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Resumen 

La Universidad de ciencias aplicadas de Viena, cuenta con una fábrica digital en miniatura en la 

cual se puede realizar la investigación, desarrollo e implementación de las diferentes tecnologías 

de la industria 4.0. Esta tiene varias estaciones de trabajo y con un robot móvil que se mueve 

entre ellas para hacer llegar al cliente las piezas correspondientes del mosquetón pedidas por el 

mismo. 

El tema principal de este trabajo fin de grado es el desarrollo de un procedimiento por el cual se 

pueda obtener la localización del robot calculando sus coordenadas y su ángulo; todo ello con 

el objetivo de integrarlo en la fábrica miniaturizada de la universidad. El método que se usará 

para conocer la posición y orientación del robot estará basado en la odometría de un robot 

diferencial.  

El control del robot se realizará mediante el puerto serie de Arduino o mediante Thing Worx, 

enviando los comandos necesarios para su movimiento. La pose (posición en coordenadas y 

orientación) del robot será enviada al servidor central haciendo uso de la comunicación IoT, 

donde se podrán visualizar y hacer uso para otros trabajos. 

Palabras clave: Mobile Robot, Position, Odometry, Arduino, Thing Worx 

 

Abstract 

The University of Applied Sciences Technikum Wien has a digital miniature factory in which it 

can be done the research, development and implementation of different technologies related 

with the 4.0 industry. This miniature factory has several working stations and a mobile robot 

that moves between them in order to deliver the corresponding carabiner parts ordered by the 

supposed customer. 

The main subject of this final bachelor project is the development of a procedure by which the 

localization of the mobile robot can be obtained by calculating its coordinates and angle; all with 

the aim of integrating it into the miniaturised factory of the university. The method to be used 

to know the position and orientation of the robot will be based on the wheel odometry of a 

differential robot.  

The control of the robot is done through the serial port of the Arduino or through ThingWorx, 

sending the necessary commands to make it moves. The pose (position in coordinates and 

orientation) of the robot will be sent to the central server using IoT communication, where it 

can be visualised and used for other projects. 
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Abstract 

The University of Applied Sciences Technikum Wien has a digital miniature factory in which it 

can be done the research, development and implementation of different technologies related 

with the 4.0 industry. This miniature factory has several working stations and a mobile robot 

that moves between them in order to deliver the corresponding carabiner parts ordered by the 

supposed customer. 

 

The main subject of this final bachelor project is the development of a procedure by which the 

localization of the mobile robot can be obtained by calculating its coordinates and angle; all 

with the aim of integrating it into the miniaturised factory of the university. The method to be 

used to know the position and orientation of the robot will be based on the wheel odometry of 

a differential robot.  

 

The control of the robot is done through the serial port of the Arduino or through ThingWorx, 

sending the necessary commands to make it moves. The pose (position in coordinates and 

orientation) of the robot will be sent to the central server using IoT communication, where it 

can be visualised and used for other projects. 
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Resumen 

La Universidad de ciencias aplicadas de Viena, cuenta con una fábrica digital en miniatura en 

la cual se puede realizar la investigación, desarrollo e implementación de las diferentes 

tecnologías de la industria 4.0. Esta tiene varias estaciones de trabajo y con un robot móvil 

que se mueve entre ellas para hacer llegar al cliente las piezas correspondientes del 

mosquetón pedidas por el mismo. 

 

El tema principal de este trabajo fin de grado es el desarrollo de un procedimiento por el cual 

se pueda obtener la localización del robot calculando sus coordenadas y su ángulo; todo ello 

con el objetivo de integrarlo en la fábrica miniaturizada de la universidad. El método que se 

usará para conocer la posición y orientación del robot estará basado en la odometría de un 

robot diferencial.  

 

El control del robot se realizará mediante el puerto serie de Arduino o mediante Thing Worx, 

enviando los comandos necesarios para su movimiento. La pose (posición en coordenadas y 

orientación) del robot será enviada al servidor central haciendo uso de la comunicación IoT, 

donde se podrán visualizar y hacer uso para otros trabajos. 
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1 Introduction 

It is well known that nowadays we are living the fourth industrial revolution. Industry 4.0 

signifies a new stage in the Industrial Revolution that places significant emphasis on 

connectivity, automation, machine learning, and real-time data. It encompasses concepts like 

the Industrial Internet of Things (IIoT) and smart manufacturing, combining physical production 

and operations with intelligent digital technology, machine learning, and extensive data 

analysis. This integration aims to establish a more comprehensive and interconnected 

ecosystem for manufacturing and supply chain-focused companies. Irrespective of their unique 

characteristics, all present-day companies and organizations share a common requirement for 

connectivity and access to up-to-date insights spanning processes, partners, products, and 

individuals [1]. 

 

The University of Applied Sciences Technikum Wien is developing a Digital Miniature Factory 

(DMF) in which it is being implemented several of the technologies related with the 4.0 industry, 

offering a good testing scenario in which students can try and develop their bachelor or master 

thesis.  

 

1.1 Motivation 

The utilization of mobile robots enables the development of adaptable and self-governing 

industrial automation that is crucial for establishing Smart Factories. These factories prioritize 

the exchange of information, facilitated by the integration of cutting-edge intelligent 

technologies into robotics, including the IoT, Artificial Intelligence (AI), and Big Data [2].  

 

One of the most important things about the operation of this type of robots, is how to know 

accurately its localization during the navigation, because with this ability they could operate 

autonomously in several environments, being this crucial for their successful development in 

real world applications.  

 

As a result, intelligent and autonomous mobile robots can be used, enabling the creation of 

highly efficient and optimal industrial processes that make better use of resources and 

ultimately lead to enhanced productivity in all aspects [2]. 

 

Indeed, employing a self-governing mobile robot equipped with a localization system in the 

DMF enables the transportation of necessary boxes at any given time without the involvement 

of a human operator to control the robot's movements. The robot will autonomously follow the 

lines marked on the ground and, using the method of wheel odometry, some protocols will be 

established to ensure its safety when approaching areas that demand specific attention or 

pose potential risks. 
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All this bachelor thesis will answer the following research question: Will it be possible to get 

precise coordinates of the mobile robot in the DMF using the wheel odometry method? 

 

1.2 Problem definition 

The DMF has several stations, each one of them can perform different processes individually. 

