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The Telescope Array (TA) cosmic rays detector located in the State of Utah in the United States is
the largest ultra high energy cosmic rays detector in the northern hemisphere. The Telescope Array
Low Energy Extension (TALE) fluorescence detector (FD) was added to TA in order to lower
the detector’s energy threshold, and has succeeded in measuring the cosmic rays energy spectrum
down to PeV energies, by making use of the direct Cherenkov light produced by air showers. In
this contribution we present the results of a measurement of the cosmic-ray composition using
TALE FD data collected over a period of ~ 7 years. TALE FD data is used to measure the Xp,x
distributions of showers seen in the energy range of 10! - 10'3-3 eV. The data distributions are fit
to Monte Carlo distributions of H, He, N, Fe cosmic-ray primaries for energies up to 10'® eV. Mean
Xmax values are measured for the full energy range. TALE observes a light composition at the
"Knee", that gets gradually heavier as energy increases toward the "Second-Knee". An increase

017.3

in the X, elongation rate is observed at energies just above 1 eV indicating a change in the

cosmic rays composition from a heavier to a lighter mix of primaries.

37" International Cosmic Ray Conference (ICRC 2021)
July 12th — 23rd, 2021
Online — Berlin, Germany

*Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:tareq@cosmic.utah.edu
https://pos.sissa.it/

Cosmic Ray Composition with TALE FD Tareq AbuZayyad

1. Introduction

The Telescope Array (TA) experiment was designed for the study of ultra high energy (above
~ 10'8 eV) cosmic rays. TA is the successor to the AGASA/HiRes experiments [1, 2] with the goal
of improving on both. TA is composed of three fluorescence detectors (FDs) [3, 4] and a large
array of surface detectors [5]. TA is located in Millard County, Utah, ~ 200 km southwest of Salt
Lake City. The surface detector array is made up of 507 scintillation counters with 1.2 km spacing
on a square grid. The three fluorescence detectors have an elevation coverage of about 30°, and an
azimuthal coverage of about 110° overlooking the SD array.

The TA Low Energy extension (TALE) detector [6] aims to lower the energy threshold of
the experiment to well below 10!7 V. This is mainly motivated by the interest in the galactic to
extra-galactic transition in cosmic ray flux.

Located at the TA Middle Drum FD site at the northern edge of the main SD array, TALE
provides an additional set of telescopes with high-elevation angle view to the site. These complement
the existing telescopes at Middle Drum, resulting in an elevation coverage range of 3°-59° for the
full detector. In addition, an infill surface detector (SD) located closer to the FD site than the main
TA array, and with closer spacing between the SD counters themselves, forms the second component
of the “hybrid detector”. TALE operates as a hybrid detector (FD/SD) for best event quality in the
intended range of operation, but can also operate as two separate detectors. GPS timing allows for
an observed cosmic ray shower (an event) observed separately by the FD and SD to be merged into
a single event. Events recorded by the FD which fail to trigger the SD, or if we choose to ignore the
SD data, are referred to as monocular events. Furthermore, in what follows we refer fo the set of ten
telescopes with high-elevation view as the TALE FD. These telescopes employ FADC electronics
which allow for better timing resolution than the older lower-ring telescopes with sample and hold
electronics.

2. Data Analysis

TALE FD monocular data collected between June 2014 and November 2018 was used in a
recent publication on the cosmic ray mass composition [8]. In this proceeding we summarize some
of the results from the publication and describe an update to the data set to include data collected
through the end of April of 2021.

The total, good-weather, detector on-time in the “four-year” period between June 2014 and
November 2018 comes to ~ 2633 hours. The additional data from December 2018 to end of April
2021 brings the total good-weather on-time to ~ 3456 hours.

A high level view of the analysis follows: Air showers register in the detector as events, which
are calibrated and reconstructed to obtain the shower geometry, total energy, and the depth of
maximum development, Xp,x. Quality cuts are applied to the reconstructed data to reduce it to
a data set usable for energy spectrum measurement or for cosmic rays composition analysis, the
subject of this proceeding.

Observed air showers comprising the “composition” data set used for this study were required
to meet the condition that at least 35% of the total observed light signal of the detected event should
be direct-Cherenkov light. I.e. not counting the contribution from Rayleigh or Aerosols scattered
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Figure 1: Shower Xpax (g/cm2) distributions for energy bin 15.7 < log,y(Ec4;/eV) < 15.8. Each of four
plots shows data histogram (black points / blue line), along with MC primary reconstructed Xp,x: upper left
plot H (red), upper right He (green), lower left CNO (violet), and lower right Fe (blue)

Cherenkov light. This condition was found to be sufficient for good geometrical reconstruction of
the events seen by the TALE FD operating in monocular mode. A detailed description of the event
data reconstruction and selection can be found in [7]. A detailed discussion of the “composition”
data set, event selection and reconstruction performance can be found in [8].

