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ABSTRACT 

Deep Neural networks (DNN) are fundamentally information processing machines, 

which synthesize the complex patterns in input to arrive at solutions, with applications in various 

fields. One major question when working with the DNN is, which features in the input lead to a 

specific decision by DNN. One of the common methods of addressing this question involve 

generation of heatmaps. Another pertinent question is how effectively DNN has captured the 

entire information presented in the input, which can potentially be addressed with complexity 

measures of the inputs.  

 In the case of patients with intractable epilepsy, appropriate clinical decision making 

depends on the interpretation of the brain signals, as recorded in the form of 

Electroencephalogram (EEG), which in most of the cases will be recorded through intracranial 

monitoring (iEEG)). In current clinical settings, the iEEG is visually inspected by the clinicians 

to arrive at decisions regarding the location of the epileptogenic zones which is used in the 

determination of surgical planning. Visual inspection and decision making is a very tedious and 

potentially error prone approach, given the massive amount of data that need to be evaluated in a 

limited amount of time. We developed a DNN model to evaluate iEEG to classify signals arising 

from epileptic and non-epileptic zones.  

One of the challenges of incorporating the deep neural network tools in the medical 

decision making is the black box nature of these tools. To further analyze the underlying reasons 

for DNN’s decision regarding iEEG, we used heatmapping and signal processing tools to better 

understand the decision-making process of DNN. We were able to demonstrate that the energy 
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rich regions, as captured by analytical signals, is identified by DNN as potentially epileptogenic, 

when arriving at decisions.   

We explored the DNN’s ability to capture the details of the signal with information 

theoretical approaches. We introduced a measure of confidence of DNN predictions, named 

certainty index, which is calculated based on the overall outputs in the penultimate layer of the 

network. We employed the method of Sample Entropy (SampEn) and were able to demonstrate 

that the DNN’s prediction certainty is related to how effectively the heatmap is correlated to the 

SampEn of the entire signal. We explored the parameter space of the SampEn calculation and 

demonstrate that the relationship between SampEn and certainty of DNN predictions hold even 

on changing the estimation parameters.  

Further we were able to demonstrate that the rate of change of relationship between the 

DNN output and activation map, as a function of the sequential DNN layers, is related to the 

SampEn of the signal. This observation suggests that the speed at which DNN captures the 

results is directly proportional to the information content in the signal.  
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CHAPTER 1: INTRODUCTION 

The Deep neural networks (DNNs) are fundamentally information processing machines, 

which uses features from input to come up with predictions for various kinds of tasks including 

signal classification, image recognition, medical diagnosis, and natural language processing.  

While DNNs allow for learning from huge amounts of data, the question of whether DNN used 

the relevant information from the data has always been pertinent. Heatmapping approaches have 

been described for exploring the learning process of DNN for enhancing our understanding on 

why the model finalized on a specific decision. But the question of, whether the heatmaps 

captured all the information in the model and how it is related to the confidence of the 

predictions of DNN has not been explored. Using information theoretic approaches including 

Sample entropy (SampEn) measures, can potentially enable us, in scrutinizing the learning 

process of DNN, thereby having an independent measure of reliability. In this study we evaluate 

the learning process of DNN, using the fundamental measures of information content in a time 

series.   

Information theory-based approaches have already been used in the field of DNN for 

improving the performance[1],[2] as in cross-entropy measures. Also, measures of information 

are commonly in training and validating DNN models.  Taking a step forward, we have 

attempted to use the information theoretic approach to assess the heatmaps of DNN outcomes 

and compare the confidence of predictions. Further, we use the activation gradients to assess how 

the information propagates across DNN and correlate this measure with the information content 

in the signal.  
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With the advancements in the computational tools, our understanding of the medical 

conditions has vastly improved. At the same time several challenges exist, which need to be 

addressed, especially in the field of neuroscience, both from a clinical and basic science 

standpoint. Modern engineering techniques, including deep learning methods, enhance the 

capabilities of analyzing tremendous amount of data, emerging in the medical field. At the same 

time, the science behind these modern engineering techniques needs to be thoroughly explored to 

ensure that optimal results are obtained, when they are applied in the field of medical science. 

This would be especially important from a standpoint of adoption of these techniques to different 

critical applications of human service, especially in evaluation and management of medical 

conditions. 

Epilepsy as a major medical challenge with data analysis 

Epilepsy is one of the common neurological disorders and accounts for 30 million 

disability adjusted life years. Around 7.6 per 1000 persons have epilepsy during their lifetime 

[3]. Approximately 1% of the US population suffers from epilepsy and in 30-35 % of these 

patients, seizures cannot be controlled medically and are considered to have refractory epilepsy 

[4]. According to World Health Organization data, 70 million people suffer from epilepsy. 

Worldwide, epilepsy is the fourth major cause of brain disorders [5].  The age standardized 

prevalence of  epilepsy is 621.5 per 100,000 population[6].  Estimated total cost of care of 

epilepsy patients, in United States, amounts to approximately $24 billion per year[7].  This is in 

addition to the huge social, emotional, and personal sufferings of these patients and families. 
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Epilepsy, in many patients can be a lifelong disease also which intensifies the impact of this 

disease. The epilepsy incidence in different age groups is given the Figure 1. 

 
 

Figure 1. Graph showing the incidence of epilepsy in different age groups.  

There are usually two peaks of incidence of epilepsy, 1. At early age group until the age of 4 

years. 2. Late age starting between 65- 70 years of age.  

 

Patients who develop refractory epilepsy may suffer from recurrent seizures, status epilepticus 

and neurocognitive impairments which all can lead to significant morbidity and mortality. If 

medications fail, they often need to be treated with surgical options which is planned based on 

intracranial EEG (leg) monitoring, which aims at accurate determination of the epileptogenic 
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zones. Before planning for intracranial EEG monitoring these patients undergo extensive 

evaluation which includes following steps as illustrated in Figure 2:  

1. Epilepsy monitoring unit evaluation where the typical seizures are captured to make initial 

impressions about the nature of seizures, clinical findings and broad localization. 

2. Magnetic resonance imaging to identify the structural abnormalities of the brain 

3. Magnetoencephalography (MEG) which helps in identifying the epileptiform discharges 

arising from the different regions of the brain due to the magnetic components in the signal.  

4 Neuropsychology evaluation to determine the neurocognitive status of the patients along with 

evaluating the deficits arising from the recurrent seizures.  

5. Positron Emission Tomography (PET) scan aimed at identifying the potential abnormal 

metabolic patterns in the regions of epileptic activity. 

6. Single photon emission computerized tomography (SPECT) to evaluate transient changes in 

the amount of glucose uptake in the regions of epilepsy.   

7.Wada testing which helps in establishing which side of the brain significantly contributes to the 

language and memory functions, which enables the clinical team in avoiding causing any 

additional neurocognitive deficits to the patient.  

8. Functional magnetic resonance imaging which helps in identifying the brain regions 

controlling the language, motor and sensory functions.  

After the initial evaluation, a clinical board consisting of epileptologists, neurosurgeon, 

neuropsychologist, social workers etc., evaluate the data and come up with a plan for surgical 
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options. In some cases, a surgery based on the initial evaluation itself, can be made but in a 

considerable number of cases additional evaluation with intracranial EEG may be needed. For 

this purpose, patients undergo intracranial EEG monitoring after placement of the electrodes 

inside the brain.  Two main types of electrode placements are employed in this regard:1.surface 

electrode placement which may be either as a single strip of electrode or a grid of electrodes 2. 

depth electrodes which are placed deeper into the brain tissues.  

Typical intracranial electrode placement is shown in Figure 3 and signals from the brain 

is recorded for prolonged periods and analyzed for seizure onset zones. Identifying the features 

suggestive of seizure onset in these signals can sometimes be challenging, given the huge 

amount of data that need to be visually analyzed by clinicians Figure 4. It may be noted that even 

with surgery some patients may not get complete seizure freedom, suggesting failure of that 

modality of assessment in the localization of epileptogenic zones. Failure to accurately identify 

the epileptogenic zones in iEEG may be contributing to the inadequate seizure control reported 

even after epilepsy surgery, which ranges from 30-60% [8],[9]. This raises the critical need for 

tools which can accurately analyze the iEEG signals and identify the epileptogenic zones.  

Motivation for our work 

As mentioned in the previous section visual evaluation of iEEG data to arrive at clinical 

decisions is extremely challenging and can potentially lead to erroneous decisions. It is in this 

context that the approaches of deep learning would provide better tools for analyzing the iEEG 

signals to improve the detection of epileptogenic zones. DNNs have been used in multiple fields 

including image classification [10], signal processing[11,12] and natural language processing 
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[13]. In this study we evaluate the use of deep neural network for evaluating iEEG signals to 

accurately identify the seizure onset zones, using signals recorded during the interictal periods 

(when patients do not have seizures). We employed a short duration (1 minute) of signal to 

identify the epileptogenic zone in contrast with multiple days of iEEG monitoring used in the 

current medical decision-making process. 

 

Figure 2. A broad overview of the work up for epilepsy surgery planning.  

A. Recording of the EEG and capturing the typical events of the patient to correlate the clinical 

and electrographic patterns. B. MRI brain to identify any focal abnormalities in the different 

brain regions. This can be pathological changes like, encephalomalacia, focal cortical 

dysplasia, hemosiderin deposition etc. C. Positron emission tomography (PET) scan performed 

to identify any regions in the brain that is having abnormal metabolism. D. 

Magnetoencephalography (MEG) scan: This modality captures the magnetic signals 

corresponding to the EEG. This method acts as a complementary study for EEG and is especially 

useful in identifying deeper epileptogenic foci. This also helps in functional mapping of the 

different brain regions. E. Neuropsychological assessment of the patients help in identifying 

preexisting neurocognitive morbidities. It also helps in better identifying the seizure focus.  
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Figure 3.  Different modalities of intracranial EEG monitoring  

A. Shows surface electrode placement in the form of grids or strips B. Partial view of the surface 

electrode placement during surgery. Depth electrode placement (also known as stereo EEG) D. 

Coronal view of the deep electrode placement shows the deep structures of the brain being 

monitored.  
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Figure 4. The intracranial EEG data acquired for around 12 seconds from the different 

intracranial electrodes simultaneously.  

This kind of data is continuously recorded in patients for several days.  

Use of deep learning methods for evaluation of intracranial EEG 

 With the advent of advanced computational techniques, along with enhanced computing 

power, different deep learning tools have been used for the evaluation of brain signals.  

The patients undergoing intracranial EEG monitoring are placed with stereo-EEG or grid type 

of electrodes and admitted to neuro ICU. The EEG is monitored for several days for capturing 

interictal and ictal data. This monitoring may span several days, and the data is obtained from 

several electrodes usually between 150-250 in number. It is extremely difficult for the 

interpreting physician to go through the entire data to arrive at decisions. Also, even if they go 

through the entire recording of data, analyzing data from each electrode is not practical. This 
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calls for the need for having automated methods that can help in predicting the epileptogenic 

zones from iEEG data. 

Another concern of visual evaluation of the data is inter-individual variation between 

different physicians. Having quantitative measures and automated tools will address the 

individual bias associated with the visual inspection.  Another advantage of using deep learning 

approach will be the ability of the network to accumulate knowledge by training with multiple 

patient’s data over time.  

Challenges for incorporation of deep neural network tools in medical management 

While being capable of processing huge amounts of data to arrive at conclusions, based 

on the training they received, it is often difficult to intuitively understand why the DNN reached 

a particular classification decision. It is difficult to identify which datapoints or features of data, 

lead the DNN to take a particular decision on behalf of a specific input. This difficulty, in 

understanding the decision-making process of deep neural networks can make it difficult to 

incorporate these tools to the medical decision-making process. Therefore, better understanding 

of the DNN’s decision making process is imperative in seamless incorporation of these advanced 

technologies to clinical field. In addition, understanding the signal features contributing to 

pathological states can further our understanding of the basic pathophysiology of disease states 

like epilepsy. 
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Certainty regarding the decision of DNN 

The DNN processes the data to arrive at decisions which can be used for classification 

tasks.  The certainty of decision on each sample is usually unclear. This will be extremely 

important especially from a standpoint of medical decision making, which also take into account 

other factors including clinical and imaging data for arriving at conclusions.  Therefore, having a 

measure of the confidence of the DNN on its decision would be extremely useful in comparing 

the different possible outcomes.  

Relevance of information content of the signal that is used by the DNN in arriving at the 

decision.  

The iEEG signal contains crucial information about the system which may influence the 

final decision of the DNN in both positive and negative ways. It is known that the DNN uses a 

complex non-linear process in arriving at decisions on individual inputs.  This process depends 

on several factors including complexity of input data, number of DNN layers, type of activation 

functions and the original training data.  Ensuring that the DNN utilized the entirety of the 

information content in the signal when it arrives at a particular decision would be extremely 

important from a reliability standpoint. In the case of EEG signals the semi-regularity of the 

signals need to be considered when estimating information content. This kind of a measurement 

can pave the way for comparing different DNNs by exploring how effectively they have captured 

the information content in the signal/ images. It would also be important to explore the parameter 

space of the information theoretical measures used for calculation, when evaluating the relevance 

of each these measurements in the final decision making.  
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The gradients of DNN outputs with respect to the activation maps and how they are related to the 

confidence of DNN decisions.  

 While the DNN decision is made over several layers of the network, it is important to 

assess the contribution of the activation maps in different layers. How these relationship changes 

over the multiple layers for each sample input into the network, would help in better 

understanding of the underlying process. Also, it is possible that the information content in the 

input signal is a critical factor in influencing the gradients of outputs with respect to activation 

maps. We explored these relationships in the context of iEEG signals.  

Research questions and relevance 

The main research questions asked were:  

• Research question (RQ1): How to use deep learning tools to analyze intracranial EEG 

(iEEG) data to identify epileptogenic zones? 

Relevance: iEEG data acquired is a complex signal and evaluation through visual 

inspection alone, of this signal, is extremely limited and can potentially lead to erroneous 

decisions. Having standardized tools for evaluation of these signals is extremely 

important in patient outcomes.  

• RQ2: What are the signal features that the DNN is identifying while detecting 

epileptogenic zones? 