The sorting station is responsible for separating the different pieces by colours. The separating 

station guarantees the necessary number of nuts or bolts. The storage station stores complete 

or semi-complete kits of the final product. The pieces in boxes are transporting between 

stations by a mobile robot. The stations and the mobile robot are controlled by a central server, 

using an adequate protocol.  

 

Previously, a bachelor thesis has already been developed on this mobile robot, being the 

author of this Martin Kritzl in 2020. He developed the mechanical part of the mobile robot and 

the software to control the robot, so that the robot could be able to transport the pieces in 

boxes between the different stations of the DMF, by receiving commands from the central 

server or from the serial port from Arduino. The path the robot should take to a station must be 

the shortest distance to reach it, to do this, an algorithm was implemented to find the correct 

path to follow.  

 

 

Figure 1: Mobile Robot in the DMF. 

 

This bachelor thesis is also related with other thesis, which is being developed by Mrs. Claudia 

Lomas Blanco. She is doing a safety part, to avoid that the mobile robot could collide with the 

stations. She needs to know the localization of the robot in the factory; so, the main part of the 

present thesis is based on how calculate accurately the coordenates and orientation of the 

robot, knowed as its pose. This is one of the most critical aspects of controlling a mobile robot. 
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Indeed, other purposes of this thesis would be to enhance the control of the existing mobile 

robot which was developed before by Martin Kritzl, eliminating errors, improving its motion, in 

summary, making it more reliable and accurate. 

 

Odometry is the most widely used technique for determining the instantaneous position of a 

mobile robot. In practical scenarios, it provides readily available real-time positional information 

between intermittent absolute position measurements. The frequency with which these (often 

costly and/or time-consuming) absolute measurements must be performed depends largely on 

the accuracy of the odometry system. However, the well-known drawback of odometry is its 

inaccuracy, which leads to the accumulation of unbounded errors. Typical odometry errors can 

grow to such an extent that the estimation of the robot's internal position becomes completely 

erroneous after even a short distance of as little as 10 metres [3], [4]. 

 

In spite of this, in this bachelor’s thesis, the odometry-based control of the robot is going to be 

investigated with the aim of develop a reliable and accurate localization method for our mobile 

robot. Different odometry models are going to be studied as well as several options that can 

help to the motion of the robot. By the end of the research, it will be a better understanding of 

the opportunities and the potential of odometry methods, and the results could be aplicated in 

the fields of robotics and autonomous vehicles. 

  

1.3 State of research 

The next text [5] discusses certain aspects to be taken into account in the localization of an 

autonomous robot. Mobile robots face a difficult challenge with navigation, the robot must go 

through various stages to carry out a good navigation, perception, localisation, cognition and 

motion control. There are three localisation problems based on the initial position: position 

trancking, global positioning and kidnapped robot problem. The first one, involves the robot’s 

initial position being known, and it is based on continuosly track the robot’s location. Odometry 

and sensor data are used for tracking, but large uncertainty can make the localisation difficult. 

On the other hand, in Global localisation, the robot hasn’t any knowledge of its initial position, 

so it needs to locate itself within the environment. The last problem is related to when the 

robots is taken to an unknown location and must recover its pose. 

 

There exist several projects and researchs related with the localization of mobile robots that 

implement different solutions: 

 

This paper [6] focuses on incorporating odometry and a localization system based on the DC 

magnetic field present in the indoor environment for the navigation of a mobile robot. The DC 

magnetic field, generated by factors such as building rebar and magnetic materials, is known 

to exist in the environment. In this study, a magnetic sensor is utilized to detect and create a 
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magnetic map of this field. The robot's localization is achieved by comparing the readings from 

the sensor with the stored DC magnetic field information in the magnetic map. 

 

The following paper [7] aims to create a localization technique that utilizes affordable devices, 

specifically cameras, while still achieving satisfactory accuracy in tracking performance. Vision 

data is rich in information and has the potential for high tracking precision. However, due to its 

computational demands, visual-based localization is typically conducted at a low frequency. 

To improve the speed and accuracy of visual localization, it is integrated vision information 

with the robot's odometry using a Kalman-Filter. This combined approach allows for tracking 

performance with acceptable accuracy, with errors in the range of a few centimeters, at a 

frequency of approximately 35Hz. 

 

In the next project [8] it is introduced the Fast Sampling Plane Filtering (FSPF) algorithm for 

processing depth camera data in real-time for indoor mobile robot localization and navigation. 

The algorithm reduces the volume of the 3D point cloud by sampling points and classifying 

them as "plane filtered" or "outlier" points. The authors also present a localization algorithm 

that projects the plane filtered points onto a 2D map and assigns coorrespondences to lines 

the map. The proposed approach operates in real-time, achieves high frame rates, and 

requires low CPU usage. Experimental results demonstrate its effectiveness for indoor mobile 

robot localization and navigation compared to alternative methods. 

 

This paper [9] focuses on RFID-based localization for mobile robots, where RFID tags are 

distributed within the environment. To address this, the authors propose a novel algorithm that 

combines an RFID system with an ultrasonic sensor system to enhance localization accuracy. 

By incorporating distance data from ultrasonic sensors, the proposed system mitigates 

uncertainties associated with RFID systems. The authors introduce a global position estimation 

(GPE) process based on RFID and a local environment cognition (LEC) process utilizing 

ultrasonic sensors. To estimate the robot's position, a hierarchical localization algorithm is 

presented that integrates both GPE and LEC information. 

 

In the following article [10], the importance of odometry in estimating the pose of wheeled 

vehicles is addressed, and is emphasized the need to minimize systematic and nonsystematic 

errors for accurate results. The focus is specifically on systematic error sources in car-like 

mobile robots (CLMRs), and a novel calibration method is proposed to figure out these issues. 

By performing a few test drives, the kinematic parameters of the CLMR can be calibrated, 

reducing deterministic errors. Additionally, the paper suggests enhancing odometry accuracy 

by fusing redundant odometry measurements using the extended Kalman filter (EKF), which 

effectively reduces nonsystematic or stochastic errors. The combination of calibration and 

odometry fusion results in improved pose estimation for CLMRs.  
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Using wheel encoders, odometry can provide good estimates of a vehicle’s pose without prior 

knowledge of the environment. However, the main drawback of this method is the 

accumulation of errors. There exists two types of errors. Systematic errors can be eliminated 

or reduced by calibration kinematic parameters, we mean to errors produced by unequal 

wheels diameters or misalignment of them. The other type of error is known as nonsystematic 

error, these are stochastic and cannot be compensated directly. Wheel slippage is one of this 

type of error. Despite this, calibrating systematic errors can still improve the accuracy of 

odometry. [10] 

 

In this bachelor thesis, the localization of the mobile robot during navigation is going to be 

studied by Odometry, so it is expected to develop a method with which the mobile robot could 

calculate its position indoor accurately. 
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2 Development of the mobile robot’s odometry 

The basis hardware of the mobile robot that is used in this project was the mBot Ranger from 

the Makeblock kit. This underwent some changes in the previous project dedicated to the same 

mobile robot, as some mechanical parts were added that were necessary to satisfy all its 

needs. In fact, several of the robot's component parts were printed on a 3D printer. 

