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The Telescope Array (TA) cosmic rays detector located in the State of Utah in the United States
is the largest ultra high energy cosmic rays detector in the northern hemisphere. The Telescope
Array Low Energy Extension (TALE) fluorescence detector (FD) was added to TA in order to
lower the detector’s energy threshold, and has succeeded in measuring the cosmic rays energy
spectrum down to PeV energies, by making use of the direct Cherenkov light produced by air
showers. In this contribution we present the results of a measurement of the cosmic-ray energy
spectrum using TALE FD data collected over a period of ∼7 years. The data set used for this
measurement is the same one used for the mass composition measurement that is presented, as a
separate contribution, at this conference. The energy spectrum shows features consistent with the
"knee" and the "second knee"; a similar result to our previous energy spectrum publication. This
time using a different hadronic model, and different event selection criteria as explained in the text
of this proceeding.
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1. Introduction

The Telescope Array (TA) experiment was designed for the study of ultra high energy (above
∼ 1018 eV) cosmic rays. TA is the successor to the AGASA/HiRes experiments [1, 2] with the goal
of improving on both. TA is composed of three fluorescence detectors (FDs) [3, 4] and a large
array of surface detectors [5]. TA is located in Millard County, Utah, ∼ 200 km southwest of Salt
Lake City. The surface detector array is made up of 507 scintillation counters with 1.2 km spacing
on a square grid. The three fluorescence detectors have an elevation coverage of about 30◦, and an
azimuthal coverage of about 110◦ overlooking the SD array.

The TA Low Energy extension (TALE) detector [6] aims to lower the energy threshold of the
experiment to well below 1017 eV. Mainly motivated by the interest in the galactic to extra-galactic
transition in the cosmic-ray flux.

Figure 1: Left: Map of the Telescope Array surface detector and the three fluorescence detectors overlooking
the array. The MD site is at the green square at the top of the map. Right, schematic of TALE/MD mirrors
showing elevation coverage.

Located at the TA Middle Drum FD site 1, TALE provides an additional set of telescopes with
high-elevation angle view to the site. These complement the existing telescopes at Middle Drum,
resulting in an elevation coverage range of 3◦-59◦ for the full detector. In addition, an infill surface
detector (SD) located closer to the FD site than the main TA array, and with closer spacing between
the SD counters themselves, forms the second component of the “hybrid detector”. TALE operates
as a hybrid detector (FD/SD) for best event quality in the intended range of operation, but can also
operate as two separate detectors. GPS timing allows for an observed cosmic ray shower (an event)
observed separately by the FD and SD to be merged into a single event. Events recorded by the FD
which fail to trigger the SD, or if we choose to ignore the SD data, are referred to as monocular
events. Furthermore, in what follows we refer to the set of ten telescopes with high-elevation view
(colored green in Figure 1 as the TALE FD. These telescopes employ FADC electronics which allow
for better timing resolution than the older lower-ring telescopes with sample and hold electronics.

TALE monocular data has so far been used as the basis for two publications: The cosmic-ray
energy spectrum [7], and the cosmic-ray mass composition [8]. The first publication used ∼ two
years of detector data while the second used an undated data set corresponding to ∼ four years of
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data. Another difference between the two publications is that, the event selection criteria (quality
cuts) required for the mass composition measurement are more strict than those for the energy
spectrum measurement. This is due to the requirements for accurate geometrical reconstruction of
observed air showers. Lastly, the published energy spectrum results used MC simulations based on
the QGSJetII-03 [9] hadronic model, and used that model for shower missing energy correction,
whereas the composition result used the EPOS-LHC [10] model.

In this proceeding we aim to update the energy spectrum measurement to use the same data set
and the same event selection criteria as used by the mass composition measurement. We discuss
the changes to the analysis in the following section.

2. Data Analysis

TALE FD monocular data collected between June 2014 and November 2018 was used in the
publication on the cosmic-ray mass composition [8]. An update of the mass composition analysis
to include data collected through the end of April of 2021 will be presented at this conference. The
updated composition data set is also used to calculate the cosmic-ray energy spectrum, as described
in this proceeding.

The total, good-weather, detector on-time in the “four-year” period between June 2014 and
November 2018 comes to ∼ 2633 hours. The additional data from December 2018 to end of April
2021 brings the total good-weather on-time to ∼ 3456 hours. The published energy spectrum [7]
was based on a ∼1080 hours of observation.

