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Abstract: This study uses magnetic resonance imaging (MRI) data to propose end-to-end learning
implementing volumetric convolutional neural network (CNN) models for two binary classification
tasks: Alzheimer’s disease (AD) vs. cognitively normal (CN) and stable mild cognitive impairment
(sMCI) vs. AD. The baseline MP-RAGE T1 MR images of 245 AD patients and 229 with sMCI were
obtained from the ADNI dataset, whereas 245 T1 MR images of CN people were obtained from the
IXI dataset. All of the images were preprocessed in four steps: N4 bias field correction, denoising,
brain extraction, and registration. End-to-end-learning-based deep CNNs were used to discern
between different phases of AD. Eight CNN-based architectures were implemented and assessed.
The DenseNet264 excelled in both types of classification, with 82.5% accuracy and 87.63% AUC
for training and 81.03% accuracy for testing relating to the sMCI vs. AD and 100% accuracy and
100% AUC for training and 99.56% accuracy for testing relating to the AD vs. CN. Deep learning
approaches based on CNN and end-to-end learning offer a strong tool for examining minute but
complex properties in MR images which could aid in the early detection and prediction of Alzheimer’s
disease in clinical settings.
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1. Introduction

AD is the most common form of dementia, and there is currently no proven cure for it.
AD and other dementias are estimated to impact at least 50 million individuals worldwide
today [1]. Before clinical symptoms appear, AD advances gradually over several years [2].
In 2022, the number of people living with AD in the United States reached 6.5 million. By
2050, some 14 million people are expected to have the disease [3]. It is critical to study novel
early diagnosis methods for different kinds of dementia, including AD or mild cognitive
impairment (MCI), to ensure the correct treatment and to slow down the progress of the
disease. MCI is a state that falls in between normal cognitive function and AD. MCI affects
a person’s cognitive ability, although they can still go about their regular lives. Moreover,
MCI affects nearly one-fifth of those over the age of 65 [3]. In 3 to 5 years, about one
third of them will acquire AD [3]. Anatomical and functional brain abnormalities linked
to AD can be studied and evaluated by using magnetic resonance (MR) imaging, which
is a non-invasive and effective technology. MR imaging is acknowledged as valuable
tool for detecting the progression of AD and is routinely used in clinical practice [4,5].
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Numerous neuroimaging studies have employed region of interest (ROI) techniques to
quantify and detect minor changes linked with AD [6]. Such research relies primarily on
past knowledge to drive ROI and feature selection, neglecting brain changes outside the
examined region(s) and failing to uncover new knowledge. ML can discover complicated
and nuanced patterns of change across MR images and provide a systematic way to
construct sophisticated, automated, and objective classification frameworks for processing
high-dimensional data. Furthermore, ML algorithms have recently been proven to predict
AD better than physicians in some circumstances [7], making it an essential subject of
research related to computer-aided diagnosis. While statistical ML approaches, such as the
support vector machine (SVM) [8], were first successful in automating the detection of AD,
deep learning (DL) methods, such as convolutional neural networks (CNN) and sparse
autoencoders [9–19], have lately outpaced statistical methods. In recent years, numerous
research activities on neuroimaging-based, computer-aided categorization of AD and its
prodromal stage, MCI, have been published [8,20–22]. Due to their inability to extract
adaptive features, SVM-based, automated diagnosis models for neuropsychiatric disorders
rely on hand-crafted features [8]. The proliferation of DL algorithms for image classification
applications was aided by the rising capability of GPUs. DL is a field of machine learning
that simulates the human brain’s ability to recognize complicated patterns. It uses impulsive
learning to learn features, hidden representations, and disease-related patterns from raw
neuroimaging data, as well as examine correlations in various regions of MR images [23,24].
The core foundation of DL is an end-to-end learning design concept. The main benefit of
end-to-end learning is that it optimizes all phases of the processing pipeline at the same
time, possibly resulting in optimal performance [25].

The authors of [9,26] proposed an end-to-end hierarchy for brain MR image analysis,
with levels ranging from 1 (none) to 4 (complete). At Level 1, feature extraction and
selection are carried out manually. Three-dimensional (3D) volume data are rearranged
into 1D vector form for use as input into DL networks such as the restricted Boltzmann
machine (RBM) and deep belief network (DBN) [27–29]. At Level 2, 3D data are separated
into white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and hippocampus
regions, or turned into 2D slices during preprocessing, and then fed into a DL network
such as a CNN. The visual cortex of the brain is what stimulates CNNs. CNNs are the
most effective model for image analysis [20,22,30]. They use two-dimensional or three-
dimensional pictures as input and extract features by stacking convolutional layers to
make greater use of spatial information. The fact that a CNN combines feature extraction
and classification is one of its most significant advantages. At Level 3, preprocessed 3D
volume data [31] are used as an input into DL networks. The preprocessing of MR images
is critical to the efficacy of any quantitative analysis approach. This kind of preprocessing
includes procedures such as denoising, bias field correction, brain extraction, registration,
normalization, and smoothing that aim to improve image quality and unify geometric and
intensity patterns. Level 4 includes directly feeding DL networks with a 3D MR image
obtained from a scanner; however, as far as the author is aware, no study has used this
level and documented it in the literature.

The majority of known research employed Level 1 [27–29,32–35] or Level
2 [10–18,36–67], the results of which were based on particular software, hyperparame-
ter tuning, and manual noise reduction. Because of these interdependencies [20,22,68],
performance evaluations in these pieces of research only employed a portion of the original
datasets, avoiding apparent outliers and making a fair performance comparison challenging.

Using ResNet18, Ramzan et al. [36] investigated the efficacy of resting-state functional
magnetic resonance imaging (rs-fMRI) for multi-class categorization of AD and its related
phases, including CN, SMC, EMCI, MCI, LMCI, and AD. They used a single-channel
input to train the network from scratch, as well as an expanded network architecture,
to execute transfer learning with and without finetuning. For early diagnosis of AD,
Mehmood et al. [37] employed VGG-19 architecture for transfer learning and tissue segmen-
tation on each subject to extract gray matter (GM) tissue from MR images. Abrol et al. [47]
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used the GM area to suggest a CNN-based transfer learning scheme, demonstrating that
transfer learning is helpful for CNN-based research at Level 2.

To increase the classification accuracy of AD stages, multimodal DL [54–56,58,59,64]
approaches have been sought to combine diverse inputs and DL models. In a specific way,
multimodal neuroimaging integrates two or more datasets obtained with various imaging
devices with the goal of improving our understanding of the structure and function of
the brain by leveraging contrasting physical and physiological sensitivities. Multimodal
DL approaches are especially challenging to implement at Level 3 learning because of
the restrictions of various resolutions, the number of dimensions, inconsistent data, and
limited sample sizes [69,70]. Furthermore, we discovered that multimodal DL techniques
were only used in research with Level 2 learning. We did not use a multimodal learning
approach since our study is centered on Level 3 learning implementation.

