
Citation: Cachi, P.G.; Ventura, S.;

Cios, K.J. Improving Spiking Neural

Network Performance with Auxiliary

Learning. Mach. Learn. Knowl. Extr.

2023, 5, 1010–1022. https://doi.org/

10.3390/make5030052

Academic Editor: Andreas

Holzinger

Received: 22 July 2023

Revised: 2 August 2023

Accepted: 3 August 2023

Published: 5 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Improving Spiking Neural Network Performance with
Auxiliary Learning
Paolo G. Cachi 1,† , Sebastián Ventura 2 and Krzysztof J. Cios 1,*

1 Department of Computer Science, Virginia Commonwealth University, Richomnd, VA 23220, USA;
pcachi@vcu.edu

2 Department of Computing and Artificial Intelligence, Universidad de Córdoba, 14071 Córdoba, Spain;
sventura@uco.es

* Correspondence: kcios@vcu.edu
† Current address: 601 West Main Street, Richmond, VA 23220, USA.

Abstract: The use of back propagation through the time learning rule enabled the supervised training
of deep spiking neural networks to process temporal neuromorphic data. However, their performance
is still below non-spiking neural networks. Previous work pointed out that one of the main causes is
the limited number of neuromorphic data currently available, which are also difficult to generate.
With the goal of overcoming this problem, we explore the usage of auxiliary learning as a means
of helping spiking neural networks to identify more general features. Tests are performed on
neuromorphic DVS-CIFAR10 and DVS128-Gesture datasets. The results indicate that training with
auxiliary learning tasks improves their accuracy, albeit slightly. Different scenarios, including manual
and automatic combination losses using implicit differentiation, are explored to analyze the usage of
auxiliary tasks.

Keywords: auxiliary learning; spiking neural networks; implicit differentiation

1. Introduction

Spiking neural networks (SNNs) have great potential for low-powered artificial intelli-
gence applications when they are implemented on specialized hardware [1–3]. In contrast
to non-spiking neural networks (ANNs) [4–6] that process information by successive non-
linear transformations, SNNs use dynamic units, called spiking neurons, for handling
spatiotemporal data. The SNN use discrete “spike” events to represent the activation
of neurons. This makes them more efficient as the communication through spikes is a
sparse process. When implemented on neuromorphic hardware, such as Intel’s Loihi2
neuromorphic chip [7,8], they use orders of magnitude less energy than ANNs. This energy
efficiency makes them attractive for various applications, such as sign gesture recogni-
tion [9,10], heartbeat signal classification [11], continual learning in 3D scenarios [12], and
optimization [13].

In practice, however, the usage of SNNs for solving real-life problems is still limited
because of their performance. A key issue linked with their lower performance is the
limited size of available temporal data for their training [14,15]. As dynamic systems, SNNs
require and are better suited for processing temporal data, such as neuromorphic data [16].
Unfortunately, there is a small number of temporal datasets currently available, and what
makes it even worse is that they often have a small number of instances. As a result, SNNs
trained with such datasets often suffer from over-fitting and unstable convergence. In order
to improve their efficiency on limited-size data, other techniques need to be found.

The problems with training on small-size data are not specific to SNN but are present
in machine learning in general [17,18]. Two methods have been proposed to address this
problem: data augmentation [17,18] (the creation of new synthetic data by the modification
of input samples or latent feature vectors) and the use of regularization methods [19–21]

Mach. Learn. Knowl. Extr. 2023, 5, 1010–1022. https://doi.org/10.3390/make5030052 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5030052
https://doi.org/10.3390/make5030052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0001-7362-279X
https://orcid.org/0000-0003-4216-6378
https://doi.org/10.3390/make5030052
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5030052?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2023, 5 1011

(direct regularization by penalty loss or indirect regularization with auxiliary learning).
Only input data augmentation has been studied within the framework of SNN [22].

In this paper, we study the use of auxiliary learning as an indirect regularization
method for SNN training. Auxiliary learning was used for improving the performance of
ANNs. Works such as [19,20,23] explored the use of one or more secondary tasks as a way
of regularization. These attempts have been helpful in increasing their performance. The
limitations seen in the ANN framework are still present in SNNs. In this paper, we explore
the selection of the auxiliary tasks as well as the relation of their number to be used.

The specific contributions of our paper are as follows:

• We utilized AL for training SNN and experimentally demonstrated that using one or
more auxiliary tasks increases the performance.

• We performed an analysis of different auxiliary task learning setups and analyzed
their influence on performance.

• We compared the results with state-of-the-art SNN solutions and showed that using
AL improves their accuracy.

The rest of the paper is structured as follows. Section 2 presents a detailed overview of
the related work. Section 3 describes the proposed framework for SNN auxiliary learning.
Section 4 describes the experimental settings and results. The paper ends with conclusions.

2. Related Work
2.1. Spiking Neural Networks

SNNs are designed to emulate the way that biological neurons generate and transmit
electrical impulses, known as spikes, to other neurons [1–3]. This allows for processing
information in an event-driven and temporally precise way, which is more efficient and well
suited for solving a variety of tasks. Training SNNs requires specialized algorithms that
can deal with the temporal processing of spiking neurons in the presence of non-linearity
associated with spiking neuron communication. Noteworthy works providing an overview
of training methodologies for SNNs include [25? –27].