Despite the increase in observation time, the event statistics at ∼ 1018 eV energies are smaller
than the 2018 publication. This is due to the fact that fluorescence dominated events, which form
the majority of observed events above 1018 eV, are not suitable for use in the mass composition
analysis. To measure the shower -max, we require accurate geometrical reconstruction, which in
the case of TALE monocular observations, requires that a certain fraction of the observed shower
signal, > 35%, be direct-Cherenkov light. This requirement and other smaller changes to the quality
cuts applied to the data lead to the rejection of a large fraction of the events that would have passed
the event selection of the original analysis.

Another significant difference relative to the 2018 energy spectrum results is the use of the
EPOS-LHC hadronic model for shower missing energy correction. Compared to QGSJetII-03, the
estimated total-energy of a shower changes by a few percent, resulting in a small change in the
overall energy scale and consequently changes the absolute normalization of the observed flux.
This shift in energy is within the systematics of the measurement and is expected given the two
hadronic models.

Observed air showers comprising the “composition” data set used for this study were required
to meet the condition that at least 35% of the total observed light signal of the detected event should
be direct-Cherenkov light. I.e. not counting the contribution from Rayleigh or Aerosols scattered
Cherenkov light. This condition was found to be sufficient for good geometrical reconstruction of
the events seen by the TALE FD operating in monocular mode. A detailed description of the event
data reconstruction and selection can be found in [7]. A detailed discussion of the “composition”
data set, event selection and reconstruction performance can be found in [8].
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We are now in the process of updating the analysis to include data collected through April
2021. At this point, the detector data has been processed, but the corresponding MC sets are still
in production. We use Monte Carlo simulations to study the detector efficiency and reconstruction
resolution. The simulations are also used to calculate the detector aperture and exposure for the
observation period. The aperture calculation used in this proceeding is based on the “four-year”
detector simulation. This allows an accurate estimate of the exposure during this time period. For
the additional data starting in December 2018, the current lack of a corresponding MC set, meant
that we had to use the “four-year”MC. A 3% correction to account for telescope live times which are
different depending on operating conditions was applied. Once a simulation set has been produced
the exposure calculation will be updated.

3. Results

The event energy distribution for the final data set is shown in Figure 2. As already noted, the
requirement of direct-Cherenkov contribution to the observed signal limits the acceptance for high
energy events. Below ∼ 1017 eV, the observed events signal is dominated by direct-Cherenkov light.
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Figure 2: TALE “seven-year” data set event energy distribution.

To calculate an energy spectrum, or a flux, we first calculate the exposure of the detector over
the observation period. We do this using a database-driven MC simulation of the detector response
that incorporates details of the run conditions, including atmosphere and telescope live times and
calibration. The simulation used here covers the four-year run period, up to November 2018, and
was adapted for the remaining time period by a applying a small correction. The correction of the
order of 3% was made such that the flux normalization for the two subsets was consistent. The
updated energy spectrum shown with the 2018 published spectrum can be seen in Figure 3.

Figure 3 shows that the two measurements are similar for energies above ∼ 1015.8 eV. The
difference in overall normalization is expected from the use of the different hadronic models.
Below ∼ 1015.8, the new flux has a lower absolute normalization than expected. This is likely due
to the updated composition assumption in the aperture calculation. At lower energies especially,
the aperture estimate is sensitive to primary composition, with protons having almost double the
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acceptance as iron primaries at an energy of 1015.3 eV. The TALE composition result based on the
EPOS-LHC analysis showed a slightly higher preference for protons at the low end of the energy
range than the QGSJetII-03 based analysis. Consequently, the composition averaged aperture was
slightly higher and the estimated flux came down, as seen in the figure.
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Figure 3: TALE updated energy spectrum along with 2018 spectrum. Note that the change in normalization
is due to the changed shower missing energy correction, now using EPOS-LHC versus the original using
QGSJetII-03. Fit results for the original spectrum are shown.

Lastly, we perform a broken power-law fit to the updated flux, with the fit results shown in
Figure 4. These results may be compared to those in Figure 3. Qualitatively, the fit results are very
similar.
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Figure 4: TALE updated energy spectrum with updated broken power law fit results. Fit results may be
compared to those in Figure 3. Qualitatively, the fit results are very similar.

4. Summary

We presented the results of a measurement of the cosmic-ray energy spectrum in the energy
range of 1015.3 - 1018.3 eV using data collected by the TALE FD detector over a period of roughly
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seven years.
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