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Abstract

Variants of the well-known Hamiltonian Cycle and Travelling Salesperson
problems have been studied for decades. Existing formulations assume either
a static graph or a temporal graph in which edges are available based on
some function of time. In this paper, we introduce a new variant of these
problems inspired by applications such as open-pit mining, harvesting and
painting, in which some edges become deleted or untraversable depending
on the vertices that are visited. We formally define these problems and
provide both a theoretical and experimental analysis of them in comparison
with the conventional versions. We also propose two solvers, based on an
exact backward search and a meta-heuristic solver, and provide an extensive
experimental evaluation.
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Finding a closed loop on a graph where every vertex is visited exactly once
is a Hamiltonian Cycle Problem (HCP), and its corresponding optimization
problem in a weighted graph is a Travelling Salesperson Problem (TSP).
Variants of the HCP and the TSP have been studied for decades. However,
the wealth of research on this topic does not cover problems where the avail-
ability of an edge in a graph depends on the vertices already visited. This
specific type of dynamic graph is relevant to many real-world applications,
such as open-pit mining, harvesting and painting.

For instance, consider the mining inspired example shown in Figure 1,
where the graph depicts a representation of a mining field and each vertex
is a place to be drilled by a drilling machine. The problem is to find a route
such that each vertex is visited and drilled exactly once, i.e., an instance of
a HCP/TSP. However, in this problem, drilling at a vertex creates a pile
of rubble, which not only makes traversing that vertex again impossible but
also affects the availability of some edges around it. For example, as depicted
in Figure 1(a), when vertex C is drilled, indicated by a red circle, the rubble
obstructs three edges, BD, CD and DA, which are all deleted, whereas
a different traversal only results in the removal of edge DA, as shown in
Figure 1(b).

XX

(b)

XX
X

X
(a)

Figure 1: Representation of a mining example, where due to different traversals, indicated
with thicker edges, in (a) and (b) different edges are deleted.

To model a graph that changes due to the path of already visited ver-
tices, as exemplified in the scenario above, we introduce a new class of
graphs, called Self-Deleting (SD). Using this class, we formally define two new
problem variants: the Hamiltonian Cycle Problem with Self-Deleting graphs
(HCP-SD), and the Travelling Salesperson Problem with Self-Deleting graphs

2
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SD and TSP-SD with the conventional versions. In particular, we identify
how a self-deleting graph compares to a standard graph in terms of short-
est paths, and determine where HCP and HCP-SD are equivalent. We also
statistically analyse, using the graph’s average vertex degree, the threshold
point near which the most expensive instances of HCP and HCP-SD are lo-
cated. Finally, we propose two solvers, based on an exact backward search
and a meta-heuristic solver. The performance of each is extensively evaluated
through experiments with a dataset based on standard TSPLIB instances as
well as randomly generated datasets catering for the specificity of these new
variants.

The paper is structured as follows. Section 2 gives an overview of related
works. In Section 3, we formally define HCP-SD and TSP-SD followed by
formal proofs of properties of self-deleting graphs in Section 4. We present
exact and heuristic solvers for HCP-SD and TSP-SD in Section 5. A statis-
tical analysis of HCP-SD is given in Section 6. In Section 7, we evaluate the
proposed solvers. We give our conclusions in the final section, Section 8.

2. Related Work

There is a large body of research on the HCP, the TSP and their variants.
As mentioned, this paper focuses on a particular type of HCP and TSP where
the edges become deleted or untraversable depending on the vertices visited.
None of the existing variants of these problems with dynamic graphs has this
property. In a TSP on temporal networks, an edge’s weight and/or availabil-
ity changes with respect to some notion of time [1, 2], and the unavailable
edges can reappear again, as opposed to HCP-SD where the deleted edges
are never re-enabled. The other difference is that the weight or availability
of an edge in a temporal network changes with time and not due to the way
the graph is traversed.

The Covering Canadian Traveller Problem (CCTP) [3] is to find the short-
est tour visiting all vertices where the availability of an edge is not known
in advance. The traveller only discovers whether an edge is available once
reaching one of its end vertices. The availability of an edge is set in advance
and not dependent on the traversal.

The Sequential Ordering Problem (SOP), sometimes known as precedence
constraint TSP [4], is the problem of finding a minimal cost tour through a
graph subject to certain precedence constraints [5]. These constraints are

3
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tion is solely between vertices, however, in our problem we have precedence
relations between vertices and edges. Therefore, SOP is a special case of our
problem, and we prove this formally in Lemma 4.

The Minimum Latency Problem (MLP) [6, 7] is a variant of the TSP
where the cost of visiting a node depends on the path that a traveller takes.
Given a weighted graph and a path, the latency of a vertex v on that path
is defined as the distance travelled on that path until arriving at v for the
first time. The goal of the MLP is to find a tour over all vertices such that
the total latencies are minimal. Similarly, in our problem the availability of
an edge depends on the path taken. However, in a MLP, the graph never
changes and the latencies are the result of a simple sum.

On the HCP, some theoretical analysis focuses on investigating conditions,
e.g., vertex degree [8, 9], under which a graph contains a Hamiltonian cycle.
For instance, Pósa [10] and Komlós and Szemerédi [11] proved that there
is a sharp threshold for Hamiltonicity in random graphs as the edge density
increases. An intuitive approach to finding a Hamilton cycle is to use a depth-
first-search (DFS). Rubin [12] introduced some rules to prune the search tree.
His rules do not improve the worst-case computation time O(n!), where n
is the number of vertices, however statistical analysis has shown that using
such criteria improves the average computation time [13, 14].

