e., when

LLR is below the local threshold θn, ∀n. Using (5.3) we find Pr(αt = 0)=
∏N

n=1 Pr(αn,t=0)=∏N
n=1 ζ̂n,0 and Pr(αt ̸= 0)=1 − Pr(αt = 0). With fixed λst , the constrained MDP problem

in (5.34) can be viewed as a non-constrained MDP problem in (5.39) with the modified

network reward function L(st,αt, λst) at time slot t given in (5.38). Let U(λst) denote the

Lagrangian dual function, where

U(λst) = max
π

L(st, λst) (5.40)
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Then the Lagrangian dual problem can be written as

min
λst≥0

U(λst) (5.41)

The resulting dual solution has zero duality gap compared to the primary problem in (5.37)

[57, pp.2]. To solve the dual problem in (5.41), we iteratively solve the following two sub-

problems until a pre-specified convergence criterion is reached. The outer minimization

sub-problem (the outer loop in Algorithm 3 with iteration index i) updates λist . The inner

maximization sub-problem (the inner loop in Algorithm 3 with iteration index j) finds the

optimal πi given λ
i
st . The pseudo code of the algorithm is given in Algorithm 3.

1. the inner maximization sub-problem: Given λist we adopt the value iteration

algorithm [58] to find the optimal policy πi. The convergence criterion is |Lj(st, λist)−

Lj−1(st, λ
i
st)| < ϵ1(1 − η)/2η, for a given ϵ1, where Lj(st, λist) indicates the long-term

expected reward in the j-th iteration from (5.39).

2. the outer minimization sub-problem: The outer minimization over the Lagrangian

multiplier λst is a linear programming problem. We use the sub-gradient method to

update λist as the following.

λi+1
st =

[
λist + βi

(
N∑
n=1

α2
n,t − Ptot

)]+
, (5.42)

where β is a positive scalar step size satisfying the conditions
∑∞

i=1 β
i = ∞ and∑∞

i=1(β
i)2 <∞. The update rule is such that if

∑N
n=1 α

2
n,t is larger (smaller) than Ptot

then λst should increase (decrease). Unless the convergence criterion
|λi+1

st −λist |
λist

< ϵ2 is

met, for a given ϵ2, we increase i and solve the inner maximization sub-problem again.
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Algorithm 3: optimal power control algorithm

1: Specify ϵ1 > 0, ϵ2 > 0 set L(s1, λs1) = 0, st ∈ S̄ set i = 1 ;
2: for fixed λist do

3: Set j = 1, for each st ∈ S̄ do
for each αt ∈ Ust do

calculate

F(st,αt, λ
i
st) = L(st,αt, λ

i
st) + η

∑
st+1

Pr
(
st+1|st,αt

)
Lj−1(st+1, λ

i
st+1

)

end
calculate Lj(st, λist) = max

πi∈Π
{F(st,αt, λ

i
st)};

end
4: If max

st∈S̄
|Lj(st, λist)− Lj−1(st, λ

i
st)| < ϵ1(1− η)/2η,

go to Step 5. Otherwise, increase j and go back to Step 3.
5: We obtain the optimal policy

π∗
i = argmax

πi∈Π

{
Lj(st, λist)

}
.

end
6: Update λist using the rule in (5.42) and π∗

i ;

7: If
|λi+1

st −λist |
λist

< ϵ2. then π∗ = π∗
i . Otherwise, increase i and go back to Step 2.

Note that the above sub-gradient method is guaranteed to converge to the optimum λst , as

long as β satisfies the conditions stated above, due to the convexity of the dual problem

(5.41) over λst .

Remark on the computational complexity of Algorithm 3: We switch between solv-

ing two sub-problems until the convergence criterion for updating the Lagrangian multiplier

is met. Given λst we solve the inner maximization sub-problem, i.e., we solve (5.39) for each

st ∈ S̄ (refer to Step 3 of Algorithm 3), where |S̄| = |S|N . Our numerical results show that

the computational complexity of calculating π∗
i (Step 5 of Algorithm 3) is O(|S|NK1.2N).

On the other hand, the complexity order of the gradient-descent algorithm to find the local

minimum of function U(λst) and converge to an ϵ2-accurate solution is ϵ̄ = 1/ϵ2 [59, p. 232].

Hence, the overall the computational complexity of finding the optimal solution using Algo-

rithm 3 is O(ϵ̄|S|NK1.2N). Note that the complexity order scales exponentially in N .
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Remark on implementing the optimal policy: The optimal policy, a.k.a. centralized

solution in the dynamic control literature, requires the knowledge of the global state st

to determine the network action αt = δ(st). This implies that sensor n in the network

cannot find its local action αn,t at time slot t, unless it knows the global state st. Hence,

implementing this solution requires all N sensors to report their local states sn,t, ∀n to the

FC. The FC concatenates all the received local states and forms the global state st. Then

based on st, the FC determines and broadcasts the network action αt. This process, however,

consumes significant signaling overhead.

To reduce the signaling overhead, we consider finding a sub-optimal policy, a.k.a. decentral-

ized solution in the literature, where sensor n in the network finds its local action αn,t at

time slot t, only based on its own local state sn,t.

5.2.2 Finding the Sub-Optimal Policy

Let δ′ denote a deterministic decision rule that describes how a local action αn,t is selected

according to the local state sn,t in time slot t, i.e., αn,t=δ
′(sn,t), and ω=(δ′, δ′, ..., δ′) is the

corresponding stationary deterministic policy for t=1, ..., T [55, pp.21].

We say that a policy ω is feasible if it satisfies the two constraints: (i) αn,t ∈ Un,t, ∀t, n,

(ii)
∑N

n=1 α
2
n,t ≤ Ptot, ∀t. Let Ω be the set of feasible policies ω. Our objective is to find

a stationary deterministic policy ω ∈ Ω that maximizes Vω(s1) in (5.43). We refer to this

solution as the sub-optimal policy.

Vω(s1) = E

{
∞∑
t=1

ηt
N∑
n=1

r
(
αn,t
)
|s1, π

}
, s.t. αn,t ∈ Un,t, ∀t, n,

N∑
n=1

α2
n,t ≤ Ptot, ∀t (5.43)

We note that maximizing Vω(s1) in (5.43) with respect to ω is significantly simpler than
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maximizing Vπ(s1) in (5.34) with respect to π, i.e., finding the sub-optimal policy is much

easier than finding the optimal policy. This is due to the fact that, when the local action

αn,t is selected according to the local state sn,t only in time slot t, the global state transition

probability Pr
(
st+1|st,αt

)
in (5.7) can be completely decomposed across sensors. In other

words, we have

Pr
(
st+1|st,αt

)
=

N∏
n=1

Pr
(
sn,t+1|sn,t, αn,t

)
=

N∏
n=1

Pr
(
bn,t+1|bn,t, ḡn,t, en,t, αn,t

)
Pr(en,t|en,t−1)Pr(ḡn,t|ḡn,t−1).

where

Pr
(
bn,t+1|bn,t, ḡn,t, en,t, αn,t

)
=


1 if (5.9) is satisfied

0 otherwise,

The decomposition of the global state transition probability into the product of the local

state transition probabilities directly impacts how the outer expectation E{.} in (5.43) is

computed and allows the objective function in (5.43) to be decoupled across sensors. If there

were no total transmit power constraint in (5.43), the MDP problem in (5.43) would have

become completely decoupled across sensors. The challenge imposed by the total transmit

power constraint can be addressed via adopting a uniform Lagrangian multiplier. Similar

to [57] we let a uniform Lagrangian multiplier λst =λ,∀st be associated with the constraint(∑N
n=1 α

2
n,t − Ptot

)
. This uniform Lagrangian multiplier allows us to decouple the MDP

problem in (5.43) across sensors and reduces solving (5.43) into solving N smaller MDP

problems. While the computational complexity of finding the optimal policy scales expo-

nentially in N , we will show that the computational complexity of finding the sub-optimal

policy scales linearly in N .