There are several different approaches to training SNNs that depend on a specific task
to be solved and on the learning rule used for updating the weights. Some of the most used
learning rules include spike-timing-dependent plasticity (STDP) for unsupervised local learn-
ing [28–30], reward modulated STDP for reinforcement learning through STDP [31,32], and
spike-based backpropagation (SBP) [33–35] and remote supervised learning (ReSuMe) [36,37]
for supervised learning. Here, we use the SBP algorithm because of its advantages over
the other training methods, including enhanced efficiency and the capability to leverage
standard optimization techniques developed for deep neural network architectures.

SBP is a variant of the backpropagation algorithm commonly used to train ANNs.
Like the standard backpropagation algorithm, SBP uses gradient descent to update the
weights in order to minimize the error between the predicted and desired output. However,
unlike the standard backpropagation algorithm, SBP is designed to handle the dynamic
operation of spiking neurons and the associated non-linearity of the communication via
spikes. To enable the incorporation of temporal dependencies in the training process, SBP
uses backpropagation through time (BPTT) [35], and in order to overcome the non-linearity
of the spiking mechanisms, it uses surrogate gradient functions (SGD) [34].

BPTT was originally developed for training recurrent neural networks, which can
process sequences of inputs [38]. In BPTT, the error signal is propagated back through
the network not just over a single time step but over multiple time steps. This allows the
network to take into account the past history of inputs and outputs while adjusting its
weights. The trick that allows the use of BPTT in SNNs is that the spiking neuron model
can be unfolded into a recurrent computation system [35].

Although implementing the computational graph of the spiking operation is feasible
through tools such as PyTorch or TensorFlow, the non-differentiability of the Heaviside
function impedes the correct calculation of the error gradients. To overcome this issue, the
SGD method is used [34]. The main idea behind SGD is to use a replacement function as



Mach. Learn. Knowl. Extr. 2023, 5 1012

the gradient for the non-differentiable function. This replacement is only used during the
gradient calculation or backward pass training stage. The Heaviside function is still used
during the forward pass to maintain the correct operation of the network.

2.2. Auxiliary Learning

Auxiliary learning (AL) is a technique developed to improve the performance of ANN
when training data are limited in size or expensive to collect [19–21]. In auxiliary learning,
a model is trained on multiple tasks in a similar manner as used in multitask learning
(MTL), see Figure 1. The difference between MTL and AL is that while MTL strives for
good performance on all tasks (all tasks being of equal importance), AL focuses on the
performance of one main task that the network needs to solve and treats all the other tasks
as auxiliary (used only to help improve the performance of the main task). The auxiliary
tasks can be related or not to the main task.

x
y1

y2

^

^
x

yM

yA

^

^

Figure 1. (Left): In multitask learning, the goal is to perform more than one learning task at the same
time, with all tasks being equally important. (Right): In auxiliary learning, the goal is to learn one
main task while using one or more auxiliary tasks.

AL approach has several advantages. Training the network on multiple tasks simulta-
neously using AL forces it to learn more general, transferable to other tasks features. This
improves performance on the main task. AL can also improve the efficiency of training
as the network can learn from the auxiliary tasks without the need for additional training
data. This makes it practical for training complex neural networks. Finally, AL can serve
as a regularization tool for network learning, which usually improves its generalization
ability by reducing overfitting.

Learning multiple tasks, however, creates problems such as negative transfer [39],
i.e., when different tasks have conflicting goals, like increasing performance for one task
decreases the performance of the other task(s). Another challenge is knowing how to
efficiently combine multiple loss functions, i.e., how to weight the losses so the main task is
preferred [40]. In this paper, we address these questions by exploring different setups for
loss error combination and the number of auxiliary tasks required. We also compare the
efficiency of AL in training SNN vs. training ANN (also with AL).

2.3. Input Data Augmentation

Data augmentation is a technique used to increase the size and diversity of a
dataset [17,18]. In the input data augmentation, additional data are generated by applying
various transformations to the original input data, such as rotation, scaling, cropping, or
adding noise. Doing this provides more examples to learn from and can help the trained
model to generalize better on new data. Researchers studied the use of geometrical trans-
formations for input data augmentation on neuromorphic data for training SNN. Using
this approach allowed for about a 4% accuracy increase [14]. This illustrates one of the
problems of SNN, namely, the scarcity of event-based data for their training. In this paper,
in addition to input data augmentation, we use AL as a method to increase accuracy on
limited size training data.



Mach. Learn. Knowl. Extr. 2023, 5 1013

3. Methods
3.1. Problem Definition

Consider an input space X, where X ∈ Rn, and a main task Tmain and one or more
auxiliary tasks T(i)

aux. The expected output for the main task is Ymain and for the auxiliary
tasks Yi

aux. We want to train a spiking neural network, f (x), with weights W that minimize
the loss of Tmain while using T(i)

aux as a regularization method during training. Note that
T(i)

aux is used during training only.

3.2. Architecture

The auxiliary learning architecture for training SNNs is shown in Figure 2. It consists of
a feature extraction block connected in a feed-forward fashion to the main task and auxiliary
task(s) blocks. The spiking input signal is processed by the first block, the feature extraction
block, into a latent p-dimensional spiking feature vector, which is then fed to the main and
auxiliary task classifier blocks to find the outputs. The idea behind this architecture is to
allow the feature extraction block to receive feedback from the main classifier block (main
task loss) and also from the auxiliary task classifier block(s) (auxiliary task losses) during
training. In this way, the auxiliary task classifier blocks act as regularization blocks for the
feature extraction block.