In terms of applications of TSP in automated planning, different variants
have been used in coverage route planning [15], e.g., for an autonomous lawn-
mower [16], or for autonomous drilling of a PCB [17]. Those most relevant to
this paper are coverage planning problems whose environments change due
to the coverage actions by agents, e.g., robots, that operate within them.
The open-pit mining scenario described earlier is an example of such a cov-
erage planning problem for which a specialised solver for the mining case is
proposed by [18]. Autonomous harvesting is another instance where heavy
vehicles should not pass through the areas already harvested to avoid soil
compaction. The harvested areas also limit the mobility of harvesting ma-
chines, hence affecting the reachability among the nodes representing areas to
be harvested. Ullrich, Hertzberg, and Stiene [19] formulate this application
as an optimization problem for which a specialised solver is also proposed.
In both cases described above, the authors did not study the theoretical un-
derpinning of the problem, nor provide a general solution that can easily
be employed for other instances of problems with traversal-dependent edge
deletion.

4
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In this section, we formally define self-deleting graphs and introduce the
corresponding notions of walks and paths. We then proceed to give a formal
definition of the HCP-SD and the TSP-SD problems.

Definition 1. A self-deleting graph S is a tuple S = (G, f) where G = (V,E)
is a simple, undirected graph and f : V → 2E. The function f specifies for
every vertex v ∈ V which edges f(v) are deleted from E if the vertex v is
processed. We refer to f as the delete-function.

If a vertex v is processed, we delete edges f(v) from G. For a self-deleting
graph S and set X ⊂ V of vertices, the residual graph GX of S after pro-
cessing X is defined as:

GX = G \
⋃

v∈X
f(v).

We call a simple path p = (v1, ..., vx) in a self-deleting graph f -conforming
if for every 1 ≤ i < x the edge ei = {vi, vi+1} is in the residual graphG{v1,...,vi}.
An f -conforming simple path p traverses the graph G while processing every
vertex on p when it is visited.

In contrast to a path, vertices on a walk can be visited more than once.
For a walk on a self-deleting graph, a vertex is processed when it is visited
for the last time. Formally, we call a walk w = (v1, ..., vx) f -conforming
if for every 1 ≤ i < x the edge ei = {vi, vi+1} is in the residual graph
G{v1,...,vi}\{vi+1,...,vx}.

Following standard terminology we call a sequence of vertices c = (v1, ..., vx, v1)
an f -conforming cycle if (v1, ..., vx) is an f - conforming path and the edge
{vx, v1} exists in the residual graph Gc. Then, a Hamiltonian cycle of self-
deleting graph S is an f -conforming cycle that contains all vertices of S
exactly once.

Problem 1. Given a self-deleting graph S = (G, f), the Hamiltonian Cycle
Problem on Self-Deleting graphs (HCP-SD) is to find a Hamiltonian cycle on
S.

Problem 2. Given a self-deleting graph S = (G, f), the weak Hamilto-
nian Cycle Problem on Self-Deleting graphs (weak HCP-SD) is to find an
(f -conforming) closed walk on S that contains every vertex at least once.

Observation 1. Every Hamiltonian cycle of S is a Hamiltonian cycle of G.

5
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path.
Using a weighted graph as the underlying graph of a self-deleting graph

we can define optimization problems on self-deleting graphs as follows.

Problem 3. Given a self-deleting graph S = (G, f), where G is a weighted
graph, the Travelling Salesperson Problem on self-deleting graphs (TSP-SD)
is to find a shortest Hamiltonian cycle on S.

Problem 4. Given a self-deleting graph S = (G, f), the weak Travelling
Salesperson Problem on self-deleting graphs (weak TSP-SD) is to find a short-
est (f -conforming) closed walk on S that contains every vertex at least once.

4. Properties of self-deleting graphs

In this section, we provide some formal analysis of self-deleting graphs, in
comparison to static graphs. First, we analyse path segments in self-deleting
graphs.

Lemma 1. Let S = (G, f) be a self-deleting graph and p = (v1, ..., vx) be
an f -conforming path of S. For every 1 ≤ i < j ≤ x it holds that the path
segment pi,j = (vi, ..., vj) is an f -conforming path of Si,j = (G′, f) where G′

is the induced subgraph of G on the vertices (vi, ..., vj).

Proof. Let p = (v1, ..., vx) be an f -conforming path of S and let 1 ≤ i < j ≤
x. By definition, the path segment pi,j = (vi, ..., vj) is an f -conforming path
of Si,j = (G′, f) if for every i ≤ k < j it holds that the edge ek = {vk, vk+1}
is in the residual graph G′

{vi,...,vk}. We now show that, for every i ≤ k < j,

the edge ek = {vk, vk+1} is in the residual graph G′
{vi,...,vk}.

Assume for a contradiction there is a k with i ≤ k < j where ek /∈
G′

{vi,...,vk}. There are two possible reasons for this.

1. ek /∈ E(G′): Since ek is in E(G), G′ cannot be an induced subgraph of
G and we have a contradiction.

2. ek gets deleted by some f(vy), i ≤ y ≤ k: If ek ∈ ∪i≤y≤kf(vy) then
ek ∈ ∪1≤y≤kf(vy) and therefore ek /∈ G{v1,...,vk}. Since ek /∈ G{p1,...,pk}
the path p is not f -conforming and we again arrive at a contradiction.

Since both cases yield a contradiction, the lemma holds.

6
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vertex vx and let |p| denote the length of the path p. We call p a shortest
f -conforming path from v1 to vx if for every other f -conforming path p̂ =
(v1, ..., vx) from v1 to vx it holds that |p| ≤ |p̂|.
Lemma 2. Let p = (v1, ..., vk) be a shortest f -conforming path from v1 to vk
on a self-deleting graph S = (G, f). The the following two statements hold:

1. For every 1 < i < k it holds that the path pi = (v1, ..., vi) is not
necessarily a shortest f -conforming path in S.

2. It further holds that the path p̂i = (vi, ..., vk) is a shortest f -conforming
path from vi to vk in the self-deleting graph S ′ = (G{v1,...,vi}, f).