Relevance: Having a better understanding of what signal features lead to the DNN’s 

decision to classify the signal, will be important in incorporating these methods in clinical 

decision making. Further, this would improve our understanding of the basic 

neurophysiological processes.  
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• RQ3: What signal features are maximally noted in heatmaps? 

Relevance: Understanding the signal features that are prominent in the heatmaps would 

allow for correlation of the DNN decisions with the existing neurophysiological 

knowledge. Also, as mentioned previously, this would help in furthering the knowledge 

about neurophysiological processes. It may be noted that the signal features detected in 

the heatmaps could correspond to both physiological and pathological signals.  

• RQ4: What measures can be used as surrogate for certainty of decision of DNN? 

Relevance: When DNN is trained, it comes up with average accuracy for validation. 

While that is a good measure of reliability of the DNN predictions, that does not give 

confidence measure about individual predictions.  Having a measure of certainty for 

individual predictions would enhance the reliability of DNN predictions.  

• RQ5: What measures in signal’s information content can be used to assess the quality of 

heatmaps used to arrive at decision making? 

Relevance: The DNN being essentially an information processing machine, quality of the 

DNN decisions should be measured based on how effectively the DNN decisions are 

related to the information content of the original samples. Utilizing the information 

measures that best captures the features of the signal (regularity etc), may enable in 

assessing the DNN decisions.  

• RQ6: How does the parameter space of signal’s information content affect the certainty 

of decisions? 



13 

 

Relevance: There are multiple parameters that can be varied in information content 

measurement. Therefore, exploring that parameter space is important in finalizing the 

information theoretic approaches in quality assessment of DNN decisions.  

• RQ7: How does the gradient of the DNN results with respect to the activation maps vary 

over the consecutive layers of DNN? 

Relevance: In DNN the information is processed through multiple layers and the 

activation of the various layers is the contributing factor to the final decision. Having an 

understanding the of how fast the DNN arrives at decisions would help in optimizing its 

architecture.  This would also help in translating the network architectures various 

applications.    

Also, from a practical standpoint we explored how the DNN model predictions match with 

the clinical decisions made after multimodal evaluation along with patient’s history and 

clinical findings.  This is important as the translation of the DNN methodologies to clinical 

applications is expected to improve the patient care while helping in bringing down the costs 

of medical care.  
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CHAPTER 2: LITERATURE REVIEW 

Deep Neural Networks have been used in multiple fields including image 

classification[14,15], signal processing and natural language processing [10]. DNN based tools 

can be effectively used in classifying the EEG signals recorded from epileptogenic zones. Failure 

to accurately identify the epileptogenic zones in iEEG may be contributing to the inadequate 

seizure control reported event after epilepsy surgery, which ranges from 40-60% [8,16]. This 

raises the critical need for tools which can accurately analyze the iEEG signals and identify the 

epileptogenic zones. We explored the existing literature from the standpoint of DNN applications 

in EEG/ iEEG evaluation.  We also reviewed the literature for the confidence measures on DNN 

outputs and role of information theoretical approaches in evaluating DNN. It is known that the 

information theoretic approaches can be utilized to improve the robustness of DNN results. The 

DNNs can compress the input data to lower dimensional representations which help them to 

come up with predictions. Therefore, exploring the relationship of information in iEEG with the 

processing and results of DNN would be important.  

DNN for epilepsy detection in scalp EEG 

The majority of the patient’s suspected to have epilepsy undergo EEG study lasting less 

than 1 hour.  One of the aims of this procedure is to evaluate the presence of interictal 

epileptiform abnormalities in the form of sharp waves, spikes, spike waves, polyspikes etc., 

which suggest that the patient may be having epilepsy.  In some cases, this study can be 

prolonged and seizure detection tools are being developed to evaluate prolonged recording data.  
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Automated detection of the interictal discharges has been previously studied with various signal 

processing or computational tools. With the advancement of machine learning techniques these 

detection technologies have improved significantly.  

 Classification of EEG signal to ictal (happening during seizure) or interictal (signal from 

epilepsy patients that happen when they do not have seizures), was performed using 

instantaneous amplitude and frequency.  The approach used a multivariate empirical mode 

decomposition to decompose the EEG to multiple intrinsic scales.  This extracted data from EEG 

was passed through neural networks[17] to achieve the classification  of the signal .  This 

approach is computationally expensive given the decomposition being attempted.  Another study 

employed the features extracted including approximate Entropy of the wavelet sub-bands, 

Hilbert Envelope of the sub-bands and wavelet statistical features for training machine learning 

algorithm[18]. This method classified EEG into normal, interictal and ictal states. It may be 

noted that this study used approximate entropy (of the entire signal) as input to the machine 

learning algorithm.   

Another study evaluated deep learning based on CNN, on inputs given after signal 

transformations. The study was based on two public datasets including ictal and interictal EEG 

and their Fourier, wavelet and empirical mode decompositions, achieving 99-99.5 % accuracy in 

classifying non-seizure vs seizure recordings [19]. The study used a CNN model, and the data 

was fed as a 2D matrix. The study achieved an accuracy above 95% and a better performance 

was achieved in the case of seizure data with Fourier Transform, which was implicated to be due 

to the big difference in the energy distribution in the various frequencies in ictal recordings.  On 

the other hand, raw data or empirical mode decomposition data gave better results in identifying 
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focal vs non-focal signal arising from the epileptogenic regions. This study did not address the 

question of the signal features that the neural network learned.   

The advantage of the above studies is that they are using non-invasive data which can be 

easily obtained from patients (although acquiring it continuously may have practical difficulties).  

The intention of the above studies was primarily identifying seizures from existing EEG.  Those 

approaches may not be applicable in online seizure prediction. Also, given the limited spatial 

resolution, use of these approaches in epilepsy localization for surgical purpose is overall 

limited.  

DNN for intracranial EEG analysis 

Patients with intractable epilepsy are evaluated for possible surgery as noted in the 

previous section. These patients usually undergo intracranial EEG evaluation.  This data is 

recorded form several electrodes simultaneously and in high spatial and temporal resolution. 

Because of that reason visually assessing this signal can be challenging and various automated 

approaches for this purpose have been described. The intracranial EEG based deep learning 

studies have variously explored the possibility of detection of interictal discharges, seizure 

detection, seizure prediction or seizure onset detection (in which case the challenge is to detect 

the onset of seizure from data being recorded live). Some of the analysis is done on already 

recorded data while some applications involve pathological changes from data acquired live from 

ongoing recording. All these methods represent various potential applications of the deep 

learning technology to address the multifarious challenges in this field.  
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Interictal discharge detection 

One of the previous studies demonstrated that automatic feature generation based on deep 

learning was a useful tool for interictal epileptiform discharge(IEDs) detection [17]. Specifically, 

the meaningful features representing IEDs were automatically learned with CNN.  Given the 

varied nature of the interictal signals, CNN based filters were used for IED feature extraction. It 

may be noted that the signal arising from the different regions of the brain may have different 

electrophysiological origins, may be undergoing different levels of filtering, which may be 

contributing to the different nature of the IED. Interictal discharges visually identified by experts 

were used in this study. A method of kernel convolution in one dimension was used in 

identifying the useful representations of the signal. The learning process of CNN was also 

explored by correlating the learning weights of convolutional layers with averaged IED. While it 

exemplifies the potential of evaluating and exploring IEDs, this study did not address the 

evaluation of DNN for identifying the electrodes located at epileptogenic zones.  

Intracranial EEG transformed into spectrogram was used for training CNN, in a study for 

identifying intracranial interictal epileptiform discharges (iED)[20]. This strategy used 1000 

intracranial EEG epochs randomly chosen from 307 subjects and annotated independently by 

two experts. The intracranial EEG was converted into a spectrogram. The model used a method 

of template matching algorithm and residual neural network architecture. The detector reported 

sensitivities between 91-100% with a mean accuracy of 0.94.  This method was able to show 

significant improvement compared to template matching algorithm alone. At the same time the 

accuracy with external test set was noted to be relatively small (0.71) suggesting the need for 

training with larger datasets. 
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DNN strategies for seizure onset detection 

DNN based methods have been proposed for seizure presence detection using the 

American Epilepsy society Seizure prediction challenge dataset[21]. This included intracranial 

EEG signals (iEEG) from five (5) dogs and two patients, with a total of forty-eight (48) seizures 

and a total duration of 627 hours of monitoring. In this study methods based on fusion of three 

CNNs and fusion of four CNNs gave 95 % accuracy value.  

 A one dimensional convolutional neural network combined with a random selection and 

data augmentation strategy has been described for seizure onset detection in long term EEG and 

intracranial EEG data[22]. Two different parallel 1D-CNNs are used simultaneously to learn 

high level representations.  The classification results for each patient were evaluated at segment- 

based level and at event-based level. In the stacked CNN model, the EEG segments are sent to 

both blocks simultaneously and the proposed method achieved an accuracy of 99.54 % for 

stereoEEG (which involves placement of multiple depth electrodes) dataset. One of the 

advantages of this work was use of 1D-CNN(1-dimensional CNN) which avoided use of any 

additional preprocessing of the EEG signal.  Also given the use of two parallel 1D-CNN blocks 

the network was able to learn different high-level representations at the same time. 

CNN based methods have been used for analyze human EEG data to get better 

understanding on how brain behaves prior to seizures[23]. The iEEG data is converted to an 

image like format before processing. A multiscale CNN architecture was used for this purpose to 

learn the different representations of iEEG data. Short time Fourier transform was used to 

convert the iEEG to a two-dimensional representation, which displays the changing power 

spectra as a function of time and frequency. CNN model was trained by optimizing “binary 
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cross-entropy” cost function with “Adam” parameter update.  This method was noted to have 

Area under the curve (AUC) score of 0.84.  

DNN for detection of epileptogenic zone in iEEG  

A time-frequency hybrid network has been described for identifying focal or non-foal 

iEEG signal[24].   In this approach, short-time Fourier transform (STFT) and 1d convolution 

layers are performed on the input iEEG in parallel.  Study was performed with Bern-Barcelona 

iEEG dataset. The dataset contains 3750 focal iEEG signal pairs and 3750 non-focal iEEG 

signal pairs. This allows for extracting features of time-frequency domain and activation maps.  

This method was achieved an accuracy of 94.3 %.  

Another approach describes feature extraction based on entropies evaluated at different 

frequency bands, thereby creating a 2D feature map. Further analysis is performed using a CNN 

and the network is trained with binary classification. This study used two datasets: 1. Bern-

Barcelona Dataset2. Juntendo Dataset. The Juntendo dataset was recorded from patients 

suffering from temporal lobe epilepsy caused by focal cortical dysplasia.   The entropies 

calculated used Shannon entropy, Renyi entropy, generalized entropy, Phase entropy (two types), 

Approximate entropy, Sample entropy, and Permutation entropy. A loss function of 

“categorical_crossentropy” was used.  A classification accuracy of 99.5% was obtained with this 

approach.   

A multi-branch fusion model which identifies epileptic and non-epileptic signal has been 

described, considering the wave features and higher order features of the signal[25]. The two 

branches employed were bi-directional long short-term memory attention machine (Bi-LSTM-



20 

 

AM) and 1D-CNN. The study employed 12 time-domain features and 6 frequency domain 

features.  The study employed a Bi-LSTM with an attention machine, which was expected to 

learn specific features of individual patient’s signals. The two LSTM’s incorporated were 

arranged in such a way that they process the data in opposing directions.  This study was able to 

achieve epileptogenic signal identification with high accuracy (97.6%).  The study did not 

explore the decision-making features of the iEEG.  

As discussed above various approaches have been employed to address the question of 

identifying epileptogenic regions from iEEG, with variable efficacy. These methods are 

generally limited by the duration for which the signals acquired or because of the lack of 

convincing data after surgery that the specific brain region was epileptogenic. Therefore, we 

have RQ1 to better evaluate this challenging question. In addition we have RQ2 to better 

understand how the DNN address the question of identifying epileptogenic regions. We are 

exploring the solutions for this question by evaluating the heatmaps of DNN outcomes.   

Seizure onset detection in iEEG 

A study employing responsive neural stimulator data (RNS), a device that is implanted  

to control the seizures,  addressed the question of iEEG seizure onset detection with deep 

learning strategies[26].The study used 5226 ictal events collected from 22 patients implanted 

with RNS. The CNN was developed with an aim of providing personalized annotation from RNS 

data for the occurrence of seizures. This network used 23 convolutional layers. The inputs are 

time series of intracranial voltage measurements along with patient identifier. The DNN output 

include 1. Probability that the recording contains an ictal pattern and 2. onset of ictal pattern in 
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seconds.  Accuracy was evaluated based on concordance with expert opinion and an agreement 

in the range of 99.8 % was noted.  

This study mainly questions the online detection of the seizures especially given the 

specific question being addressed by the RNS device.  But it may be noted that identifying the 

abnormal pattern which is later emerging as seizure is important in this strategy as well. The 

question that we are asking on RQ1 is relevant for these kinds of applications as well since the 

identification of seizure patterns is an important component of this research question.  

 

Measures of confidence in DNN predictions 

Some of the major concerns of using DNN in safety-critical fields like brain signal 

processing include 1. the lack of transparency and expressiveness of the model [27] 2. The lack 

of measures to estimate the certainty of each prediction. The models are usually limited by two 

types of uncertainty which several studies have attempted to address in various ways. 1. 

Epistemic uncertainty which is the limitation of the model due to the lack of adequate 

knowledge.  This primarily arise from the lack of adequate data for the training leading to a poor 

determination of the model parameters. 2. Alleatoric uncertainty, which arises from the 

stochasticity of the input data. In this case the best prediction possible will be a high entropy 

prediction.  

Usually, neural networks do not give an estimate of certainty in individual predictions. 

Given any trained DNN model, the prediction of any new data presented will be associated with 

some level of uncertainty. This can be uncertainty caused by model or that contributed by data 
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itself [28]. A method "distributive uncertainty" was described, which parameterize the prior 

distribution over predictive distributions. This method helps in distinguishing data and 

distributional uncertainty [29]. 