 

Another example is that the DC motors which supposed to be used to the proper movement 

of the robot were changed by the Smarts Servos MS-12A, that are developed also by 

Makeblock. It should be noted that these servos are going to be very important for this project, 

because due to them, we will acquire with the necessary information for executing our method 

in order to determining the robot’s whereabouts. Subsequently, within this thesis, we will 

provide more details regarding these elements.  

 

The robot can be controlled in two ways, one via the Arduino serial port, the other way is via 

Thing Worx. For this second manner, it was also necessary to include a raspberry pi, which 

allows such communication. 

 

Regarding the software, the robot is controlled by the Auriga microcontroller also from the 

MakeBlock kit. Me Auriga’s board is the updated version of Orion board and is equipped with 

multiple onboard sensors for temperature, sound, a gyroscope, a buzzer driver, wireless 

Bluetooth, etc. [11] Me Auriga is compatible with Arduino Mega 2560, so we used Arduino IDE 

to develop our code (based on C/C++); additionally, we needed to download and install the 

Makeblock library, enabling us to use all the robot’s components such as the servos or the 

RGB sensor, by taking advantage of the pre-existing functions within it. Note that the 

Raspberry Pi and the serial port is connected to the Auriga’s board via the USB interface of 

the microcontroller. 

 

 

Figure 2. Components of the Me Auriga microcontroller (modified by [11]). 
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2.1 Types of wheeled vehicles 

This section will give an overview of the different types of wheeled vehicles that exist according 

to their kinematic configuration. 

 

The kinematic configuration of a mobile robot refers to the arrangement and types of joints and 

wheels used for its mobility. Hence, it is crucial to familiarize oneself with the different types of 

wheels available to gain a deeper comprehension of the subsequent explanations regarding 

kinematic configurations. 

 

Driving wheels: Those that transmit traction to the ground and make our vehicle move. 

 

Steering wheels: These wheels are responsible for inducing the car to change its direction 

either to the left or right. 

 

Fixed wheels: The fixed wheels are not driving and therefore not controlled, and can only rotate 

around one axle. 

 

Idler wheels: These wheels can rotate freely and are usually located at the bottom of the robot. 

 

Moreover, it is important to know about the instantaneous centre of rotation (CIR), that is 

defined as ‘‘... the point fixed to a body undergoing planar movement that has zero velocity at a 

particular instant of time‘‘ [12]. This point is where all wheel axes intersect. 

 

The different kinematics configuration are (translated from spanish, [13]): 

 

- Diferential configuration. 

 

This configuration uses two independently driven wheels or tracks on either side of the 

robot, each of them will be equipped with a motor. By varying the speeds and directions 

of the wheels, the robot can move forward, backward, and rotate in place. Differential 

drive is simple and widely used in small to medium-sized mobile robots. 
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Figure 3. Diferential configuration. (modified by [14]) 

 

- Ackerman configuration. 

 

This configuration is commonly used in vehicles and incorporates two steered front 

wheels, together with a drive system for the two rear driving wheels. The front wheels 

are linked by a mechanism that allows them to turn at different angles, enabling the 

robot to follow curved paths and make smooth turns.  

Because of its similarity to conventional vehicles, it is also called a car-type vehicle. 

[15] 

 

 

Figure 4. Ackerman configuration. (modified by [16]) 

 

- Tricycle configuration. 

 

The setup of this system involves a front wheel that is both driven and steered, along 

with two rear wheels that are parallel and passive. Compared to the Ackerman 

configuration, this one offers increased maneuverability due to having only one steered 

wheel. However, it can still be prone to instability. 
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Figure 5. Tricycle configuration. (modified by [17]) 

 

 

- Synchronous configuration. 

 

This configuration involves all wheels being actuated simultaneously and rotating in 

synchronization. Each wheel can be both driven and steered. The transmission is 

accomplished using ring gears or concentric belts. 

 

 

Figure 6. Synchronous configuration with 3 steering wheels. (modified [13]) 

 

- Omnidirectional configuration. 

 

This configuration is built around three wheels that are both steered and driven. With 

three degrees of freedom, it possesses the ability to execute a wide range of 

movements and position itself in any desired location. 
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Figure 7. Omnidirectional configuration. (modified by [13]) 

 

 

2.2 Methods for the location of a Mobile Robot 

The location of a mobile robot encompasses both its position in three-dimensional space, 

represented by x, y, and z coordinates, as well as its orientation. This combination of position 

and orientation is commonly referred to as the robot's pose. Determining the mobile robot’s 

pose, it would be able to answer to the fundamental question of “Where am I?”.  

 

There exist various odometric techniques for determining the pose of a mobile robot including: 

 

 

- Wheel Odometry (WO). 

 

Wheel odometry (WO) is widely used and particularly common in self-contained 

localization systems for skid-steering robots. It is a simple method utilized in vehicles 

where the right and left wheels can operate independently with varying speeds. 

 

WO relies on wheel encoders to track the number of wheel revolutions, allowing for 

incremental pose estimation. The robot's current position is determined relative to its 

starting point. 

 

However, this technique has several limitations. One of its drawbacks is position drift, 

where measurement errors accumulate over time, leading to decreased accuracy. 

Additionally, wheel slippage can occur on complex and uneven terrains, further 

affecting the reliability of the measurements. 
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While wheel odometry is a straightforward and cost-effective localization method, it is 

not suitable for platforms that require precise and long-term reliable localization 

systems. [18] 

 

 

- Visual odometry (VO).  

 

This method (VO) consists of estimating the motion using only the input of one or 

multiple cameras. VO is used in various applications, including robotics, wearable 

computing, and augmented reality.  

 

It is functioning is similar to the wheel odometry, because VO incrementally estimates 

the pose by analysing the changes in motion reflected in the camera images. VO relies 

on having sufficient illumination and a static scene with enough texture for apparent 

motion estimation. 