92



X (sn,t, λ) = max
ω∈Ω

{
X(sn,t, αn,t, λ)︸ ︷︷ ︸

= term 1

+ η
(
Pr(αn,t = 0)

∑
sn,t+1

Pr
(
sn,t+1|sn,t, 0

)
X (sn,t+1, λ) + Pr(αn,t ̸= 0)

∑
sn,t+1

Pr
(
sn,t+1|sn,t, αn,t

)
X (sn,t+1, λ)

)
︸ ︷︷ ︸

= term 2

}
, (5.46)

We define the Lagrangian value function X (sn,t, λ) using the dynamic programming

X (sn,t, λ) = max
ω∈Ω

{
X(sn,t, αn,t, λ)︸ ︷︷ ︸

= term 1

+ η
∑
sn,t+1

Pr
(
sn,t+1|sn,t, αn,t

)
X (sn,t+1, λ)︸ ︷︷ ︸

= term 2

}
, (5.44)

where the modified reward function X(sn,t, αn,t, λ) is defined as

X(sn,t, αn,t, λ) = r
(
αn,t
)
−λ
(
α2
n,t−

Ptot
N

)
(5.45)

With fixed λ, the constrained MDP problem in (5.43) can be viewed as N non-constrained

MDP problems in (5.46) with the modified network reward function X(sn,t, αn,t, λ) at time

slot t given in (5.45). Let Û(λ) denote the Lagrangian dual function, where

Û(λ) = max
ω∈Ω

X (sn,t, λ) (5.47)

Then the Lagrangian dual problem can be written as

min
λ≥0

Û(λ) (5.48)

To solve the dual problem in (5.48), we iteratively solve the following two sub-problems

until a pre-specified convergence criterion is reached. The outer minimization sub-problem

updates λi. The inner maximization sub-problem finds the optimal ωi given λ
i. The pseudo

code of the algorithm is given in Algorithm 4.

1. the inner maximization problem: Given λi we adopt the value iteration algo-
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rithm [58] to find the optimal policy ωi. The convergence criterion is |X j(sn,t, λ) −

X j−1(sn,t, λ)| < ϵ1(1− η)/2η, for a given ϵ1, where X j(sn,t, λ) indicates the long-term

expected reward in the j-th iteration from (5.46).

2. the outer minimization problem:

The outer minimization over the Lagrangian multiplier λ is a linear programming

problem. We use the sub-gradient method to update λi as the following

λi+1 =

[
λi + βi

(
N∑
n=1

α2
n,t − Ptot

)]+
, (5.49)

where β is a positive scalar step size satisfying the conditions
∑∞

i=1 β
i = ∞ and∑∞

i=1(β
i)2 < ∞. The update rule is such that if

∑N
n=1 α

2
n,t is larger (smaller) than

Ptot then λ should increase (decrease). Unless the convergence criterion |λi+1−λi|
λi

< ϵ2

is met, for a given ϵ2, we increase i and solve the inner maximization sub-problem

again.

Note that the above sub-gradient method is guaranteed to converge to the optimum λ, as

long as β satisfies the conditions stated above.

Remark on the computational complexity of Algorithm 4: We switch between solv-

ing two sub-problems until the convergence criterion for updating the Lagrangian multiplier

is met. Given λ we solve the inner maximization sub-problem, i.e., we solve (5.46) for each

sn,t ∈ S (refer to Step 3 of Algorithm 4), where the dimension of S, denoted as |S|. Our

numerical results show that the computational complexity of calculating ω∗
i (Step 5 of Al-

gorithm 4) is O(|S|K1.5). On the other hand, the complexity order of the gradient-descent

algorithm to find the local minimum of function Û(λ) and converge to an ϵ2-accurate solu-

tion is ϵ̄ = 1/ϵ2 [59, p. 232]. Hence, the overall the computational complexity of finding the

94



Algorithm 4: sub-optimal power control algorithm

1: Specify ϵ1 > 0, ϵ2 > 0 set X (sn,0, λ) = 0, sn,t ∈ S set i = 1 ;
2: for fixed λi do

3: Set j = 1, for each sensor do
for each αn,t ∈ Usn,t do

calculate

F(sn,t, αn,t, λ
i) = X(sn,t, αn,tλ) + η

(∑
st+1

Pr(sn,t+1|sn,t, αn,t)X j−1(sn,t+1, λ
i)
)

end
calculate

X j(sn,t, λ
i) = max

ωi∈Ω
{F(sn,t, αn,t, λ

i)}

end
4: If

max
sn,t∈S

|X j(sn,t, λ
i)−X j−1(sn,t, λ

i)| < ϵ1(1− η)/2η

go to step 5. Otherwise, increase j and go back to Step 3.
5: We obtain policy

ω∗
i = argmax

ωi∈Ω

{
X j(sn,t)

}
.

end
6: Update λi by using (5.49) and ω∗

i ;

7: If |λi+1−λi|
λi

< ϵ2 then ω = ω∗
i . Otherwise, increase i and go back to Step 2.

optimal solution using Algorithm 4 is O(N |S|ϵ̄K1.5). Note that the complexity order scales

linearly in N .

Remark on implementing the sub-optimal policy: The sub-optimal policy, a.k.a.

decentralized solution in the dynamic control literature, requires the knowledge of the local

state sn,t only to determine the local action αn,t = δ′(sn,t),∀n. This implies that sensor n in

the network can find its local action an,t at time slot t with the knowledge of its local state

sn,t. Hence, implementing this solution, different from the optimal solution, does not require

sensors to report to the FC and does not impose signaling overhead to the sensors.
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5.3 Effect of random deployment of sensors

Our signal model in (5.1) is a widely adopted model in the literature of signal (target)

detection [17,18,60], in which the signal source is typically modeled as an isotropic radiator

and the emitted power of the signal source at a reference distance d0 is known [61]. Suppose

P0 is the emitted power of the signal source at the reference distance d0, and dn is the

Euclidean distance between the source and sensor n. For a general intensity decay model,

the signal intensity at sensor n, denoted as zn,t, is [61]

zn,t =
P0

(dn/d0)γ
, (5.50)

where γ is the path-loss exponent, e.g., for free-space wave propagation γ = 2. With this

model, the problem of noisy signal detection is equivalent to the following binary hypothesis

testing problem

Ht = 1 : xn,t = zn,t + vn,t, Ht = 0 : xn,t = vn,t, (5.51)

in which zn,t and variance of vn,t, denoted as σ2
vn , are assumed to be known [18], [17], [60].

