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Abstract: Heterocycles are particularly common moieties within marine natural products. Specifically,
tetrahydrofuranyl rings are present in a variety of compounds which present complex structures and
interesting biological activities. Focusing on terpenoids, a high number of tetrahydrofuran-containing
metabolites have been isolated during the last decades. They show promising biological activities,
making them potential leads for novel antibiotics, antikinetoplastid drugs, amoebicidal substances, or
anticancer drugs. Thus, they have attracted the attention of the synthetics community and numerous
approaches to their total syntheses have appeared. Here, we offer the reader an overview of marine-
derived terpenoids and related compounds, their isolation, structure determination, and a special
focus on their total syntheses and biological profiles.

Keywords: marine natural products; oxygen heterocycles; tetrahydrofuran; total synthesis; biological
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1. Introduction

Marine organisms are a source of intriguing and fascinating compounds. These living
beings have continuously evolved over time, since they are part of the oldest habitat on
earth. Being also the largest ecosystem, the ocean has the potential to offer innumerable
compounds with interesting biological activities yet to be discovered [1]. This is supported
by the fact that hundreds of new molecules are reported within the scientific community
every year [2–4].

Usually, the isolation of pure active compounds is a time-consuming and expensive
process, due to the need of efficient extraction processes and sequential purification steps.
Moreover, large amounts of raw materials have to be collected to finally isolate fairly low
quantities of the desired compounds.

Fortunately, the great contribution of chemists in the field of total synthesis and asym-
metric catalysis over the last decades has had countless benefits. On one hand, even though
nuclear magnetic resonance (NMR) techniques are very powerful tools, in some cases,
the characterization of complex molecules can be difficult, leading to misassignments [5].
Fortunately, total synthesis has emerged as a—somewhat—costly but effective tool for the
determination of the absolute configuration of marine metabolites. On the other hand,
synthesis provides access to sufficient quantities of the desired compounds for further
extensive biological studies.

Within the marine-derived metabolites, terpenes represent one of the most significant
families. They are a large and diverse group of compounds that usually present valuable
pharmacological properties. Various reviews summarize the discovery of a high number of
these metabolites in recent years from different sources, namely sponges [6,7], fungi [8–10],
and corals [11,12], among others [13,14].

Other common structural motifs present in marine drugs are heterocycles. Within
them, five-, six-, and seven-membered oxygenated heterocycles are frequently found in
such bioactive compounds. The six-membered tetrahydropyrans, the most abundant, are
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common targets of study [15,16]. The corresponding seven-membered oxepanes, and their
appearance in relevant bioactive marine compounds, were reviewed by our group [17].
Regarding tetrahydrofurans, Fernandes and coworkers recently reviewed the most iconic
examples of total synthesis of 2,3,5-trisubstituted tetrahydrofuran-containing natural prod-
ucts [18,19]. We have also recently summarized the synthesis and biological properties
of marine-derived tetrahydrofuran-containing compounds, focusing on the polyketide
family [20].

Continuing our series, here we give an overview of tetrahydrofuran-containing marine
drugs, focusing on the terpene family and related compounds. We searched SciFinder for
tetrahydrofuran-containing compounds with biological activity, focusing on the period
2000–2022. Our search was refined to compounds of the terpenoid family of compounds of
marine origin, finding 81 compounds (Table 1). The main source (see Figure 1) was algae
(32 compounds), followed by sponges (19 compounds), fungi (15 compounds), lampreys
(6), bacteria (5), and corals (4). Excluding nonterpenoid lipids, we found 55 terpenoid
compounds (see Figure 2), most of them being triterpenes (23) followed by meroterpenes
(14), monoterpenes (9), diterpenes (5) and, finally, sesquiterpenes (4).
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Table 1. Overview of compounds from this review, their sources, classes, and species (background
color code coincides with that of Figure 1).

Marine Source Compound Class Marine Species Compound Name
Lampreys
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We want to offer the reader an overview of the most recent tetrahydrofuran-containing
terpenoids and related compounds of marine origin, their natural source of isolation,
biological properties, and synthetic strategies towards them. We have also included classic
examples, as their structure and activity are closely related to the more recently isolated
metabolites and help to understand structure–activity relationships. We start with some
examples of fatty acids with interesting biological profiles, and then move to the broad
family of terpenoid compounds (monoterpenes, sesquiterpenes, diterpenes, triterpenes,
and meroterpenoids). At the end, we also highlight other small THF-containing compounds
that show interesting biological activities or were recently isolated and, thus, have potential
to be shown in the near future.