 

Unlike wheel odometry, VO is not affected by wheel slippage in uneven terrain or 

adverse conditions, making it advantageous. VO’s relatives position error ranging from 

0.1 to 2%, making this method a supplement to wheel odometry and even to other 

systems like global positioning systems (GPS), inertial measurement units (IMUs) and 

laser odometry. [19] 

 

- Inertial Odometry (IO). 

 

The position, orientation, and linear velocity of the robot are determined in this system 

using measurements from an IMU sensor, relative to a specified starting point. 

 

An IMU sensor is a micro-electro-mechanical system (MEMS) device equipped with a 

3-axis accelerometer and a 3-axis gyroscope. The accelerometer measures 

acceleration not caused by gravity, while the gyroscope measures orientation by 

detecting gravity and magnetism. Due to their compact size and low power 

consumption, these MEMS-based sensors have become popular in resource-

constrained systems like drones and micro-robots. Additionally, IMU-based navigation 

systems do not rely on external references to estimate platform position accurately. 

 

However, these systems are prone to drifting issues caused by errors from various 

sources, such as consistent errors in gyroscope measurements and accelerometers. 

As a result, inertial odometry systems based on IMUs are not highly accurate and are 

not suitable for long-term localization applications. [18] 

 

- Laser Odometry (LO) or LiDAR Odometry. 
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LiDAR (Light Detection and Ranging) is an approach used to estimate the position and 

orientation of a platform by tracking laser speckle patterns reflected from objects in the 

surrounding environment. One of the advantages of LiDAR is its insensitivity to ambient 

lighting conditions and its ability to operate effectively in low-texture environments. 

 

The LiDAR-based sensing process typically involves two main stages: laser emission 

and optical observation. In the laser emission stage, a laser device emits coherent and 

spatial light into the environment. In the optical observation stage, the laser light 

interacts with objects, causing laser speckles to form on a 2D observation plane. These 

laser reflections are then monitored using optical detectors. By analyzing consecutive 

2D images, a 3D representation of the environment can be reconstructed. 

 

However, LiDAR odometry has some limitations. Implementing it on resource-

constrained platforms can be challenging due to the computational demands of the 

iterative optical matching process required to establish correspondences between 

points in two sets. Furthermore, accurately scanning and correcting motion distortion 

caused by certain objects, such as glass, poses significant challenges and can result 

in decreased performance of the LiDAR system. [18] 

 

- Radar Odometry (RO). 

 

Radar odometry (RO) is a method used to estimate the relative motion of a platform by 

analysing scans obtained from an onboard radar sensor. Radar, derived from "radio 

detection and ranging," utilizes radio waves to measure the velocity, range, and angle 

of objects in the vicinity. There are two types of radar available: pulse radar and 

continuous-wave (CW) radar. 

 

Pulse radar systems emit short yet powerful pulses and receive the echo signals during 

silent intervals. On the other hand, CW radar, particularly frequency modulated-

continuous wave (FMCW) radar, continuously transmits modulated CW signals. The 

main distinction between these two types lies in the fact that CW radar, with its 

continuous signals, can generate high-resolution images from the reflected signals. 

However, pulse radar typically has a blind spot in front of the sensor, with a range of 

up to 50 meters. 

 

CW radar, with its advantageous characteristics such as low sampling rate, low power 

consumption, and minimum target range, has garnered significant attention in 

localization and object avoidance applications. It can effectively generate high-

resolution two-dimensional images while maintaining a physically compact antenna by 

combining FMCW and synthetic aperture radar (SAR) techniques. 
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Radar serves as a long-range active sensor that remains unaffected by adverse 

weather conditions and is capable of operating in environments with low texture. [18] 

 

 

After conducting a thorough study and gathering relevant information, the decision was made 

to adopt the wheel odometry method for implementation. This choice was driven by its low cost 

and ease of implementation. While it is acknowledged that odometry tends to accumulate 

errors over distance, it is deemed suitable for our factory setting where the robot will only need 

to travel relatively short distances, mostly around 2 meters. Furthermore, since the robot will 

operate on a flat surface, any errors arising from uneven terrain can be avoided. Consequently, 

it is anticipated that the odometry method will yield satisfactory results. 

 

 

2.3 Wheel Odometry 

This chapter will discuss the equations needed to calculate the robot pose, as well as which 

calibration method will be used to adjust our parameters. 

 

2.3.1 Equations and calculations 

Our robot resembles a caterpillar, with 4 wheels on each side connected by a rubber chain. 

Out of the total 8 wheels, only two are actively driven by motors (the Smarts Servos MS-12A), 

while the others are fixed. 

 

 

Figure 8. Profile view of our mobile robot. 4 wheels can be seen, the bottom right wheel is the drive 

wheel and the other 3 are fixed. 
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When designing a tracked mobile robot, it is important to consider various parameters, which 

result in complex mathematical models. This is primarily because this type of robot is 

commonly used in outdoor terrains, where factors like ground cohesion, density, sliding, and 

sinking need to be considered. (translated from Spanish, [20]). 

 

Among the different kinematic configurations available, the most suitable one for our robot is 

the differential type with wheels. However, there is a notable distinction to keep in mind. In 

vehicles with wheels, the Instantaneous Centre of Rotation (ICR) remains constant and aligns 

with the wheel contact points on the ground. On the other hand, in tracked vehicles, the ICR 

varies and falls outside the track centres due to lateral sliding. This sliding is primarily caused 

by centrifugal force. Nevertheless, if our robot operates at low speeds or performs turns with 

a radius of 0, we can consider this lateral sliding insignificant. Another form of sliding that may 

occur is longitudinal sliding, influenced by the external ground factors. 

 

In conclusion, we can approximate our robot to a differential configuration. It will not be 

operating at high speeds, all turns will have a radius of 0, and the terrain it traverses is smooth, 

eliminating the need to consider terrain disturbances. (translated from Spanish, [20]). 

 

Now we will to proceed to explain the development of the equations that model the differential 

kinematics of our robot based on (translated from Spanish, [21]). 

 

The differential kinematics of translation and rotation depend on the individual motion of each 

drive wheel. The kinematic equations consistently calculate the coordinates relative to the 

centre point of the driving wheel axis. In the next figure, the location of a robot in the cartesian 

plane is shown: 

 

 

Figure 9. Location of the robot in the cartesian plane. (modified by [21]). 
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These equations are defined as follows: 

 

�̇� =  𝑣(𝑡)cos (𝜑(𝑡)) 

�̇�̇ =  𝑣(𝑡) 𝑠𝑒𝑛(𝜑(𝑡)) 

�̇� =  𝑤(𝑡) 

( 1) 

 

The position and orientation can be calculated by integrating the velocities over a period ∆𝑡. 