Note that the binary hypothesis testing problem in (5.51) can be recast as the problem in

(5.1), by scaling the sensor observation xn,t with (dn/d0)
γ. This signal model applies to an

arbitrary, but fixed (given) deployment of sensors. For applications where the sensors are

deployed randomly in a field, the sensors’ locations are not known a prior. This implies

that A in (5.1) is unknown, and consequently, Pfn in (5.4) cannot be determined before

deployment. To expand our optimization method beyond fixed deployment of sensors, we

assume that sensors are randomly deployed in a circle field, the signal source is located at

the center of this field, and it is at least r0 meters away from any sensor within the field.

Let rn,t be the distance of sensor n from the center. We assume rn,t is uniformly distributed
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in the interval (r0, r1), i.e.,

f(rn,t) =


1

r1−r0 , r0 < rn,t ≤ r1,

0, o.w.

(5.52)

Suppose the emitted power of the signal source at radius r0 is P0. Then the signal intensity

at sensor n is zn,t =
P0

(rn,t/r0)2
. Given the pdf of rn,t in (5.52), we obtain the pdf of zn,t as

follows

f(zn,t) =


√
P0

2zn,t
√
zn,t(r1−r0) ,

P0

r21
< zn,t ≤

P0

r20
,

0, o.w.

(5.53)

Based on the pdf of zn,t in (5.53) we can recompute Pfn in (5.4)

Pfn =

∫ P0
r20

P0
r21

Q( θn + z2n,t

2σ2
vn√

z2n,t/σ
2
vn

) f(zn,t)dzn,t, Pdn =

∫ P0
r20

P0
r21

Q( θn − z2n,t

2σ2
vn√

z2n,t/σ
2
vn

) f(zn,t)dzn,t,
(5.54)

Pfn =

∫ P0
r20

P0
r21

Q
(
Q−1(P d) +

√
z2n,t/σ

2
vn

)
f(zn,t)dzn,t. (5.55)

With random deployment of sensors, problem (P1) is still valid, with the difference that, for

Jn,t in (3.27), Pfn expression should be replaced with the ones in (5.54)-(5.55).

5.4 simulation Results

We corroborate our analysis with MATLAB simulations and investigate: (i) the effect of

policy (optimal versus sub-optimal) on transmit powers of sensors, (ii) the achievable J-

divergence when we adopt the optimal, and sub-optimal, and random policies to set transmit
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(a) Optimal policy, sensor 1 (b) Optimal policy, sensor 2 (c) Sub-optimal policy, sensor1 (d) Sub-optimal policy, sensor 2

Figure 5.5: Transmit powers (α2
1,t, α

2
2,t) in optimal and sub-optimal policies for N =2, SNRs =3dB,Ptot =5mW,K=6, bu =

0.5mJ, (γg1 , γg2 ) = (1, 1.5), fDTs = 0.04, L = 4, Ḡ1 = {0, 0.3, 2.5, 4.7}, Ḡ2 = {0, 0.2, 1.4, 3.6}, (ρ1, ρ2) = (0.4, 0.5), (e1,t, e2,t) =
(2bu, 2bu).

powers of sensors, (iii) error probability Pe when we adopt the optimal and sub-optimal poli-

cies to set transmit powers of sensors, and the trade-off between Pe and consumed transmit

power, (iv) the behavior of Pe as different system parameters vary, (v) the effect of random

deployment of sensors on Pe. In all our simulations, we let σ2
wn

=σ2
w=1,∀n and Pdn =Pd,∀n.

Also, γ2gn =γ
2
g ,∀n except for Fig. 4.5. We let Pd=0.9 except for Fig. 3.4, the discount factor

η=0.9 except for Fig. 3.7, and fDTs = 0.05 except for Fig. 3.4. We assume the Gaussian

observation noise variance σ2
vn =σ

2
v ,∀n and we define the SNR corresponding to observation

channel as SNRs = 20 log(A/σv). We adopt a solar-power energy harvesting model similar

to [48], in which the harvesting condition is classified to M = 4 states as “Poor”, “Fair”,

“Good”, and “Excellent”. We assume E = {0, 2bu, 4bu, 6bu} and the transition probability

matrix ΦE is characterized in terms of an energy harvesting parameter ρ as the following

ΦE =


ρ 1− ρ 0 0

1−ρ
2 ρ 1−ρ

2 0

0 1−ρ
2 ρ 1−ρ

2

0 0 1− ρ ρ

 .

We let ρ= 0.5 except for Figs. 5.5 and 5.14. Our battery-related parameters are (K, bu).

Our system setup is based on a given set of L channel gain quantization thresholds Ḡ =

{µ1, µ2, ..., µL}. To explore the effect of quantization thresholds we consider two different
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Figure 5.6: The average J-divergence versus bu for K=
5, N=3,Ptot=5mW, γg=2, L=3, SNRs=3dB.
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Figure 5.7: The average J-divergence versus SNRs dB
for K=5, N=3,Ptot=5mW, bu=1mJ, γg=2, L=3.

objective functions to obtain the quantization thresholds {µl}Ll=1.

• Finding {µl}Ll=1 via Minimizing Mean Absolute Error (MMAE): We consider mean of

absolute quantization error (MAE), denoted as E{|gn,t − ḡn,t|}, as the objective function

E{|gn,t − ḡn,t|} =
L−1∑
l=0

∫ µl+1

µl

(x− µl)fgn,t(x)dx. (5.56)

To find {µl}Ll=1 that minimize MAE, we take the derivative of MAE with respect to µl and

set the derivative equal to zero.

• Finding {µl}Ll=1 via Maximizing output Entropy (MOE): We consider the mutual in-

formation between gn,t and ḡn,t, denoted as I(gn,t; ḡn,t), as the objective function, where

I(gn; ḡn,t)=H(ḡn,t)−H(ḡn,t|gn,t), and H(x) denotes the entropy of discrete random variable

x. To find {µl}Ll=1 that maximize I(gn,t; ḡn,t), we note that H(ḡn,t|gn,t) is zero, since given

gn,t, ḡn,t is known. Furthermore, H(ḡn,t) is maximized when ḡn,t follows a uniform distribu-

tion, i.e., we set ϕn,l=Pr(ḡn,t=µl)=Pr(µl≤ gn,t<µl+1)=
1

L+1
, and the threshold µl can be

obtained as µl=
(
−γgn ln

(
1− l−1

L+1

)) 1
2 .
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Overall, our channel-related parameters are (γgn , fDTs, L, Ḡ), where Ḡ depends on (γgn , L)

and the choice of objective function to obtain the quantization thresholds. The state proba-

bilities and the entries of the transition probability matrix Ψ
(n)

Ḡ can be obtained via (5.5)-(5.6)

given (γgn , fDTs, L, Ḡ).