Input

Feature
Extraction Block

Auxiliary Classifier
Blocks

Main Classifier
Block

YM

Output

^ LM

∂θA
∂LA

∂θf

∂θf

∂θM

∂LM

∂LA

∂LM

YA
^ (1)

YA
^ (N)

L 

LA
(N)

LA
(1)

LAh

Figure 2. Auxiliary learning architecture. The network uses a multitask architecture in which only
one task, “the main task”, is of importance. The other tasks, “the auxiliary tasks”, are used as
additional regularization losses for helping the main task performance. The auxiliary tasks are only
used during training.

In this work as the spiking neuron model, we use the parametric leaky integrate and
fire neuron model (PLIF) [22], which is a leaky integrate and fire (LIF) [41,42] neuron with
learnable time constants. The equations for the membrane potential, U(l)

i [n], and synaptic

current, I(l)i [n], of neuron i in layer l are given by:

U(l)
i [n + 1] = αU(l)

i [n] + I(l)i [n]− S(l)
i [n] (1)

I(l)i [n + 1] = βI(l)i [n] + ∑
j

W(l)
ij S(l)

j [n] (2)

where α and β are decay constants equal to α ≡ exp(− Mt
τmem

) and β ≡ exp(− Mt
τsyn

) with a
small simulation time step Mt> 0 and membrane and synaptic time constants τmem and
τsyn; Wij are synaptic weights of the postsynaptic neuron i and presynaptic neurons j and j



Mach. Learn. Knowl. Extr. 2023, 5 1014

within the same layer l; and S(l)
i [n] is the output spike train of neuron i in layer l at time

step [n]. The output spike train is expressed as the Heaviside step function of the difference
between the membrane voltage and the firing threshold ϕ as follows:

S(l)
j [n] = Θ(U(l)

j [n]− ϕ) (3)

3.3. Training and Testing

The goal is to learn a set of weights, W∗, that minimizes the loss of the main task while
utilizing the auxiliary losses as regularization parameters. This can be expressed as the
following optimization problem:

W∗ = argmin
W

L (4)

where L represents the total loss, which is calculated from the main task loss, LM, and the
auxiliary task losses, L(i)

A , as follows:

L = LM + h(L(1)
A , L(2)

A , . . . , L(i)
A ) (5)

where LM is the main task loss; Li
aux are the auxiliary task losses; and h is a linear/non-

linear operation that processes the auxiliary losses. The simplest loss combination case is
when h(.) is a linear combination of the auxiliary losses. In this scenario, the total loss, L,
can be expressed as:

L = (1− α) ∗ LM + α ∗
N

∑
i=0

γiL
(i)
A (6)

where α is a loss rate constant that controls the rate between the main and auxiliary
losses, and γi denotes weights assigned to each auxiliary loss (they can be determined
through manual tuning methods like grid search, or automatic tuning methods like implicit
differentiation [43]). The latter approach can also be used to train function h(.) when a
non-linear model is chosen. In this work, we compare the results obtained by all three
methods: the manual tuning of a linear combination, the automatic tuning of a linear model,
and the automatic tuning of a non-linear model for h(.).

During testing, the samples are only fed into the feature extraction block and then into
the main task classifier block. The auxiliary task blocks are not used since the focus is solely
on evaluating the performance of the main task.

3.4. Implementation

The network is implemented using the SpikingJelly framework, which consists of
a set of python libraries for supervised training of SNNs [44]. The code for the net-
work implementation as well as all sof the experiments and results is posted at GitHub
(https://github.com/PaoloGCD/AuxiliaryLearning-SNN (accessed on 22 July 2023)).

4. Experiments and Results

We evaluate effectiveness of AL in SNN for solving recognition tasks using the
CIFAR10-DVS [45] and DVS128-Gesture [46] neuromorphic datasets. All of the tests are per-
formed using the architecture shown in Figure 2. For structuring the network, we followed
the architecture used in [14,22], which is based on the VGG structure [47]. Specifically, the
number of layers used for the feature extraction and classifier blocks for each dataset is
shown in Table 1. Each layer of the feature extraction block is composed of PLIF neurons in
a convolutional layer with batch normalization that is followed by max pooling with kernel
2 × 2. All convolution operations use a kernel size of 3 × 3 with stride 1 and padding 1.
The number of channels for all convolution layers is 128. The layers of the classifier blocks
(the main and auxiliary) are composed of a fully connected layer of PLIF neurons with a
dropout of 0.5. The number of features of the first fully connected layer is set to 1/4 of the

https://github.com/PaoloGCD/AuxiliaryLearning-SNN


Mach. Learn. Knowl. Extr. 2023, 5 1015

number of input vector features. The number of features for the output layer (the last fully
connected layer) is 10 times the number of classes of the average voting when stride 10 is
used for computing the classification label. All of the results are presented as the average
of ten runs.

Table 1. Network architecture used for analyzing DVS-CIFAR10 and DVS128-Gesture neuromor-
phic data.

Dataset
Number of Layers per Block

Feature Extraction Main/Auxiliary Classifier

DVS-CIFAR10 4 2
DVS128-Gesture 5 2

4.1. Training with One Auxiliary Task

First, we test the performance of training SNN with just one auxiliary task. For each
dataset, we test three different auxiliary task configurations. The labels used for the main
(M) and auxiliary (A) tasks are shown in Table 2.