Lee et al. [64] used an RNN to predict AD by extracting multimodal characteristics
from MRI, cohort data, and CSF data. To integrate and learn feature representation from
multimodal neuroimaging data for AD diagnosis, Shi et al. [61] created a multimodal
stacked deep polynomial network (MM-SDPN). The MM-SDPN was made up of two-stage
SDPNs. Two SDPNs were used to learn high-level MR imaging and PET properties, which
were fed into another SDPN to integrate multimodal neuroimaging data for AD stage
classification. Lu et al. [58] proposed a novel deep neural network (DNN)-based method
that used multi-scale and multimodal knowledge (MMDNN), combining metabolism (FDG-
PET) and regional volume (T1-MRI) with a focus on assessing classification accuracy in
stable MCI and progressive MCI subjects with known future conversion to probable AD.
Song et al. [39] developed an image fusion approach to help AD diagnosis by combining
the GM tissue area of brain MR images and FDG-PET images by registration and mask
coding to create a new fused modality known as “GM-PET”. The GM region, which is
crucial for AD diagnosis, was highlighted in the single composite image, but the contour
and metabolic properties of the subject’s brain tissue were preserved. They tested the
performance of image fusion methods in binary and multi-classification tasks using 3D
CNN and 3D multi-scale CNN.

A limited number of studies used the Level 3 hierarchy. Rieke et al. [71] used MR
images to train a 3D CNN for AD vs. CN classification, and they used various visualization
techniques to demonstrate that their CNN focused on brain areas linked with AD, specifi-
cally the medial temporal lobe. Korolev et al. [72] utilized MR images based on deep 3D
CNN to train VoxCNN, which is similar to VGG and ResNet, to categorize different phases
of AD. Liu et al. [73] proposed a multimodal DL framework for hippocampus segmentation
and AD classification simultaneously based on multi-task CNN and 3D DenseNet by using
MR images. Recognizing the benefits of pre-training knowledge, Gao et al. [74] introduced
the AD-NET (age-adjusted 3D CNN), with the pre-training model serving two purposes:
extracting and transferring features, as well as gaining and transferring knowledge. The
knowledge being transmitted in this study was a surrogate biomarker for age that was used
to classify MCI converters vs. non-converters on an individual basis. Basaia et al. [75] used
two datasets collected using distinct MR protocols and scanners to train, evaluate, and test
a 3D CNN in order to cover the complete range of data heterogeneity and provide a less
dataset-specific methodology. For AD vs. CN classification, Oh et al. [9] employed convo-
lutional autoencoder (CAE)-based unsupervised learning and supervised transfer learning
by transferring gained information from AD versus CN to solve the progressive MCI vs.
stable MCI classification task by using 3D MR images. They also used a gradient-based
visualization approach to simulate the spatial relevance of the CNN model in detecting the
most relevant biomarkers linked to AD and MCI development. The temporal and parietal
lobes were identified as crucial classification areas.

Volumetric medical imaging data may be interpreted using 3D CNN models in their
original volumetric input form. However, we did not find any comparative analyses of
these models for early AD diagnosis nor any implementation of several of them utilizing
end-to-end learning at Level 3 during our review of the relevant literature. The purpose
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of this study is to use Level 3 end-to-end learning, MR images, and cutting-edge open-
source software to determine the best 3D CNN model for classifying the different stages of
AD. This study’s major contributions and qualities may be described as follows: (1) Use
of MR images and Level 3 end-to-end learning, implementing different state-of-the-art,
3D-CNN-based architectures from the DenseNet family [76]: DenseNet121, DenseNet169,
DensNet201, and DensNet264 and from the EfficientNets family [77]: EfficientNet-B0,
EfficientNet-B1, EfficientNet-B2, and EfficientNet-B3. (2) Comparative analysis of the
implementations. (3) Use of Medical Open Network for AI (MONAI) [78] to implement the
models and ANTsPyNet [79] to preprocess MR images.

To the best of the authors’ knowledge, there has been no previous study that employed
MOANI or ANTsPyNet to create a 3D CNN or preprocess neuroimaging data for the
early diagnosis of AD. To train the models in the shortest amount of time, the whole
implementation was performed in PyTorch GPU. Therefore, the main contribution of this
work is a comparative analysis of 3D CNNs for the categorization of different stages of AD
utilizing a Level 3 end-to-end learning technique. This article’s remainder is organized as
follows: The study approach is presented in Section 2, together with datasets, MR image
preprocessing, built 3D CNNs, and experimental setup with the algorithm. Section 3
contains the findings: a comparative study of all models that have been built using a rank
mechanism and comprehensive performance indicators; a comparison of our best outcomes
with published state-of-the-art implemented techniques; and a conclusion section. The
Supplementary Data include the URL to the code for researchers.

2. Materials and Methods

The proposed method for encouraging end-to-end learning by applying 3D CNN
models for early AD diagnosis is summarized in Figure 1 and explained in further detail in
this section. To differentiate AD from CN and AD from sMCI, MR images of patients with
AD, CN, and stable MCI were preprocessed using AntsPyNet and then supervised fine-
tuning was utilized to generate eight state-of-the-art, 3D-CNN-based classifiers leveraging
end-to-end learning and MONAI. Finally, a comparative study was conducted, utilizing
the accuracy, AUC, precision, recall, and F1-score metrics of deployed models to identify
the best 3D CNN model to help future researchers.

2.1. Datasets and Preprocessing of MR Images

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Information eXtraction
from Images (IXI) datasets, both of which are publicly accessible on the web [80,81], were
used in this research. The ADNI intends to find more sensitive and accurate methods for
detecting AD early on, as well as biomarkers to track the AD progression. IXI is a collection
of over 600 MR images taken from healthy, normal people. The IXI dataset includes
participants from three London hospitals: Hammersmith Hospital, Guy’s Hospital, and
the Institute of Psychiatry. We utilized 719 MP-RAGE T1-weighted, structural MR images
downloaded in NIfTI format for this study, which were originally categorized into AD
(n = 245), CN (n = 245), and sMCI (n = 229) at baseline. MR images for AD and sMCI were
acquired from ADNI, whereas CN MR images were obtained from IXI. Only MCI images
that were stable for at least 4 years and up to 15 years, as specified in the ADNI description
files, were downloaded. Because the method for recognizing sMCI MR image IDs from
ADNI was not found in any article during the literature analysis, we present it here to
enable readers to identify patients with sMCI and download them from ADNI. Researchers
have to examine the following two CSV files:

1. ADNIMERGE [80]: Can be downloaded from study data -> Test Data -> Data for
Challenges. To identify stable MCI, MCI converted to AD, or MCI converted to
normal, the factors mentioned in Table 1 may be examined;

2. Diagnostic Summary [ADNI1,GO,2,3] [80]: Can be downloaded from study data ->
Assessments -> ALL Diagnosis. The factors mentioned in Table 2 may be examined to
identify the various phases of AD.
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Figure 1. The proposed method’s overall architecture.