• Effect of policy on transmit powers of sensors: To show how transmit power α2
n,t

of sensor n changes based on the adopted policy, we consider N = 2 sensors. Recall for

the sub-optimal policy αn,t depends on the local state sn,t=(bn,t, ḡn,t−1, en,t−1), whereas for

the optimal policy the local action αn,t depends on the global state st=(s1,t, s2,t). We use

Algorithm 3 and Algorithm 4, to find and set transmit power α2
n,t corresponding to the

optimal and the sub-optimal policies, respectively. Fig. 4.5 illustrates (α2
1,t, α

2
2,t) when opti-

mal and sub-optimal policies are adopted, given a set of energy harvesting, battery-related,

and channel-related parameters, and assuming the quantization thresholds are obtained via

MMAE. To enable the illustration, we assume the state of energy harvesting for both sensors

is “Fair”, i.e., (e1,t−1, e2,t−1)=(2bu, 2bu), and the states of battery (b1,t, b2,t) and the states of

quantized channel gains (ḡ1,t−1, ḡ2,t−1) are variable. For example, this figure shows that when

the local states are s1,t=(7, 3, 2), s2,t=(7, 3, 2), then transmit powers of sensors correspond-

ing to the optimal policy is (α1,t, α2,t)=(1.5mW, 2mW), whereas transmit powers of sensors

corresponding to the sub-optimal policy is (α1,t, α2,t) = (1mW, 3mW). The Achievable Jtot

corresponding to optimal and sub-optimal policies are 11.58 and 10.43, respectively. These

figures also show that, α2
n,t(bn,t, ḡn,t−1, en,t−1) is monotonically increasing in bn,t, given ḡn,t−1

and en,t−1.

• Achievable J-divergence corresponding to optimal, sub-optimal, and random

policies: Fig. 5.6 and Fig. 5.7 show average J-divergence versus bu and SNRs respectfully.

To plot the curves we set transmit power α2
n,t corresponding to the optimal, the sub-optimal,

and random policies, and then we average Jtot,t=
∑N

n=1 Jn,t over 10
4 independent Monte Carlo
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Figure 5.8: Pe versus Ptot for K = 5, N = 3, bu =
1mJ, γg=2, L=3, SNRs=3dB.
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Figure 5.9: Pe vs. K for N =10,Ptot =15mW, L=4,
SNRs=5dB.

runs. For random policy, we randomly choose α2
n,t such that the two constraints in (5.33)

are satisfied, i.e., (i) α2
n,tTs/bu ≤ bn,t, ∀t, n, (ii)

∑N
n=1 α

2
n,t ≤ Ptot, ∀t. Fig. 5.6 illustrates

that, given a K value, the average J-divergence increases in bu, however, it remains almost

the same after bu reaches and exceeds a certain value. This is due to the fact that, for larger

bu values transmit power is not limited by energy harvesting and stored energy. Instead,

it is limited by the communication channel noise variance σ2
w. Fig. 5.7 shows that the

average J-divergence increases in SNRs. This is due to the fact that as SNRs increases,

Pfn = Pf ,∀n in (5.4) decreases (given a Pd value). Decreasing Pf leads into increasing the

average J-divergence, where Pf and Jn,t are related through (5.20) and (5.21). In both

figures, average J-divergence achieved by the sub-optimal policy is smaller than average J-

divergence achieved by the optimal policy, and larger than average J-divergence achieved by

the random policy.

• Pe corresponding to optimal and sub-optimal policies, and Pe-consumed trans-

mit power trade-off: Fig. 5.8 shows Pe versus Ptot. To plot the curves we set transmit

power α2
n,t corresponding to the optimal and the sub-optimal policies, and then we consider

104 independent Monte Carlo runs to find Pe, i.e., we generate 104 realizations of random
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Figure 5.10: Pe vs. N for K =10,Ptot =15mW, bu =
2mJ γg=1.5, L=4, SNRs=3dB.
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Figure 5.11: Pe vs. SNRs for K = 10,Ptot = 15mW,
bu = 2mJ, γg=2

.
noises and fading channels and count the errors, Pe is the number of errors occurred divided

by 104. Fig. 5.8 reveals two important points: (i) “optimal policy MOE” and “optimal

policy MMAE” achieve the lowest Pe, followed by “sub-optimal policy MOE” and “sub-

optimal policy MMAE”, followed by “random policy MOE” and “random policy MMAE”,

(ii) “sub-optimal policy” performs very close to “optimal policy”. Note that for all curves,

Pe decreases as Ptot increases, however, it reaches an error floor after Ptot exceeds a certain

value. This is due to the fact that for larger Ptot values, Pe is not limited by Ptot. Instead,

it is limited by σ2
w. Fig. 5.8 also allows us to examine the existing trade-off between the

consumed transmit power and Pe. Consider the curve labeled “Pe-consumed transmit power

trade-off” in Fig. 3.3b, which shows how much transmit power is required to provide a cer-

tain Pe value. This curve is obtained from examining the points on “optimal policy MOE”

and checking whether the constraint
∑N

n=1 α
2
n,t ≤ Ptot, ∀t. is active or inactive. At a given

point, when this constraint is active (inactive), the consumed transmit power is equal to (less

than) Ptot. Note that as Ptot increases and Pe reaches an error floor, the consumed transmit

power is less than Ptot. Since finding the sub-optimal policy has a much lower computational

complexity than that of the optimal policy, and its performance is very close to the optimal
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Figure 5.12: Pe vs. η for K = 10, N = 5,Ptot =
15mW, bu=1, L=4,SNRs = 3dB.
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Figure 5.13: Pe vs. P0 for K = 10, N = 5,Ptot =
15mW, L=4, (r0, r1)=(1m,100m).

policy, from this point forward, we focus on the sub-optimal policy.

• Dependency of Pe on different system parameters: Fig. 5.9-5.12 plot Pe correspond-

ing to sub-optimal policy in terms of different system parameters. Fig. 5.9 depicts Pe versus

K as γg and bu change. Given the pair (γg, bu), Pe decreases as K increases, until it reaches

an error floor. The error floor becomes smaller as (i) γg increases, given bu, (ii) bu increases,

given γg. The presence of error floor is due to the fact that, for larger K values Pe is no

longer restricted by K, and instead it is restricted by σ2
w, leading to an error floor. Fig. 5.10

depicts Pe versus N as fDTs and Pd vary. We observe that, given the pair (fDTs, Pd), Pe

reduces when N increases, however, it reaches an error floor after cretin value of N . This is

due to the fact that for larger N values, Pe becomes limited by Ptot and σ2
w. Furthermore,

we notice that Pe decreases when (i) given the pair (N , Pd), fDTs increases; (ii) given the

pair (N , fDTs), Pd increases. Fig. 5.11 shows Pe versus SNRs as L,N change. Examination

of this figure shows that Pe reduces when (i) given the pair (L,N), SNRs increases. This

is because as SNRs increases, Pfn = Pf ,∀n in (5.4) decreases, (ii) given the pair (SNRs,

L), N increases, (iii) given the pair (SNRs, N), L increases. This is because as L increases

the feedback information from the FC to the sensors on channel gain increases. Fig. 5.12
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Figure 5.14: Pe vs. N for Ptot=15mWbu=4mJ, γg=1.5, L = 4 (i) for fixed deployment SNRs=5dB, Pd=0.9, (ii) for random
deployment (r0, r1)=(1m,100m), P0=84dBW.

shows Pe versus η as γg varies. Given γg, Pe decreases in η. This is due to the fact that,

as η increases, the sub-optimal α2
n,t values increases, leading to a decrease in Pe. We note

that there is a performance-computational complexity trade-off as η increases. Recall the

mean of the network lifetime T is E{T}=1/(1− η). As η increases, the number of iterations

required for the value iteration algorithm (i.e., step 3 of Algorithm 4)) to converge increases.