𝑥(𝑡) = 𝑥(𝑡𝑜 ) + ∫ v(t)cos(φ(t))dt 
∆t

  

𝑦̇(𝑡) = 𝑦̇(𝑡𝑜 ) +  ∫ v(t)sen(φ(t))dt 
∆t

 

𝜑(𝑡) = 𝜑(𝑡𝑜 ) + ∫ w(t)dt
∆t

 

 

( 2) 

However, when the observation period "∆𝑡" becomes extremely small, we can analyze 

infinitesimal changes (∆𝑥, ∆𝑦̇, ∆𝜑) in order to eliminate the need for integration. In simpler 

terms, if we maintain a constant and high sampling frequency during the robot's odometry, we 

can assume that the angular velocity of each wheel remains constant. This allows us to 

estimate the position and orientation using the following set of difference equations [21]. 

 

𝑥𝑘 = 𝑥𝑘−1 + ∆𝑥𝑘 

𝑦̇𝑘 = 𝑦̇𝑘−1 + ∆𝑦̇𝑘 

𝜑 𝑘 = 𝜑𝑘−1  + ∆𝜑𝑘 

 

( 3) 

By knowing the distance travelled by the wheels, the coordinates where the robot is located 

can be known. In our case, because we are using the smart servos MS-12 to move the wheels, 

we are able to know the angle turned (𝞱) by the wheels in radians. The relationship between 

the rotated angle and the linear displacement of a wheel is as follows: 

 

𝐷𝑟𝑖𝑔ℎ𝑡 =   𝑅𝑟𝑖𝑔ℎ𝑡 ∗ 𝜃𝑟𝑖𝑔ℎ𝑡 

𝐷𝑙𝑒𝑓𝑡 =   𝑅𝑙𝑒𝑓𝑡 ∗ 𝜃𝑙𝑒𝑓𝑡 

 

( 4) 

The differential configuration considers the vehicle lineal travel and the turned angle at the 

mid-point as the mean values associated with the right and left wheel (translated from Spanish 

[22]). 

 

𝐷 =
𝐷𝑟𝑖𝑔ℎ𝑡 + 𝐷𝑙𝑒𝑓𝑡

2
 

𝜑 =
𝐷𝑟𝑖𝑔ℎ𝑡 − 𝐷𝑙𝑒𝑓𝑡

𝐿
 

( 5) 

 

Where “L“ is the lenght of the axle connecting the two wheels.  
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The lineal displacement of the robot is divided in the x coordinate and the y: 

 

𝐷𝑥 =
𝐷𝑟𝑖𝑔ℎ𝑡 + 𝐷𝑙𝑒𝑓𝑡

2
cos(𝜑) 

𝐷𝑦̇ =
𝐷𝑟𝑖𝑔ℎ𝑡 + 𝐷𝑙𝑒𝑓𝑡

2
𝑠𝑒𝑛(𝜑) 

 

( 6) 

 

So finally, the position of the robot using the difference equations (3) and the lineal 

displacement (6) will be determined by the following equations: 

 

𝑥𝑘 = 𝑥𝑘−1 +
∆𝐷𝑟𝑖𝑔ℎ𝑡 + ∆𝐷𝑙𝑒𝑓𝑡

2
cos(𝜑𝑘) 

𝑦̇𝑘 = 𝑦̇𝑘−1 +
∆𝐷𝑟𝑖𝑔ℎ𝑡 + ∆𝐷𝑙𝑒𝑓𝑡

2
sen(𝜑𝑘) 

𝜑𝑘 = 𝜑𝑘−1 +
∆𝐷𝑟𝑖𝑔ℎ𝑡 − ∆𝐷𝑙𝑒𝑓𝑡

𝐿
 

 

( 7) 

 

2.3.2 Calibration test 

As it was said before, Odometry counts with different types of errors that must consider if an 

accurate localisation is required. There are two categories of errors [3], [23]:  

 

A) Non-systematic Odometry Errors. 

o Movement on uneven ground. 

o Movement over unexpected objects on the ground. 

o Wheel slippage. 

 

 

B) Systematic Odometry Errors. 

o Unequal wheel diameters.  

o Uncertainty about the effective wheel base. 

o Discrete resolution of the encoder (non continuous).  

 

In order to develop an accurate odometry, these errors must be examined. The methods used 

to model and overcome the problems created by the previous errors are classified in 

benchmarks and using multiple sensors. On which we are going to base and study in this 

thesis are the “Benchmark techniques”. They are based on testing the mobile robot over some 

predefined paths. In each experiment, the real value is compared with the value obtained by 

the odometry equations. [23] 
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As we have seen in the study of the equations, for the estimation of the position, it is necessary 

to calibrate two parameters: the wheels ratio and the distance between them. With the 

calibration, these two parameters will be adjusted. The first one is related to the distance 

travelled by the wheels, and the second to the turns.  

 

As it is said in the next text [23], this method offers a clear advantage in that it allows modelling 

and compensation of mechanical inaccuracies, such as the variations in wheel diameters. 

However, it is important to note that this method specifically addresses systematic errors and 

does not provide estimation for non-systematic errors.  

 

The calibration process that it is going to be done in this project, consists in three steps, that 

should be done order, in first place the distance must be calibrated, then the deviations and 

for last the turns.  

 

The following tests had been done before tried to implement the mobile robot in the whole 

factory. In fact, the robot did not follow any line to carry out its actions, as it does in the DMF. 

Instead, it was given straightforward commands to either move straight ahead or make a turn. 

The purpose of this approach was to test the reliability of the wheel odometry method for our 

robot. It's well-known that the robot's caterpillar mechanism (tracks) can cause inaccuracies 

and potential slippage, which can result in complications, so maybe this method would not 

have been the best. 

 

1. First Test: Distance Calibration. 

In this first test, the robot must be programmed to move in a straight line. The length of 

the line must be known. In our case, we have measured the straight line with the meter, 

as can be seen in the Figure 10. 

 

 

Figure 10. Distance and Deviation Calibration. 
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With this test, the diameter of the wheels is adjusted, so that in combination with the 

servo angles readings we can achieve an accurate measurement for the robot’s travel 

along the line that closely approximates the actual value. 