Proof. Let p = (v1, ..., vk) be a shortest f -conforming path from v1 to vk on
a self-deleting graph S = (G, f). For any 1 < i < k we denote the path
segment of p from v1 to vi by pi and the path segment from vi to vk by p̂i.
Due to Lemma 1, the path segments pi and p̂i are f -conforming. We now
prove the two statements separately.

1. A shortest f -conforming path from v1 to vi could contain a vertex vj
for which f(vj) deletes an edge needed in the second part p̂i of the
f -conforming path p. So, pi is not necessarily a shortest f -conforming
path from v1 to vi.

2. We now prove that the path p̂i = (vi, ..., vk) is a shortest f -conforming
path from vi to vk in the self-deleting graph S ′ = (G{v1,...,vi}, f). For
a contradiction assume there is a vertex vi, with 1 < i < k, such that
there is a f -conforming path w from vi to vk in S ′ that is shorter than
p̂i. We consider the following two cases.

(a) (b)

Figure 2: Illustrations for the proof of Lemma 2: If the path w is shorter than the path
p̂i, then p was not a shortest path.

7
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If this is the case, then the path from v1 to vk that consists of the
path pi and the path w is shorter than the path p. This is a
contradiction.

(b) The paths w and pi share a vertex vx, as depicted in Fig. 2(b).
Since by assumption w is f -conforming and |w| < |p̂i|, the walk
from v1 to vk consisting of pi and w is shorter than p. We can
create an even shorter simple path form v1 to vk by omitting the
the circle that is created by going from vx to vi via p and then
returning to vx via w. This is a contradiction to the assumption
that p is a shortest path from v1 to vk.

Lemma 2 indicates the inherent difference between static and self-deleting
graphs. In static graphs, every segment of a shortest path is a shortest
path. This fact is exploited by different algorithms, often based on dynamic
programming, for path finding in static graphs, e.g. Dijkstra’s algorithm [20].
As a consequence, these types of algorithms cannot easily be applied to self-
deleting graphs.

Lemma 3. Let S = (G, f) be a self-deleting graph, where for every vertex
v ∈ V (G), f(v) deletes only edges that are incident to v, then the Hamiltonian
path problem on self-deleting graphs is equivalent to the Hamiltonian path
problem on directed graphs.

Proof. We construct a corresponding directed graph D = (V,A), to a self-
deleting graph S = (G, f), where f(v) deletes only edges incident to v, as
follows.

V (D) = V (G),

A(D) = {(v, w) | {v, w} ∈ E(G) ∧ {v, w} /∈ f(v)}

(Here (v, w) describes the directed arc from v to w, while {v, w} describes
the undirected edge between v and w.)

Another way to explain this construction is as follows. We make G a
directed graph in which each edge is replaced by two arcs in opposite direc-
tions. For every vertex v we then delete all outgoing arcs corresponding to
an edge in f(v).

We now prove that a path p is f -conforming in S if and only if p is a path
in D.

8
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for every 1 ≤ i < k the edge {vi, vi+1} is in the residual graph G{v1,...,vi}. Since
{vi, vi+1} ∈ G{v1,...,vi} it holds that {vi, vi+1} ∈ E(G). Also since {vi, vi+1} ∈
G{v1,...,vi} it holds that the edge {vi, vi+1} /∈ f(vx) with 1 ≤ x ≤ i, so the edge
{vi, vi+1} is in particular not in f(vi). Therefore the arc (vi, vi+1) is in A(D).
⇐: Now, let p = (v1, ..., vk) be a simple path in D. So, for every 1 ≤ i < k

the arc (vi, vi+1) is in A(D). For every arc a = (v, w) ∈ A(D) it holds that
the edge e = {v, w} is in E(G) and e /∈ f(v). Since (vi, vi+1) is in A(D), it
follows that {vi, vi+1} /∈ f(vi). Since no other vertex vn with n < i is incident
to e it follows that {vi, vi+1} /∈ f(vm) for everym ≤ i. So {vi, vi+1} ∈ Gv1,...,vi .
Therefore p is f -conforming in S.

Every path through D is an f -conforming path through S and vice-versa.
So the Hamiltonian path problem on S is equivalent to the Hamiltonian path
problem on D.

A sequential ordering problem (SOP) is defined as a graph G = (V,E)
accompanied by a precedence graph P . The precedence graph P is a directed
graph defined on the same set of vertices V . It represents the precedence
relation between the vertices of G. An edge from vi to vj in P implies that vi
must precede vj in any path through G. The problem is to find a Hamiltonian
path in G that does not violate the precedence relation given by P .

Lemma 4. For every sequential ordering problem SOP there is a corre-
sponding self-deleting graph SSOP such that a path p is a solution to SOP if
and only if p is a Hamiltonian path of SSOP .

Proof. Let a SOP be given by the graph H and the precedence graph P .
Let pre(v) ⊆ V (H) be the set of vertices that precede v in P , formally
pre(v) = {w | (w, v) ∈ A(P )}. We construct the corresponding self-deleting
graph SSOP = (G, f) as follows.