• Effect of random deployment of sensors on Pe: We consider a circle field where the

signal source with power P0 is located at its center. Sensors are randomly deployed in the

field such that the distance of sensor n from the source, rn, is uniformly distributed in the

interval of (r0, r1) = (1m, 100m). We assume the quantization thresholds are obtained via

MMAE. Fig. 5.13 illustrates Pe versus P0 as γg and bu change. We observe that Pe decreases

when: (i) given the pair (γg, bu), P0 increases, (ii) given the pair (P0, bu), γg increases,

(iii) given the pair (P0, γg), bu increases. These observations are all expected. Fig. 5.14

illustrates Pe versus N for fixed and random deployment, as ρ and K vary. For the given

set of parameters, the performance of fixed and random deployments is close to each other.

Also, given the pair (ρ,K), Pe reduces when N increases, however, it reaches an error floor

after N exceeds a certain value. This is due to the fact that for larger N values, Pe becomes
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limited by Ptot and σ2
w. Furthermore, we notice that Pe decreases when (i) given the pair

(N , K), ρ increases, (ii) given the pair (N , ρ), K increases.

5.5 Conclusions

Considering an EH-enabled WSN with N sensors and a feedback channel from the FC to the

sensors, tasked with binary distributed detection, we developed adaptive channel-dependent

transmit power control policies such that the detection performance is optimized, subject to

total transmit power constraint. Modeling the quantized fading channel, the energy arrival,

and the dynamics of the battery as homogeneous FSMCs, and the network lifetime as a

random variable with geometric distribution, we formulated our power control optimization

problem as a discounted infinite-horizon constrained MDP problem, where sensors’ transmit

powers are functions of the battery state, quantized CSI, and the arrived energy. We devel-

oped the optimal policy, using dynamic programming and utilizing the Lagrangian approach

to transform the constrained MDP problem into an equivalent unconstrained MDP problem.

Determining the optimal policy, however, requires the knowledge of the global state at the

FC, which imposes a significant signaling overhead to the sensors. To eliminate this overhead,

we developed the sub-optimal policy, using a uniform Lagrangian multiplier to transform the

constrained MDP problem into N unconstrained MDP problems. Different from the optimal

policy, in the sub-optimal policy each sensor sets its transmit power based on its local state

information. We showed that the computational complexity of finding the sub-optimal policy

scales linearly in N and this policy has a close-to-optimal performance. We studies the error

probability Pe in terms of different system parameters, including K,N,Ptot, SNRs. Although

Pe decreases as each of these parameters increases, there is an error floor that ultimately

depends on the communication channel noise variance and Ptot. We expanded our work
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to random deployment of sensors and examined how it affects the error probability. The

insights obtained in this work are useful for adaptive transmit power control of EH-enabled

WSNs tasked with distributed detection.
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CHAPTER 6: EH-ENABLED DISTRIBUTED DETECTION

OVER TEMPORALLY CORRELATED MARKOVIAN MIMO

CHANNELS

We address distributed detection problem in a wireless sensor network, where each sensor

harvests and stores randomly arriving energy units in a finite-size battery. Sensors transmit

their symbols simultaneously to a fusion center (FC) with M >1 antennas, over temporally

correlated fading channels. Each sensor knows the quantized Frobenius norm of channel gain

matrix, acquired via a feedback channel from the FC. Modeling the randomly arriving energy

units as a Poisson process and the quantized channel state information (CSI) and the battery

dynamics as homogeneous finite-state Markov chains, we propose an adaptive transmit power

control strategy such that the J-divergence based detection metric is maximized at the

FC, subject to an average transmit power per-sensor constraint. The proposed strategy is

parameterized in terms of the scale factors (optimization variables) corresponding to the

quantization intervals. This strategy allows each sensor to adapt its power based on its

battery state and available CSI.

6.1 System Model

6.1.1 Observation Model at Sensors

Suppose the time horizon is divided into slots of equal length Ts. Each time slot is indexed

by an integer t for t=1, 2, ...,∞. We model the underlying binary hypothesis Ht in time slot

t as a binary random variable Ht ∈ {0, 1} with a-priori probabilities Π0 = Pr(Ht = 0) and

Π1 =Pr(Ht = 1) = 1 − Π0. We assume that the hypothesis Ht varies over time slots in an
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independent and identically distributed (i.i.d.) manner. Let xn,t denote the local observation

at sensor n in time slot t. We assume that sensors’ observations given each hypothesis with

conditional distribution f(xn,t|Ht=ht) for ht ∈ {0, 1} are independent across sensors. This

model is relevant for WSNs that are tasked with detection of a known signal in uncorrelated

Gaussian noises with the following signal model

Ht = 1 : xn,t = A+ vn,t,

Ht = 0 : xn,t = vn,t, for n = 1, . . . , N, (6.1)

where Gaussian observation noises vn,t∼N (0, σ2
vn) are independent over time slots and across

sensors. Given observation xn,t sensor n computes its local log-likelihood ratio (LLR)

ξn(xn,t) ≜ log

(
f(xn,t|Ht = 1)

f(xn,t|Ht = 0)

)
, (6.2)

and compares it against a given local threshold θn to choose its non-negative transmission

symbol αn,t. When ξn(xn,t)<θn, sensor n lets αn,t = 0. When ξn(xn,t)>θn, sensor n chooses

αn,t according to the rule in (6.10). We have

Π̂n,0 = Pr(αn,t=0) = Π0(1−Pfn) + Π1(1−Pdn),

Π̂n,1 = Pr(αn,t ̸=0) = Π0Pfn +Π1Pdn , (6.3)

where the probabilities Pfn and Pdn are

Pfn =Pr(ξn(xn,t)>θn|Ht = 0)=Q
(θn +A2/2σ2

vn

A/σvn

)
,

Pdn =Pr(ξn(xn,t)>θn|Ht = 1)=Q
(θn −A2/2σ2

vn

A/σvn

)
. (6.4)
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6.1.2 Markovian Battery State and Energy Harvesting Models

We assume sensors are equipped with identical batteries of finite size K cells (units), where

each cell corresponds to bu Joules of stored energy. Therefore, each battery is capable of

storing at most Kbu Joules of harvested energy. Let Bn,t ∈ {0, 1, ..., K} denote the discrete

random process indicating the battery state of sensor n at the beginning slot t. Note that

Bn,t = 0 and Bn,t = K represent the empty battery and full battery levels, respectively.

Also, Bn,t = k implies that the battery is at state k, i.e., k cells of the battery is charged

and the amount of stored energy in the battery is kbu Joules.

Let En,t denote the randomly arriving energy units during time slot t at sensor n, where each

unit is bu Joules. We assume En,t’s are i.i.d. over time slots and across sensors. We model

En,t as a Poisson random variable with parameter ρ, and probability mass function (pmf)

pm ≜ Pr(En,t = m) = e−ρρm/m! for m = 0, 1, . . . ,∞. Note that parameter ρ is the average

number of arriving energy units during one time slot at each sensor. Let Sn,t be the number

of stored (harvested) energy units in the battery at sensor n during time slot t. Note that the

harvested energy Sn,t cannot be used during slot t. Since the battery has a finite capacity of

K cells, we have Sn,t ∈ {0, 1, ..., K}. Also, Sn,t are i.i.d. over time slots and across sensors.