Table 1. Factors to consider while analyzing ADNIMERGE file.

Name Description Value Set

DX.bl Baseline diagnosis CN, MCI, AD, EMCI, LMCI, SMC
DX Current diagnosis status Same, MCI to AD, AD to MCI, MCI to CN

Table 2. Factors to consider while analyzing a diagnostic summary file. NL: normal control, AD: dementia.

Name Description Value Set

DXCHANGE
Which best characterizes the participant’s
cognitive status change from the previous
visit to the current appointment?

1 = Stable: NL; 2 = Stable: MCI; 3 = Stable: Dementia;
4 = Conversion: NL to MCI; 5 = Conversion: MCI to Dementia;
6 = Conversion: NL to Dementia; 7 = Reversion: MCI to NL;
8 = Reversion: Dementia to MCI; 9 = Reversion: Dementia to NL

DIAGNOSIS Specify diagnostic category. 1 = Cognitively Normal; 5 = Significant Memory Concern;
2 = Early MCI; 3 = Late MCI; 4 = Alzheimer’s Disease

DXCURRENT Current diagnosis. 1 = NL; 2 = MCI; 3 = AD

DXCONV Has there been a conversion or reversion
to NL/MCI? 1 = Yes—Conversion; 2 = Yes—Reversion; 0 = No

DXCONTYP If yes—conversion, choose type. 1 = Normal Control to MCI; 2 = Normal Control to AD;
3 = MCI to AD

Data are provided for each visit of each patient, and researchers must review the
diagnosis and conversion to the next step for each visit. The authors meticulously examined
roughly 6000 rows of the csv data described above to obtain information on patients with
sMCI. Only 229 of those with sMCI with clear information for each visit remained constant
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for at least 4 years and up to 15 years. We did not find the value for DXCHANGE and DX
variable for several visits; hence, MR images were ignored. Because our work was centered
on end-to-end learning at Level 3, we did not take into account any other factors, such
as age, gender, clinical dementia rating (CDR) [82] score, mini-mental state examination
(MMSE) [83] score, or the 4 allele of apolipoprotein E (APOE4) [84], which are used in
clinical settings [85] and in many studies [17–19,21,22,24,27] to identify the various stages
of AD. The downloaded MR images from ADNI often had 256 × 256 × 176 voxels with
1 mm × 1 mm × 1.2 mm sizes, whereas those from IXI typically had 256 × 256 × 256 voxels
with 1 mm × 1 mm × 1 mm sizes.

The baseline MRI scans were downloaded in the Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) [86] format from the ADNI and IXI databases. NIfTI is an upgraded
version of the Analyze file format, which was created to be easier to use than DICOM while
keeping all of the necessary information. It also has the advantage of storing a volume in a
single file, with only a basic header followed by raw data. This allows it to load and process
quickly. The ANtsPyNet [79] utilities were used to perform a standard preprocessing
procedure on each image. The Advanced Normalization Tools (ANTs) pipeline [87–89] was
employed. As illustrated in Figure 2, the implemented preprocessing pipeline included
(A) N4 bias correction, (B) denoising, (C) brain extraction, and (D) affine registration to
MNI152 template. The N4 bias field correction technique [90] is a widely used approach
for correcting low-frequency intensity non-uniformity, often known as a bias or gain field,
in MR image data. This strategy relies on a basic parametric model with no tissue clas-
sification. N4 bias correction of MR images was performed using the ants.utils.n4 bias
field correction() [91] function, which was followed by denoising. Denoising’s [92] main
purpose is to estimate the original image by suppressing noise in a noise-contaminated
version of the image. Image noise may be created by a variety of internal and extrinsic
factors that are difficult to prevent in real-world settings. As a result, picture denoising is
significant in image classification, where recovering the original image content is critical for
good results. In our work, denoising was performed in two steps: first, we added different
intensities of salt and pepper noise [93,94] to the MR image and then we removed the noise
using a spatially adaptive filter initially proposed by Manjon et al. [95] through ants utility
ants.denoise_image() [96], which was followed by brain extraction. Brain extraction was
conducted on MR images using AntsPyNet’s brain extraction() [97] tool, which uses a 3D
U-net model called brainy [98] and ANTs-based training data to achieve brain extraction.
The key advantage of brainy is its ability to exploit interslice contextual information [99].
This model obtained a median Dice score of 0.97, a mean of 0.96, a minimum of 0.91, and a
maximum of 0.98 on a validation dataset of 99 T1-weighted brain scans and their associated,
binarized FreeSurfer segmentations [99]. In three seconds, this model could predict the
brain mask for a volume of 256 × 256 × 256, independent of orientation. Predicting the
brain mask of each picture took around five seconds with our implementation. It was
followed by affine fast registration [100] in the MNI 152 template [101], a universal brain
atlas template, utilizing the ANTsPy tool ants.registration() [102]. The goal of registration is
to eliminate any spatial disparities across subjects in the scanner and to reduce translations
and rotations from a standard orientation. This aids the subsequent classification’s accuracy.
After registration, the dimensions were uniformly rescaled to 182 × 218 × 182 for CNN
learning. This registered MR image was used to classify the various stages of AD. In our
implementation, the preparation of one MRI scan took around two minutes.

2.2. Deployed 3D CNN

CNNs are gaining prominence as a result of their significant advantages in medical
image classification applications [103]. In 2D CNN [35,37–42,44,45,49,63,65] approaches
for classifying the different stages of AD, where the 3D MR images are evaluated slice by
slice, the anatomical context in directions orthogonal to the 2D plane is completely ignored.
While using 3D data as a complete input may improve accuracy [104], the computational
complexity and memory cost increase as the number of factors grows. Although many stud-
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ies preferred to build their own 2D/3D CNN structures [19,71,74,75,105,106], we did find
some that used well-established, pre-trained CNN structures for classifying the different
stages of AD, such as deep recurrent neural networks (RNN) [12,34], ResNet [15,36,47,72],
CaffeNet and GoogleNet [17], DenseNet [13], and Inception V4 and VGG16 [67]. Most of
them, however, adopted Level 2 learning since all of these models only support transfer
learning for 2D data.

Figure 2. This illustration shows an example of sMCI MR image preprocessing implemented in our
study. The original MR picture dimensions were 256 × 256 × 166, but the output MRI dimensions
were altered to 182 × 218 × 182. The actions listed were performed in sequence. (A) N4 bias field
correction, (B) denoising, (C) 3D U-Net used for brain extraction, (D) affine fast registration in the
MNI152 template.