 

Initially, we begin with a rough radius measurement of 2 centimetres.  

The robot will move 61.1centimetres over the line, when it reaches the ending, we will 

check the value calculate by the odometry equations. If it exceeds the actual distance 

of the line, the radius will be reduced, and if the opposite is the case, the radius will be 

increased. 

 

Table 1. Results of the first calibration test of the robot. 

RATIO (m) REAL DISTANCE (m) ODOMETRY (m) 

0.02 0.611m 0.5908966 

0.021 0.611m 0.61598594 

0.0205 0.611m 0.61506546 

0.0206 0.611m 0.61634677 

0.0204 0.611m 0.61125347 

0.02045 0.611m 0.60999 

0.02047 0.611m 0.6117707 

 0.611m 0.61183227 

 0.611m 0.61116539 

 

 

2. Second Test: Deviation Calibration. 

In this second test, we calibrate the deviation of the robot following a straight line. In 

certain cases, when we instruct the robot to move in a straight line, the calculated 

distance based on odometry may indicate movement in both coordinates, which is not 

logically possible. This discrepancy arises from slight variations in the wheels, even if 

their differences are only a few millimetres. As a result, the next course of action 

involves adjusting the spokes of each wheel to ensure that they are calibrated to move 

an equal distance. 
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Figure 11. Calibration Test. 

 

If the robot determines a deviation towards the left, it will be necessary to reduce the 

radius of the right wheel. Similarly, if it detects a deviation towards the right, the radius 

of the left wheel should be decreased. 

 

3. Third Test: Turns Calibration. 

In this third test, two procedures were conducted. The first procedure involved ensuring 

the accurate adjustment of a 90-degree turn. The second procedure entailed 

performing a complete calibration square.  

 

In the initial experiment, the robot was directed to move in a straight line for 68.6cm. 

Subsequently, it was instructed to make a 90-degree turn and continue moving forward 

for another 68.6cm. This sequence allowed the robot to cover the desired distance in 

both the x and y directions. 

If the robot detects that it has turned less than 90 degrees, it indicates that the 

parameter L is greater than it should be. Conversely, if it detects that it has turned more 

than 90 degrees, it suggests that the distance between the axes is smaller than 

expected. 
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Table 2. Results of the third calibration test. 

L (m) 

REAL 

DISTANCE 

(cm) 

x (cm) y (cm) 𝞱 (degrees) 

0.235 64.6 74.07 62.295639 81.4465 

0.23 64.6 71.0255 62.37 84.1521 

0.225 64.6 64.943 63.435 89.54 

0.22 64.6 64.233 63.7824 91.233 

 

 

The experiment is concluded once we observe that the turn made by the robot is 90 degrees 

or as close to 90 as possible. With L=0.225, it is obtained the closest value, a turn of 89.54 

degrees.  

To confirm that this L value is good, the calibration square test called “Uni-directional square 

path” will be conducted as we can see in [3]. This test involves directing the robot to follow a 

unidirectional path in the form of a square, whose sides measure 64.6cm. 

 

 

 

Figure 12. Unidirectional square path our robot must do. 
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Table 3. Results of the third calibration test of the robot. 

 

FIRST TRY SECOND TRY 

x (cm) y (cm) 𝞱 (degrees) x (cm) y (cm) 𝞱 (degrees) 

First 

straight 
64.8 0.9699 -0.0959 64.39048 1.0186 0.3154 

First 

turn 
65.7532 0.025158 -91.5732 65.24 0.109377 -90.12411 

Second 

straight 
63.8818 64.3792 -91.8162 63.4338 -64.1658 -91.61666 

Second 

turn 
63.5354 -65.8057 -180.54 63.1587 -65.7450 -177.5026 

Third 

straight 
-1.0519 -65.3603 -180.331 -1.68946 -66.9762 -177.4706 

Third 

turn 
-2.4117 -63.9541 -265.7682 -2.96938 -66.9513 -261.6251 

Fourth 

straight 
-8.7919 -1.69519 -265.6892 -8.7031 -1.91513 -262.2178 

Fourth 

turn 
-7.5708 -0.12861 -349.2305 -8.612 -2.3862 -345.2011 

 
 
As it can be seen in the experiment, initially, the odometry results closely matched the expected 
values. However, as the robot performed the square, the values began to deviate further and 
further away, reaching approximately -8 cm in x and -2 cm in y coordinates, whereas they 
should have been closer to 0.  
A similar divergence was observed in the angle, which should have been 360 degrees at the 
end. It is evident that these discrepancies arise due to various disturbances, such as wheel 
slippage, and the errors accumulate progressively over time.  
 
Despite these challenges, the obtained results are still considered reasonably good. Therefore, 
the utilization of this method to calculate the orientation and position of our robot is deemed 
valid. 
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3 Implementation in the DMF 

This chapter will explain how the implementation has been carried out within the DMF. It will 

talk about how the odometric equations have been implemented in Arduino, which variables 

have been chosen, etc. It will also talk about how the coordinates are sent to thing Worx. 

 

To begin with, a decision was made regarding the placement of the coordinate origin, which 

was determined to be at the sorting station. This choice was because the robot departs from 

this station at the beginning. Once this origin was established, all the other stations would be 

positioned using coordinates relative to this origin. In essence, all coordinates would be 

referenced in relation to this chosen origin. In the following picture it can be seen where is 

located: 

 

 

Figure 13. Origin of coordinates in the sorting station. 

 

It coincides with where the centre of mass of the robot would be located if the robot is 

placement in the station. 

 

3.1 Arduino 

Each time the robot detects which station it is at, it will obtain the corresponding values of the 

station coordinates, so that each time it must move from that station to another station, the 

odometry will start to be calculated from those coordinates. As we have said before, the other 

stations coordinates were measured from the origin (in the sorting station). 

 

In the “int ExtendedLineFollower::readStationColour()” function, the robot determines in which 

station is at, so in this function it is observed what coordinates and angle values it obtains. 

 

When the robot starts at the sorting station, the coordinates it will have would be: 

 

𝑥 = 0, 𝑦̇ = 0, 𝑝ℎ𝑖 = 180 



 

27 

The explanation why phi will be equal to 180, is due to the fact that when the robot has to leave 

that station it will go backwards, having to make a half turn, and as the direction of the x-axis 

is as shown in the Figure 13 it must be taken into account that after turning half a turn the 

degrees would be 0 if it were perfectly aligned with the black line to start following it. 