The two random variables Sn,t and En,t are related as the following

Sn,t =


En,t, if 0 ≤ En,t ≤ K − 1,

K, if En,t ≥ K.

(6.5)

Based on (6.5) we can find the pmf of Sn,t in terms of the pmf of En,t. Let qe ≜ Pr(Sn,t = e)
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for e = 0, 1, . . . , K. We have

qe =


pe, if 0 ≤ e ≤ K − 1,∑∞

m=K pm, if e = K.

(6.6)

The battery state at the beginning of slot t+1 depends on the battery state at the beginning

of slot t, the harvested energy during slot t, and the transmission symbol αn,t, i.e.,

Bn,t+1 = min
{
[Bn,t + Sn,t − α2

n,tTs/bu]
+, K

}
, (6.7)

where [x]+ = max{0, x}. Considering the dynamic battery state model in (6.7) we note that,

conditioned on Sn,t and αn,t the value of Bn,t+1 only depends on the value of Bn,t. Hence,

the process Bn,t can be modeled as a Markov chain. Let Φn,t be the probability vector of

battery state in slot t

Φn,t ≜
[
Pr(Bn,t = 0), . . . ,Pr(Bn,t = K)

]T
, (6.8)

where Pr(Bn,t=k) in (6.8) depends on Bn,t−1, Sn,t−1 and αn,t−1. Assuming that the Markov

chain is time-homogeneous, we let Ψn be the transition probability matrix of this chain

with its (i, j)-th entry [Ψn]i,j ≜ Pr(Bn,t = j|Bn,t−1 = i) for i, j = 0, . . . , K. We can

express [Ψn]i,j as (6.11). Since the Markov chain characterized by Ψn is irreducible and

aperiodic, there exists a unique steady state distribution, regardless of the initial state [43].

Let Φn = [ϕn,0, ϕn,1, ..., ϕn,K ]
T be the unique steady state probability vector with the entries

ϕn,k = limt→∞ Pr(Bn,t = k). This vector satisfies the eigenvalue equation Φn = ΦnΨn.
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6.1.3 Markovian Channel Gain Model and Transmission Symbol

We assume N sensors send their transmission symbols αn,t simultaneously to the FC, that

is equipped with M receive antennas. Let gm,n,t indicate the fading channel gain between

sensor n and m-th antenna of the FC during time slot t. The M × N channel matrix Gt

becomes

Gt =



g1,1,t g1,2,t · · · g1,N,t

g2,1,t g2,2,t · · · g2,N,t
...

...
...

...

gM,1,t gM,2,t · · · gM,N,t


. (6.9)

We assume block fading model and gm,n,t’s are i.i.d. over time slots and independent across

sensors. We define the channel gain as the Frobenius norm of Gt, i.e., st= ||Gt||2F [62]. We

consider a scalar quantizer at the FC that maps st into a point in set S = {ŝ1, ŝ2, ..., ŝL},

which contains L quantized channel gain values. The points in set S can be found such that

a certain distortion function is minimized. The FC partitions the positive real line R+ into

L intervals (Voronoi cells of the quantizer) using L quantization thresholds {µl}Ll=1, where

0=µ1<µ2<. . .<µL−1<µL=∞, and associates interval Il=[µl, µl+1) with point ŝl, i.e., if

st lies in the interval Il then the quantized channel gain Q(st) becomes ŝl. The FC informs

all sensors of the quantized channel gain through a feedback channel. Sensor n chooses αn,t

according to its battery state k and the available quantized channel gain, using the following

rule

α2
n,t =



0, ξn(xn,t) < θn,

⌊c1k⌋bu/Ts, ξn(xn,t) ≥ θn, Q(st) = ŝ1,

...
...

⌊cLk⌋bu/Ts, ξn(xn,t) ≥ θn, Q(st) = ŝL,

(6.10)
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[Ψn]i,j=Π̂n,1

K∑
k=0

L∑
l=1

πlqkIi→j(Sn,t, ⌊cli⌋)+Π̂n,0

K∑
k=0

qkIi→j(Sn,t, 0).

where Ii→j(Sn,t, α2
n,tTs/bu) =

{
1, if j=min

{
[i+ Sn,t − α2

n,tTs/bu]
+, K

}
,

0, o.w.
(6.11)

where ⌊.⌋ is the floor function and the scale factors {cl}Ll=1 are between zero and one and are

our optimization variables.

We model the time variation of the quantized channel gain using a Markov chain [63]. The

Markov chain has L states and the states are the points in set S. To obtain this Markov

model, similar to [62], we make the following two assumptions: (AS1) The entries ofGt have

the Clark’s correlation function [64], i.e., we have E
[
g∗i,j,t gi,j,t+τ

]
= J0(2πfDτ),∀i, j, where

J0 is Bessel function of zeroth-order and fD is the maximum Doppler frequency [52]. (AS2)

Inter-state transitions only occur between adjacent states in the chain. Let πl=Pr(Q(st) =

ŝl) be the steady-state probability of state l of the Markov chain. We have πl=
∫ µl+1

µl
fs(s)ds,

where fs(s) is the probability density function (pdf) of st. Assuming that the elements of Gt

are i.i.d and distributed as CN (0, 1), the channel gain st follows a chi-squared distribution

with degree of freedom equal to MN . Hence, πl can be written as

πl=Pr(Q(st)= ŝl)=
Z−1∑
i=0

exp(−µl)µil − exp (−µl+1)µ
i
l+1

i!
, (6.12)

where Z = 2MN . Let Θ be the transition probability matrix of this chain with its (i, j)-th
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entry [Θ]i,j=Pr(Q(st)= ŝi|Q(st−1)= ŝj). We have

[Θ]i,j =



β(µ2l+1)

πn,l
, i = l+1, j = 1, ..., L−1

β(µ2l )

πn,l
, i = l − 1, j = 2, ..., L

1− β(µ2l )

πn,l
− β(µ2l+1)

πn,l
, i = l, j = 2, ..., L−1

1− β(µ22)

πn,1
, i = 1, j = 1

1− β(µ2L)

πn,L
, i = L, j = L

0, O.W.

(6.13)

where β is the level crossing rate of the random process s2t at the level x and is given by [62]

β(x) =
√
2πfDTsx

(Z−1/2)

(Z−1)! exp (x)
.

6.1.4 Received Signals at FC and Optimal Bayesian Fusion Rule

In each time slot, sensors send their symbols simultaneously to the FC. The received signal

at the FC corresponding to time slot t is yt =Gtαt + wt, where yt = [y1,t, y2,t, , ..., yM,t]
T ,

αt=[α1,t, α2,t, , ..., αN,t]
T , wt=[w1,t, w2,t, , ..., wM,t]

T , andwt is a zero mean complex Gaussian

vector with covariance matrix R. The FC applies the optimal Bayesian fusion rule Γ0(.) to

obtain a global decision u0,t [16]. In particular, we have

u0,t=Γ0(yt)=


1, ∆t > τ,

0, ∆t < τ,

∆t=log

(
f(yt|Ht = 1)

f(yt|Ht = 0)

)
(6.14)

where f(yt|Ht = ht) is the conditional pdf of yt and the decision threshold τ = log(Π0

Π1
) .