G = H,

f(v) =
⋃

w∈pre(v)
{e ∈ E(G) | e incident to w}

⇒: Let p = (v1, ..., vk) be a path in H that satisfies the precedence
relations given in P . So, for every 1 ≤ i ≤ j < k the vertices vj and vj+1 are
not required to precede vi. Thus, the edges (vj, vi) and (vj+1, vi) are not in
P and vj, vj+1 /∈ pre(vi). So by construction of f the edge (vj, vj+1) does not

9
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is in the residual graph G{v1,...,vj}. Thus, p is f -conforming in SSOP .
⇐: If the path p = (v1, ..., vk) is f -conforming in SSOP it holds per

definition that for every 1 ≤ i < k the edge (vi, vi+1) is in the residual graph
G{v1,...,vi}. Thus, it holds that the edge (vi, vi+1) has not been deleted by any
vertex vx with 1 ≤ x ≤ i. It follows that vi and vi+1 are not in pre(vx) with
1 ≤ x ≤ i. Thus, vi and vi+1 are not required to be visited before vx with
1 ≤ x ≤ i and the path p satisfies the precedence conditions in P . It is
therefore a valid path in H.

We proved that any valid path in a SOP is f -conforming in the cor-
responding self-deleting graph and vice-versa. This holds in particular for
Hamiltonian paths.

5. Exact and heuristic solvers

Next, we describe two solvers for the HCP-SD and TSP-SD problems:
one that produces an exact solution and one which relies on heuristics.

5.1. Exact solvers

An intuitive approach to solving the HCP on a self-deleting graph S is to
employ a DFS in a forward-search manner: starting with some vertex p1, we
delete all edges in f(p1) in G, then choose a neighbour p2 of p1 as the next
vertex on the path and repeat until the path is a Hamiltonian cycle or the
current path cannot be extended, in which case we backtrack. This approach
can be improved with methods used in algorithms for Hamiltonian cycles in
conventional graphs, namely graph/search-tree pruning, as introduced by [12,
21]. Their algorithms identify edges that must be in a Hamiltonian cycle,
e.g., edges incident to a vertex of degree 2, and employ these required edges
to improve the average runtime of a forward DFS. However, even with these
pruning rules, the algorithm fails to detect paths that cannot be extended to
a Hamiltonian cycle early. This is due to the fact that the edge deletion is
traversal dependent.

Since failures occurring at a late stage are often due to the choices at an
earlier stage of the search, we propose a backward search algorithm, shown
in Algorithm 1. This takes advantage of the late failures to greatly reduce
the size of the search tree. Instead of exploring the path from a start vertex
and deleting edges subsequently, Algorithm 1 starts by deleting all edges that
would get deleted at some point. It then explores the graph in a backward
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backward exploration of the graph, edges are added, so searching for required
edges, as is done in conventional forward DFS for Hamiltonian cycles, is not
possible.

Algorithm 1 Backward search algorithm for finding a Hamiltonian cycle in
a self-deleting graph

Input: Current path, the self-deleting graph
Output: Hamiltonian cycle of S or failure
Function: backwardSearch (path, S = (G, f))

1: R← G \ {e ∈ f(v) | v /∈ (path \ path.last)}
2: if |path| = |V (G)| then
3: if (path.last, path.first) ∈ E(R) then
4: return [path.last] + path
5: else
6: return failure
7: end if
8: else
9: SV ← {v ∈ V (G)|(path.last, v) ∈ E(G) ∧ (path.last, v) /∈

f(path.last)}
10: if SV \ path = ∅ then
11: return failure
12: else
13: N ← {v | (path.first, v) ∈ E(R) ∧ v /∈ path}
14: for v ∈ N do
15: result← backwardSearch([v] + path, S)
16: if result ̸= failure then
17: return result
18: end if
19: end for
20: return failure
21: end if
22: end if

The first call of backwardSearch receives a single start vertex as the path
and the self-deleting graph. During the repeated calls of backwardSearch,
the path grows backwards, so the first call will be with path = (v1), the next
with path = (vn, v1), then path = (vn−1, vn, v1) and so forth. During each call

11
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(line 1). In line 2 follows a goal check where it is first verified whether the
path has the correct length and if so, whether the missing edge between
both end vertices exists (line 3). If the initial check fails, the algorithm
calculates the set SV of vertices that are candidates for the second vertex in
the Hamiltonian path in line 9. If all the candidates are already on path the
path cannot be extended to a Hamiltonian cycle. We check this condition in
line 10. In line 13 the set N of neighbours of the first vertex of the current
path in R is calculated. For every neighbour, backwardSearch is called with
an extended path until one of them returns a Hamiltonian cycle.

Lemma 5. Let S = (G, f) be a self-deleting graph. If there exists at least
one Hamiltonian cycle in S, then the backward search finds a Hamilton cycle.

Proof. We prove by contradiction: Assume there exists a Hamiltonian self-
deleting graph S = (G, f), where the algorithm returns failure. Let n =
|V (G)| and P = (p1, ..., pn+1) with p1 = pn+1 a Hamilton cycle of S. We
analyse certain function calls to prove the lemma.

If backwardSearch((p2, ..., pn+1), S) is called, line 1 calculates the residual
graph R = G\f(p1). Since |(p2, ..., pn+1)| = n, line 3 triggers. The algorithm
then checks whether the edge (p1, p2) exists in R. If so, P is returned, which
is a contradiction since we assumed failure is returned. However, if there
is no edge (p1, p2) in R then p is not a Hamiltonian cycle, contradicting the
assumption.

Therefore backwardSearch((p2, ..., pn+1), S) is never called. So there is
a largest number 2 ≤ x ≤ n for which backwardSearch((px, ..., pn+1), S) is
never called. We analyse the call backwardSearch((px+1, ..., pn+1), S).

In line 1 the residual graph R = GV (G)\{px+1,...,pn} is calculated. Since
|(px+1, ..., pn+1)| < |V (G)|, the algorithm continues in line 8. In line 9 the set
SV of candidates for the second vertex on the Hamiltonian cycle starting in
p1 is calculated. Since P is a Hamiltonian cycle the set contains at least p2.
And since the current path is px+1, ..., pn with x ≥ 2, p2 is not in path and
the if-condition in line 10 fails.