In numerous pieces of research, local TL was used. The idea behind local TL is to utilize
the AD vs. CN classifier’s finalized weights as the initial weights for sMCI vs. progressive
MCI classification. CAE-based unsupervised learning was utilized by Oh et al. [9] to extract
sparse representations from 3D MR images of AD and CN subjects, and they used them to
classify AD vs. CN using a 3D CNN. The final weights of the CNN used to categorize AD
vs. CN were then transferred as the initial weight of the sMCI vs. pMCI classifier. Silvia
Basaia et al. [75] employed a 3D CNN without any prior feature engineering and in the face
of imaging protocol and scanner erroneousness. However, we were unable to locate any
implementation of a number of state-of-the-art, 3D-CNN-based designs that have recently
been shown to be extremely effective in other medical data categorization tasks [107–113],
specifically, those from the DenseNet [76] and EfficientNets [77] families. Taking all of these
things into account, the authors chose to use Level 3 end-to-end learning to implement the
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following 3D CNN models for classifying AD vs. CN and sMCI vs. AD patients. All of the
models used 3D, processed MRI scans with dimensions of 182 × 218 × 182.

DenseNet: A dense convolutional network (DenseNet) is a feed-forward network that
links each layer to the next. DenseNet has L(L + 1)/2 direct connections compared to L
connections in standard convolutional networks with L layers [76]. All preceding layer
feature maps are utilized as inputs for each layer, and its own feature maps are used as
inputs for all subsequent layers. DenseNets offer numerous appealing advantages: they
solve the vanishing gradient issue, improve feature propagation, enhance feature reuse,
and decrease the number of parameters by a significant number. In our investigation, we
used 3D DenseNet designs; each design was made up of four DenseBlocks with different
numbers of layers. The number of layers in each block, the number of parameters, and the
size of the deployed architectures are shown in Table 3.

Table 3. Implemented DenseNet architectures.

CNN Number of Parameters for 3D Data Number of Layers in DenseBlocks Size (in MB)

DenseNet121 11,244,674 [6, 12, 24, 16] 9392.20

DenseNet169 18,546,050 [6, 12, 32, 32] 9891.26

DenseNet201 25,334,658 [6, 12, 48, 32] 10,923.15

DenseNet264 40,251,266 [6, 12, 64, 48] 12,423.07

EfficientNet: EfficientNet [77] is a lightweight model based on the AutoML frame-
work [114] that was used to build a baseline EfficientNet-B0 network and evenly scale up
the depth, width, and resolutions using a simpler and effective compound coefficient to
enhance EfficientNet models B1–B7. On the ImageNet datasets, these models performed
well and outperformed the previous CNN models. EfficientNets are smaller, quicker, and
generalize effectively to achieve improved accuracy on other datasets often used for trans-
fer learning. However, they only support transfer learning for 2D data. In the proposed
research, end-to-end learning was used to categorize the various stages of AD by using
EfficientNet models B0–B3, as shown in Table 4. Due to the direct input of the 3D volume
into the model, the increased number of parameters, and the restricted GPU resources and
RAM, B4–B7 could not be implemented in the current study.

Table 4. Implemented EfficientNet architectures.

CNN Number of Parameters for 3D Data Size (in MB)

EfficientNet-B0 4,690,942 7800.03

EfficientNet-B1 7,449,058 10,222.55

EfficientNet-B2 8,717,764 10,630.40

EfficientNet-B3 12,061,546 14,293.25

2.3. Experimental Setup

The eight 3D CNN architectures were analyzed by applying binary auto-diagnostic
problems: (1) AD vs. CN and (2) sMCI vs. AD. The method for evaluating used stratified,
five-fold cross-validation, which is detailed in the algorithm provided below.
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Step 1: [Preparing Datasets]

1.1 Analyze and download baseline T1 MP-RAGE MRI images of AD, CN, and SMCI (stable for
at least 4 years, up to 15 years) individuals in NIfTI format: 245 (AD), 245 (CN), and
229 (sMCI).

[Data Sources: ADNI1, ADNI2, ADNI3, ADNIGO, and IXI].

1.2 Preprocess downloaded MRIs by using ANTsPyNet.

1.2.1 N4_bias_field_correction.
1.2.2 Denoise_image.
1.2.3 Brain_extraction by using 3D U-Net model brainy.
1.2.4 AffineFast Transformation to register the MRIs in MNI152_T1_1mm_brain template.

Step 2: Set the path for directories based on labels and datasets and then repeat steps 3, 4, and 5
for each dataset.
[Due to Google Colab Pro+’s limited GPU support, we created five different datasets for the
classification of AD vs. CN and five separate datasets for the classification of AD vs. sMCI in
order to perform a 5-fold, stratified CV by using self-written code.]
Step 3: Specify the path of folders and transformations to create the MONAI dataset.
[In our implementation, we simply used the MONAI load image transformation to read 3D
NIfTI images.]
Step 4: Create a PyTorch DataLoader for training, validation, and testing.
[Parameters: MONAI dataset, batch size = 2, number of workers = 2 to load data asynchronously
and make multi-processing easier. Set shuffle = True to make batches different each time and
increase generalization.]
Step 5: Follow the instructions below eight times for each of the eight models.
[DenseNet121, DenseNet169, DenseNet201, DenseNet264, and EfficientNet-B0 to -B3].

5.1 Set device = cuda.
5.2 Use Monai.networks.nets to create the model.

[Spatial dims = 3, in channels = 1, out channels = 2, loss function = CrossEntropyLoss (),
Adam optimizer with learning rate = 0.0001, AUC metric = ROCAUCMetric]

5.3 For fifty training epochs, use the outer loop.

5.3.1 Mini-batches for stochastic gradient descent require an inner loop.

5.3.1.1 Obtain a batch of input from the training data loader.
5.3.1.2 Set the optimizer’s gradients to zero.
5.3.1.3 For a given batch of data, the model makes an inference.
5.3.1.4 Compare the set of predictions to the dataset’s labels and calculate the loss.
5.3.1.5 The backward gradients over the learning weights are calculated.
5.3.1.6 Use the optimizer to update the model’s learning weights for this batch

using the observed gradients.

5.3.2 Evaluate the model: inner loop for calculating accuracy and AUC metrics and
validating relative loss on a set of data that was not included in the training phase.
[Utilize the validation data loader].

5.3.3 Compare the accuracy metric of the current epoch to the accuracy metric of the
previous epoch and save the best metric model.

5.4 Load the best metric model that was discovered in step 5.3.
5.5 Examine the model: [Use test data loader]

5.5.1 Data that were not used in the training or validation processes are classified in
this loop.

5.5.2 Calculate the precision, recall, AUC, and F1-score measures.
5.5.3 Make a ROC curve and a confusion matrix.

Step 6: Choose the model that performed best in tests.
ANTsPyNet utilities [79] were used to preprocess all of the MR images. ANTsPyNet is

a set of deep learning architectures and applications for basic medical image processing
that have been ported to the Python programming language. We compared all of the
state-of-the-art models using the same training and testing data, as described in Table 5,
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from the ADNI and IXI databases, since fair performance comparisons necessitated the use
of the same MRI data.

Table 5. Number of MR images used during implementation work.