From Bayesian perspective, the natural choice to measure the detection performance is the
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error probability, defined as Pe = Π0 Pr(∆t > τ |Ht = 0) + Π1 Pr(∆t < τ |Ht = 1). However,

finding a closed form expression for Pe is mathematically intractable. Instead, we choose the

J-divergence between the distributions of the detection statistics at the FC under different

hypotheses, as our detection performance metric. This choice allows us to provide a tractable

analysis. Given the local thresholds {θn}Nn=1 in (6.10) and the channel gain quantizer at the

FC, our problem of optimizing transmit power control strategy reduces to finding the optimal

scale factors {cl}Ll=1 in (6.10) such that the J-divergence at the FC is maximized, subject to

per-sensor average transmit power constraints.

6.2 J-Divergence Derivation and Our Constrained Optimization Problem

By definition [18,30], the J-divergence between two pdfs η1(x) and η0(x), denoted as J(η1, η0),

is J(η1, η0) =D(η1||η0)+D(η0||η1), where D(ηi||ηj) is the non-symmetric Kullback-Leibler

(KL) distance between ηi(x) and ηj(x). The KL distance D(ηi||ηj) is defined as D(ηi||ηj)=∫∞
−∞ log

(
ηi(x)
ηj(x)

)
ηi(x)dx. Therefore, we obtain

J(η1, η0) =

∫ ∞

−∞
[η1(x)− η0(x)] log

(
η1(x)

η0(x)

)
dx. (6.15)

In our problem setup, f(yt|Gt, Ht = 1) and f(yt|Gt, Ht = 0) play the role of η1(x) and

η0(x), respectively. Given Gt we note that Ht, αt, yt satisfy the Markov property, i.e.,

Ht → αt → yt [18,30]. This implies that yt and Ht, given αt, are conditionally independent.

Therefore, we can write f(yt|Gt, Ht= i) = f(yt|Gt,αt = 0)Pr(αt|Ht = i) + f(yt|Gt,αt ̸=

0)Pr(αt|Ht = i) for i = 0, 1. We have

f(yt|Gt,αt) =
1

|2πR| 12
exp[−1

2
(yt −Gtαt)R

−1(yt −Gtαt)] (6.16)
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Although f(yt|Gt,αt) is Gaussian, f(yt|Gt, Ht = 0), f(yt|Gt, Ht = 1) are Gaussian mix-

tures. Unfortunately, the J-divergence between two Gaussian mixture densities does not

have a general closed-form expression. Similar to [18, 30], we approximate the J-divergence

between two Gaussian mixture densities by the J-divergence between two Gaussian densi-

ties fG(yt|Gt, Ht = i) ∼ N (mi,Υi), where the mean and the variance of the approximate

distributions are obtained from matching the first and second order moments of the actual

and the approximate distributions. For our problem setup, the parameters m0,m1,Υ0,Υ1

become

m0 = GtAtPf, Υ0=R+GtAtP̂fA
T
t G

T
t ,

m1 = GtAtPd, Υ1=R+GtAtP̂dA
T
t G

T
t . (6.17)

in which At=diag{α1,t, ..., αN,t}, Pf = [Pf1 , ..., PfN ]
T , Pd = [Pd1 , ..., PdN ]

T , P̂f =diag{Pf1(1 −

Pf1), ..., PfN (1 − PfN )}, and P̂d =diag{Pd1(1 − Pd1), ..., PdN (1 − PdN )}. After some algebra,

we obtain

J
(
fG(yt|Gt, Ht = 1), fG(yt|Gt, Ht = 0)

)
=

1

2
Tr
[
Υ0Υ

−1
1 +Υ1Υ

−1
0

+ (Υ−1
1 +Υ−1

0 )(m1 −m0)(m1 −m0)
T
]
−M (6.18)

Note that J in (6.18) depends on Gt, whereas α
2
n,t in (6.10) depends on the quantization

interval to which st= ||Gt||2F belongs. Let J̄ (i) =E{J |st ∈ [µi, µi+1]} and P̄(i)
n =E{α2

n,t|st ∈

[µi, µi+1]}, respectively, denote the expectations of J in (6.18) and α2
n,t in (6.10) over st,

conditioned that st ∈ [µi, µi+1]. Since J̄
(i) does not have a closed-form expression we compute

it via Monte Carlo simulation. Using (6.10) we find P̄(i)
n = Π̂n,1

∑K
k=0 ϕn,kπi⌊cik⌋. Our

constrained optimization problem of maximizing the J-divergence, subject to per-sensor

average transmit power constraints, with respect to the optimization variables {cl}Ll=1 in
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(6.10) become

max
{cl}Ll=1

L∑
i=1

J̄ (i)(6.P1)

s.t. cl ∈ [0, 1],∀l,
L∑
i=1

P̄(i)
n ≤ P0,∀n.

where P0 is the maximum allowed average transmit power per-sensor. We note that (6.P1)

is not concave with respect to the optimization variables. Moreover, the objective func-

tion and the constraints in (6.P1) are not differentiable with respect to the optimization

variables. Hence, existing gradient-based algorithms for solving non-convex optimization

problems cannot be used to solve (6.P1). We resort to a grid-based search method, which

requires L-dimensional search over the search space [0, 1]L. Clearly, the accuracy of this

solution depends on the resolution of the grid-based search. Suppose the intervals [0, 1] is

divided into Nc sub-intervals. Therefore, the search space of (P1), denoted as D, consists of

(Nc)
L discrete points in the original L-dimensional search space.

Computational complexity of solving (6.P1): We note that the FC needs to perform

two tasks for each point in D: task (i) forming Ψn and Φn, task (ii) calculating J̄ (i) and P̄(i)
n .

Our numerical results show that for a fixed {cl}Ll=1 the computational complexity of task (i)

and task (ii) are O(K3.2) and O(M × N × K2.7), respectively. Hence, the computational

complexity of solving (P1) is O
(
(Nc)

L(K3.2 +M ×N ×K2.7)
)
. To curb he computational

complexity of the grid-based search method, we plan to explore random search algorithms

(in which only a randomly chosen subset of the points in D is searched to find a solution)

that have a low-computational complexity and provide a close-to-optimal performance for

our future work.
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Figure 6.1: L=2, P0=2mW.
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Figure 6.2: L=6,P0=2mW, ρ=2.

6.3 Simulation results and Concluding Remarks

In our simulations, we let R=Iσ2
w and define the SNR corresponding to observation channel

as SNRs = 20 log(A/σv). We let Pdn = 0.9,∀n,K = 5,M = 4, N = 3, SNRs = 3dB, σ2
w = 1.

For L=2 the optimization variables are {c1, c2}. Fig. 6.1 illustrates the objective function

J̄ (1) + J̄ (2) versus the scale factor c2 given c1=0.5. We observe that the objective function is

not a concave function of c2. Still there exists a point, denoted as c∗2, at which the function

attains its maximum. Starting from small values of c2, as c2 increases (until it reaches c∗2),

the function value increases, because the harvested energy can recharge the battery and can

yield more power for data transmission. However, when c2 exceeds c∗2, the harvested and

stored energy cannot support the data transmission and the function value decreases.