We use Monte Carlo simulations to study the detector efficiency and reconstruction resolution.
Two sets of simulations were used for the analysis. One based on the EPOS-LHC[9] hadronic model
and one based on QGSJetlI-03[10]. The first model is a post-LHC model, while the second was the
model used for the TALE energy spectrum measurement [7]. In this proceeding we focus on the
EPOS-LHC based analysis.

Four primary cosmic rays particle types were simulated: proton, helium, nitrogen (CNO), and
iron. Equal numbers of each primary type were generated. Simulated showers were processed
through the event reconstruction and event selection procedure used for TALE data. The resulting
shower Xy ax distributions for each primary type were used to fit the observed data Xy« distribution,
using the TFractionFitter [11, 12] utility. Figures 1 and 2 show the data and MC Xmax distributions
at two different energy bins.

3. Results

The results of the primary fraction fits and the values of the “Mean log(A)” derived from them
are shows in Figure 3.
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Figure 2: Shower Xpax (g/cm2) distributions for energy bin 16.7 < log,y(E4;/eV) < 16.8. Each of four
plots shows data histogram (black points / blue line), along with MC primary reconstructed Xp,x: upper left
plot H (red), upper right He (green), lower left CNO (violet), and lower right Fe (blue)

An alternative analysis to estimating mass composition is to examine the mean Xp,x values of
TALE data. A comparison of these observations with those of different MC primaries is shown in
the left-side plot of Figure 4. A change in the elongation rate of the mean Xp,,x as a function of
energy can be interpreted as a change in composition and we look for such change by using a broken
line fit (one floating break point). The results of the fit are shown in the right-side plot Figure 4
and Table 1. This figure also shows the mean X;,,x measured by the Telescope Array detectors at
higher energies [13]

Table 1: Fit parameters to a broken line fit to TALE Xy, elongation rate: Break point energies are
expressed as log,o(E/eV), and the slopes have units of (g cm™2)/decade. Uncertainties are reported as
value + Ostar. T Osys. — Osys.-

EPOS- | break point | 17.291 +0.060 + 0.077 — 0.084
LHC slope before | 35.863 +0.294 + 1.481 — 0.536
slope after | 65.413 £6.655 + 0.000 — 3.269

We are now in the process of updating the analysis to include data collected through April
2021. At this point, the detector data has been processed, but the corresponding MC sets are still
in production. We therefore show an updated mean X, result, but not the primary fits. First we
compare the mean Xp.x from the new data to the published result, this is shown in Figure 5. Next
we look at the combined set, that is shown in Figure 6. By redoing the broken line fit to the updated
set, we see that the result is consistent to the four-year result.
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Figure 3: Fit results to the data Xy,,x distributions (per energy bin) to a four component MC distributions.
Primary fractions using the EPOS-LHC based simulations are shown on the left. Right plot shows the
derived (In(A)) from four component fits. Horizontal lines show calculated In(A) values for H, He, and N,
for reference.
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Figure 4: Reconstructed TALE events mean Xp,x as a function of shower energy. Shower energy estimate
using EPOS-LHC missing energy correction. Plot on the left shows the reconstructed Xp,ax values for the
four MC primaries alongside the data for comparison. Right plot shows a broken line fit with fit parameters
given in Table 1. Red points at higher energies come from a hybrid measurement by TA [13].

4. Summary

We presented the results of a measurement of the cosmic rays composition in the energy range
of 10'5-3 - 1083 eV using data collected by the TALE detector over a period of roughly four years.
An examination of the mean Xp,ox versus energy, shows a change in the Xp,x elongation rate at an
energy of ~ 10!7-2 eV. This “break” in the elongation rate is likely correlated with the observed
break in the cosmic rays energy spectrum [7].
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four-year set). Shower energy estimate using EPOS-LHC missing energy correction. A broken line fit
with fit parameters displayed on the figure also shown. Red points at higher energies come from a hybrid
measurement by TA [13].
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Figure 6: Reconstructed TALE events mean Xp,x as a function of shower energy (Entire data set). Shower
energy estimate using EPOS-LHC missing energy correction. A broken line fit with fit parameters displayed
on the figure also shown. Red points at higher energies come from a hybrid measurement by TA [13].
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