Classification Training Validation Testing Original Dimension Dimension after Preprocessing

AD vs. CN AD-160, CN-160 AD-40, CN-40 AD-45, CN-45 256 × 256 × 176 182 × 218 × 182

AD vs. sMCI AD-160, sMCI-160 AD-40, sMCI-40 AD-29, sMCI-29 256 × 256 × 256 182 × 218 × 182

All of the work was completed using Google Colab Pro+ [115], which was released in
August 2021. It has several important features, including background execution, priority
access to faster GPUs, and more RAM. To use it, we must pay USD 49.99 every month.
Table 6 shows the resources provided by Colab Pro+ that we employed in our research.

Table 6. Google Colab Pro+ resources used in this research work.

Resources Option

GPU

CUDA-capable (NVIDIA Deep Learning GPU) (either Tesla V100 or P100). Although Colab Pro+ does
not promise support for a particular GPU, it does offer you first choice of what is available. You may
achieve a lower quality GPU even with Pro+ if you have a period of high use. The V100 Tensor Core is
the most sophisticated GPU created for graphics, high-performance computing (HPC), and AI [116]

RAM The “High-RAM” runtime option served its purpose by offering 53 GB of RAM and 8 CPU cores

Runtime 24 h. Watch out, since even on Pro+, the runtime disconnects after a while of inactivity

Background execution Yes

Storage 150 GB

MONAI [78], a freely available, community-supported, PyTorch-based framework for
deep learning in healthcare imaging was used to implement all the models in this study. In
a native PyTorch paradigm, it provides domain-optimized core features for constructing
healthcare imaging training workflows. NVIDIA and King’s College London launched
Project MONAI to create an inclusive network of AI researchers for the development and
exchange of best practices for AI in healthcare imaging between academic and enterprise
researchers. The authors were unable to discover any studies that employed MONAI to
determine the different phases of AD. Hyperparameters are an important aspect of neural
network training in addition to image preprocessing. Table 7 lists the hyperparameters that
were employed in all of the models in this study. Because of the 3D volumetric input and
large size of the CNN models, the Adam optimizer [117] was created with a mini-batch size
of 2 and an initial learning rate of 1 × 10−4. The majority of instances in the experiment
attained a convergence state within 50 training epochs, which we used as a performance
measurement during the cross-validation. Adam was the first “adaptive optimizer” to
acquire general acceptance [118]. Instead of using a separate learning rate scheduler,
adaptive optimizers include learning rate optimization directly into the optimizer. Adam
takes it a step further by controlling the learning rates per weight basis. In other words,
it allocates a learning rate to each free variable in the model. The value Adam sets to
this learning rate is an optimizer implementation detail that you cannot modify directly.
Because of this implementation logic of Adam, the authors did not employ any learning
rate schedulers [119] such as ReduceLROnPlateau or EarlyStopping mechanism. In this
study, the cross-entropy loss function and ROCAUCMetric were utilized. During the
backpropagation process, the output value of a neural network is usually a minimum,
considerably below the actual target value. The gradient is frequently relatively low,
making it difficult for the neural network to use the data it has to alter the weights and
optimize itself. The logarithm of the cross-entropy function enables the network to assess
such tiny faults and try to eradicate them. The cross-entropy function allows a CNN to
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utilize this change as guidance in the intended direction considerably more effectively than
the mean-squared error function does. The ROCAUCMetric indicates how well the model
can differentiate across classes. The better the model predicts 0 classes as 0 and 1 classes as
1, the higher the AUC.

Table 7. Network hyperparameters.

Hyperparameter Option

Number of epochs 50

Batch Size 2

Learning Rate 0.0001

Optimizer ADAM

Lss Function CrossEntropyLoss

auc_metric ROCAUCMetric

3. Results

The performance of eight DL models with similar batch sizes and epochs was exam-
ined and compared to gain a complete understanding of how well they performed for the
classification of AD vs. CN and AD vs. sMCI. Tables 8 and 9, as well as Figures 3 and 4,
illustrate the findings of five measures (precision, recall, F1-score, accuracy, and AUC) for
comparing the eight models implemented by using end-to-end learning for both training
and testing. For both kinds of classification, the DenseNet-based models outperformed the
EfficientNet-based models by a margin of 7 to 14 percent for AD vs. CN classification and
5 to 7 percent for AD vs. sMCI classification during testing. In all forms of classification,
DenseNet264 outscored the rest of the DenseNet family. EfficientNet-B0 outperformed the
other EfficentNet-based models. During the sMCI vs. AD classification tests, DenseNet201
and EfficientNet-B0 outperformed DenseNet264 by a small margin of 1 to 3 percent for sev-
eral evaluation matrices. Figures 5 and 6 demonstrate the confusion matrix and ROCAUC
of DenseNet264’s best fold for both categories of classifications. The confusion matrix and
ROCAUC for all other deployed models are given in Supplementary Materials. The first
thing we discovered was that stable MCI was noisy during training. This was deduced
from the data in Figure 6 and Table 9. This attribute might be because the class is biased
and is made up of at least two types of class: those who will acquire AD and those who will
stay stable. These might be the factors that make classification challenging. We obtained a
maximum accuracy of 82.50% for sMCI vs. AD classification, which has to be improved
in future research. We want to underline that, compared to accuracy [62], AUC is seen
as a more reliable indicator in the field of medical research. Figures 5 and 6 additionally
indicate that the area under each curve tended to be 1.0 in both training and testing for
AD vs. CN and 0.90 and 0.79 in training and testing for sMCI vs. AD, demonstrating the
classifier’s diagnostic capabilities.
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Table 8. The findings of the implemented models for AD vs. CN classification.

AD vs. CN (Average of
5-Fold Stratified CV) Metrics Dense

Net121
Dense
Net169

Dense
Net201

Dense
Net264 B0 B1 B2 B3

Training

Accuracy 99.25 99.50 99.50 100 99.75 98.75 99.00 99.50

Precision 99.28 99.52 99.52 100 99.75 98.78 99.01 99.51

Recall 99.25 99.50 99.50 100 99.75 98.75 99.00 99.50

AUC 100 100 100 100 99.94 98.34 99.52 99.74

F1-Score 99.25 99.50 99.50 100 99.75 98.75 99.00 99.50

Testing

Accuracy 97.33 92.89 98.22 99.55 90.91 86.91 91.55 85.56

Precision 97.41 94.35 98.30 99.56 92.90 89.98 93.30 88.84

Recall 97.33 92.91 98.22 99.55 90.91 86.93 91.55 85.58

AUC 97.33 92.89 98.22 99.55 90.91 86.91 91.55 85.56

F1-Score 97.33 92.674 98.22 99.55 90.58 86.40 91.38 85.11

Table 9. The findings of the implemented models for AD vs. sMCI classification.