 An approach using simple statistics from softmax distributions has been described to 

identify misclassification of data including computer vision, natural language processing, and 

speech recognition tasks [30].  This study addressed the question of error and success of 

prediction, on whether it is possible to predict if a classifier will predict a test example correctly 

or not. The second part of the study addressed if it is possible to predict if a test example is from 

within or out of distribution of the training data. This study showed that the prediction 

probability of incorrect and out of distribution examples tended to be lower than that for the 

correct examples.  This study demonstrated the potential use of softmax prediction probability as 

a method for error and out-of-distribution detection for various types of data.  

 Mutual information and softmax variance has been described as a tool for estimating 

measures of uncertainty for adversarial example detection[31]. The study examined various 

measures of uncertainty for detection of adversarial examples and demonstrated that softmax 

variance can be seen as an approximation of mutual information.  In addition, the measures of 

uncertainty were compared by projecting to lower dimensional spaces.  This study also 

demonstrated that the dropout is not sufficient to capture the full Bayesian uncertainty, and 

therefore proposed an extension to the dropout schemes.  

 Another metric of certainty called attribution based confidence (ABC) has been 

described, which helps in deciding whether an output of DNN on a certain input can be 
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trusted[32]. The theoretical motivation for this approach was from axios of Shapley values. The 

computation of ABC metric involved importance sampling in the neighborhood of high 

dimensional input using relative feature attributions.  This method did not require access to 

training data or additional calibration.  Further, the evaluated the method on MNIST and 

ImageNet data sets using out-of-distribution data, Adversarial inputs and physically realizable 

adversarial patches. This method uses a deliberative top-down approach adding a causal 

deliberative system. ABC employs feature attributions for dimensionality reduction and uses the 

importance sampling in the reduced-dimensional neighborhood of the input to estimate DNN 

model’s conformance. The features identified are the locally relevant ones for a given input.  

  The uncertainty approaches in general try to give an overall estimate of the uncertainty of 

predictions. While they are helpful in estimating the confidence one can have, in the outcomes of 

the model, there is no specific score on the reliability of an individual prediction, for example the 

classification of an EEG signal. Therefore, we have RQ4 were we try to evaluate the DNN 

outputs in the penultimate layer to estimate the confidence of predictions. We introduce a score 

for the reliability of an individual prediction called certainty index. It is an index how certain the 

given model is about a specific classification output. The certainty of the prediction is assessed 

through the differences in the outputs prior to softmax layer.  

Heatmapping for identifying the relevant regions that DNN is focusing for decisions. 

The exact features of a signal or the image that the DNN uses to arrive at a decision has been a 

major question in the field of deep leaning [33] [34]. This will be a very relevant question 

especially when a new technology is being adopted in the medical field. The rationale behind the 
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DNN predictions may have to be interpretable and relatable for the user employing this tool to 

arrive at a particular decision.  

A common method for assessing the relevance of input features to the decision has been 

saliency maps or heatmap.  These maps identify the most relevant input features that caused 

maximum response in the DNN to arrive at a particular decision.  The most common 

visualization methods of heatmapping have been classified into two categories: 1. Based on 

backpropagation method, which uses gradient signal passed from output to input 2. Perturbation 

based methods which employs selective removal or alteration of input features and estimate 

outputs based on the new features, thus enabling estimation of the relevance of each input 

feature.  

 One of the backpropagation methods described involves global average pooling of the 

activation maps formed in the final convolutional layer [35] The activations from the 

convolutional layers is multiplied with the weights from the fully connected layer, generating 

class activation maps (CAM). Finally, the map generated in this way is up-sampled to match the 

size of the image or signal.  In the case of images (in which the original study was performed), 

CAM allows for visualization of the predicted class scores on a given sample image, highlighting 

the discriminative regions that the CNN detected.  

Heatmapping approaches and Grad-CAM Heatmapping methods are used for evaluating 

the contribution of different regions of the data to the decision-making process.  In this method 

activation maps are calculated based on the gradients of the network output with respect to the 

last convolutional network. Various other methods of heatmapping have been described like 
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sensitivity analysis of neural network using partial derivatives [36], deconvolution methods [37] 

and layer-wise relevance propagation (LRP) algorithm [38].  

Explainable deep learning models 

Given the concerns of black box nature of DNNs more recent studies have focused on 

explaining the decision making of the DNN using various approaches. The various heatmapping 

approaches have been used for this purpose.  

In one of the deep learning based studies for evaluation  of cardiac arrhythmia, a method 

of Local Interpretable Model-agnostic Explanation(LIME) was used[39]. The study used a 

hybrid 1D-CNN model that combined 1DpCNN and Gated recurrent Unit (GRU). The 

heatmapping approach, LIME represents a model that uses a perturbation technique to generate a 

new dataset by manipulating the instance features. Then the machine learning model is used to 

make new predictions based on the new onset.  Subsequently LIME trains an interpretable liner 

model on new dataset to generate explanation. In this method the LIME was able to identify the 

regions of Electrocardiogram (EKG) including QRS complex, P-wave and T-wave, which are 

known to be essential in interpretation of arrhythmia. The maximal hotness regions were noted to 

be around QRS complexes which is known to be associated with maximum types of arrhythmias.  

This study indicated the essential benefit and potential of using heatmapping strategies to explain 

the DNN.  

Another approach of explainable EKG interpretation is reported using Grad-Cam 

algorithm for 3-lead EKG classification[40]. A lead-wise Grad-CAM approach was used in 

explaining the predictions of this model.  Modified convolutional layers were used to capture 
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longer patterns of EKG signals. The standard convolutional layers were replaced with Depth-

wise Separable Convolutional layers. This was done to reduce the number of parameters in the 

model. An attention module was implemented to more effectively ensemble the features 

together.  Given the attention module this model has an additional importance parameter. 

Therefore, the attention parameter was included in the Grad-CAM algorithm in addition to the 

pre-existing Grad-Cam generated. The results indicate which leads specifically contribute 

maximally to the classification of signal to a particular category.  This is similar to identifying 

the localization of epileptogenic zone in the iEEG signals.   

Estimating the information content of the signal 

  

Brain represents one of the most sophisticated devices processing information. EEG 

signal is a marker of brain’s information processing, as recorded on the surface of the brain or 

intracranially as iEEG. In the case of a series of data, the information content of the individual 

elements is estimated through the inverse of the probability of occurrence of each element. This 

idea was introduced by Shannon as information entropy and since then, this measure has been 

employed in estimating the complexity of the signals[41]. Later an entropy measure to assess the 

entropy of dynamical systems was introduced, described as Kolmogorov-Sinai entropy[42]. 

While this method is well applied to the real dynamic systems, presence of noise can derange 

these calculations easily with values going to infinity. Approximate entropy was introduced  later 

which was capable of capturing the changing complexity of signals[43] which also quantify the 

regularity in the data employing the idea of pseudo-phase. A larger value of the approximate 

entropy corresponds to higher complexity of the signal. A low Approximate Entropy value is 
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representative of the fact that the system is very persistent, repetitive and predictive and the 

patterns having repetitions all through the signa[44]. While Approximate entropy helps in 

evaluating the nature of the generating system, it does depend on the length of the records and 

can underestimate for shorter signal.  

Some of the disadvantages of Approximate entropy includes lack of relative consistency 

and dependence on the length of data series. Another concern of the Approximate Entropy is that 

it leads to results which suggest more regularity than that in reality. This is because of the 

algorithm, which allows each vector to count itself. Sample entropy algorithm removes this self-

counting issue and therefore avoids the false results from that approach. SampEn measure does 

not depend on the signal length (or is less dependent) and has higher relative consistency [45], 

[46]. 

Approximate entropy (ApEn) and sample entropy (SampEn) has been used in Neural 

respiratory signal processing[47] .This study also explored the role of embedding dimension and 

thresholds of calculation in the estimation of both measures. They also compared the two 

approaches with both simulation and experimental data. This study suggested that Sample 

entropy showed more consistent results compared to approximate entropy. Calculations of 

Approximate Entropy was done for three types of data (1. Phrenic nerve discharge from in-vitro 

arterially perfused adult rate, 2. Same type of data from in vivo alpha-chloralose anesthetized rat 

and 3. Simulation data). The analysis revealed the critical importance of the threshold of 

approximate entropy estimations.  The ApEn values were very close to each other when the 

threshold chosen was less than 0.1. When the threshold was chosen more than 0.1 there was clear 

separation of the three classes of data. A similar impact on the estimations of ApEn and SampEn 
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was noted for variations in the sampling rate and embedding dimensions, highlighting the 

importance of exploring these parameters spaces in the estimation of ApEn and SampEn.   

Another study with RR interval in Electrocardiogram recordings (RR interval is the time 

interval between two R waves in the Electrocardiogram data), explored the role of embedding 

dimensions, and thresholds in estimating the measures of SampEn and Fuzzy Entropy 

(FuzzyMEn). They explored the statistical significance between normal sinus rhythm and 

congestive heart failure group and demonstrated that choosing the parameters including 

embedding dimension, tolerance threshold and time series length plays critical role in the outputs 

of SampEn and FuzzyMEn. That study also demonstrated that the FuzzyMEn demonstrated 

better relative consistency for distinguishing the two groups of data.  

 An approach of using ApEn for automatically distinguishing seizure EEG from normal 

signal has been described [48]. This study used a combination of ApEn values and recurrence 

quantification analysis (RQA) as inputs to Convolutional Neural network (CNN) for automatic 

detection of EEG, demonstrating the relevance and utility of entropy measures in the deep 

learning approaches. EEG data was taken from the Bonn database, with each set containing 100 

clinical intracranial EEG recordings. ApEn was calculated based on Chebyshev distance (details 

on the calculation of ApEn is noted in the subsequent sections) and threshold r= 0.15 *SD. The 

RQA method uses a non-linear index quantification method, which obtains quantitative 

geometric measures. The CNN implemented used a loss function of “binary_crossentropy”, 

activation function of “relu” and optimizer “adam”.  The ApEn measures indicated significant 

differences between normal and epileptic EEG.  A high accuracy was achieved in this approach 

for classifying seizures (99.26%). 
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Another approach of using ApEn in Elman and probabilistic neural networks is described 

for automatic detection of epilepsy[49] from EEG data . The method used the hypothesis that the 

ApEn drops sharply during epileptic seizures.  This approach was able to achieve a high 

accuracy with a low computational burden.  

While the various potential applications of information measures to boost the quality of 

predictions of DNN have been described, exploration of the role of information content of the 

signal in the decision-making process of the DNN has been limited. It is in this context we have 

RQ5 which uses sample entropy measures to assess the quality of the heatmaps.  Heatmaps being 

the representation of the regions where the DNN is focusing, we aim to identify how the 

information content and heatmap is correlated.  Further we explore the question of how the 

information measurement vary in the parameter space of SampEn calculation (RQ6), to establish 

the robustness of the results noted on answering RQ5.  

Gradients of DNN and relation with certainty  

Gradient descent is one of the most widely used algorithm for optimization for neural 

networks[50]. While various other optimizing methods exist, stochastic gradient descent is 

commonly applied in the case of various DNN implementations.  A direct evaluation of how the 

gradients in various layers are related to the information content of the input signal and the 

certainty of the decisions of the DNN has not been reported.  

Gradients generated from loss function are driving the training of the network. Therefore, 

evaluation of how the gradients are changing across the network, and how those changes are 

related to the certainty of the decisions of the network, in individual cases will be important.  
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Evaluation of the gradients of cross entropy loss has been explored in  the past [51]. This paper 

explored the properties of cross-entropy gradients and evaluated the impact of approximation of 

gradients. They used a approximations which were noise free and maintained a fixed length to 

avoid vanishing gradient problem. The study demonstrated the geometric properties of cross-

entropy loss function.  

A method of training deep neural network using a Mutual Information (MI)-driven, 

decaying Learning Rate (LR), Stochastic Gradient Descent (SGD) algorithm has been 

reported[52].  MI between DNN outputs and inputs are estimated and used to set the learning 

rate. A layerwise learning rate is set using the mutual information through the training cycle.  

This approach highlighted the advantages of information measures in DNN learning.  

Another strategy reported, calculation of independent activation function for each neuron 

as a piecewise linear functions[53]. The parameters for these functions are calculated through 

gradient descent. The study demonstrated the potential of diverse activation functions, 

highlighting the importance of activation gradients in the overall performance. They did not 

specifically address if these functions change over layers of DNN in any specific way or if the 

changes are related to the information content in the input signal.  

In this study we have used Grad-CAM algorithm for evaluation of activation gradients. 

The Grad-Cam approach has been further improvised with introduction of Grad-CAM++, with 

an intention of providing better localization [54]. This approach was developed to overcome the 

concerns that gradients at each feature map may not provide a good localization of the regions of 

interest, if the signal of interest appear in various places in the sample. A solution was proposed 
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with incorporation of weighted average of the activation gradients. While that approach may give 

a finer grain map of the activation gradients, it is not aimed at assessing how the activation 

gradients change across the layers and how those changes are influenced by information content 

of the signal.  

These approaches suggest the possibilities of using activation gradients derived from 

GRAD-CAM method in better ascertaining the learning process of DNN.   We explore how the 

activation gradients change across the various layers of DNN and evaluate its relationship with 

the confidence of the DNN in individual results. The rate of change of activation gradients across 

layers is an important factor in the training of deep neural networks. By understanding the factors 

that affect the rate of change of activation gradients, it is possible to train deep neural networks 

that are more effective and more stable. Hence, we have RQ7 to evaluate the changes in the 

activation gradients across layers. We assess how the activation gradients change across the 

layers of DNN and how this change is related to the confidence of the DNN decisions. Further, 

we explore these changes in relation to the information content of the input signal.   
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CHAPTER 3: MODEL FOR PREDICTION OF EPILEPTOGENIC ZONES 

[This work was published in the article “Deep neural networks and gradient-weighted class 

activation mapping to classify and analyze EEG”, DOI: 10.3233/IDT-228040, Intelligent 

Decision Technologies, vol. 17, no. 1, pp. 43-53, 2023 [55]] 

The initial part of the study involved design of a deep neural network for prediction of the 

epileptogenic zones in the iEEG recorded from the brains of the patient’s undergoing evaluation 

for epilepsy surgery.  

iEEG data for analysis.  