We continue in line 13. Here, the list of neighbours N of current first
vertex in R that are not already on the path is calculated. We now consider
two cases:

(a) px /∈ N : N contains all neighbours of px+1 in R. So if px /∈ R then
there is no edge between px and px+1 in the residual graph after processing

12
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hold.
(b) px ∈ N : The only reason for not calling backwardSearch((px, ..., pn+1), S)

is that another call like backwardSearch((y, px+1, ..., pn+1), S) with y ∈ N
does not return failure. Thus the algorithm finds another Hamilton cycle,
this again is a contradiction.

Since we always arrive at a contradiction, the assumption does not hold.
Thus, if S is Hamiltonian the algorithm finds a Hamiltonian cycle.

0 2 4 6 8 10 12
AVD

0

2000

4000

6000

8000

10000

ex
pl

or
ed

 s
ea

rc
h 

no
de

s

(a) forward DFS

0 2 4 6 8 10 12
0

5

10

15

20

25

ex
pl

or
ed

 s
ea

rc
h 

no
de

s

(b) backward DFS

AVD

Figure 3: Explored nodes in the forward-DFS and backward-DFS on the dataset
random24-100

In order to investigate the behaviour of both exact algorithms, we first
need to define the Average Vertex Degree (AVD) for a self-deleting graph.
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Let k be the number of times an edge e appears in the delete function f .
The probability that the edge will be deleted after processing any l vertices
from V in arbitrary order is given by p(e, l) = 1 −∏k−1

i=0
(n−l)−i
n−i

. Then, the
expected “static” AVD of S after processing any l vertices can be determined
as δ(l) = (n − 1) − 2

n

∑
e∈E p(e, l). From here, we can define the AVD of S

as 1
n

∑n
l=1 δ(l).

A dataset random24-100 of 14400 random self-deleting graphs with 24
vertices was generated in order to compare both exact algorithms. The delete
function f was sampled uniformly randomly with overlapping of f(v) for two
distinct v allowed. I terms of AVD, the dataset uniformly covers the interval
from 0 to 12. In an experimental comparison between backward and forward
search, both solving the same dataset random24-100 and capped at 10000
expanded search nodes, the backward search performs much better. It was
able to solve all instances and on average was able to identify a Hamiltonian
instance after 27.9 explored nodes and a non-Hamiltonian instance after 1.6
explored nodes. The forward search failed to find a solution within the limit
for most instances. The diagrams in Figure 3 show the average explored
nodes by which either algorithm was able to decide the instance or the limit
was reached.

Figure 4(a) shows the percentage of infeasible instances decided by the
backward search at various search depths while using the same random24-100
dataset. Infeasible instances with AVD less than 3 are detected instantly at
depth 1. The hardest instances to detect are located between AVDs 6 and 7.
Above 7, the dataset does not contain any infeasible instances. Finally, more
than 80% of infeasible instances are detected at depth 10, less than half of
|V |.

Figure 4(b) illustrates how the percentage of detected infeasible instances
at various depths depends on |V |. At a fixed depth, the percentage unsur-
prisingly decreases with increasing |V |, but even for |V | = 200 about 50%
instances are detected at depth 10. Interestingly, the percentage increases
when using a relative depth and close to 100% infeasible instances are de-
tected at depth 0.2|V |, when |V | > 100. This experiment indicates that the
backward search algorithm’s ability to detect infeasible instances of HCP-SD
early on in the search improves with increasing |V | and, consequently, the
algorithm may be scalable enough to find feasible solutions even for instances
with |V | of practical interest.
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Figure 4: Backward search behaviour
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The proposed exact solver is likely to provide limited scalability when
addressing optimization problems due to its exhaustive nature. Also, finding
near-optimal solutions is often sufficient in practical applications, therefore,
heuristic algorithms may be the only computationally feasible approach to
obtain them. A common procedure is to design a problem-specific meta-
heuristic algorithm, that is tailored to a particular application. Various
heuristic approaches were successfully applied to problems related to the
TSP-SD, such as metaheuristics based on local search [22], evolutionary op-
timization [23] or swarm optimization [24].

In this paper, we use a generic metaheuristic solver for problems with
permutative representation [25], so that we can remain application agnos-
tic regarding multiple variants of TSP-SD. The solver implements several
high-level metaheuristics and also a bank of low-level local search operators,
perturbations and construction procedures. These can be readily applied to
various problems, whose solution can be encoded as a sequence of potentially
recurring nodes. The only user requirement is to specify a set of nodes A,
lower and upper bounds L,U of the frequency of their occurrence in a solu-
tion sequence x = (x1, x2, ..., xn), where xi ∈ A; a fitness function f(x) and
an aggregation of penalty functions g(x). The bounds are always respected
by the solver, whereas the penalty functions are treated as soft constraints.
Their purpose is to direct the search process towards valid solutions. TSP-SD
can be described in the solver formalism as follows:

A = {v1, v2, ..., vn} = V (G),

L = (1, 1, ..., 1) = U,

f(x) =
n∑

i=1

∥ei∥,

g(x) =
n∑

i=1

gi(x), where

gi(x) =

{
0, if ei ∈ E(G{x1,x2,...,xi}),

M, otherwise.

Here, the set of nodes to visit A corresponds to the set of vertices V (G).
Each node vi has to be processed exactly once, thus Li = Ui = 1. Then, ei is
the edge {xi, xi+1 mod n}, G{x1,x2,...,xi} is the residual graph after processing
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already deleted edge ei in x. The goal is to minimize the total length of the
cycle given by x and force all penalties gi(x) to zero, if possible.