 

 

 

Figure 14. Position before leaving the sorting station. 

 

 

Figure 15. Position after leaving sorting station. 

 

The odometry values calculated were the following:  

 



 

28 

 

Figure 16. Odometry values after leaving sorting station. 

The calculated coordinates are quite accurate. 

 

As we have explained for the first station, in the others are done in the same way. 

For example, for the quality check station, the coordinates are measured from the origin as it 

can be seen: 

 

 

Figure 17. Quality check station coordinates. 

The coordinates of the other stations can be seen in the Appendix B at the end of this thesis. 

 

Inside this function, it has also been incorporated that the servos reset their angles and set 

them to 0, so that if the robot has just arrived from another station, it will not accumulate errors 

in the calculation of the odometry on its next journey.  

 

The implementation of the odometric equations in the Arduino code is done as seen in section 

2.3.1 but considering some specific details. 

 



 

29 

To begin with, it was taken into account that each time the program execution is restarted, the 

servos would have to be initialised so that they start at angle 0. In order to do this, the 

“mysmartservo.setZero(servoId)” function of the make block library is called. 

 

The odometry shall be calculated every certain period, which should be small in order to make 

the sampling as accurate as possible. Our sampling period is of 5000 microseconds. 

So, when the time period elapses, the new servo angles will be obtained with the 

“mysmartservo.getAngleRequest(servoId)” make block function. As we have already seen in 

the equation calculations section, the odometry is calculated from the small increments of the 

wheels, so the difference between the new angle obtained and the previous one is calculated 

also each time. 

 

Then, the linear displacements of each wheel are calculated, by multiplying each wheel radio 

with its corresponding angle increment. We had to consider that the left servo (if we look at the 

robot from the front) is placed upside down, so if the robot moves forward the angles will be 

counted in negative, so we add a minus sign to its linear increment to be able to use it in the 

equations. 

 

Finally, the equations can already be used to obtain the x and y coordinates, and the orientation 

phi. 

 

3.2 Thing Worx  

Thing Worx is used for IoT application development and deployment. It provides a platform for 

connecting, managing, and analysing data from devices and sensors. It utilizes modelling 

approach instead of traditional coding, allowing content developers to prioritize agility and 

application composition. [24] 

 

In Arduino code, the coordinates are sent as follows: 

 

 

Figure 18. Arduino code to send the coordinates. 
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It was necessary to use a timer, so that not all coordinates are sent to the server, as it is a 

large amount of data causing a long delay in the update on the Thing Worx server. Therefore, 

the coordinate values are only sent when a certain time interval elapses, which is 2.5 seconds. 

 

In order to get the values of x, y and phi to Thing Worx, the code written in python, which is 

used to connect Thing Worx with the mobile robot, had to be modified. 

 

Figure 19. Connection to Raspberry Pi. 

To the previous python code, is has been included: 

 

 

Figure 20. Python code for send the coordinates I. 
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Figure 21. Python code for send the coordinates II. 

 

The 3 variables corresponding to the coordinates were created:  

 

 

Figure 22. Coordinates variables in Thing Worx. 

 

These variables are numeric and logged. 

 

3.3 Tests and Results 

During the initial testing phase within the miniature factory, an issue arose when attempting to 

command the robot to move between stations using the "p" command and following the 

shortest path. Although the path calculation was accurate, the line follower functionality 

stopped to work correctly. Efforts were made to rectify this error; however, due to time 

constraints, it was not feasible to fix the problem with the robot's function. As a result, the 

odometry implementation tests within the factory were conducted solely by instructing the robot 

to follow the lines, so when the robot encountered a branch with multiple paths to follow, as 

the route had not been calculated, it continued straight ahead. Therefore, it may appear that 

the only implemented route between stations is the one from the sorting area to the storage 

location. To do this, we create a new function in Arduino called “followBlackLine()” that 
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implements all the code of “follow()” function unless the part when the path is obtained. To call 

this function the command to introduce is “x”. 

 

The tests were done through the serial port of Arduino because it is quicker than with Thing 

Worx, but as it could be seen in the previous chapter, the same coordinates that are sending 

to the Arduino port will be sending to Thing Worx as well. 

 

To initiate our testing, we directed the robot to follow the longest line in the factory, specifically 

the one stretching from node 9 to the bad-parts station. The objective of this initial test was to 

observe and evaluate the odometry results obtained, which were calculated using the radius 

and L values determined during the robot calibration in section 2.3.2. We then compared these 

results with the expected outcomes.  

 

 

Figure 23. Odometry results from node 9 to bad-parts I. 

The results should be: 𝑥 = 157 𝑐𝑚, 𝑦̇ = 0 𝑐𝑚 , 𝑝ℎ𝑖 = 0 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. 

As anticipated, the obtained results did not come as a surprise. We recognized that the initial 

calibration was performed without the robot following any line, and when it subsequently 

followed a line, the robot's movements became more abrupt, potentially affecting the outcomes 

of the equations. Therefore, it is necessary to readjust the ratios and the value of L directly 

within the factory setting. 

 

We observe that the robot calculates a wrong displacement to the left, the radius of the right 

wheel (RL) must be decreased: 

 

 

Figure 24. Odometry results from node 9 to bad-parts II. 

 

The y coordinate has a better result when it is closer to 0, but we must increase both so that 

the value of x increases as well.  

Doing several tests, and by modifying the ratios values little by little as explained in the 

calibration chapter 2.3.2, we finally obtain the following results with these ratios: 
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𝑅𝑅 =  0.0199 𝑚 

𝑅𝐿 =  0.0201 𝑚 

 

 
 

Figure 25. Odometry results from node 9 to bad parts III. Left was the first test and right the second. 

The obtained results are remarkably close to the expected ones, indicating a good level of 

accuracy. Nonetheless, it is essential to consider the presence of random factors that can 

influence our robot's performance, which are beyond our control. As a result, there may be 

instances where, despite having identical ratios values, the outcomes might deviate more than 

anticipated from the theoretical expectations. The provided Figure 25 illustrates this point, 

where both simulations were conducted using the same values, the second simulation has a 

less favourable result in terms of the y-coordinate. 

 

Now we test that it follows the straight line from the node 8 to the storage station, it will only 

have x coordinate, in fact the real values it would have: 𝑥 = 117.8 𝑐𝑚, 𝑦̇ = 0, 𝑝ℎ𝑖 = 0 

 

 

Figure 26. Odometry results from node 8 to storage. 