The brain signals (intracranial EEG) from 10 patients undergoing epilepsy surgery 

evaluation, recorded using intracranial electrodes, continuously for several days using Nihon 

Kohden (NK) software, was used in this analysis. The electrode placement is performed in the 

operating room after which patients are admitted to Neuro-Intensive care Unit (NeuroICU) for 

prolonged iEEG monitoring. The electrode placement for a typical patient is depicted in a 3D-

image in Figure 3. The placement of electrode in individual patient differed, which was decided 

based on pre-surgical evaluation. As noted in the figure some patients had grid type electrodes 

implanted while depth type electrodes (also called steroEEG) were implanted in some other 

patients. These patients had epileptic activity arising from various regions of the brain, including 

temporal cortex, hippocampus, insula or temporal-occipital cortex and were noted to have 

significant improvement in seizure control after surgery in these regions, proving that these 

locations were critical in epileptogenesis. The signals for the purpose of analysis were selected 

https://content.iospress.com/journals/intelligent-decision-technologies
https://content.iospress.com/journals/intelligent-decision-technologies
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from interictal periods (when the patients did not have any identified seizures). For consistency 

the data was collected immediately after midnight on the second day after surgery. Collecting the 

data at midnight minimized the chances capturing evoked potentials. Also, this approach 

minimized the chances of having noise in the signal.  

 

Figure 5. The electrode locations. 

The positions of the electrodes inserted for iEEG monitoring. This image is generated by co-

registration of CT scan images after electrode placement with 3-D reconstruction of the 

previously acquired MRI images. The individual colors represent the electrodes in one shaft of 

electrodes with the corresponding color-coded name.   
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Figure 6. Collection of raw iEEG data. 

 The upper panel shows the placement of the electrodes. The labels correspond to the same-

colored electrode. The lower panel shows the data collected from all the electrodes shown. It 

may be noted that this signal contains the broad range of frequency.  

Preprocessing of data 

The signals were evaluated in bipolar montage and exported to the European data format 

(EDF) format from NK software. The bipolar montage used allows for minimizing any 

contribution from noise. It may be noted that the intracranial EEG data usually does not have 

significant noise concerns (or minimal compared to the scalp EEG), but at times it can be 

contaminated by common noises (e.g. machine artifact) that affects all the channels. One minute 

data was collected from each patient, one day after surgery for placement of the electrodes. Only 

high frequency components of the signal (60-600 Hz) were evaluated in this analysis. There were 

two reasons for selecting the high frequency component of the signal, which included 1. 

minimizing the contribution of any potential artifacts and 2. the current knowledge that the 
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higher frequency components tend to be more associated with the seizure onset zones. Signals of 

1 minute duration was collected from each electrode. This data was parsed into one second 

duration (2000 samples) along with capturing the information about which category the 

particular electrode belongs to (epileptic vs non-epileptic). As noted previously, the information 

on whether a particular electrode location is epileptogenic is determined by whether the patient 

who undergo surgery in that particular location became seizure free after surgery. Individual 

samples of one second duration along with category information was pooled together from all the 

10 patients and shuffled to avoid bias towards any individual patient data.  A total of 10000 

samples were randomly chosen from this pool (with equal representation of epileptic and non-

epileptic data). 
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Figure 7. High frequency filtered version of the original signal shown in different scales.  

The upper panel shows 15 seconds of data, and the lower panels shows 1 second of data.  
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For evaluating the real-world outcomes, the 1-minute data was passed through the model after 

the same preprocessing as noted above and the electrodes which get categorized as maximum 

number of times as epileptogenic, was identified. These electrodes were compared with the 

actual electrode locations where surgery was done as noted in Figure 18.  

There have been efforts to understand what DNN has learned in the process of training. 

This included methods to estimate what individual neuron or a layer of neural network in a DNN 

has learned. These methods significantly depend on the implementation of the network, starting 

from the type of neuron and layers incorporated in the network. 

Deep neural network implementation 

 

In the initial exploration of the use of deep neural networks for classification of iEEG two forms 

of deep neural networks were implemented for training with the data. A dense network was 

implemented as noted in Figure 9, with the parameters for individual layers noted.  

 The neurons in the case of general DNN tasks are implemented using the following 

formula, for input layer represented by x= [x1, x2…xi].  

𝑧𝑗𝑖 = 𝑥𝑖𝑤𝑖𝑗;    𝑧𝑗 = 𝛴𝑖𝑧𝑖𝑗 + 𝑏𝑗;   𝑦𝑗 = 𝑔(𝑧𝑗) (1) 

 Where 𝑧𝑗𝑖  represents the contribution of each node along with the connecting weight (𝑤𝑖𝑗) to 

the next layer, and g(.) stands for the mapping function.  A scheme of implementation of this 

equation is depicted below.  
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Figure 8.  Schematic representation of the implementation of basic neural network with the 

weights and biases.  

The calculations involved in each step is shown on the right side.  

 

The input layer had 2000 nodes which correspond to the total data elements in the 

individual training sample. A total of 9 layers were included in the design, with binary cross 

entropy used for loss function and “Relu” as activation function. The final layer had two nodes 

which corresponded to the two classes. 
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Figure 9. The dense network model implemented for evaluation of the intracranial EEG. 

Also, a 1D-convolutional neural network is implemented with the neurons represented by 

the formula (1),with structure as noted in Figure 10. The initial layer corresponds to the number 

of elements in the signal (2000). One additional convolutional layer was present in the model 

along with subsequent drop out layers. A drop out % of 0.33 was used in after the first two 

convolutional layers. One dimensional CNN offers faster training speed compared to higher 

dimensional CNNs. In general, the first layers in 1D CNN would act as a local signal detector 

More higher order features are detected in the subsequent convolutional layers. While it is 

unclear, what components of the signals contribute to the activations of subsequent layers, it is 

possible that the higher frequency components of the iEEG or burst of epileptiform activity may 



40 

 

be contributing to the activations in the subsequent layers. It can be assumed that the deeper 

layers may capture more information about a specific class of signal. The convolutional layers 

were followed by a dense layer, max-pooling layer, flattening layer and additional two dense 

layers.  

 

Figure 10.   Schematic of Convolutional neural network implementation. 

The neural networks were trained with 90 % of the data and validated with 10 % of the same 

data. Total number of training epochs was 100. A confusion matrix was generated to show the 

different components of the results as noted in Figure 11:  
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Figure 11.Confusion matrix schematic.  

 

Generating heatmaps of DNN predictions 

One of the challenges of incorporating the deep learning-based tools in the medical field is the 

black box nature of the DNN.  We explored the reasons for the DNN predictions using heatmaps 

and later correlating heatmaps with the signal features. The depiction of the input along with 

contribution of different regions of the signal in this decision-making process, is referred as 

heatmap and can be estimated for each layers using various algorithms. 

Heatmaps can be generated using [36]a sensitivity analysis of neural network using 

partial derivatives [37] deconvolution method [56] the layer-wise relevance propagation (LRP) 

algorithm [38]  and gradient-weighted class activation maps (Grad-CAM)[57]. Grad-CAM uses 

the gradient information flowing to the convolutional layers, thereby assigning the relevance 

values to individual neurons. This can be particularly useful in analyzing the classification of 

iEEG, given the relevance of transients in the classification process. Neurons in the 

convolutional layers look for class specific information (parts of signals, transients etc.). 

Heatmap of the convolutional neural network was generated from 1500 samples with grad-CAM 

algorithm as described above. Correlation coefficient between the heatmap signal and analytical 

signal was estimated to assess the similarity between signals. 
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Class-discriminator map defined as Grad-CAM is evaluated for any class c, as follows 

[57]. The gradient of the score for class c as given by yc , with respect to the feature map 

activation Ak of a convolutional layer is given by  

𝛼𝑘
𝐶 =

1

𝑁
∑

𝜕𝑦𝐶

𝜕𝐴𝑖
𝑘

𝑁

𝑖=1
  

(2) 

𝑦𝐶 is the DNN output for a particular class c (before softmax). 

𝛼𝑘
𝐶 indicates the importance weight of k-the filter for class c. 

𝐴𝑖
𝑘 is the i-th element in k-th activation map. 

N is the number of elements in feature map. 

With the gradient weighted class activation map (grad-CAM) for a layer obtained as 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝐶 = 𝑅𝑒 𝐿 𝑈(𝛴𝑘𝛼𝐾

𝐶 𝐴𝑘) (3) 

A typical heatmap generated using Grad-CAM algorithm for a typical iEEG segment is shown 

below in Figure 12. 
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Figure 12. Heatmap of typical iEEG. 

The heatmap is shown in colormap with colors close to red indicating regions of the iEEG signal 

that contributed maximally to a decision on DNN classification.  

Calculation of analytical signal 

Conventional evaluation of the iEEG signals involve visual inspection. This employs clinical 

expertise and signals are evaluated for transients, high frequency components etc. Having an 

understanding of, which visually discernible local features are captured by the CNN will help in 

incorporating the results of the model in clinical decision making. Various signal processing 

tools can be used to analyze signals. One of such tools is Hilbert transform, which allows for 

calculation of analytical signal.  It functions as a broadband phase shifter which provides rotation 

of the initial phases of all frequency components of signal by an angle of 𝜋/2.[58]  

The instantaneous envelope of the signal was estimated as analytical signal with the help of 

Hilbert transform of the original iEEG signal as follows.  

𝑧(𝑡) = 𝑧𝑟(𝑡) + 𝑗𝑧𝑖(𝑡) = 𝑥(𝑡) + 𝑗𝐻𝑇(𝑥(𝑡)) (4) 

 Here x(t)—real valued signal  

z(t)-analytical signal  
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zr the real value component and  

zi the imaginary component of the signal.  

Where HT of x(t) is defined as (x(t)) = 1 

𝐻𝑇(𝑥(𝑡)) =
1

𝜋
∫

𝑥(𝑘)

𝑡 − 𝑘
ⅆ𝐾

∞

−∞

 

(5) 

This is a signal with no negative frequency and in continuous time, every analytical signal z (t) 

can be represented as [24] 

𝑧(𝑡) =
1

2𝜋
∫ 𝑧𝜔𝑒𝑗𝜔𝑡ⅆ𝜔

∞

0

 

(6) 

The analytical signal generated is representative of the instantaneous envelope of the signal. To 

evaluate the relationship of heatmap with analytical signal and original signal cross correlation 

was calculated between those pair. A high correlation between the heatmap generated using the 

Grad- CAM and analytical signal would suggest that the heat map is capturing this envelope of 

the signal as represented through analytical signal in classification process. This cross correlation 

is estimated as follows(7).  

𝑧(𝑘) = ∑ 𝑥𝑙 ∗ 𝑦𝑙−𝑘+𝑁−1
∗

‖𝑥‖−1

𝑙=0

 

(7) 

Where, Z(k)- cross correlation series 

x- Heatmap as time series 
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y- Either original signal or analytical signal as calculated above.  

N = max(x,y) 

K-fold cross validation 

Given the variance in the data, it is important to evaluate how the results change  when 

the training and test data changed. A ten-fold cross-validation was employed for assessing the 

consistency of accuracy of the model [59]. Initially, the iEEG data were randomly divided into K 

(in this case ten) equal portions. Nine out of ten portions of iEEG signals were used to train the 

DNN and the remaining one-tenth of the iEEG signals was used to test the model. The above 

strategy is repeated ten times by shifting the test and training dataset. The average accuracy 

along with the standard error was reported. 

Schematic of the data analysis from generation of model to heatmap based analysis  

Given the multiple steps involved in this analysis a schematic of the analysis was developed to 

represent the types of analysis performed as depicted below.  
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Figure 13. The scheme of data analysis. 

The schema of research used in developing a model for classification of iEEG signals to 

epileptic and nonepileptic signals.   

Data cleared from 10 patients for 1 minute during interictal periods processed through bipolar 

montage and filtered to 60-600 Hz frequency is used for the analysis.  Two types of deep neural 

networks were used: A. Dense neural networks B.  Convolution neural network which is a deep 

neural network with convolutional layers.  The output from convolutional neural network used 

for calculating heatmap with Grad-CAM algorithm. The original signal is used to calculate the 
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analytical signal using Hilbert transform. The heatmap generated with the use of Grad-CAM is 

cross-correlated with the analytical signal to estimate cross-correlation coefficients.  

Evaluation of real-world data 

To evaluate the application in the real-world data iEEG signals acquired from 15 patients (of 

which 10 patients were included in the initial modelling, but data was recorded from different 

time points), was processed with the model. One minute data from each patient was acquired 

leading to a total number of Number of electrodes x 60 samples the number of times each 

electrode was identified to be epileptogenic by the model was calculated and the electrodes were 

sorted according to that number. The top 10 electrodes thus identified was compared with the 

electrodes clinically identified to be epileptogenic by the clinical team.  

Results 

Given the initial motivation of the study was performed in two sections. Initial part of the 

study was targeted at developing a model to predict the epileptogenic regions, in patients 

undergoing iEEG monitoring for epilepsy evaluation. Once this was achieved, we compared the 

model results with real world data which established strong concordance with clinical results.  

This led to the necessity of developing understanding the backbox character of the DNN, which 

was explored using heatmaps and we established the relationship between heatmaps and signal 

characteristics. 
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Model for prediction of the epileptogenic zones in iEEG  

The data was obtained from 10 patients during interictal periods, for a duration of 60 

seconds, filtered between 60-600 Hz. The data from all 10 patients were pooled together, 

shuffled keeping the individual electrode labels. Two types of deep neural networks were 

designed as shown in the figure 2. The network is trained with 90% of the iEEG data for 100 

epochs and the weights and biases are saved as model file and validated with 10 % data. The 

trained network had an F1 score of 0.99 in case of dense neural network and 0.87 in case of 

convolutional neural network. The accuracy, loss and confusion matrix are shown in Figure 15. . 

 

Figure 14. Samples of signal used for anlysis showing the amplitude and frequency content in the 

signals along with the various signal features.  

The scales are also included in each case. A& B: Broad band signals. C&D: High frequency 

signals. 
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Figure 15. DNN prediction results for dense network and CNN.  