AD vs. sMCI (Average
of 5-Fold Stratified CV) Metrics Dense

Net121
Dense
Net169

Dense
Net201

Dense
Net264 B0 B1 B2 B3

Training

Accuracy 78.50 81.25 78.75 82.50 80.50 78.25 77.75 72.00

Precision 78.99 82.83 79.45 84.10 81.44 79.39 79.33 73.99

Recall 78.48 81.25 78.75 82.50 80.50 78.25 77.75 72.00

AUC 85.42 86.23 83.20 87.63 81.38 82.59 83.14 73.49

F1-
Score 78.42 80.94 78.63 82.15 80.33 78.06 77.38 70.71

Testing

Accuracy 81.72 79.65 82.06 81.03 81.38 80.69 73.79 74.83

Precision 82.72 82.83 83.70 83.29 82.91 84.49 79.65 79.22

Recall 81.72 79.65 82.06 81.03 81.38 80.69 73.80 74.83

AUC 81.73 79.65 82.06 81.03 81.38 80.69 73.79 74.83

F1-
Score 81.59 79.07 81.84 80.60 80.96 80.00 71.97 72.60
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Figure 3. For AD vs. CN classification, the comparison of the results of five evaluation matrices of
eight DL models with epoch = 50 and batch size = 2.
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Figure 4. For AD vs. sMCI classification, the comparison of the results of five evaluation matrices of
eight DL models with epoch = 50 and batch size = 2.
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Figure 5. Confusion matrix and ROCAUC for DenseNet264’s best fold of AD vs. CN classification.
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4. Discussion

The following two processes were used to provide a clear and comprehensive descrip-
tion of the outcomes for a relative comparison of implemented models.

4.1. Ranking Mechanism

In this study, the basic ranking approach described by Zorlu et al. [120] was employed.
The overall rank of each model was determined individually for the training and testing
datasets. Because we had eight models and the best performance index was given the
highest rating, the maximum rate value for each performance index was eight (8). After
that, each model’s overall performance rating was derived by adding its total rank of
training and total rank of testing datasets. DenseNet264 obtained the highest-ranking
value among all eight DL models for both types of binary classification, as shown in
Tables 10 and 11, and was selected as the best model in this research. It may be inferred
that DenseNet264 can provide high performance capacity in the early detection of AD.
In the AD vs. CN classification, DenseNet264 obtained the best possible score. In AD vs.
sMCI Classification training, DenseNet264 outperformed DenseNet201, but DenseNet201
outperformed DenseNet264 in testing. Even in testing, DenseNet121 and EfficientNet-B0
outscored DenseNet264. The overall ranking of DenseNet264 was higher. It was observed
that DenseNet201, DenseNet121, and EfficientNet-B0 might be utilized to experiment with
more training data in order to build a generalizable DL model for the classification of
different phases of AD. For both classes, EfficientNet-B2 and -B3 had the lowest ranking.

Table 10. The acquired rankings of all DL model performance indices for AD vs. CN classification.

DL Model Stage Accuracy
Rank

Precision
Rank

Recall
Rank

AUC
Rank

F1-Score
Rank

Total
Rank

Grand
Total Rank

DenseNet121
Training 5 4 5 8 5 27

57
Testing 6 6 6 6 6 30

DenseNet169
Training 6 6 6 8 6 32

57
Testing 5 5 5 5 5 25

DenseNet201
Training 6 6 6 8 6 32

67
Testing 7 7 7 7 7 35

DenseNet264
Training 8 8 8 8 8 40

80
Testing 8 8 8 8 8 40

EfficientNet-B0
Training 7 7 7 7 7 35

50
Testing 3 3 3 3 3 15

EfficientNet-B1
Training 3 2 3 4 3 15

25
Testing 2 2 2 2 2 10

EfficientNet-B2
Training 4 3 4 5 4 20

40
Testing 4 4 4 4 4 20

EfficientNet-B3
Training 6 5 6 6 6 29

34
Testing 1 1 1 1 1 5

4.2. Comprehensive Indicators and Efficiency-Effects Graph

This study looked at how to combine these five measures (precision, recall, F1-score,
accuracy, and AUC) to estimate the performance of the eight models in a complete and
accurate way. Several of these five indicators, however, are interconnected. The F1-score
is a combined indication of accuracy and recall. It was also observed that certain models
performed well in terms of recall but badly in terms of accuracy and precision or vice versa,
indicating that the models did not function well. As a result, we utilized Yang et al.’s [121]
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approach to assess the models’ strengths in a more thorough manner. The dispersion
and standard deviations (std) of the four indicators (precision, recall, accuracy, and AUC)
were computed. First, the four indicators were added up (sum) for each model. Then,
we calculated their standard deviation (std). Finally, we added a constant (k = 0.04) to
the std to avoid making a division by zero mistake when figuring out the comprehensive
indicators. To calculate the comprehensive evaluation indicator, we divided the final two
numbers (sum/(std + 0.04)). This process is shown in Tables 12 and 13.

Table 11. The acquired rankings of all DL model performance indices for AD vs. sMCI classification.

DL Model Stage Accuracy
Rank

Precision
Rank

Recall
Rank

AUC
Rank

F1-Score
Rank

Total
Rank

Grand
Total Rank

DenseNet121
Training 4 2 4 6 4 20

51
Testing 7 3 7 7 7 31

DenseNet169
Training 7 7 7 7 7 35

50
Testing 3 4 2 3 3 15

DenseNet201
Training 5 5 5 5 5 25

64
Testing 8 7 8 8 8 39

DenseNet264
Training 8 8 8 8 8 40

66
Testing 5 6 5 5 5 26

EfficientNet-B0
Training 6 6 6 2 6 26

55
Testing 6 5 6 6 6 29

EfficientNet-B1
Training 3 4 3 3 3 16

40
Testing 4 8 4 4 4 24

EfficientNet-B2
Training 2 3 2 4 2 13

19
Testing 1 2 1 1 1 6

EfficientNet-B3
Training 2 1 1 1 1 6

15
Testing 2 1 2 2 2 9

Table 12. The acquired comprehensive indicators of all DL model performance indices for AD vs. CN.

Model Stage Accuracy Precision Recall AUC Sum Std Std + 0.04 Indicator

Dense
Net121

Training 0.99 0.99 0.99 1.00 3.98 0.00 0.04 91.02

Testing 0.97 0.97 0.97 0.97 3.89 0.00 0.04 96.39

Dense
Net169

Training 1.00 1.00 1.00 1.00 3.99 0.00 0.04 93.84

Testing 0.93 0.94 0.93 0.93 3.73 0.01 0.05 78.92

Dense
Net201

Training 1.00 1.00 1.00 1.00 3.99 0.00 0.04 93.84

Testing 0.98 0.98 0.98 0.98 3.93 0.00 0.04 97.27

Dense
Net264

Training 1.00 1.00 1.00 1.00 4.00 0.00 0.04 100.00

Testing 1.00 1.00 1.00 1.00 3.98 0.00 0.04 99.43

Efficient
Net-B0

Training 1.00 1.00 1.00 1.00 3.99 0.00 0.04 97.48

Testing 0.91 0.93 0.91 0.91 3.66 0.01 0.05 73.20
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Table 12. Cont.