For the weak TSP-SD, both the set of nodes A and the respective bounds
L,U are defined in the same way as in the TSP-SD, but the definition of
f(x) and gi(x) differs:

f(x) =
n∑

i=1

∥pi∥,

gi(x) =

{
0, if pi exists in G{x1,x2,...,xi},

M, otherwise.

Here, pi is the shortest path from xi to xi+1 mod n in the residual graph
G{x1,x2,...,xi}, which is found using the A* algorithm [26]. Thus, the time
complexity of weak TSP-SD fitness evaluation is higher than TSP-SD by
O(|E|). Only the first and last vertex of pi are processed. If pi does not
exist, a large constant M is added to the penalty g(x) via gi(x). The goal is
to minimize the total length of the closed walk given by x.

6. Statistical analysis of HCP-SD

In this section, we investigate properties analogous to those previously
studied in the literature for HCP, since they are crucial for understanding
behaviour and evaluating the performance of the proposed solvers. For the
HCP, the probability density function of a randomly generated graph being
Hamiltonian was experimentally shown to be sigmoidally shaped around a
certain threshold point [14]. This threshold corresponds to the graph’s AVD,
for which the probability is approximately 0.5. Their experiments indicate
that HCP instances close to this boundary are the most expensive to decide
for various exact algorithms in terms of computational cost, although isolated
clusters of hard instances were also identified far away from it. The location
of this threshold has been proved to be ln(V ) + ln(ln(V )), which is called
the Komlós-Szemerédi bound [11].

First, we replicated the experiment from [14], showing the probability
density function of Hamiltonicity for a randomly generated graph with 24
vertices. For this purpose, we generated a dataset of 100 random graphs
for every number of edges from 1 to 144, resulting in 14400 graphs with
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using the Concorde TSP solver and the result of the experiment is shown in
Figure 5(a) - HCP (exact). The dataset random24-100 of 14400 random self-
deleting graphs with 24 vertices was created analogously, covering the same
range of AVDs. On this dataset, HCP-SD was decided with both an exact
and heuristic solver and weak HCP-SD with a heuristic solver described in
Section 5. The exact solver was always terminated after successfully deciding
the problem, whereas the heuristic solver was terminated either after finding
a feasible solution, or reaching a time budget of |V | seconds. Therefore,
the heuristic solver’s results are suitable for assessing the solver’s properties,
rather than reasoning about the problem itself. Figure 5(a) indicates that
the probability density function of HCP-SD is shaped similarly to that of
HCP but is steeper and the threshold point is located further to the right.

The weak HCP-SD appears to have similar properties, but there is no
exact solver available, and using the heuristic solver may affect the location
of the threshold point, as it may label a feasible instance as infeasible. We
can see that instances with AVD less than 3 that were shown to be easy to
decide for the exact solver in Figure 4(a), actually have zero probability of
being Hamiltonian. Instances with AVD between 6 and 7, which were shown
to be the hardest to decide, are located close to the HCP-SD Hamiltonicity
threshold point. Thus, in a similar fashion to HCP, HCP-SD instances close
to the threshold point are computationally harder for the exact solver.

Second, 12 more datasets of random self-deleting graphs with 10 to 200
vertices and uniformly randomly sampled f were generated to investigate
the Hamiltonicity bound w.r.t. to |V | for both variants of HCP-SD. Each of
these datasets was generated to cover an interval that contains the threshold
point of both problems and consisted of 2500 instances, evenly distributed
across the interval into groups of 50 instances with the same AVD. Again,
the HCP-SD was decided with an exact and heuristic solver and the weak
HCP-SD with a heuristic solver, and the location of the threshold point was
determined for each dataset and problem. The locations of the threshold
points are shown in Figure 5(b), thus showing a bound analogous to the
Komlós-Szemerédi bound. The bound HCP-SD (exact) follows a sublinear,
presumably logarithmic trend, similar to the Komlós-Szemerédi bound but
faster growing. As for the weak HCP-SD, the heuristic data evidently do not
provide an accurate estimate of the bound.
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Figure 5: Comparison of Hamiltonicity bounds
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cause all self-deleting graphs feasible in HCP-SD are also feasible in weak
HCP-SD. The bound HCP-SD (heuristic) illustrates that the heuristic solver
consistently struggles with finding feasible solutions close to the real Hamil-
tonicity bound, found by the exact solver.

7. TSP-SD solvers evaluation

So far, we have focused only on the results relevant to decision problems,
but both proposed solvers are designed to address the formulated optimiza-
tion problems as well. Each solver has unique properties that are investigated
in a series of eight experiments on a newly created dataset1. The dataset con-
sists of 11 instances of self-deleting graphs with a size ranging from 14 to 1084
vertices. The instances are selected from the TSPLIB library [28], but a uni-
formly randomly generated delete function f is added. To give an idea about
the delete function, Figure 6 shows the sets of edges deleted by processing
four different nodes in the instance berlin52-13.2. In terms of the AVD, most
of the instances are generated close to the HCP-SD Hamiltonicity bound of
the heuristic solver so that they could be solved by the heuristic solver alone.
The following naming format is used: original name|V |-AVD.

Component Value
metaheuristic basicVNS (kmin = 7, kmax = 10)
construction nearestNeighbor
perturbation randomMoveAll (allowInfeasible = true)
local search pipeVND (firstImprove = true)
operators centeredExchange (p ∈ {1, 2, 3, 5}), moveAll (p ∈ {2, 10})

relocate(p ∈ {1, 2, 3, 4, 5}), exchangeIds
exchange(p, q ∈ {(1, 2), (2, 4), (3, 4)})
reverseExchange(p, q ∈ {(1, 2), (2, 2), (3, 3), (3, 4), (4, 4)})
Table 1: Heuristic solver - tuned configuration

The heuristic solver offers a portfolio of alternative components, each
suitable for a different set of problems with permutative representation. The
solver must be tuned to achieve the best performance for a specific problem.