Table 2. The main task (M) and auxiliary task (A1, A2, and A3) configurations.

CIFAR10-DVS DVS128-Gesture

Class M A1 A2 A3 Class M A1 A2 A3

Airplane 0 0 0 0 Hand clapping 0 0 1 0
Automobile 1 1 0 1 Right hand wave 1 1 3 1
Bird 2 2 1 2 Left hand wave 2 2 2 2
Cat 3 3 1 3 Right arm clockwise 3 3 3 1
Deer 4 4 1 4 Right arm counter clock 4 4 3 1
Dog 5 5 1 3 Left arm clockwise 5 5 2 2
Frog 6 6 1 5 Left arm counter clock 6 6 2 2
Horse 7 7 1 4 Arm roll 7 7 0 0
Ship 8 8 0 0 Air drums 8 8 0 0
Truck 9 9 0 1 Air guitar 9 9 4 3

Other gestures 10 10 5 4

For DVS-CIFAR10 data, A1 is selected as a duplicate of the main task label; A2 is
categorization into living vs. non-living class labels; and A3 is based on morphological
properties of the classes. For example, deer and horses are put into the same group (group
4) because of their morphological similarities. For DVS128-Gesture data, A1 is again a
duplicate of the main task, while A2 and A3 are two different categorization tasks based on
the morphological properties of the images. For example, hand clapping, arm rolling, and
air drums are one auxiliary category (see Table 2, column A3) as they show the usage of
both hands.

For the above cases only a linear combination loss (Equation (6)) is used. We test
different values of the loss rate constant α. Specifically, we use α values 0.1, 0.2, 0.3, 0.4, and
0.5. Table 3 shows the validation accuracy after 250 training epochs for the two datasets
while using different auxiliary tasks and loss rate constants. The validation dataset was
randomly selected as a separate part from the training dataset; its size is equal to 10% of the
training dataset. We chose 250 training epochs based on the observation that at around this
number the network’s accuracy reaches a plateau with no significant improvement (see
Figure 3, which illustrates validation accuracy over 1024 training epochs on CIFAR10-DVS
and DVSGesture128 datasets).

Both data augmentation and auxiliary learning improve the accuracy of the SNN. Data
augmentation results in a more significant increase in performance, while the utilization of
auxiliary learning further improves the performance achieved through data augmentation



Mach. Learn. Knowl. Extr. 2023, 5 1016

alone. It is worth noting that there is a decline in performance when using task A2
for CIFAR10-DVS data. This decrease can be attributed to the fact that auxiliary tasks
should find useful information to facilitate learning. Apparently A2 does not provide such
information for the network since living vs. non-living categorization is based on a very
abstract concept that the network is not able to handle.

Figure 3. Validation accuracy on CIFAR10-DVS and DVSGesture128 datasets.

Table 3. Validation accuracy on DVS-CIFAR10 and DVS128-Gesture datasets using auxiliary learning
for 250 training epochs. Bold values represent the best result within the column.

Model

Validation Accuracy after 250 Epochs (%)

CIFAR10-DVS DVSGesture128

A1 A2 A3 A1 A2 A3

ST-SNN 72.24 ± 0.35 72.24 ± 0.35 72.24 ± 0.35 96.07 ± 0.27 96.07 ± 0.27 96.07 ± 0.27
ST-SNN + aug 80.83 ± 0.70 80.83 ± 0.70 80.83 ± 0.70 98.32 ± 0.31 98.32 ± 0.31 98.32 ± 0.31

AL-SNN + aug + α = 0.1 80.98 ± 0.38 81.00 ± 0.40 80.78 ± 0.31 98.50 ± 0.33 98.55 ± 0.37 98.44 ± 0.28
AL-SNN + aug + α = 0.2 81.60 ± 0.55 80.35 ± 0.71 81.02 ± 0.67 98.50 ± 0.26 98.50 ± 0.33 98.61 ± 0.28
AL-SNN + aug + α = 0.3 81.38 ± 0.47 79.45 ± 0.70 81.13 ± 0.58 98.67 ± 0.37 98.73 ± 0.26 98.61 ± 0.17
AL-SNN + aug + α = 0.4 81.00 ± 0.49 78.90 ± 0.39 81.05 ± 0.42 98.44 ± 0.33 98.61 ± 0.20 98.32 ± 0.13
AL-SNN + aug + α = 0.5 81.75 ± 0.33 78.72 ± 0.44 80.85 ± 0.81 98.67 ± 0.13 98.38 ± 0.16 98.55 ± 0.31

Regarding the choice of the loss rate constant, higher values (greater than 0.3) yield
better results (except for case A2 for CIFAR10-DVS data). However, the difference in per-
formance is not clear-cut, making the manual selection of this parameter quite challenging.
Because of this, we use an automated method for selecting the loss rate constant; it is
described below in Section 4.3.

4.2. Training with More Than One Auxiliary Task

Table 4 shows the testing accuracies of AL with two (AL-SNN-2T), three (AL-SNN-
3T), and four (AL-SNN-4T) auxiliary tasks. The first three auxiliary tasks are the same
classification tasks as in Table 2. The fourth auxiliary task is randomly generated as a
four-label classification. For convenience of comparison, the results for ST-SNN and the



Mach. Learn. Knowl. Extr. 2023, 5 1017

best results for AL-SNN trained with one auxiliary task (repeated from Table 3) are also
shown.