Fig. 6.2 depicts the optimized {cl}’s versus the quantization thresholds {µl}’s for L=6. We

note that, as l increases (i.e., channel gain st increases), cl first increases and then decreases.

Considering (6.10) this implies that, given the battery state k, as st increases α2
n,t first

increases and then decreases. Fig. 6.3 shows the error probability Pe versus P0, in which

Pe values are obtained from Monte-Carlo simulations. As P0 increases Pe decreases, which
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is expected. Fig. 6.3 also allows us to examine the existing trade-off between the average

transmit power and the detection performance. Consider the curve labeled “Pe-power trade-

off” in Fig. 6.3, which shows how much average transmit power is required to provide a

certain Pe value. This curve is obtained from checking whether the power constraint in

(3.P1) is active or inactive. At a given point, when this constraint is active (inactive), the

average transmit power is equal to (less than) P0. Note that as P0 increases and Pe reaches

an error floor, the average transmit power is less than P0.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

DIRECTIONS

In this dissertation we studied the distributed detection in energy harvesting wireless sen-

sor networks (WSNs). In EH-powered WSNs, where sensors are capable of harvesting and

storing energy, power control is necessary to balance the rates of energy harvesting and

energy consumption for data transmission. In addition, wireless communication channels

change randomly in time due to fading. These together prompt the need for developing new

power control strategies for an EH-enabled transmitter that can best exploit and adapt to

the random energy arrivals and time-varying fading channels. We consider parallel struc-

ture EH-powered WSNs tasked with solving a binary distributed detection problem. Sensors

process locally their observations, adapt their transmission according to the battery and

fading channel states, and transmit their data symbols to the fusion center (FC) over or-

thogonal fading channels. We study adaptive transmission schemes that optimize detection

performance metrics at the FC, subject to certain battery and transmit power constraints.

7.1 Conclusions

In the following, we summarize our contributions in Chapters 2-6, and provide some ideas

for future works.

In chapter 2, we studied a distributed detection problem in a wireless network with N het-

erogeneous energy harvesting sensors and investigated the optimal local decision thresholds

for given transmission and battery state models. Our numerical results indicate that the

thresholds obtained from maximizing the Kullback-Leibler distance are near-optimal. Find-
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ing these thresholds is computationally very efficient, as it requires only N one-dimensional

searches, as opposed to a N -dimensional search required to find the thresholds that maximize

the detection probability.

In chapter 3, we developed a power control strategy for an EH-enabled WSN, that is tasked

with solving a binary distributed detection problem. Our proposed strategy is parameterized

in terms of the channel gain quantization thresholds and the scale factors, which play key roles

in balancing the rates of energy harvesting and energy consumption for transmission. We

explored the optimal and sub-optimal strategies such that the J-divergence based detection

metric is maximized, subject to an average transmit power per sensor constraint. These

optimization problems can be solved offline and allow each sensor to adapt its power based

on its battery state and its quantized CSI (acquired via limited feedback from the FC). Since

our non-convex optimization problem is not differentiable with respect to the optimization

variables, we explored deterministic, random, and hybrid grid-based search methods, and

showed that our proposed hybrid search methods have a low-computational complexity and

near-optimal performance. The structure of the optimized scale factors reveals that, given

the battery state, the optimized power level is not a monotonic function of the channel gain.

We examined the existing trade-off between the average transmit power and the detection

performance. We also demonstrated that increasing K or ρ do not necessarily lower the

detection error, and it depends on the communication channel noise.

In chapter 4, we considered a binary distributed detection system where each sensor is ca-

pable of harvesting and storing randomly arrived energy in its battery. We formulated the

problem of finding the optimal power control policy that optimizes the detection perfor-

mance as a finite-horizon MDP problem, and solved the problem via finite horizon dynamic

programming. The optimal policy allows each sensor to adapt its transmission symbol based

on its current quantized CSI and battery state.
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In chapter 5, considering an EH-enabled WSN with N sensors and a feedback channel from

the FC to the sensors, tasked with binary distributed detection, we developed adaptive

channel-dependent transmit power control policies such that the detection performance is

optimized, subject to total transmit power constraint. Modeling the quantized fading chan-

nel, the energy arrival, and the dynamics of the battery as homogeneous FSMCs, and the

network lifetime as a random variable with geometric distribution, we formulated our power

control optimization problem as a discounted infinite-horizon constrained MDP problem,

where sensors’ transmit powers are functions of the battery state, quantized CSI, and the

arrived energy. We developed the optimal policy, using dynamic programming and utiliz-

ing the Lagrangian approach to transform the constrained MDP problem into an equivalent

unconstrained MDP problem. Determining the optimal policy, however, requires the knowl-

edge of the global state at the FC, which imposes a significant signaling overhead to the

sensors. To eliminate this overhead, we developed the sub-optimal policy, using a uniform

Lagrangian multiplier to transform the constrained MDP problem into N unconstrained

MDP problems. Different from the optimal policy, in the sub-optimal policy each sensor sets

its transmit power based on its local state information. We showed that the computational

complexity of finding the sub-optimal policy scales linearly in N and this policy has a close-

to-optimal performance. We studied the error probability Pe in terms of different system

parameters, including K,N,Ptot, SNRs. Although Pe decreases as each of these parameters

increases, there is an error floor that ultimately depends on the communication channel noise

variance and Ptot. We expanded our work to random deployment of sensors and examined

how it affects the error probability. The insights obtained in this chapter are useful for

adaptive transmit power control of EH-enabled WSNs tasked with distributed detection.

In chapter 6, considering a WSN, composed of EH-enabled sensors and a fusion center

(FC), in [3] we developed an adaptive channel-dependent transmit power control strategy
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for sensors such that J-divergence detection metric at the FC is maximized. In [3] we

assumed that the FC has a single antenna, sensors transmit over orthogonal channels, and

fading channels between sensors and the FC are independent and identically distributed

(i.i.d.) over time slots. In this chapter we extended [3] to temporally correlated Markovian

MIMO channels where the FC has M > 1 antennas, sensors transmit their symbols to the

FC simultaneously, and fading channels between sensors and the FC are correlated over time

slots.

7.2 Future work

In this section, we provide some interesting issues that can be addressed in the future.

In cooperative communication networks, the source node transmits its data to the destination

either directly or cooperatively with a cooperating node. When using energy harvesting

technology, where nodes collect their energy from the environment, the energy availability at

the nodes becomes unpredictable due to the stochastic nature of energy harvesting processes.

As a result, when the source has a transmission, it cannot immediately transmit its data

cooperatively with the cooperating node. It first needs to determine whether the cooperating

node has sufficient energy to forward its transmission or not. Otherwise, its transmitted data

may get lost. Therefore, when using energy harvesting, the challenge is for the source to

schedule its transmissions whether directly or cooperatively, such that the fraction of its

events (sensed data) that are successfully reported to the destination is maximized.

We propose to address the problem of cooperating node scheduling in energy harvesting

sensor networks. We can study the problem for the case of a single cooperating node and

the case of multiple cooperating nodes, as well as the scenarios of one-way and two-way
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cooperative communications. A simple scheduling scheme, called feedback scheme, which

enables the source to optimally schedule its transmissions whether directly or cooperatively

can be investigated.
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