Model Stage Accuracy Precision Recall AUC Sum Std Std + 0.04 Indicator

Efficient
Net-B1

Training 0.99 0.99 0.99 0.98 3.95 0.00 0.04 93.72

Testing 0.87 0.90 0.87 0.87 3.51 0.02 0.06 63.40

Efficient
Net-B2

Training 0.99 0.99 0.99 1.00 3.97 0.00 0.04 93.12

Testing 0.92 0.93 0.92 0.92 3.68 0.01 0.05 75.48

Efficient
Net-B3

Training 1.00 1.00 1.00 1.00 3.98 0.00 0.04 96.70

Testing 0.86 0.89 0.86 0.86 3.46 0.02 0.06 61.30

Table 13. The acquired comprehensive indicators of all DL model performance indices for AD
vs. sMCI.

Model Stage Accuracy Precision Recall AUC Sum Std Std + 0.04 Indicator

Dense
Net121

Training 0.79 0.79 0.78 0.85 3.21 0.03 0.07 43.49

Testing 0.82 0.83 0.82 0.82 3.28 0.00 0.04 72.89

Dense
Net169

Training 0.81 0.83 0.81 0.86 3.32 0.02 0.06 52.23

Testing 0.80 0.83 0.80 0.80 3.22 0.02 0.06 57.56

Dense
Net201

Training 0.79 0.79 0.79 0.83 3.20 0.02 0.06 52.19

Testing 0.82 0.84 0.82 0.82 3.30 0.01 0.05 68.44

Dense
Net264

Training 0.83 0.84 0.83 0.88 3.37 0.02 0.06 52.46

Testing 0.81 0.83 0.81 0.81 3.26 0.01 0.05 63.62

Efficient
Net-B0

Training 0.81 0.81 0.81 0.81 3.24 0.01 0.05 71.55

Testing 0.81 0.83 0.81 0.81 3.27 0.01 0.05 68.64

Efficient
Net-B1

Training 0.78 0.79 0.78 0.83 3.18 0.02 0.06 52.63

Testing 0.81 0.84 0.81 0.81 3.27 0.02 0.06 55.35

Efficient
Net-B2

Training 0.78 0.79 0.78 0.83 3.18 0.03 0.07 48.60

Testing 0.74 0.80 0.74 0.74 3.01 0.03 0.07 43.45

Efficient
Net-B3

Training 0.72 0.74 0.72 0.73 2.91 0.01 0.05 58.00

Testing 0.75 0.79 0.75 0.75 3.04 0.02 0.06 49.03

The number of model parameters was also employed as an indicator to assess the
models’ merits for the image classification task in addition to the comprehensive indicators,
which were the most relevant index. As a result, the efficiency-effects plot is presented
in Figures 7 and 8, where the horizontal coordinate is the number of model parameters,
and the vertical coordinate is the model’s comprehensive indicator. The model is better
and more efficient if the point representing it is as near as possible to the top-left corner
of the efficiency-effects graph. Models in the bottom-right corner have the opposite effect.
The EfficientNet-B0 model had the greatest overall metrics and reduced model parameters
for training, whereas the DenseNet121 model had the highest testing performance for
both types of classifications. DenseNet264 outperformed the others in terms of evaluation
matrices for AD vs. CN classification, but it also contained the most parameters, requiring
more resources to train. In terms of overall metrics, the DenseNet169 and EfficientNet-
B1, -B2, and -B3 models performed moderately. In testing, DenseNet201 did particularly
well, almost approaching DenseNet121 and better than DenseNet264 for both types of
classification. It may be inferred that having a higher number of model parameters does
not always mean improved overall model performance.
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Figure 7. A comparison of the comprehensive performance indicators of eight deployed models for
AD vs. CN classification.

4.3. A Comparison with Cutting-Edge Techniques Described in Publications

As indicated in Tables 14 and 15, we compared our classification results to those given
in the literature. The approaches that were compared ranged from learning Level 1 to
learning Level 3. We also compared our results for stable MCI vs. AD with those for
non-converter (stable) MCI vs. (progressive) converter MCI, since converted MCI indicates
AD and non-converter MCI indicates stable MCI.

End-to-end learning allowed us to distinguish AD from CN with the maximum degree
of accuracy, and, as a result, this classifier may be used in clinical situations after some
qualitative analysis. The issue of early auto-diagnosis of MCI patients who are at risk
of developing AD from a clinical standpoint is still more important than the AD vs. CN
conundrum for successful AD therapy. The categorization of AD and sMCI, on the other
hand, is more difficult than that of AD and CN, since the morphological alterations that
must be recognized are more subtle. Many of the research findings in Table 15 showed low
accuracy of 70 to 80%. Our model, likewise, did well in this categorization, performing
best among Level 3 learning classifiers. Only one of Pan et al.’s [54] Level 2 studies
outperformed us in sMCI vs. AD classification: by 1.3 percent. They proposed MiSePyNet,
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a CNN model for the 18F-FDG PET modality. MiSePyNet was based on the concept of
factorized convolution and used separable CNNs, slice- and spatial-wise CNNs, for each
view. However, sMCI vs. AD classification accuracy needs to be improved further to aid in
clinical settings. This can be achieved by using more training data, using a pre-trained 3D
model, and using local transfer learning. We could not find any research that employed the
DenseNet264 or EfficientNet family models to classify the various phases of AD.

Figure 8. A comparison of the comprehensive performance indicators of eight deployed models for
AD vs. sMCI classification.
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Table 14. Classification (AD vs. CN) performance of the published state-of-the-art methods.

References Learning
Level/Classifier

Subjects
AD vs. CN

Accuracy Precision SEN/Recall AUC F1-Score SPE

Toshkhujaev et al. [32] L1/RBF-SVM AD-71,
CN-171 91.57 - 81.82 - - 100

Suk et al. [27] L1/Regression + CNN AD-186,
CN-286 91.02 ± 4.29 - 92.72 92.72 - 89.94

Zhang et al. [10] L2/CNN AD-280,
CN-275 97.35 - 97.10 99.70 - 97.95

Li et al. [12] L2/CNN + RNN AD-194,
CN-216 89.10 - 84.6 91.0 - 93.1

Mehmood et al. [50] L2/VGG-19 (2D TL) AD-85, CN-75 98.73 - 98.19 - - 99.09

Tuan et al. [61] L2/CNN + SVM CN-98, AD-99 89.00 - - - - -

Song et al. [60] L2/3D CNN CN-126,
AD-95 94.11 - - - - -

Nanni et al. [51]