Table 4. Validation accuracy on DVS-CIFAR10 and DVS128-Gesture datasets using multiple auxiliary
tasks for 250 training epochs. Bold values represent the best result within the column.

Model
Validation Accuracy after 250 Epochs (%)

CIFAR10-DVS DVSGesture128

ST-SNN 72.24 ± 0.35 96.07 ± 0.48
ST-SNN + aug 80.83 ± 0.70 98.32 ± 0.31

AL-SNN + aug 81.75 ± 0.33 98.73 ± 0.26
AL-SNN-2T + aug 80.22 ± 0.64 98.38 ± 0.31
AL-SNN-3T + aug 80.67 ± 0.24 98.67 ± 0.24
AL-SNN-4T + aug 80.77 ± 0.54 98.73 ± 0.33

Observe that training with more auxiliary tasks did not yield better results than using
a single auxiliary task. The process of determining the appropriate selection of auxiliary
tasks, determining their respective weights, and choosing a proper combination of loss
rate becomes highly challenging, rendering a manual grid search unfeasible. In our test,
the uniform combination of weights of 1 for all auxiliary losses and a loss rate of 0.5 is
not the optimal choice, as seen from the results. Given the complexities involved in the
manual combination of multiple auxiliary tasks, an automated method for combining them
becomes essential to effectively leverage their strength, which is described next.

4.3. Using Implicit Differentiation

Here, we use implicit differentiation to train a loss combination function, h, such that
L is minimized (Equation (5)). Table 5 shows the testing accuracies of training AL using all
four auxiliary tasks and implicit differentiation. h is tested for both linear (AL-SNN-IDL-4T)
and non-linear (AL-SNN-IDNL-4T) cases. Traditional ANN with three hidden layers is
used for the non-linear case.

Table 5. Validation accuracy on DVS128-Gesture datasets using implicit differentiation for 250
training epochs. Bold values represent the best result within the column.

Model
Validation Accuracy after 250 Epochs (%)

CIFAR10-DVS DVSGesture128

ST-SNN 72.24 ± 0.35 96.07 ± 0.48
ST-SNN + aug 80.83 ± 0.70 98.32 ± 0.31

AL-SNN + aug 81.75 ± 0.33 98.73 ± 0.26
AL-SNN-IDL-4T + aug 81.15 ± 0.27 98.67 ± 0.24
AL-SNN-IDNL-4T + aug 81.69 ± 0.34 98.84 ± 0.39

Observe that employing automatic differentiation with a non-linear function h yields
the best overall result. When a linear function h is used, the obtained result is very close
to the best outcome achieved through a manual grid search. These findings show that
automatic differentiation not only mitigates the challenges associated with manual grid
search but also improves the SNN system performance. It is important to highlight that A4
is a random task that does not provide any useful information, yet automatic differenti-
ation successfully handles this task. This underscores the robustness and adaptability of
automatic differentiation in effectively handling diverse tasks, even when they apparently
do not provide additional information.



Mach. Learn. Knowl. Extr. 2023, 5 1018

4.4. Comparison with State-of-the-Art SNNs

The proposed training approach using auxiliary learning with state-of- the-art methods
is compared with using SNN on the CIFAR10-DVS and DVSGesture128 neuromorphic
datasets. To identify the best trained networks, we conduct an analysis using precision, recall,
and the F1-score. We then select the top-performing network for each dataset. Figure 4 shows
the confusion matrix for the selected networks, and Table 6 shows the above performance
indicators. The results are shown for 1024 training epochs on the testing set.

(a) CIFAR10-DVS.

(b) DVSGesture-128.

Figure 4. Confusion matrix for best performing SNN with AL for CIFAR10-DVS (a) and DVSGes-
ture128 (b) datasets.



Mach. Learn. Knowl. Extr. 2023, 5 1019

Table 6. Testing accuracy, precision, recall, and F1 score for best performing SNN with AL for
CIFAR10-DVS and DVSGesture128 datasets.

Dataset Model Accuracy Precision Recall F1-Score

CIFAR10-DVS AL-SNN + aug + α = 0.5 82.80 0.829 0.828 0.827
DVSGesture128 AL-SNN-IDNL-4T + aug 99.31 0.993 0.993 0.993

Overall, SNN trained using auxiliary learning exhibits a well-balanced performance in
predicting the labels for each dataset. It is worth highlighting a particular case, which is the
prediction of class 3 (cat) for CIFAR10-DVS data. This specific class is the most challenging
to predict in the CIFAR10-DVS dataset.

We compare the obtained results with state-of-the-art SNNs, which are shown in
Table 7.

Table 7. Comparison with state-of-the-art SNNs for CIFAR10-DVS and DVSGesture-128 datasets.
Bold values represent the best result within the column.