A. The change in accuracy (training and validation) during the training epochs for a total of 100 

epochs. B The change in loss over the course of the training, C. The confusion matrix 

demonstrating four classes of results which is later used for calculating the final accuracy. 
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Table 1. DNN predictions with the scores of accuracies for dense neural network.  

Class Precision Recall F1-score Support 

Non-epileptic 1 0.99 1 1193 

Epileptic 0.98 0.99 0.99 307 

Accuracy   0.99 1500 

Macro avg 0.99 0.99 0.99 1500 

Weighted Avg 0.00 0.99 0.99 1500 

 

Table 2. DNN predictions with the scores of accuracies for convolutional neural network. 

Class Precision Recall F1-score Support 

Non-epileptic 0.89 0.96 0.92 1193 

Epileptic 0.78 0.52 0.63 307 

Accuracy   0.87 1500 

Macro avg 0.83 0.74 0.77 1500 

Weighted Avg 0.86 0.87 0.86 1500 

Analytical signal and correlation with the heatmap 

To evaluate the components of the signal that contribute to the DNN decision on whether 

an individual sample belongs to epileptic or non-epileptic category, heatmap was generated for 

1000 randomly chosen signals from the pooled shuffled data from 10 patients. Also, the 

analytical signal for the same signals were calculated using Hilbert transform. The three signals 

were plotted for visual evaluation as noted in the Figure 16. The cross correlation was calculated 

between each heatmap-signal pair and heatmap- analytical signal pair. The maximal values of 

cross correlations are plotted in Figure 17. 
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Figure 16. The cross correlation between raw signal and analytical signal. 

The upper panel shows the original signal (blue), heatmap(green) and analytical signal (red).  

The lower panel shows the same signals on a smaller time scale, showing the intermittent 

synchronization.  
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Figure 17. Correlation values of heatmap with original signal and analytical signal.  

Cross correlation between analytical signal and heatmap shows significant similarity between 

these two signals shown in Figure 16. The absolute maximal/ minimal values of correlation were 

plotted against the corresponding lags, which shows significant higher correlation between the 

heatmap and analytical signal (Figure 17). For comparison, between two cross correlation values 

the average of the absolute value of maximal/ minimal correlation was estimated. This mean 

value for cross correlation between heatmap and original signal was (for absolute values) 

365.27±144 (SD), with a mean lag of 2.6 ±78 ms and the same in the case between heatmap and 

Hilbert transform was 8184±6175 with a mean lag of 0.7±0.5 ms.  
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The distribution shown in indicates that temporal correlation between the heatmap and 

analytical signal was narrower compared to that with original signal. The heatmap was generated 

using the Grad-CAM algorithm for 1000 samples of data, for CNN which showed regions of 

higher and lower relevance in decision making by the model, shown in figure 5. The analytical 

signal was generated using Hilbert transform for the corresponding signals. 

A K-fold cross validation [4] was applied on the data set with K=10, which demonstrated 

consistent accuracy of prediction for epileptogenic zones at 91% with a standard deviation of 1.3 

% for dense network and 91.1 % with standard deviation of 0.8% for CNN.  

The cross validation showed relatively lower accuracy for dense network, along with a 

higher standard deviation. This may be related to the fact that dense network utilizes less reliable 

features compared to CNN which may be employing details in local features for classifying the 

signals. As an example, the application of DNN for identification of the epileptogenic zones was 

demonstrated on one of the patient’s data is shown in figure 6. The predicted electrode zone was 

compared and noted to be overlapping with the epileptogenic zone in as identified in the clinical 

decision-making process. This patient has undergone surgery in the same region with control of 

seizures reported. 

For identification of the abnormal epileptogenic zone in a new patient data, 1 minute data 

parsed into 1 second epoch was passed through DNN> This will yield n= 60* Number of 

electrodes predictions.  A total of 15 patient’s data (10 patient’s data which was initially used for 

model development and additional 5 patient’s data used for this evaluation) was used for this 

evaluation. The electrodes with maximal number of predictions as epileptogenic zone were 
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placed as the electrode with maximal likelihood of epileptogenicity. All the other electrodes were 

sorted based on the number of times they were predicted to be an epileptogenic focus. This 

method gave an additional layer of statistics to improve the reliability of prediction in a new 

patient data. Comparison of the electrode locations that was deemed to be epileptogenic through 

clinical evaluation and DNN predictions is given in Table 3 & Table 4.   
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Figure 18. Comparison of the DNN model prediction with clinical data.  

The upper panel shows where the DNN predicted the epileptogenic zones (shown in the red 

boxes). The lower panel shows the regions of the brain lesioned as part of treatment based on 

clinical decision making.  These patients had  good clinical outcome, indicating that the lesioned 

regions were actually epileptogenic and was the cause of the seizures in these patients. 
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Table 3 Electrodes locations thought to be involved in the epileptogenicity in clinical analysis.  

This is based on clinical evaluation, EEG, iEEG (including capturing typical seizures), MEG, PET and MRII. The first row 

indicates patient numbers. 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LAT1 LH1 RH1 RH1 LAOI3 RMTO4 LH3 LH1 LH4 LH1 LH3 LC9 LPOI4 RH1 RPOI1

LAT2 LH2 RH2 RH2 LAOI4 RMTO5 LH4 LH2 LH5 LH2 LH4 LC10 LPOI5 RH2 RPOI2

LAT3 RH3 RH3 LAOI5 RMTO6 LH5 LH3 LH6 LH3 LH5 LC11 LPOI6 RH3 RPOI3

RH4 RH4 LAOI6 RPTO1 RH1 LH4 LH7 LH4 LH6 LC12 RH4 RPOI4

RH5 LAOI7 RPTO2 RH2 LH5 LH8 LH5 LC13 RH5 RMOI1

RH6 RPTO3 RH3 LH6 LAST1 LH6 LC14 RH6 RMOI2

RH7 RPTO4 RH4 LH7 LAST2 LMST1 LC15 RH7 RMOI3

RPTO5 RH5 RH1 LAST3 LMST2 LPC3 RH8 RMOI4

RPTO6 RH6 RH2 LPC4 RST7

RPTO7 RH7 RH3 LPC5 RST8

RPTO8 RH8 RH4 LPC6 RST9

RPTO9 RH5 LPC7 RST10

RPTO10 RH6 LPC8 RST11

RH7 RST12

RH8
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Table 4. DNN based prediction (top 10 predictions) of the electrode locations.  

This is based on 1 minute of interictal data (from the first 24 hours of electrode implantation). First row corresponds to patient 

numbers.  

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LAT1 LH 1 RH7 RH2 LH1 RMTO4 RH1 RH4 LPST2 LH2 LH4 LH2 LPOI6 LH1 RST6

LAT2  LH 2 RH2 RH3 LH7 RMTO6 LH5 RH6 LPST3 LH3 LH6 LH3 LPOI7 LH2 RAOI14

LAOI4 LC2 RH3 RH4 LAOI1 RMTO3 RH2 LH6 LAST5 LH1 LH5 RH8 LTIP2 RH6 RPOI14

LPOI2 LC3 RH4 RH1 LAOI2 RPTO9 LH4 RH3 LPT1 LMST2 LH7 LH1 LPOI3 RH5 RMOI10

LOP2 LC4 RH5 RC11 LAOI3 RPTO10 RH4 RH5 LPT9 LF7 LPST3 LH4 LPOI4 LH3 RMOI13

LOP3 LC5 RH1 LC14 LAOI12 RPTO7 RH5 RH7 LT1 LF20 LH8 LH13 LPOI5 RH7 RIFI9

LOP4 LC7 RH6 LC12 LPOI1 RPTO8 RH6 RH8 LPT2 LPT8 LPSt4 LC1 LTIP1 LAOI2 RPOI10

LAOI1 RH8 RC10 LPOI4 RMTO5 RH7 LH3 LPT13 LMST1 LH9 LLT1 LAOI3 RMOI9

LAOI2 RPOI5 LC10 LPOI8 RPTO3 LH3 LH4 LPT15 LH5 LAST1 LHWM3 LAOI4 RST5

LAOI3 LPOI2 LAOI7 LPC10 RPTO5 LH6 RH1 LPST5 LAST4 LASt2 LHWM4 LPOI5 RPTO1
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Discussion 

The potential to predict epileptogenic zones with limited duration of iEEG signal has to 

be compared to the current clinical approach based on multiple days of iEEG recording and 

capturing seizure events. The current approach poses significant risks to the patients and medical 

system. Also, an approach as described in this study will have significant impact in reducing the 

hospital admission duration and will thereby reduce the medical costs. While the model offers a 

promising approach, one of the concerns of using the DNN models in medical field is the 

limitations in understanding the decision-making process of DNN. The conventional medical 

decision-making process already involves putting together several pieces of data. Adding a black 

box-based system to this process can be difficult from the standpoint of clinicians as well as 

patients. 

 It is in this context that the heatmapping approaches have to be considered especially to 

explain the decision making process of DNN. The use of heatmapping technique in this study 

with the Grad-CAM algorithm has demonstrated that the decision making of DNN can be 

unraveled to a significant extent, which could help the clinical teams in appropriately 

incorporating these kinds of models in clinical practice. A similar approach with layerwise 

relevance propagation was described for classifying neurocognitive tasks [60] demonstrating the 

potential of this approach in understanding the neurophysiological patterns. Our study shows that 

the heatmapping points to areas of increased instantaneous power (as described by the analytical 

signal) as contributory to the classification of an epileptogenic or non-epileptogenic region. A 

similar evaluation to identify epileptogenic regions in iEEG has been reported in previous studies 



 

59 

 

with CNN [61] on short term Fourier transform of signal. This approach reported an accuracy of 

91.8% in differentiating focal and nonfocal iEEG signals. That approach did not explore the 

features that the network was learning. Another deep learning approach with intracranial EEG 

data, for identifying interictal epileptic discharges (IED) has been reported[62]. This study 

employed CNN and reported a 70-90% classification accuracy in detecting IEDs. Compared to 

that study we did not specifically target identifying any specific pattern in the EEG. 

 

Our strategy to identify the underlying features that the model is learning goes with the 

conventional medical approaches which tries to identify the transients in iEEG which is 

subsequently correlated with the regions of epileptogenicity. While being congruent with the 

conventional methods, this approach also helps in further unravelling the underlying 

epileptogenic pathophysiological processes that may be giving rise to certain forms of signals in 

the iEEG. A similar method can potentially be applied to classifying other brain states (sleep, 

drowsiness. alertness etc.) and in further understanding the neurobiological underpinnings of it. 

In the context of long term EEG data, several studies[22], [63] have been reported using CNN 

approach for detection of seizures. They reported high accuracy (90-99 %) and sensitivity and 

specificity between 85-95%. But it may be noted that these studies were looking to identify 

seizures in the long-term EEG data (and seizures are recorded usually after several days of EEG 

monitoring). Compared to those studies, our approach uses 60 seconds of recorded interictal 

data, when no seizures are recorded.  The fact that we have focused on higher frequency 

components of the iEEG signal would have partially contributed to the ability of the DNN to 

identify the epileptogenic zones from a limited duration of recording.  From clinical studies it is 
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known that the fast activity patterns represented in the higher frequency components are more 

correlated with epileptogenic zones. Another reason for the enhanced ability could be the use of 

specific filters used in the CNN, which matches with the higher frequency components in the 

iEEG data.  
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Table 5. Existing DNN models on iEEG, exploring epileptogenic zones/ epileptic activity 

compared with the current model. 

Study Deep Learning Strategy Input Formulation Frequency 

Range 

(FR)/Sampli

ng Rate(SR) 

Task Accurac

y 

[61] CNN(Convolutional 

neural network) with 

STFT(short term Fourier 

transform) 

Data from 5 patients. 20 

s of data 

SR: 512 Hz Differentiate 

focal and non-

focal 

epileptogenic 

signal 

91.8% 

[22] 1D-CNN with data 

augmentation strategies 

24 patients, 916 h data; 

& 18 patients,2565 h 

data.  

SR:256 Hz Seizure detection 99% 

[62] CNN Data from 12 patients.  NA (not 

available) 

Interictal 

epileptic 

discharge 

detection 

79–87% 

[25] CNN + LSTM (long 

short-term memory 

attention machine) 

Three data samples SR:1–512 Hz, 

1–173 Hz or 

2048 Hz 

 

Epileptogenic vs. 

non-

epileptogenic 

97.6% 

[21] 1-CNN, 2-CNN, 3-CNN, 

4-CNN 

2016 Kaggle 

competition; Data from 

5 dogs and 2 patients 

SR: 400 Hz Seizure 

classification 

76–95% 

[23] CNN 2016 Kaggle 

competition; Data from 

5 dogs and 2 patients 

SR: 400 Hz Seizure 

prediction 

87.85% 

sensitivit

y in 

seizure 

predictio

n 

[26] CNN Responsive neural 

stimulator data from 22 

patients 

SR: 250 Hz 

FR: 4–125 Hz 

Seizure 

identification 

84% 

Curr-

ent 

study 

CNN Data from 17 patients; 1 

min data 

SR: 2000 Hz;  

FR:60–600 

Hz 

Epileptogenic vs. 

non-

epileptogenic 

91–95% 
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Conclusions 

 The study demonstrated a clinically significant potential use of DNN for evaluation of 

iEEG data for identifying epileptogenic zones. Further, the underlying signal features that 

significantly contributed to the decision making of DNN was unraveled. Apart from medical 

application this strategy highlights the advantage of using heatmapping approaches in 

unravelling underlying neuroscientific details.  
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CHAPTER 4: ESTIMATION OF CERTAINTY OF DNN PREDICTIONS 

AND CORRELATION WITH INFORMATION CONTENT 

[This work was published in the article “Information Entropy Measures for Evaluation of 

Reliability of Deep Neural Network Results”, DOI: 10.3390/e25040573, Entropy. 2023 Mar 

27;25(4):573. [64]] 

As noted in the previous chapter, we explored the possibility of using the DNN models to 

predict epileptogenic regions in the brain. When these approaches are used in real world, one of 

the challenges is in corelating with clinical context. Accuracy of the overall DNN gives an idea 

about the trustworthiness of the overall network. But it does not give an estimation of the 

confidence the network has in individual predictions. This can be a limitation in individual 

decision making, especially for example in the medical field where each decision on individual 

patient is a confluence of information from various body systems, medical factors, psychological 

and social factors. Therefore, it may be helpful to have a measure of confidence in the individual 

decisions of DNN.  