The results are good as they are very close to the expected. 
 
Then we calibrate the turn (corner) from the end of the grey bifurcation (node 9) to the storage 
station. It turns at node 8, and arrives at the storage station, starting at 0,0,0: 
 
If we measure from the grey to where the station is, it is about 33 cm approximately. The results 
must be: 𝑥 = 33 𝑐𝑚, 𝑦̇ = 117.8 𝑐𝑚, 𝑝ℎ𝑖 = 90. 
 

 
 

Figure 27. Odometry results from node 9 to storage. 
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The results obtained are very close to what we want, the L parameter and the ratios values 
calibrated for this are: 
 

𝑅𝑅 = 0.0199 𝑚 

𝑅𝐿 = 0.0201 𝑚 
𝐿 = 0.223 𝑚 

 
Even so, as the different tests are carried out, a small change of the values may be required, 
so that they give the best possible results. 
 
 

- Sorting station to storage station. 
 

The values the equations must calculate are: x = 82.6 cm, y = 117.8 cm, phi = 90 degrees. 
 

 

Figure 28. Odometry results from sorting to storage. Test 1. 

First, the coordinates obtained after leaving the station are displayed. It should be noted that 
the calculation of the coordinates in this movement is quite accurate, and they always give 
values very close to those required. 
Then we obtain the values when the robot reaches the storage, we can also confirm that are 
quite close. 
 
Other test was carried out to confirm the good results: 

 

 

Figure 29. Odometry results from sorting to storage. Test 2. 

 

- Storage to sorting station. 
 

The values the equations must calculate are: x = 0 cm, y = 0 cm, phi = −180 degrees. 
 
 

 

Figure 30. Odometry results from storage to sorting. Test 1. 
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In this particular test, we observed that the obtained results deviated from our expectations. 
Notably, there was an 8cm difference in the x-coordinate and a 13cm difference in the y-
coordinate. Upon examining the final angle phi, we noticed that it had a value of -191, which 
exceeded the expected range of -180. This discrepancy in angle contributed significantly to 
the deviation in the coordinates. Consequently, we decided to adjust the value of L by 
increasing it to 0.224, aiming to reduce the magnitude of rotation calculated by the robot. This 
illustrates the need for occasional parameter modifications during testing in order to achieve 
results that align more closely with the desired outcomes. 
 

𝐿 = 0.224 𝑚 
 

 
 

Figure 31. Odometry results from storage to sorting. Test 2. 

The results have improved. 
Another tries: 
 
 

 

Figure 32. Odometry results from storage to sorting. Test 3. 

The results are still better than the first time.  
 
 

- Bad parts to node 9. 
 

The values the equations must calculate are: x = 41.7 cm, y = 4 cm, phi = −90 degrees. 
 
Doing the test with the previous L value: 
 

 

Figure 33. Odometry results bad parts to node 9. Test 1. 

The rotation exceeds the desired amount by a small margin of 5 degrees. Even though this 
difference may seem insignificant, if the excess rotation persists over an extended period, it 
results in the accumulation of errors. Consequently, the coordinates exhibit significant 
variations. 
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If we try to reduce that angle, by decreasing the L: 
 

𝐿 = 0.225 𝑚 
 
 

 
 

Figure 34. Odometry results bad parts to node 9. Test 2. 

An improvement in the values obtained can be observed. 
 
Now we are going to show what happens in Thing Worx when we order the robot to leave the 
bad parts station: 
 

 

Figure 35. Thing Worx coordinates in Bad-Parts station. 

 

 

Figure 36. Thing Worx coordinates after leaving Bad-Parts.  
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4 Conclusion 

In conclusion, the utilization of wheel odometry proved to be a valuable method for estimating 

the robot's position and orientation. Through the calibration process and parameter 

adjustments, we were able to improve the accuracy of the odometry results in the DMF as can 

be seen in the previous chapter 3.3.  

 

However, it is important to acknowledge the limitations of wheel odometry, particularly its 

susceptibility to systematic errors and the accumulation of inaccuracies over time. Examples 

of this can be seen in the tests performed at the DMF, the movement of the robot's leave 

station has always given acceptable results, because it was a short distance involved, but as 

the robot had to traverse longer distances, the accuracy of the odometry results deteriorated. 

In addition, the deviation in rotations, even by a slight amount, can lead to substantial 

discrepancies in the final coordinates due to error accumulation. Therefore, it is crucial to 

carefully monitor and calibrate the odometry system to minimize these errors and ensure 

reliable position estimation.  

 

As far as non-systematic errors are concerned, it is possible that due to the use of this type of 

wheels, the robot suffers from slippage, which is a source of errors. The line follower also 

occasionally exhibits jerky movements, particularly when executing 90-degree turns around 

corners, making precise calculation more difficult too. 

 

Additionally, it has been determined that the calibration of odometry must be periodically 

conducted. Optimal values for certain paths may not be suitable for others, necessitating 

adjustments. Similarly, as the robot's battery level decreases, modifications to the radius and 

L parameters become necessary. It is speculated that the power reaching the servos could be 

a contributing factor, because when the battery drains over time, the expected results are no 

longer obtained. 

 

To summarize, precise results with minimal error margins of a few centimetres are achievable 

with well-calibrated radius and L values. However, to ensure the adequacy of these values in 

each simulation, recurring calibration is essential. In fact, it is recommended to perform 

relevant tests daily to validate the accuracy of the robot's calculated coordinates. 
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5 Points for improvement or expansion in a future 

In relation to odometry, future research could explore the integration of advanced calibration 

methods to reduce systematic errors. This could involve incorporating additional sensor or 

machine learning algorithms to refine the parameters. 

 

Combining wheel odometry with other localization techniques, like visual odometry or GPS, 

helping mitigate the limitations and error accumulation of wheel odometry, to enhance overall 

accuracy and robustness. 

 

Correct non-systematic errors, implementing error correction mechanisms such as filtering 

techniques, mitigate the impact of random noise and disturbances on odometry 

measurements. 

 

Evaluate and study alternatives odometry methods, or other localization systems in general. 

 

Furthermore, future considerations should encompass potential hardware enhancements, 

such as altering the wheel type, as well as addressing the issue that cause the robot's inability 

to function properly when employing the Dijkstra algorithm for inter-station movement. 
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A Appendix: Some Arduino functions. 
Some arduino functions created and others that were modified from existing ones are shown. 
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B Appendix: Station coordinates. 
 

 

 

Figure 37. Station coordinates. 