1All datasets and codes are publicly available at [27]
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(a) f(1), |f(1)| = 89 (b) f(2), |f(2)| = 79

(c) f(3), |f(3)| = 89 (d) f(4), |f(4)| = 98

Figure 6: berlin52-13.2 - delete function f for different nodes; |f(v)| is the number of edges
removed by processing v

The tuning was carried out using the irace package [29] with a tuning budget
of 2500 experiments. The configuration obtained is shown in Table 1. The
tuner selected the Basic Variable Neighborhood Search (VNS) [30] to use
as a high-level metaheuristic and the Pipe Variable Neighborhood Descent
(VND) [31] to control the local search. The results of the exact solver were
generated on a dedicated machine with Ubuntu 18.04 OS, Intel Core i7-7700
CPU. Experiments using the heuristic solver were generated on an AMD
EPYC 7543 CPU cluster. Each instance was solved once by the exact solver
and 50 times by the heuristic solver, since it is stochastic. The heuristic
solver always had a time budget of 10|V | seconds per single run. We present
the results in Tables 2, 3 and 4. Individual experiments are referred to by the
column letter of the corresponding table. Finally, the relative improvement
brought by an experiment B relative to an earlier experiment A in a particular
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obji(A)
), where obji(A) is the objective

value on i in A. This value is eventually averaged across the entire dataset.
The proposed backward search is introduced as a decision algorithm for

the HCP-SD in Algorithm 1. To address the optimization problem TSP-
SD, only a slight modification is required. The algorithm does not stop
when the first valid solution is found (line 4). Instead, it continues to search
until a given time limit is reached while storing the best solution found so
far. Another minor modification is the order of expansion at line 14. In the
default variant, the nodes v ∈ N are traversed in arbitrary order, determined
by the iterator implementation of the set N . In the following experiments,
a greedy expansion is also tested. In this variant, nodes v ∈ N are sorted
according to their distance from path.first and expanded from closest to
farthest.

Table 2 documents the performance of the exact TSP-SD solver. The
backward search performs the path expansion in default order in experiments
in columns A and B, whereas greedy expansion is used in experiments in
columns C and D. Column A presents the objective values and computation
times needed to find the first valid solution of TSP-SD while using the default
expansion. A solution is found within one second for instances with up to
|V | = 202 and within one minute for all instances in the dataset. The dataset
contains two variants of the berlin52 instance with different values of AVD,
from which the berlin52-10.4 instance is closer to the Hamiltonicity bound.
Finding a valid solution for berlin52-10.4 requires 10 times more time than
berlin52-13.2. Thus, AVD seems to be an important factor playing against
the backward search. The scalability of the exact solver in this experiment
is surprisingly good, as was already indicated in Figure 4(b).

In Table 2, column B, the exact solver was given a budget of 12 hours
to solve the TSP-SD for each instance. The first three were solved to opti-
mality, but the remaining eight reached the time limit. On average, the first
valid solution was improved by 9.75%, but the improvement decreases with
increasing instance size. In the case of the three largest instances, the im-
provement is only 1%. This experiment only confirms the expectation of poor
scalability when using an exact approach in an optimization problem due to
its exhaustive nature. Unlike in the previous experiment, the berlin52-10.4
variant was actually easier to solve when addressing the optimization prob-
lem, as the backward search tree is presumably pruned more with a lower
AVD.

Table 2, column C, depicts the benefit of using the greedy expansion in
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Stop condition first valid 12 hours first valid 12 hou
Instance ↓ obj. time (s) obj. time (s) obj. time (s) obj. ti

burma14-3.1 55 <0.01 52 <0.01 52 <0.01 52
ulysses22-5.5 174 <0.01 141 0.02 173 <0.01 141
berlin52-10.4 33388 0.37 23866 2942 29302 0.16 23866
berlin52-13.2 28470 0.03 19417 43200 18461 <0.01 17938
eil101-27.5 3447 0.10 3128 43200 1715 0.01 1642
gr202-67.3 3073 0.48 2954 43200 934 0.08 862
lin318-99.3 576916 1.43 560322 43200 116719 0.25 115058
fl417-160.6 510858 3.23 493671 43200 31387 1.05 29747
d657-322.7 872446 8.85 860343 43200 98599 4.41 93668
rat783-481.4 174085 14.30 172727 43200 15652 8.39 15300
vm1084-848.9 8616499 45.46 8527195 43200 349923 35.81 348304

A B C D

Table 2: TSP-SD optimization results - exact solver

the backward search. The computation times needed to find the first valid
solution are slightly, but consistently better than with the default expansion.
More importantly, the objective values are frequently more than ten times
better than with the default expansion, which is a considerable improvement
brought by a simple heuristic rule. On average, the first valid solutions
found with the greedy expansion are better by 56% than with the default
expansion. The improvement increases with increasing instance size and is
around 90% for the four largest instances. Figure 7(a) shows the best solution
obtained by the exact solver with default expansion, while Figure 7(b) with
greedy expansion. The figures illustrate that using the default expansion is
equivalent to generating a random valid solution, whereas the greedy solution
behaves reasonably in less dense areas. As shown in Table 2, column D,
increasing the time budget to 12 hours further improves the objective by 6%
on average relative to the first valid greedy solutions. Similarly to random
expansion, this improvement decreases with increasing instance size and is
less than 1% for the largest instance.