In general, DNN come up with a score for the individual prediction which is noted as 𝑦𝑖 

(𝑦𝑖being the i-th entry in a particular layer), in the following equation based on the inputs.  With 

𝑥𝑖 (𝑥1 𝑥2,… 𝑥𝑛) as inputs, 𝑤𝑖𝑗 (𝑤𝑖1, 𝑤𝑖2,.. 𝑤𝑖𝑛) as weights and 𝑤𝑜 as the bias term[65].  

𝑦𝑖 = ∑ 𝑥𝑗𝑤𝑖𝑗

𝑛

𝑗=1

+ 𝑤𝑜;   𝑧 (𝑖) = 𝑔(𝑦𝑖) 

 

(8) 

https://doi.org/10.3390/e25040573
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The activation function is represented by g(.) and in the last layers DNN commonly uses a 

softmax function as activation to normalize the probability distribution with the following 

function. 

𝑔(𝑦𝑖) =
𝑒𝑥𝑝(𝑦𝑖)

∑ 𝑒𝑥𝑝 (𝑦𝑖)
𝑘
𝑖=𝐼

 
(9) 

 We introduce the method of assessment of certainty in the neural network predictions. This is a 

measure of how certain DNN is about each of the individual predictions. This method was 

motivated by the following two ideas: 1. In the case of biological neural networks the decision of 

a subsequent neuron firing is partly dependent on the summation of the post-synaptic action 

potentials (both excitatory and inhibitory), which is like the inputs to DNN’s last layer. Broadly, 

we can consider the “decision” of the neuron to fire and transmit the information to the next 

layer as a surrogate of certainty. Therefore, intuitively we can consider that the biological 

neurons are considering the positive and negative inputs in arriving at the decision and possibly 

at assessing the certainty of predictions. 2. The Grad-CAM algorithm used in the heatmap 

generation (that we used in this study) is based on the gradients of scores for individual classes 

(before the softmax layer), explained in detail in the methods section. Therefore, using a 

certainty measure based on the same score was considered appropriate, when evaluating the 

relationship between heatmap and information measures like sample entropy used in this study. 

This is different from accuracy which is a measure of overall correctness of predictions.  

For the implementation of these methods, we used the convolutional neural networks 

which is a form of DNN. Apart from basic deep neural network methods, signals with time 

varying features can be analyzed and classified using convolutional neural network (CNN) which 
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are better capable of capturing features using a sliding window along the signals [27]. This 

allows for identifying the local features of signal which are often used in identification of 

epileptogenic zones by clinicians (sharp waves, spikes, high frequency oscillations etc.) and are 

particularly suited for evaluating pathological features in iEEG signals which may contribute to 

the decision making of DNN. These pathological features include high frequency activity and 

ripples. Given this potential, CNN was employed as a strategy for signal classification in this 

study and heat-mapping method was implemented on CNN model. The depiction of the input 

along with contribution of different regions of the signal in the decision-making process, is 

referred as heatmap and can be estimated for individual layers of CNN using various algorithms. 

Essentially heatmaps help in identifying the key features that was used by the model to arrive at 

a particular decision. Heatmaps can be generated using various methods which were alluded to in 

previous chapter and the methods of Grad-CAM analysis was used for the evaluation of CNN. 

The implementation of CNN used in this study is depicted below.  
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Figure 19. The Convolutional neural network implemented with higher number of convolutional 

layers.  

The CNN implemented consisted of 11 layers with 3 convolutional layers with kernel size of 

256. The input had 2000 nodes which corresponded to the number of elements in the input 

samples. Binary-cross entropy was used as the loss function and Relu was used as activation 

function. The model was trained with 8000 samples obtained from iEEG signals which is 

described in the previous chapter. The validation was performed with 2000 samples. The model 

was trained for 100 epochs.  

The certainty in the outputs of any DNN nth layer is estimated as follows: 
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𝐶𝑖
𝑛 = 𝑦𝑖

𝑛 −
1

𝑁
∑ 𝑦𝑗

𝑛

𝑁−1

𝑗=𝐼;𝑗≠𝑖

 

(10) 

  

 where certainty index, 𝐶𝑖
𝑛 is the certainty that the i-th prediction in the n-th layer is correct, 

𝑦𝑖
𝑛

 is the i-th DNN output at n-th layer, 

N is the total number of nodes 

For comparison between layers and different DNNs, this measureccan be normalized to standard 

deviation. These certainty estimates were plotted in two groups, that favored the decision of 

epileptogenic electrode location and non-epileptogenic location.  

Heatmap estimation 

Class-discriminator map defined as Grad-CAM is evaluated for any class c, as follows[57].The 

gradient of the score for class c as given by yc , with respect to the feature map activation Ak of 

a convolutional layer is given by  

𝛼𝑘
𝐶 =

1

𝑁
∑

𝜕𝑦𝐶

𝜕𝐴𝑖
𝑘

𝑁

𝑖=1
  

(11) 

𝑦𝐶 is the DNN output for a particular class c (before softmax). 

𝛼𝑘
𝐶 indicates the importance weight of k-the filter for class c. 

𝐴𝑖
𝑘 is the i-the element in k-th activation map. 

N is the number of elements in feature map. 

With the gradient weighted class activation map (grad-CAM) for a layer obtained as 
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gc
= Σ𝑘𝛼𝑘

𝐶𝐴𝑘
 

 

(12) 

These gradients can be global-average pooled which gives weights (𝛼𝑘
𝐶) of neurons based on 

their significance in decision making for specific input. 

 The ReLU function was not used, given the fact that we are working on one dimensional 

signal and similar approach was used in acoustic signal-based studies [19]. Also, incorporating 

negative values in heatmaps was considered to be important when calculating correlations with 

information measures of the signal. This approach helps in generating the heatmap for any layer. 

Since the concern that the Grad-CAM maps can progressively worsen in the earlier layers, in this 

study, the heatmap was only calculated based on the last convolutional layer of the model.  

The details of the steps for Grad-CAM calculation are showed schematically with an example 

below. In this case activation maps from penultimate layer of CNN kernels A1, A2.. Ak is used 

and the Grad-CAM is calculated as detailed below.  
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Figure 20. schematic showing the Class activation map calculation. 

For illustration a 1-dimensional convolutional network is shown.  

Global average pooling (GAP) takes the average of all the elements. 

the GAP will be calculated as  

GAP = 
1

𝑢
∑ 𝐴𝑖

𝑘𝑢
𝑖=1  

(13) 

In this case the final score for a specific class (eg. epileptic) in final layer before softmax layer 

will be given by:  

𝑦𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 = ∑ 𝑤𝑘
𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 

𝑘

𝑘=1

1
u ∑ Ai

k
u

i=1

 

 

(14) 

 

Calculation of the gradients for the category ‘epileptic’ is illustrated below:  
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Figure 21. Illustration for calculation of gradients of individual sample outcomes with activation 

maps 

The Grad-CAM for each category for that layer is calculated as a weighted combination of the 

feature maps as below:  

𝐺𝑟𝑎ⅆ − 𝐶𝐴𝑀𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 = 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ 𝑡 + 𝛼𝑘𝐴𝑘 

 

(15) 

OR  

gc
= Σ𝑘𝛼𝑘

𝐶𝐴𝑘
 

 

(16) 

As an example, in the case of Modified National Institute of Standards and Technology database 

(MNIST) images. The heatmaps are calculated and plotted below the original images. 
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Figure 22.  Illustration of the implementation of heatmapping in the case of MNIST images.  

 

To estimate the similarity between the heatmap and the original data a cross correlation was 

performed as noted in the equation 

𝑧(𝑘) = ∑ 𝑔𝑙
𝐶

‖𝑔𝐶‖−1

𝑙=0

∗ 𝑥𝑙−𝑘+𝑁−1
∗  

(17) 

where ||𝑔𝐶 || is the length of 𝑔𝐶,which is the heatmap for the signal X 

 N= max(||𝑔𝐶 ||,||X||) and xm is 0 when m is outside range of y.  

The cross correlation between heatmap and signal plotted for various samples is shown Figure 23 
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Figure 23. Correlation between heatmap and original signal.  

The maximal values of this correlation were plotted against the certainty index of that data. 

Sample Entropy calculation 

One of the challenges of evaluating the accuracy of the DNN model is, whether the 

model has adequately captured the information contained in the data. To address this, we used 

the method of information theory-based analysis. For this purpose, sample entropy (SampEn) 

was estimated which is especially suited for signals where semirhythmic patterns are present. 

Based on Shannon’s information theory[41] the information in a collection of data X can be 

defined as 

𝐻(𝑋) = − ∑ 𝑝(𝑥) 𝑙𝑜𝑔 𝑝(𝑥)

𝑥∈𝑥

 (18) 

 where X is taking values x1, ..., xn and p(x) is the probability associated with those values for all 

x1, ..., xn. But this approach does not consider the repetitive nature of signals and the information 
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in those types of patterns. Therefore, sample entropy was used as a method to estimate the 

information content in the signal as noted below. 

Generalized version of Shannon entropy is Renyi entropy which is described as follows:  

Renyi entropy of order α is defined as  

𝐻𝛼(𝑥) =
1

1 − 𝛼
𝑙𝑜𝑔 (∑ 𝑃𝑖

𝛼

𝑛

𝑖=1

) 
(19) 

with Shannon entropy being 𝐻𝑆ℎ𝑎𝑛𝑛𝑜𝑛
 = lim 

𝛼→1
𝐻𝛼 

Using this approach a measure of information rate generated in a chaotic data series is described 

as [65]:  

𝐶𝑑(𝑟) = 𝑙𝑖𝑚
𝑁→∞

1

𝑁2
[𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑎𝑖𝑟𝑠𝑜𝑓(𝑛, 𝑚)𝑤𝑖𝑡ℎ (∑|𝑥𝑛+𝑗 − 𝑥𝑚+𝑖|

2
𝑑

1=1

)

1
2

≤ 𝑟] 

(20) 

It measures with a tolerance of r the regularity of patterns similar to a given template of a 

particular length. 

Using this approach, we can approximate the entropy of a time series as: 

𝐸𝑑 =
1

𝜏
𝑙𝑜𝑔

𝐶𝑑(𝑟)

𝐶𝑑+1(𝑟)
 

 

(21) 

The τ represents the time intervals at which the system is measured.  

The correlation integral allows for reconstructing the evolution of all degrees of freedom using d 

measures of a single co-ordinate. 
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𝐶(𝑟) = 𝑙𝑖𝑚
𝑁→∞

1

𝑁2
∑ 𝜃(𝑟 − |𝑋𝑖̅

̅ − 𝑋𝑗̅|)

𝑁

𝑖,𝑗

 

(22) 

Where θ(x) is the Heaviside function.  

𝐻(𝑥) ≔ {
1, 𝑥 > 0
0, 𝑥 ≤ 0

 
(23) 

For calculation  Sample Entropy of this approach was approximated and implemented as 

follows[43]. Given a sequence of numbers x1, x2, ..., xn of length N, a non-negative integer m ≤ N 

and a positive integer r, block u(i) can be defined as x(i), x(i + 1)...,x(i + m − 1) and block u(j) as 

x(j), x(j + 1)..., x(j + m − 1). The distance between them is defined as d[u(i), u(j)] = maxk=1, 

2...m(|x(i + k − 1) − x(j + k − 1)|). 

The sample entropy, which helps in better capturing the recurring nature of data elements in a 

signal, is defined [44] as: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) 

= − 𝑙𝑜𝑔
∑ ∑  𝑁−𝑚

𝑖=1,𝑗≠𝑖
𝑁−𝑚
𝑖=1

∑ ∑  𝑁−𝑚
𝑖=1,𝑗≠𝑖

𝑁−𝑚
𝑖=1

[𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 ⅆ[|𝑢𝑚+1(𝑗) − 𝑢𝑚+1(𝑖)|] < 𝑟]

[𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 ⅆ[|𝑢𝑚(𝑗) − 𝑢𝑚(𝑖)|] < 𝑟  ]
 

(24) 

 This was performed for various sampling intervals. A cross correlation is calculated between the 

heatmap generated (as described previously and the sample entropy calculated). The maximal 

cross correlation value was plotted against the certainty values. 

Illustration of sample entropy calculation 

The steps in calculation of sample entropy are illustrated below. A segment from a rolling time 

window is chosen for the estimation of sample entropy.  
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Figure 24. Illustration of sample entropy calculation. 

The values of time series are given by: “c b a d a e a f c b g e a b f h”. The pairs (in B) and 

triplets (in C) formed can be represented as A, B, C…. and the distances between them is 

represented as the arrow between the pairs of the groupings shown.  

The distance matrix in this case between all possible pairs will be represented as matrix as shown 

in the table below.  
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Table 6. Table illustrating the distance between the pairs formed in figure 24 B. 

 

In the Table 6 the “Dist”, indicates the distance between the pairs of rows and column. The 

distance function can be Chebyshave distance or Eucledean distance. For examples the distance 

between A and B Dist((c,b),(b,a)), with Chebyshave distance being 

𝐷𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑎𝑣𝑒 = 𝑚𝑎𝑥(|𝑏 − 𝑐|, |𝑎 − 𝑏|) 

 

(25) 

Similarly, the distance can be calculated in the case of triplets in as shown in  Figure 24B (eg. 

distance between A and B: Dist((c,b,a),(b,a,d))) and a table of distance matrix similar to Table 6.  

Sample entropy is calculated based on the above values in tables for m and m+1 dimensions and 

SampEn is calculated as follows:  

DistSumm= sum(distance with embedding dimension(m) <= r * σ) 

 

(26) 

DistSumm+1 = sum(distance with embedding dimension(m+1) <= r * σ) 

 

(27) 
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Where σ: standard deviation of signal. 