Model Reference CIFAR10-DVS DVSGesture-128

STBP [48] AAAI 2021 67.80 96.87
PLIF [22] ICCV 2021 74.80 97.57
Dspike [49] NeurIPS 2021 75.40 -
AutoSNN [50] ICML 2022 72.50 96.53
RecDis [51] CVPR 2022 72.42 -
DSR [52] CVPR 2022 77.27 -
NDA [14] ECCV 2022 81.70 -
SpikeFormer [53] ICLR 2023 80.90 98.30
AIA [54] ICASSP 2023 83.90 -
AL-SNN (ours) - 82.80 99.31

Notice that training with auxiliary learning achieves the highest accuracy for the
DVSGesture128 dataset and the second highest for CIFAR10-DVS. The highest accuracy
for CIFAR10-DVS is achieved by AIA, which is an SNN that uses a more advanced neuron
model than the PLIF neuron model used in this work. In fact, we see that training with AL
achieves higher accuracy when compared with SNN, which uses PLIF neurons (PLIF and
NDA). We expect that AL with the AIA neuron model would achieve the best performance.

5. Conclusions

In this paper, we present the usage of auxiliary learning, in addition to data aug-
mentation, to improve the performance of SNNs. The used network architecture consists
of a feature extraction block connected in a feedforward fashion to a main classification
block and one or more auxiliary task classification blocks. By using auxiliary tasks, we
use additional information during training that helps in the regularization of the feature
extraction block. As a result, the feature extraction block is forced to learn more general
and robust features, which helps improve the SNN network performance on the main task.
The results confirm that using AL during training indeed results in improved performance.
Moreover, the experiments demonstrate that the extent of the improvement depends on
the careful tuning combination of the loss rate parameters. To overcome this challenge, we
use automatic differentiation [43] to automatically adjust the loss combination parameters.
Note that all the experiments presented in this study were conducted through simulation
using the SpikingJelly neuromorphic library. However, in the future we plan to leverage
Intel’s Lava framework, which enables one to directly deploy the network on the Loihi2
neuromorphic chip.



Mach. Learn. Knowl. Extr. 2023, 5 1020

Author Contributions: P.G.C., S.V. and K.J.C. contributed to conception and design of the study.
P.G.C. organized the database, performed the statistical analysis, and wrote the first draft of the
manuscript. P.G.C. and K.J.C. wrote sections of the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The code for the network implementation as well as all the experiments
and results is posted at https://github.com/PaoloGCD/AuxiliaryLearning-SNN (accesed on 22 July
2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AL Auxiliary learning
ANNs Artificial neural networks
BPTT Backpropagation through time
LIF Leaky integrate and fire
MTL Multitask learning
PLIF Parametric leaky integrate and fire
SBP Spike-based backpropagation
SGD Stochastic gradient descent
SNNs Spiking neural networks
STDP Spike-timing-dependent plasticity

References
1. Ghosh-Dastidar, S.; Adeli, H. Spiking Neural Networks. Int. J. Neural Syst. 2009, 19, 295–308. [CrossRef] [PubMed]
2. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge,

UK, 2002. [CrossRef]
3. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
4. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

5. Emmert-Streib, F.; Yang, Z.; Feng, H.; Tripathi, S.; Dehmer, M. An Introductory Review of Deep Learning for Prediction Models
with Big Data. Front. Artif. Intell. 2020, 3, 4. [CrossRef]

6. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
7. Orchard, G.; Frady, E.P.; Rubin, D.B.D.; Sanborn, S.; Shrestha, S.B.; Sommer, F.T.; Davies, M. Efficient Neuromorphic Signal

Processing with Loihi 2. In Proceedings of the 2021 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal,
19–21 October 2021.

8. Davies, M.; Wild, A.; Orchard, G.; Sandamirskaya, Y.; Guerra, G.A.F.; Joshi, P.; Plank, P.; Risbud, S.R. Advancing Neuromorphic
Computing with Loihi: A Survey of Results and Outlook. Proc. IEEE 2021, 109, 911–934. [CrossRef]

9. Mohammadi, M.; Chandarana, P.; Seekings, J.; Hendrix, S.; Zand, R. Static hand gesture recognition for American sign language
using neuromorphic hardware. Neuromorphic Comput. Eng. 2022, 2, 044005. [CrossRef]

10. Ceolini, E.; Frenkel, C.; Shrestha, S.B.; Taverni, G.; Khacef, L.; Payvand, M.; Donati, E. Hand-Gesture Recognition Based on EMG
and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing. Front. Neurosci. 2020, 14, 637. [CrossRef]

11. Buettner, K.; George, A.D. Heartbeat Classification with Spiking Neural Networks on the Loihi Neuromorphic Processor. In
Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 7–9 July 2021; pp. 138–143.
[CrossRef]

12. Hajizada, E.; Berggold, P.; Iacono, M.; Glover, A.; Sandamirskaya, Y. Interactive Continual Learning for Robots: A Neuromorphic
Approach. In Proceedings of the International Conference on Neuromorphic Systems, Knoxville, TN, USA, 27–29 July 2022;
Association for Computing Machinery: New York, NY, USA, 2022. [CrossRef]

13. Smith, J.D.; Severa, W.; Hill, A.J.; Reeder, L.; Franke, B.; Lehoucq, R.B.; Parekh, O.D.; Aimone, J.B. Solving a Steady-State PDE
Using Spiking Networks and Neuromorphic Hardware. In Proceedings of the International Conference on Neuromorphic
Systems, Oak Ridge, TN, USA, 28–30 July 2020; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

14. Li, Y.; Kim, Y.; Park, H.; Geller, T.; Panda, P. Neuromorphic Data Augmentation for Training Spiking Neural Networks. In
Proceedings of the Computer Vision—ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Avidan, S.,
Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 631–649.