Table 3, column A, presents the results of the heuristic solver alone on
the TSP-SD. Each instance was solved 50 times with a time budget of 10|V |
seconds, e.g. 140 seconds for the burma14-3.1 instance. The optimal solution
was found for the two smallest instances. However, the solver cannot find a
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(a) exact (default) - first valid, cost = 28470 (b) exact (greedy) - first valid, cost = 18461

(c) heuristic - 10|V | sec., cost = 18304 (d) exact init. + heuristic, - 10|V | sec., cost = 17263

Figure 7: berlin52-13.2 - best TSPSD solutions of different solvers and setups

valid solution every time and fails entirely to provide any valid solutions in all
50 runs for the berlin52-10.4 instance. In terms of solution quality, the best
solutions found by the heuristic solver alone are worse by 26% on average
than the first valid solutions found by the greedy exact solver. Furthermore,
the mean success rate is only 62%. The heuristic solver is expected to con-
verge faster than the exact solver, but presumably spends a large portion of
the time budget on finding a valid initial solution instead. This assumption is
confirmed in Table 3, column B, where the heuristic solver is initialized with
the first valid solution found by the exact solver (Table 2, column C). Here,
the best solutions found by the warm-started heuristic solver in 10|V | seconds
are better by 5% on average than those obtained by the greedy exact solver
in 12 hours and by 11.3% than the first valid solutions. Most importantly,
the improvement does not decrease with increasing instance size and is con-
sistent across the entire dataset. The previous two experiments reveal the
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Instance ↓ min mean±stdev valid (%) min mean±stdev
burma14-3.1 52 52±0 100 52 52±0
ulysses22-5.5 141 144±8 47 141 166±5
berlin52-10.4 - - 0 24456 25741±861
berlin52-13.2 18304 19192±648 40 17263 17835±277
eil101-27.5 1532 1728±87 51 1394 1513±55
gr202-67.3 1184 1352±87 78 812 849±11
lin318-99.3 189225 198324±8171 11 110698 110888±355
fl417-160.6 57686 68736±4830 95 27162 27259±140
d657-322.7 141030 150185±5227 100 85054 85347±162
rat783-481.4 21069 22078±619 100 13753 13833±115
vm1084-848.9 489491 513769±9452 100 325218 326067±503

A B

Table 3: TSP-SD optimization results - heuristic solver

drawbacks of both approaches: the exact solver scales poorly in the optimiza-
tion problem, whereas the penalty-based heuristic solver does not provide a
valid solution reliably. On the other hand, the exact solver provides valid
solutions to all instances very fast, and the heuristic solver is much better
at refining good-quality solutions. Therefore, using both solvers sequentially,
i.e., implementation of a warm start optimization, combines the advantages
of both. Figure 7(c) shows the best solution of berlin52-13.2 obtained by the
heuristic solver alone while Figure 7(d) the best-known solution, obtained by
the warm-started heuristic solver. Both solutions remain entangled in the
center area with the most vertices, which may be attributed to the naturally
denser randomly generated delete function f in this area, as indicated in
Figure 6.

Table 4 illustrates the benefit of relaxing TSP-SD to weak TSP-SD. Every
solution to the TSP-SD is also valid for the weak TSP-SD, but the weak
formulation might yield a better optimal value. On the other hand, the fitness
evaluation in weak TSP-SD calculates the shortest paths pi instead of reading
the edge weights. Thus, the time complexity of the evaluation is higher
by O(|E|), and the heuristic solver is drastically slower when solving the
weak TSP-SD. The performance of the heuristic alone is shown in Table 4A.
Regarding the success rate, the heuristic is significantly more successful than
with TSP-SD, as the space of valid solutions in the weak TSP-SD formulation
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Instance ↓ min mean±stdev valid (%) min mean±stdev
burma14-3.1 52 52±0 100 52 52±0
ulysses22-5.5 129 129±1 100 129 129±0
berlin52-10.4 18701 20328±1174 100 18354 19740±480
berlin52-13.2 14579 15760±593 100 14838 16320±585
eil101-27.5 1313 1442±69 100 1240 1295±23
gr202-67.3 886 1060±122 100 779 790±2
lin318-99.3 135965 143259±5488 100 104422 104945±204
fl417-160.6 26035 26891±733 100 25976 26001±33
d657-322.7 96213 99730±1527 100 83402 83534±44
rat783-481.4 15072 15409±174 90 13599 13620±5
vm1084-848.9 352794 360779±3296 76 319335 319481±112

A B

Table 4: weak TSP-SD optimization results - heuristic solver

is much larger. In Table 4, column B, the best-known TSP-SD solution
from the initialized heuristic solver (Table 3, column B) was used as an
initial solution. The experiment shows that only the TSP-SD solution of the
smallest instance was not improved in the weak TSP-SD formulation. In the
remaining instances, the weak TSP-SD solution is better by 7% on average
than the best-known TSP-SD solution, so the relaxation is highly beneficial.

8. Conclusions

We introduce new variants of the Hamiltonian Cycle and the Travelling
Salesperson Problems with self-deleting graphs, for which formal definitions,
theoretical analyses and two solvers were proposed. In the future, we intend
to investigate general heuristics for the proposed backward search. We also
want to develop a new solver which works in the space of feasible solutions.
Finally, we intend to study how to derive self-deleting graphs using motion
planning techniques to determine which edges should be deleted.
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borhood search, in: Handbook of metaheuristics, Springer, 2019, pp.
57–97.

29



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[31] A. Duarte, J. Sánchez-Oro, N. Mladenović, R. Todosijević, Variable
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- Existing formulations of TSPs do not cover dynamic graphs where some edges 
become deleted or untraversable depending on the vertices that are already visited.

- To model a graph that changes due to the path of already visited vertices, we 
introduce a new class of graphs, called Self-Deleting.
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