Sample entropy is calculated as:  

SampEn = − log
DistSumm+1

DistSumm
 

(28) 

The algorithm for calculation of Sample entropy used in this study is noted below.  The sample 

entropy is calculated for successive rolling windows of length N, at embedding dimension of m 

and scaling parameter r.  For evaluation of the robustness of the results the calculation is 

repeated with changes in one of the parameters (m,r or N), while keeping the other parameters 

same.  
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Algorithm 1 Sample Entropy for a time series 

Sample entropy of signal s of length SN for embedding dimension m, scaling parameters r and 

sample entropy calculation length N  

Input: s1, s2,…..sSN 

Output: SE1,SE2… SEN (series of sample entropy) 

1: SE  [01, ------0SN] 

2: N  length(s) 

3: m  embedding dimension 

4: r  scaling parameter 

5: for <si in range of SN> do sigsi <split s into SN segments of length N> end for 

6: for <i in range of N-m> do xmi<split sigi into segments of length m> end for 

7: for <i in range of N-m+1> do xmj <split sigi into segments of length m> end for 

8: B<total of the modulus (xmi-xmj) <r> [xmi-xmj indicates the distances between the 

segments] 

9: mm+1 

10: for <i in range of N-m+1> do xmk <split sigi into segments of length m> end for 

11: A <total of the modulus (xmk-xmk)> [xmk-xmk indicates the distances between 

segments] 

12: SEsi  -log (A/B) 

-------------------------------------------------------------------------------- 
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Results  

As establishing the confidence of DNN for each prediction was important from a clinical 

standpoint we explored measures of certainty that the DNN has in its predictions. Further we 

explored the DNN’s ability to capture the information content in the signals using sample 

entropy algorithm. The certainty of DNN predictions were explored further with its correlation 

with the ability of DNN to capture the information content in the signal.  

A convolutional network model was implemented as described in Figure 19. The model 

consisted of three convolutional layers and additional dense and dropout layers. A dense layer 

was added before the softmax layer to get the outputs prior to the softmax function. The iEEG 

data lasting one second from each channel were fed into the input layer. The model was trained 

with 9000 samples and tested with 1000 samples. The accuracy of the model was noted to be 

93%. The confusion matrix which depicts the percentage of positive and negative predictions is 

shown in the Figure 25. 
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Figure 25. Confusion matrix showing the results of the test samples as percentage. 

 

Certainty in individual predictions 

The confidence in the prediction of each data was estimated as noted by the measure of certainty 

as described in the methods section. Certainty is estimated in the test data. The absolute value of 

certainty, for signals from epileptic electrodes ranged between 0-200 and that for the epileptic 

signals ranged from 0 - 60 (the more negative the value, the higher the certainty of the models 

that the data is from epileptic regions) Figure 26. For better comparison the data was also plotted 

after normalizing with the standard deviation. 
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Figure 26. The certainty of the decisions on the classification of data to that arising from  

epileptic vs non-epileptic locations.   

Please note that the negative and positive values are chosen arbitrarily for classification 

purpose to epileptic and non-epileptic classes and the symbols do not have other relevance.  

Certainty and correlation between heatmap and signal 

To estimate how the decision-making process of the DNN model is related to the certainty index, 

we calculated the correlation between the heatmap and the original signal. The maximal 

correlation values were plotted against the certainty index for that signal (Figure 27Figure 27. 

The certainty index and its relationship with the correlation between heatmap and original signal.) 

and the correlation coefficient was estimated as 393.9 +/- 6.7(SE). A similar range of correlation 

values were noted when the epileptic and non-epileptic data was evaluated separately. 
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Figure 27. The certainty index and its relationship with the correlation between heatmap and 

original signal.  

A. Original signal (upper) and the corresponding heatmap (lower) B. Scatter plot: Certainty 

index vs correlation between heatmap and original signal C. Cross-correlation between the 

heatmap and original signal plotted for non-epileptic data. D. Cross-correlation between the 

heatmap and original signal plotted for epileptic data. 

Table 7. Regression values: certainty index vs. correlation between heatmap and original signal. 

 
Statistical Values Whole Data Non-Epileptic Epileptic 

R-squared 0.76 0.77 0.69 

F-statistic 3190 2714 450 
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Relationship between heatmap and sample entropy 

The sample entropy for individual signals was calculated based on equation (24). For this purpose, 

following parameters were used: embedding dimension, m=8, scaling parameter, r= 2 x standard 

deviation of the signal, signal length, N= 100. The fact that the EEG signal has frequency 

components which range from 60-600 Hz was considered in choosing the embedding 

dimensions and signal length. Further analysis based on variations in these parameters are noted 

in sections below. A cross -correlation was calculated between the sample entropy and the 

heatmap and the maximal value of this cross correlation was plotted against the certainty index 

for individual data as shown in Figure 28. The R-squared values for the regression analyses are 

given in the Table 8. It may be noted that the R-squared values in the case of the cross 

correlations between the sample entropy and heatmap appear to be higher, compared to that 

between original signal and heatmap. 
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Figure 28. The certainty index and its relationship with the correlation between heatmap and 

sample entropy of the signal.  

A. Heatmap of the signal (upper) and the sample entropy (lower) B. Scatter plot: Certainty index 

vs correlation between heatmap and sample entropy of signal C. Cross-correlation between the 

heatmap and sample entropy of signal for non-epileptic data. D. Cross-correlation between the 

heatmap and sample entropy of signal plotted for epileptic data. 

Table 8. Regression values: certainty index vs. correlation between heatmap and sample 

entropy. 

Statistical Values Whole Data Non-Epileptic Epileptic 

R-squared 0.89 0.90 0.95 

F-statistic 8303 6850 4197 
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Relationship between heatmap and sample entropy at various embedding dimensions 

The equation (24) shows that the sample entropy depends on the embedding dimension m, 

scaling parameter r, and signal length N. A too high value of m can potentially reduce the template 

matches performed in the algorithm. On the other hand, if m selected is too small there will be 

more template matches but the predictive information will be reduced, and the probability of 

forward match can be underestimated. This is especially true in the case of EEG which may have 

repeating patterns. To evaluate the impact of these parameters on the relationship between sample 

entropy, heatmap and certainty index, those parameters were varied, and the relationship was 

estimated. The sample entropy, m, was calculated at embedding dimensions 4,8,16 and 32 

(while keeping r = 2, N =100). The certainty index vs maximal correlation between the 

sample entropy and heatmap at various embedding dimensions is plotted in Figure 29 

 

Figure 29. Sample entropy calculated for varying embedding dimensions: 4,8,16 and 32.  

The labels for the figures correspond to the individual embedding dimensions. 
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Table 9. Regression values: certainty index vs. correlation between heatmap and sample entropy 

at various embedding dimensions. 

 

 

 

 

 

Sample entropy calculated at different scaling parameters. 

Similarly, if a high scaling parameter (r) value is selected, most of the templates will look like 

each other and they will fall below threshold and therefore the algorithm will have reduced 

efficiency. If r is too small, too many templates will fail to match. To address the effect of these 

variations, the sample entropy was calculated at various r values, while keeping an m =8 and N 

=100. Plots for the variations in the standard deviations (at 1.5, 2 and 2.5) is shown in Figure 30. 

 

Figure 30. Sample entropy calculated for different scaling parameters where (r =1.5, 2 and 2.5 x 

SD).  

The labels for the figures correspond to the individual scaling parameter x SD. 

 

 

Statistical values 4 8 16 32 

R-squared 0.91 0.91 0.83 0.63 

F-statistic 11333 10402 5201 1705 
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Table 10. Regression values: certainty index vs. correlation between heatmap and sample 

entropy at various scaling parameter (SD). 

Statistical values 1.5 2 2.5 

R-squared 0.93 0.93 0.93 

F-statistic 14016 13796 14346 

 

Sample entropy calculated at different sample lengths. 

Another parameter considered in the calculation of sample entropy is length of the signal (N). 

This is the moving window of the original signal. Given the different frequency components 

in the EEG signal which will span different lengths of signal for each frequency, the signal 

length N was varied to calculate the sample entropy. Sample entropy was calculated at various N 

value, while keeping an m =8 and r =2. Plots for the variations in the standard deviations (at 1.5, 2 

and 2.5) is shown in Figure 31. 
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Figure 31. Sample entropy calculated for different signal lengths: 50, 100, 200 and 400.  

The labels for the figures correspond to the individual signal lengths. 

 

Table 11. Regression values: certainty index vs. correlation between heatmap and sample 

entropy at various signal lengths. 

Statistical values 50 100 200 400 

R-squared 0.93 0.93 0.93 0.93 

F-statistic 13509 13796 14039 13611 

 

Discussion and comparison with existing literature 

Our study shows that the heatmapping points to areas of increased instantaneous power 

as described by the envelope of the analytical signal) as contributory to the decision making of 

an epileptogenic or non-epileptogenic region.  
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Use of information theoretical approaches in evaluating the DNN  

Our study evaluated how the ability of the DNN model to capture the information content 

in the signal influences the certainty about the predictions. For this purpose, we have introduced 

certainty index, as a measure of confidence of individual DNN predictions which is based on the 

outcomes prior to softmax layer. Given the fact that the heatmaps towards the final convolutional 

layers are representative of the highest-level abstractions of the information in the signal, that 

DNN is using to arrive at the decisions about sample classes, we have used a measure of the 

correlation between that heatmap in final convolutional layer and original signal to evaluate, how 

effectively the DNN has captured the information in the signal. Sample entropy measure was 

used as measure of information content in the signal (which was calculated independent of the 

model) and we were able to demonstrate that certainty index of each sample is proportional to 

the correlation between sample entropy and heatmap. 

We would like to point out that the model that we developed for this purpose was 

comparable to the previous DNN models reported using intracranial EEG data (noted in Table 

5). As noted previously, the main aim of this study was to explore the certainty of predictions of 

DNN with the help of heatmap and information content of the signal. The fact that the model we 

used is comparable to the reported models in accuracy, suggests a potential applicability of the 

approaches that we currently employed, in other models. It may be noted that the seizure 

detection studies usually have higher accuracy compared to classification of data to epileptogenic 

or non-epileptogenic from inter-ictal periods (time periods when there was no seizures recorded). 

The results from this study indicates that the certainty measure as described can be used as 

estimate of the confidence that the DNN has in the prediction of a particular data. 
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We are able to show that the certainty index is more strongly correlated with the 

correlation between the heatmap and sample entropy compared to that between heatmap and 

original signal. This would be expected given the fact that the sample entropy is the measure of 

the information and the heatmap is a depiction of the DNN’s ability to capture the relevant 

information. Confidence measures for DNN predictions has been evaluated in the past, 

particularly using outputs of softmax layer. Logits from the softmax layers give a range of values 

that appears to give a confidence of predictions, but previous studies have also cautioned that this 

can be erroneous [66] especially given the discontinuous nature of input-output mappings and 

should be used judiciously.  

Softmax confidence was further evaluated and has been considered an imperfect measure 

of uncertainty [67] especially for evaluating epistemic uncertainty. This study analyzed the 

softmax function and defined regions of softmax layers where an out of distribution input must 

fall to be correctly labelled as out of distribution. Statistics derived from softmax distributions 

was effective in determining whether a sample is misclassified or from a different distribution 

from the training data, suggesting its potential as a measure of certainty [68]. This study showed 

potential applications of this approach in diverse experimental data including computer vision 

and natural language processing. The method of certainty measurement that we are proposing 

incorporate the scores of the network (with values prior to the softmax layer), that favor a 

particular prediction and un-favor the other options, further enhancing the reliability of this 

measure. It may be noted that limitations attributed to the softmax based confidence measure 

may be present in this approach as well, but the improvisation incorporating the negative 

prediction outputs will hopefully make it more robust. 



 

91 

 

As discussed in the introduction, we preferred to use the values prior to softmax layer, for 

certainty index calculation, taking cues from biological neural networks. The other reason was 

that given the approach of Grad-CAM which used the gradients of DNN outputs prior to the 

softmax layer, estimation of certainty based on those values appeared more appropriate. While 

this may improve the reliability of this measure, further studies with different datasets may be 

needed for further ascertaining the wider applicability of this approach. While the measures of 

confidence have been addressed in various ways ( Table 12), a rigorous evaluation of this 

measure from the standpoint of heatmaps and information content of the samples has not been 

reported. 

Our main objective in this study was to establish how strongly this kind of confidence 

measures relate to the measures of information content in the signal. To the best of our 

knowledge, this is the first study addressing the relationship between confidence of prediction (as 

measured by certainty index), heatmap and information content of the sample. How the research 

questions are answered. The DNN model implemented in this study was able to predict the 

epileptogenic zones/non-epileptogenic zones with high accuracy. The heatmapping approaches 

along with evaluation of analytical signal showed that there is a high degree of correlation 

between those to signals indicating that the transients noted in the analytical signal will be 

significantly contributing to the decision making of DNN. This will help in unravelling how the 

DNN decision making can be corroborated with clinical decision making. The certainty index 

was introduced as a measure of confidence in the decision process of DNN.  

We were able to demonstrate that there is a high correlation between sample entropy and 

heatmap and the value of that is correlated with the certainty in the DNN decisions in each 
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sample. This establishes a direct correlation between information content in the signal and 

certainty of DNN decisions, which has not been demonstrated previously. 

We evaluated how the indexes of certainty and correlations with the information 

measures that we used in this study compares with the existing literature.  It may be noted that 

not many studies addressed the exact question of the relationship of certainty of decisions and 

information content in the signals.  The table below shows of the studies that addressed potential 

certainty indexes, evaluated the potential utility of softmax predictions assessed the entropy of 

predictive distributions.  
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Table 12. Existing literature compared with our approach for evaluation of the certainty of the 

network and assessment of the certainty measure. 

Publication Employed Method Assessment of the 

Confidence 

Measures 

Comparison to Our 

Approach 

Hendrycks et al. 

[30] 

Softmax prediction 

probability 

Correctly classified examples 

tend to have greater. 

maximum softmax 

probabilities 

Did not assess for the 

relationship between 

information content in 

the samples. 

Jha et al. [32] Attribution based 

confidence measure 

Studied effect of changing 

the 

labels of features away from 

the sample studied and 

conformance of model 

predictions. 