https://github.com/PaoloGCD/AuxiliaryLearning-SNN
http://doi.org/10.1142/S0129065709002002
http://www.ncbi.nlm.nih.gov/pubmed/19731402
http://dx.doi.org/10.1017/CBO9780511815706
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
http://dx.doi.org/10.3389/frai.2020.00004
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/JPROC.2021.3067593
http://dx.doi.org/10.1088/2634-4386/ac94f3
http://dx.doi.org/10.3389/fnins.2020.00637
http://dx.doi.org/10.1109/ISVLSI51109.2021.00035
http://dx.doi.org/10.1145/3546790.3546791
http://dx.doi.org/10.1145/3407197.3407202


Mach. Learn. Knowl. Extr. 2023, 5 1021

15. Yin, B.; Corradi, F.; Bohté, S.M. Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks.
In Proceedings of the International Conference on Neuromorphic Systems, Oak Ridge, TN, USA, 28–30 July 2020. [CrossRef]

16. Kugele, A.; Pfeil, T.; Pfeiffer, M.; Chicca, E. Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks.
Front. Neurosci. 2020, 14, 439. [CrossRef]

17. Khalifa, N.E.; Loey, M.; Mirjalili, S. A comprehensive survey of recent trends in deep learning for digital images augmentation.
Artif. Intell. Rev. 2022, 55, 2351–2377. [CrossRef] [PubMed]

18. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
19. Shi, B.; Hoffman, J.; Saenko, K.; Darrell, T.; Xu, H. Auxiliary Task Reweighting for Minimum-data Learning. Adv. Neural Inf.

Process. Syst. 2020, 33, 7148–7160. [CrossRef]
20. Liu, S.; Davison, A.; Johns, E. Self-Supervised Generalisation with Meta Auxiliary Learning. In Proceedings of the Advances in

Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2019; Volume 32.

21. Du, Y.; Czarnecki, W.M.; Jayakumar, S.M.; Farajtabar, M.; Pascanu, R.; Lakshminarayanan, B. Adapting Auxiliary Losses Using
Gradient Similarity. arXiv 2018, arXiv:1812.02224.

22. Fang, W.; Yu, Z.; Chen, Y.; Masquelier, T.; Huang, T.; Tian, Y. Incorporating Learnable Membrane Time Constant to Enhance
Learning of Spiking Neural Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seattle,
WA, USA, 13–19 June 2020. [CrossRef]

23. Schröder, F.; Biemann, C. Estimating the influence of auxiliary tasks for multi-task learning of sequence tagging tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Virtual Event, 5–10 July 2020;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 2971–2985. [CrossRef]

24. Training Spiking Neural Networks Using Lessons From Deep Learning. arXiv 2021, arXiv:2109.12894.
25. Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw.

2019, 111, 47–63. [CrossRef]
26. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Xie, Y.; Shi, L. Direct Training for Spiking Neural Networks: Faster, Larger, Better. In Proceedings

of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence
Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HW, USA, 27 January–1
February 2019; AAAI Press: Washington, DC, USA, 2019. [CrossRef]

27. Lee, J.H.; Delbruck, T.; Pfeiffer, M. Training Deep Spiking Neural Networks Using Backpropagation. Front. Neurosci. 2016, 10,
508. [CrossRef] [PubMed]

28. Gerstner, W.; Kistler, W.M. Mathematical formulations of Hebbian learning. Biol. Cybern. 2002, 87, 404–415. [CrossRef] [PubMed]
29. Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Wiley: Hoboken, NJ, USA, 1949.
30. Konorski, J. Conditioned Reflexes and Neuron Organization; Cambridge University Press: Cambridge, UK, 1948.
31. Frémaux, N.; Sprekeler, H.; Gerstner, W. Functional requirements for reward-modulated spike-timing-dependent plasticity. J.

Neurosci. 2010, 30, 13326–13337. [CrossRef]
32. Legenstein, R.; Pecevski, D.; Maass, W. A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with

Application to Biofeedback. PLoS Comput. Biol. 2008, 4, 1–27. [CrossRef] [PubMed]
33. Kaiser, J.; Mostafa, H.; Neftci, E. Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE). Front. Neurosci.

2020, 14, 424. [CrossRef] [PubMed]
34. Neftci, E.O.; Mostafa, H.; Zenke, F. Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based

Optimization to Spiking Neural Networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [CrossRef]
35. Shrestha, S.B.; Orchard, G. SLAYER: Spike Layer Error Reassignment in Time. arXiv 2018, arXiv:1810.08646.
36. Ponulak, F.; Kasiński, A. Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and

Spike Shifting. Neural Comput. 2010, 22, 467–510. [CrossRef] [PubMed]
37. Nski, A.; Ponulak, F.F. Comparison of supervised learning methods for spike time coding in spiking neural networks. Int. J. Appl.

Math. Comput. Sci. 2006, 16, 101–113.
38. Mozer, M.C. A Focused Backpropagation Algorithm for Temporal Pattern Recognition. Complex Syst. 1989, 3, 348–381.
39. Wang, Z.; Dai, Z.; Póczos, B.; Carbonell, J. Characterizing and Avoiding Negative Transfer. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [CrossRef]
40. Standley, T.; Zamir, A.R.; Chen, D.; Guibas, L.; Malik, J.; Savarese, S. Which Tasks Should Be Learned Together in Multi-task

Learning? In Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 12–18 July 2020; Volume 119,
pp. 9120–9132.

41. Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition;
Cambridge University Press: New York, NY, USA, 2014.

42. Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; of Biochemistry, D.; Jessell, M.B.T.; Siegelbaum, S.; Hudspeth, A. Principles of Neural
Science; McGraw-hill: New York, NY, USA, 2013; Volume 5.

43. Navon, A.; Achituve, I.; Maron, H.; Chechik, G.; Fetaya, E. Auxiliary Learning by Implicit Differentiation. arXiv 2020,
arXiv:2007.02693.

44. Fang, W.; Chen, Y.; Ding, J.; Chen, D.; Yu, Z.; Zhou, H.; Masquelier, T.; Tian, Y. SpikingJelly. 2020. Available online: https:
//github.com/fangwei123456/spikingjelly (accessed on 8 July 2023).

http://dx.doi.org/10.48550/ARXIV.2005.11633
http://dx.doi.org/10.3389/fnins.2020.00439
http://dx.doi.org/10.1007/s10462-021-10066-4
http://www.ncbi.nlm.nih.gov/pubmed/34511694
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.48550/ARXIV.2010.08244
http://dx.doi.org/10.48550/ARXIV.2007.05785
http://dx.doi.org/10.18653/v1/2020.acl-main.268
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1609/aaai.v33i01.33011311
http://dx.doi.org/10.3389/fnins.2016.00508
http://www.ncbi.nlm.nih.gov/pubmed/27877107
http://dx.doi.org/10.1007/s00422-002-0353-y
http://www.ncbi.nlm.nih.gov/pubmed/12461630
http://dx.doi.org/10.1523/JNEUROSCI.6249-09.2010
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://www.ncbi.nlm.nih.gov/pubmed/18846203
http://dx.doi.org/10.3389/fnins.2020.00424
http://www.ncbi.nlm.nih.gov/pubmed/32477050
http://dx.doi.org/10.1109/MSP.2019.2931595
http://dx.doi.org/10.1162/neco.2009.11-08-901
http://www.ncbi.nlm.nih.gov/pubmed/19842989
http://dx.doi.org/10.48550/ARXIV.1811.09751
https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly


Mach. Learn. Knowl. Extr. 2023, 5 1022

45. Li, H.; Liu, H.; Ji, X.; Li, G.; Shi, L. CIFAR10-DVS: An Event-Stream Dataset for Object Classification. Front. Neurosci. 2017, 11, 309.
[CrossRef]

46. Amir, A.; Taba, B.; Berg, D.; Melano, T.; McKinstry, J.; Di Nolfo, C.; Nayak, T.; Andreopoulos, A.; Garreau, G.; Mendoza, M.; et al.
A Low Power, Fully Event-Based Gesture Recognition System. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7388–7397. [CrossRef]

47. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
48. Zheng, H.; Wu, Y.; Deng, L.; Hu, Y.; Li, G. Going Deeper With Directly-Trained Larger Spiking Neural Networks. In Proceedings

of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020.
49. Li, Y.; Guo, Y.; Zhang, S.; Deng, S.; Hai, Y.; Gu, S. Differentiable Spike: Rethinking Gradient-Descent for Training Spiking Neural

Networks. In Proceedings of the Advances in Neural Information Processing Systems, Virtual Event, 6–14 December, 2021;
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2021;
Volume 34, pp. 23426–23439.

50. Na, B.; Mok, J.; Park, S.; Lee, D.; Choe, H.; Yoon, S. AutoSNN: Towards Energy-Efficient Spiking Neural Networks. In Proceedings
of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022.

51. Guo, Y.; Tong, X.; Chen, Y.; Zhang, L.; Liu, X.; Ma, Z.; Huang, X. RecDis-SNN: Rectifying Membrane Potential Distribution for
Directly Training Spiking Neural Networks. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 326–335. [CrossRef]

52. Meng, Q.; Xiao, M.; Yan, S.; Wang, Y.; Lin, Z.; Luo, Z.Q. Training High-Performance Low-Latency Spiking Neural Networks
by Differentiation on Spike Representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Vancouver, BC, Canada, 18–24 June 2023.

53. Zhou, Z.; Zhu, Y.; He, C.; Wang, Y.; YAN, S.; Tian, Y.; Yuan, L. Spikformer: When Spiking Neural Network Meets Transformer. In
Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023.

54. Shen, H.; Luo, Y.; Cao, X.; Zhang, L.; Xiao, J.; Wang, T. Training Stronger Spiking Neural Networks with Biomimetic Adaptive Internal
Association Neurons. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3389/fnins.2017.00309
http://dx.doi.org/10.1109/CVPR.2017.781
http://dx.doi.org/10.1109/CVPR52688.2022.00042
http://dx.doi.org/10.1109/ICASSP49357.2023.10096958

	Introduction
	Related Work
	Spiking Neural Networks
	Auxiliary Learning
	Input Data Augmentation

	Methods
	Problem Definition
	Architecture
	Training and Testing
	Implementation

	Experiments and Results
	Training with One Auxiliary Task
	Training with More Than One Auxiliary Task
	Using Implicit Differentiation
	Comparison with State-of-the-Art SNNs

	Conclusions
	References