L2/AlexNet P

AD-137,
CN-162

- - 90.8 - -

L2/GoogleNet P - - 89.6 - -

L2/ResNet50 P - - 89.8 - -

L2/ResNet101 P - - 89.9 - -

L2/InceptionV3 - - 88.8 - -

L2/3DCNN - - 84.1 - -

A et al. [18] L2/2D CNN CN-635,
AD-220 96.8 - 94.0 - - 96.0

Li et al. [46] L2/CNN CN-216,
AD-194 85.9 - 81.5 88.4 - 89.9

Cui and Liu. [39] L2/3DCNN CN-223,
AD-192 92.29 - 90.63 96.95 - 93.72

Liu et al. [47] L2/2DCNN CN-100,
AD-93 93.26 - 92.55 95.68 - 93.94

Xu et al. [64] L2/SRC CN-117,
AD-113 94.8 - 95.6 - 94.0

Pan et al. [54] L2/CNN AD-237,
CN-242 93.75 - 91.49 96.87 - 95.92

Shi et al. [59] L2/MM-SDPN AD-51, CN-52 97.13 ± 4.44 - 95.93 ± 7.84 - - 95.93 ± 7.84

Lu e al. [49] L2/MDNN and TL CN-304,
AD-226 93.58 - 91.54 - - 95.06

Hon and Khan [43] L2/InceptionV4 AD-200,
CN-100 96.25 - - - - -

Liu et al. [73] L3/3D CNN AD-97,
CN-119 88.9 - 86.6 92.5 - 90.8

Oh et al. [9] L3/CAE + 3DCNN CN-230,
AD-198 86.60 ± 3.66 - 88.55 - - 84.54

Proposed L3/DenseNet264 CN-245,
AD-245 99.55 99.56 99.55 99.55 99.55 99.55

Abbreviations—P: pertained, MM-SDPN: multimodal stacked deep polynomial networks, MDNN: multistate deep
neural network, CAE: convolutional autoencoder, TL: transfer learning, SRC: sparse representation-based classification.



Mathematics 2022, 10, 2575 22 of 28

Table 15. Classification (AD vs. sMCI and sMCI vs. pMCI) performance of the published state-of-the-
art methods.

References Learning
Level/Classifier

Subjects
AD vs. Stable MCI OR Non-Converter (Stable) MCI vs. (Progressive) Converter MCI

Accuracy Precision SEN AUC F1-Score SPE

Suk et al. [27] L1/Regression + CNN pMCI-167,
sMCI-226 74.82 ± 6.80 - 70.93 75.39 - 78.82

Zhang et al. [10] L2/CNN pMCI-162,
sMCI-251 78.79 - 75.16 86.79 - 82.42

Li et al. [12] L2/CNN + RNN pMCI-164,
sMCI-233 72.5 - 61.0 74.6 - 82.5

Nanni et al. [45]

L2/AlexNet P

sMCI-234,
pMCI-240

- - - 69.1 ± 1.3 - -

L2/GoogleNet P - - - 70.0 ± 1.3 - -

L2/ResNet50 P - - - 70.4 ± 1.0 - -

L2/ResNet101 P - - - 71.2 ± 1.2 - -

L2/InceptionV3 P - - - 69.8 ± 3.5 - -

L2/3DCNN - - - 61.1 ± 1.0 - -

Li et al. [52] L2/CNN pMCI-164,
sMCI-233 71.0 - 59.8 71.9 - 79.0

Cui and Liu. [53] L2/3DCNN sMCI-231,
pMCI- 75.00 - 73.33 77.70 - 76.19

Xu et al. [56] L2/SRC MCI-110 77.8 - 74.10 - 81.50

Pan et al. [57] L2/MiSePyNet sMCI-360,
pMCI-166 83.81 - 75.76 88.89 - 87.50

Shi et al. [61] L2/MM-SDPN pMCI-43,
sMCI-56 78.88 ± 4.38 - 68.04 ± 9.99 - - 86.81 ± 9.12

Lu e al. [62] L2/MDNN and TL sMCI-409,
pMCI-112 81.55 - 73.33 - - 83.83

Shen et al. [63] L2/RNN pMCI-307,
sMCI-558 80.00 - 81.00 - - 80.00

Yang and Liu [66] L2/SVM sMCI-270,
pMCI-70 78.56 - 91.02 - - 77.63

Gao et al. [74] L3/3DCNN pMCI-168,
sMCI-129 76.0 - 77.0 81.0 - 76.0

Oh et al. [9] L3/CAE + 3DCNN sMCI-101,
pMCI-166 73.95 ± 4.82 - 77.46 - - 70.71

Proposed L3/DenseNet264 sMCI-229,
AD-229 82.50 84.10 82.50 87.63 82.15 82.50

Abbreviations—P: pertained, MM-SDPN: multimodal stacked deep polynomial networks, MDNN: multistate
deep neural network, CAE: convolutional autoencoder, TL: transfer learning, SRC: sparse representation-based
classification, MiSePyNet: multi-view separable pyramid network.

5. Conclusions

We show a variety of findings in this section. Even with the endemic challenges of
neuroimaging, where training data are few and sample dimensionality is large, end-to-end
learning without the use of hand-crafted features is achievable. We also performed an
in-depth comparative analysis of eight state-of-the-art models, DenseNet121, DenseNet169,
DenseNet201, DenseNet264, and EfficientNet family models from B0 to B3, that were
implemented by using 3D MRI input and cutting-edge software such as MONAI and
ANtsPyNet on a Pytorch-based GPU setup.

The experimental findings on the ADNI and IXI data showed that our model out-
performed current state-of-the-art models in terms of performance and efficiency. The
findings of this study may be used to advise researchers in determining the best model to
use and understanding the situations in which the models would give better outcomes.
A neural network model with more layers or more parameters does not always deliver
superior overall performance for a very small data regime. In general, neural networks
from the DenseNet family, such as DenseNet121 or DenseNet201 and DenseNet264, and
EfficientNet-B0 provide superior results for categorizing the various phases of AD. This
research, however, had some drawbacks.
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• First, the number of subjects employed for the training and test phases was still small
for promoting end-to-end learning. When more data become available in the future,
we think this method will help learning models to generalize better than approaches
that are made by hand;

• Second, our AD vs. sMCI classification accuracy was still only 82.50 percent, which
has to be improved in order to provide better therapy for AD patients. A pre-trained
3D CNN model, as well as an exploratory study into local transfer learning, is required
to achieve this goal in the future.

Despite these flaws, to the best of our knowledge, this is the first piece of research to
use end-to-end learning with volumetric CNN architecture to compare eight CNN-based
3D models to categorize the various stages of AD without hand-crafted features. In future
studies, to find the best network model, it may be necessary to perform a lot of experiments
that include network structures, hyperparameters, and other neuroimaging data.

Supplementary Materials: The supporting information can be downloaded at: https://drive.google.
com/drive/folders/1EpeDISfKc7p-DGba1XWdjpbp3qpq6PW1?usp=sharing (accessed on 26 June
2022). Researchers may obtain the preprocessing script for MR images with findings as well as the
scripts for all models. It contains two folders: one for the categorization of AD vs. CN and the other
for AD vs. sMCI.
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