Established attribution 

based. 

dimensionality 

reduction 

Smith et al. [31] Mutual information and 

softmax variance 

Mutual information, 

expected. 

Kullback-Leibler Divergence 

and predictive variance help 

in computing the divergence 

between softmax and 

expected softmax. 

Considered softmax 

variance. 

as a measure of mutual 

information 

Pearce et al. [67] Analytically studied 

softmax 

layer 

Studied the effectiveness of 

softmax outputs as proxy for 

epistemic uncertainty in 

non-adversarial, out of 

distribution examples 

Suggested partial 

capture of uncertainty. 

Did not 

explore relationship 

with 

heatmaps or 

information 

content of samples 

Lakshminarayana

n et al. [69] 

Ensembles of neural 

networks 

Used 1. scoring system as 

training criterion, 2. 

adversarial training 

Evaluated entropy of 

predictive distributions 

to 

evaluate quality of 

uncertainty estimates; 

Evaluated performance 

compared to 

Bayesian networks 
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CHAPTER 5: GRADIENTS OF DNN AND CERTAINTY OF PREDICTION 

[This work is being submitted as article “Activation gradients in deep neural networks and 

information content in the signal”, for IEEE-EMBS International conference on Body Sensor 

Networks: Sensor and Systems for Digital Health (IEEE BSN 2023)] 

In the previous chapters we have described how the DNN model was developed to 

evaluate the iEEG, the relationship between iEEG analytical signal and heatmap and how the 

information content in the signal is correlated with the certainty of the decisions of DNN.  As a 

next step we explored the flow of information through the DNN and demonstrated the 

relationship between activation gradients across layers and information content in the signal. We 

further established that in the case of iEEG signals, the activation map-DNN prediction 

relationship across various layers is correlated with the certainty of the DNN for specific 

prediction. 

Relationship between DNN gradients and Certainty of decisions 

The decision-making process in DNN is going through multiple layers of networks. As 

another way of assessing the relationship between the class discrimination and class activation 

maps the gradients for sample for each class can be calculated for individual input and averaged 

over all the inputs, which fall in that particular category. The method is illustrated below with the 

task being classification of signal to two categories (Figure 32): 
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Figure 32. Schematic of the CNN layers with convolutional layers based on which the activation 

gradients are calculated.  

 

The gradients for each sample’s score (yc) in relation to the activation maps will be given as a 

summation of all the activations gradients as: 

𝐺𝑟𝑎ⅆ𝑖𝑒𝑛𝑡𝐿𝑎𝑦𝑒𝑟𝐴
𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 = ∑  

𝑘

𝑛=1

𝜕𝑦𝐶=𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐

𝜕𝐴𝑘
 

(29) 

𝐺𝑟𝑎ⅆ𝑖𝑒𝑛𝑡𝐿𝑎𝑦𝑒𝑟𝐵
𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 = ∑  

𝑘

𝑛=1

𝜕𝑦𝐶=𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐

𝜕𝐵𝑘
 

(30) 

  

It may be noted that this these gradients indicate the rate of change of the DNN output in relation 

to the activation maps.  

Results 

The activation gradients (AG) in the case of intracranial EEG data were calculated based 

on the convolutional model. To evaluate the relationship of these gradients to the decision-

making certainty, each set of gradients was plotted against the sequence of layers from input to 
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output (Figure 33). Dropout and pooling layers were excluded in this plot as there was no 

activation map in those layers. The slope for each of these layers was calculated and plotted 

against the certainty of the DNN out for each sample. Since AG significantly contribute to the 

final decision of the network, given the relationship between heatmap and certainty index, as 

noted in the previous chapters, we explored how the slope of the AGs across layers is related to 

the certainty index. The slope estimated in each case was plotted against certainty index for that 

sample data (Figure 34). 

 

Figure 33. Change of activation gradients across DNN layers. 
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Figure 34. Relationship between the slope of activation gradients and certainty index. 

 

The relationship between certainty index and slope of the activation gradients was explored 

further in the case of epileptic and non-epileptic data separately, which again showed a similar 

trend. This demonstrated a higher correlation in the case of non-epileptic data (Figure 35).  
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Figure 35. Slope of the gradients in the case of epileptic and non-epileptic data. 

 

Relationship between the gradients of activation with information content of the signal 

As detailed in the previous chapter we have shown the relationship between the certainty index 

and the information content in the signal. In the previous section we were able to show that a 

relationship exists between the certainty of predictions and the slope of activation gradients.  
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Figure 36. Relationship between the slope of the gradients across the network and the average 

sample entropy of the signal 

The R-squared value for correlation between slope of gradients and average sample entropy was 

0.64 with an F-statistic of 1764.  

 These results indicate that the rate of change of the learning as denoted by the change of 

output in relation to activation maps in each layer is directly proportional to Sample Entropy of 

the signal.  

𝜕

𝜕𝐿
(∑

𝜕𝑦𝐶

𝜕𝐿𝑘

𝑘

𝑛=1

)

𝑆𝑖𝑔𝑛𝑎𝑙(𝑖)

∝  𝑆𝑎𝑚𝑝𝐸𝑛(𝑆𝑖𝑔𝑛𝑎𝑙(𝑖)) 
  

(31) 

Where L indicate the different convolutional layers of DNN (e.g., A and B in Figure 32) from the 

beginning to the last convolutional layer, 
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𝑦𝐶 is the DNN output for a particular class c (before softmax). 

𝐿𝑘is the k-th activation map for signal in the layer L. 

Signal(i)—represents the individual signals being analyzed and c represents the specific class to 

which the DNN has assigned Signal(i).   

Discussion 

 This analysis establishes a correlation between the gradients of DNN outputs with respect 

to activation maps and the confidence of the DNN predictions.  The fact that the trend remains 

the same on both epileptic and non-epileptic data when analyzed separately, suggest the 

underlying nature of the DNN gradients and the relation between activation maps and the results.  

A method of DNN pruning with gradient flow based saliency in DNN’s have been described 

[70].   This method used Taylor expansion for global pruning of the network. Gradient based 

optimization of the architecture of the network has been suggested, so that the network 

parameters and architecture can be changed simultaneously, based on activation gradients [71]. 

To the best of our knowledge no study has explored the evaluation of the changes of activation 

map-based gradients over the different layers. This opens an avenue of better analysis of how the 

gradients are changing and how it is related to the DNN outcomes.   
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CHAPTER 6: SUMMARY 

Taking motivation from the challenges in the iEEG analysis, we demonstrated the 

potential of deep learning methods in evaluation of intracranial EEG acquired from human brain, 

while they were undergoing monitoring for epilepsy surgery evaluation. The interictal iEEG data 

was used in generating a models of dense layers and convolutional layers based deep neural 

networks. The findings from the model generated in this study suggest that the epileptogenic 

zones can be identified using the DNN with great accuracy. We report an accuracy of 99% in 

dense network models and 87 % with CNN. CNN provides the advantage of evaluating the local 

features with heatmapping thereby enabling better correlation for clinical experts. The fact that 

the DNN is able to predict the epileptogenic zone with significant accuracy from interictal data 

lasting one minute, is highly promising and can have significant benefit in epilepsy surgery 

planning.   

The potential to predict epileptogenic zones with limited duration of iEEG signal has to 

be compared to the current clinical approach based on multiple days of iEEG recording and 

capturing seizure events. One of the concerns of using the DNN models in medical field is the 

limitations in understanding the decision-making process of DNN. The conventional medical 

decision-making process already involves putting together several pieces of data. Adding a black 

box -based system to this process can be difficult from the standpoint of clinicians as well as 

patients. The use of heatmapping technique in this study with the Grad-CAM algorithm has 

demonstrated that the decision making of DNN can be unraveled to a significant extent, which 

could help the clinical teams in appropriately incorporating these tools to the decision-making 
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process. A similar approach with layerwise relevance propagation was described for classifying 

neurocognitive tasks [60] demonstrating the potential of this approach in understanding the 

neurophysiological patterns.  

We employed analytical signals to assess the features of the signal that contribute to the 

decision making as identified by heatmaps. This approach not only helps with identifying signal 

features, which can be clinically correlated, but also helps in paving way for better understanding 

of neural signals and thereby helping in unraveling the neural processes. A similar approach of 

using heatmapping strategies to better understand system functioning was described in the case 

of electric motors where Grad-Cam was utilized in identifying the torque sensitive regions[72]. 

That study showed that design optimization could be performed using this approach. Potential 

medical applications in these directions could include assessing treatment effects in EEG/ iEEG 

by evaluating the heatmaps of those signals for specific effects.  

In the second part of the study, we focused on the evaluation of the results of DNN using 

certainty index. To arrive at this index we use both the positive prediction value for the true class 

and the prediction values for other classes in the possible predictions. This approach gives a 

score for the confidence of individual predictions which may be specifically useful when 

utilizing DNN approaches for individual clinical decisions.  This approach can be applicable in 

any DNN models and can be a useful tool in assessing individual predictions based on models.  

Information content, being one of the fundamental features of the signals, we used the 

information theoretical approaches to further analyze the workings of DNN. We used the method 

of sample entropy (SampEn) for this analysis, which was chosen, given the regularity in the 
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iEEG signals. We were able to demonstrate that the correlation between the heatmap and 

information content of the signal as captured by the sample entropy showed better relationship 

with the certainty index compared to the correlation between heatmap and original signal. This 

points to the possibility that the DNN can focus on the information rich regions of the original 

signal. To the best of our knowledge this the first demonstration of the superiority of information 

rich regions in the accurate DNN predictions. Intuitively, this appears to be feasible and the most 

likely natural process as DNN is essentially an information machine and is expected to capture, 

maximum relevant information in the signal. This relationship between information measures 

and heatmaps were noted to hold even on re-estimating these measures after changing the 

parameters of measurement.  

The third part of the study focused on how the outputs of DNN are related to the 

activation maps of individual layers and how it changes across the DNN layers. We were able to 

demonstrate that the slope of the DNN activation gradients across layers (This is the gradient of 

DNN outputs with respect to activation maps) is related to certainty index in a positive way. This 

demonstrates the fact that the earlier layers themselves are able to suggest the possible outcome 

in the case of samples, where the outcome is certain. Evaluation in this manner would help in the 

assessment of network parameters of DNN (eg. Number of layers, rate of learning etc). Further 

these gradients were also related to sample entropy in a positive way showing the relationship 

between the activation gradients and information content of the signal.  
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Schematic of the analysis of DNN data processing and assessment of DNN with activation 

gradients and information entropy 

Following figure summarizes the analysis of the model that was implemented in the 

second and third part of the study. It may be noted that as noted in the figure sample entropy 

signal used in the analysis is generated independent of the DNN model.  
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Figure 37. Summary of the approaches in the second and third parts of the study.  

The middle panel shows the DNN process with the information flow from input to outrput. The left panel shows how the 

heatmap generated from the DNN process is crosss correlated with the SampEn calculated directly from the original signal.  

The right side panel shows the changes in the activation gradients across layers. Further it shows cross correlation between 

the slope of activation gradients and SampEn. 
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Core contributions to Computer Engineering 

Using real world data acquired from human brain we were able to advance the deep learning 

methodologies as described below.  

1. This study introduced a method to measure reliability of DNN predictions which 

can be used for assessing individual samples. This approach can be generalized to 

any neural network and can be used for comparison of DNN predictions.  

By incorporating both the negative and positive scores of penultimate layer of 

DNN, to evaluation of certainty, this approach presents and unique method to 

assess the confidence in each prediction. One of the advantages of our method is 

that it does not incur any significant additional computational costs to arrive at 

these estimates of confidence.  

2. Further we established that a higher correlation between heatmap and sample 

entropy is associated with higher degree of certainty in the decision making of 

DNN. This approach establishes a direct relationship between information 

capturing capacity of DNN and the reliability of DNN predictions. We were able 

to demonstrate the robustness of this relationship at various parameter spaces. 

This information measure can act a s benchmark for evaluating DNN as capturing 

the information content will be essential for any meaningful decision making.  

3. Demonstrated that the sample entropy signal (the time series representing the 

SampEn of original signal), featuring the information content in the original 

signal has stronger relationship with heatmap and certainty of decision, that that 

of original signal.  This finding again points to the DNN’s capability to focus on 
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the information rich regions of the original signal. This could suggest that the 

sample entropy calculation could act as a pre-filter to present the information rich 

regions of the signals which would reduce the computational costs of DNN 

training and predictions.  

4.  Evaluating the gradients in DNN layers, we demonstrated that the slope of the 

activation gradients is related to the certainty of decision of DNN. 

Given the complex nature of the DNN gradients, evaluating how their pattern is 

related to the outcome of DNN predictions would be important in designing and 

training DNN. These approaches will help in deciding the optimal parameters of  

DNN (e.g. no of nodes, layers, leaning rate etc.) along with improving the speed 

and reliability of predictions.  

5. Further we were able to demonstrate that the DNN output-heatmap relationship is 

proportional to the information content in the signal.   

Information being the fundamental substrate based on which DNN is arriving at 

decisions, establishing the direct relationship between activation gradients and 

information content will pave the way for better understanding DNN learning 

process.  

6. We also demonstrated that the analytical signal calculated through Hibert 

transform better correlates with the heatmaps, indicating that the DNN is focusing 

on the energy rich regions of the signal.  

Utilizing these strategies would enable us in better understanding the DNN 

learning processes and would help in correlating the DNN results with the 
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preexisting signal processing-based conclusions.  Our method demonstrates the 

potential roles of signal processing tools in better understanding the functioning 

of DNN.   

Having better insight into the workings of DNN may help in better adoption these technologies 

in medical field and other fields of demand. Apart from helping as tools in the specified fields 

DNN may act as a method for improving the scientific understanding of the corresponding fields.  

Relevance in medical applications  

The possibility that the epileptogenic zone cane be identified with one minute of data has 

tremendous potential to change the way patients with intractable epilepsy are treated. This could 

reduce the need of admitting the patients to intensive care units (ICU) after the implantation of 

electrodes. It would reduce the cost of overall care by limiting the number of ICU days and 

avoiding the need of using the operating room for the second time. In addition, this kind of an 

advancement can reduce the medical complications and associated morbidity and mortality 

related to the seizures during the monitoring.  
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