2. Lipids
2.1. Lipid Alcohols
C19 Lipid Diols

Diastereomeric trans-oxylipids 1, and cis-oxylipid 2 (Figure 3), were isolated in 1980 [21]
and 1998 [22], respectively, from the brown alga Notheia anomala. Their structure and rela-
tive stereochemistry were assigned by 1D and 2D NMR spectral data and confirmed by
single-crystal X-ray analysis. Their absolute configuration was determined by the Horeau
method in the case of compound 1, and by the advanced Mosher method for compound
2. Both of them display in vitro antihelmintic activity, inhibiting larval development in
parasitic nematodes. The trans-isomer 1 showed LD50 values against Haemonchus contortus
(1.8 ppm) and Trichostrongylus colubriformis (9.9 ppm), comparable to those of the com-
mercial nematocides levamisole and closantel. Synthetic routes for these oxylipids were
recently reviewed [18].
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An elegant example of the stereodivergent synthesis of both isomers was developed
by Kim et al. [23]. They developed an intramolecular amide enolate alkylation, where
the C3-hydroxy protecting group selection permits the formation of the desired isomer
(Scheme 1). Thus, starting from PMB-protected bromoamide 3, reaction with LiHMDS
afforded only the cis-product 4. The preferent formation of the cis-isomer was due to the
chelating ability of the PMB group. Therefore, when using a nonchelating group such as
TIPS (compound 5), the reaction with KHMDS predominantly yielded the trans-THF 6.
Further reaction of 4 and 6 with CH2=CH(CH2)7MgBr and reduction with L-selectride
afforded 7 and 8 in good yields (76% and 53% over two steps, respectively). Deprotection
of 7 with DDQ, and 8 with TBAF, respectively, gave cis-oxylipid 2 in 82% yield and the
trans-isomer 1 in 94% yield.

2.2. Fatty Acids
2.2.1. Petromyroxols

In 2015, Li reported the isolation of (+)- and (−)-petromyroxols (9) [24]. They are
oxylipids isolated from water conditioned with larval sea lamprey Petromyzon marinus
L. Interestingly, these molecules are the first tetrahydrofuran acetogenindiols isolated
from a vertebrate animal (Figure 4). The absolute configuration of each enantiomer was
determined by a combination of Mosher ester analysis and comparison with related natural
and synthetic products. The (+)-9 shows a potent olfactory response of 0.01 to 1 µM in the
sea lamprey, while the (−)-isomer has a softer effect. Synthetic routes towards them were
recently reviewed [18].
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A recent example of the synthesis of (+)-9, along with all possible diastereoisomers,
was presented in 2020 by Ramana and coworkers [25]. The synthetic route started from
the commercial THF compound 10 (Scheme 2). The alkyl chain was installed by reaction
with the appropriate cuprate. Subsequent benzyl protection of 11 afforded 12, which
after reaction with allyltrimethylsilane, yielded the desired diastereomer (7:2 ratio) of the
allylated THF 13. After protection with a para-nitrobenzoate (PNB) group under Mitsunobu
conditions, compound 14 was subjected to oxidative olefin cleavage with OsO4/NaIO4
and subsequent Wittig olefination to obtain a-b-unsaturated ester 15. Hydrogenation with
Pearlman catalyst (20% Pd(OH)2/C) afforded 16 in 89% yield, where the benzyl group, the
double bond, and the nitro group were all reduced. Finally, hydrolysis of both ester groups
with KOH in methanol afforded the desired (+)-petromyroxol in 77% yield.
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2.2.2. PMA

Petromyric acids A and B (PMA and PMB) are dehydroxylated tetrahydrofuranyl fatty
acids that were isolated from larval washing extracts from the sea lamprey Petromyzon
marinus in 2018 [26]. From the washing extract, four fatty acids related to the acetogenin
family were identified: (+)-PMA ((+)-17), (−)-PMA ((−)-17), (+)-PMB ((+)-18), and (−)-
PMB ((−)-18) (Figure 5). Their chemical structure was elucidated by NMR spectroscopy
and confirmed by chemical synthesis and X-ray crystallography.
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Sea lampreys are anadromous fishes that migrate, using their olfactory cues to orien-
tate, from the ocean to freshwater to find a suitable spawning stream. When approaching
river mouths, the decision of which stream is optimal to spawn in is taken using their olfac-
tory system to detect a pheromone emitted from larval sea lampreys. When investigating
larval washing extracts, four fatty acids were identified, but only (+)-17 has proven to be the
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pheromone that guides lamprey adults. However, its enantiomer, (−)-17, does not produce
the same behavioral effect. Fatty acid analogues have been reported to be pheromones in
insects, but this is the first identification in fish. The sea lamprey is a destructive invader in
the Laurentian Great Lakes, while in Europe, its population has decreased precipitously, so
(+)-17 can be used for the control and conservation of their populations.

Although they have a high potential for application, to the best of our knowledge, no
total synthesis has been reported so far for these compounds.

2.2.3. Mutafurans

Mutafurans A–G (19–25) are brominated ene-ynetetrahydrofurans (Figure 6) that were
isolated by Molinski in 2007 from the marine sponge Xextospongia muta [27]. Later, Liu
reported the isolation of mutafuran H (26), a brominated ene-tetrahydrofuran isolated from
sponge Xextospongia testudinaria within other sterols and brominated compounds [28]. Their
structure and absolute configuration were determined by 1D and 2D magnetic resonance,
mass spectrometry, and circular dichroism.
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Mutafurans A–D showed moderate antifungal activity against the fungus Cryptococcus
neoformans var. grubii, but were inactive against Candida albicans (ATCC14503 and 96–489)
and Candida glabrata [27]. Furthermore, mutafuran H showed biological activity against
Artemia salina larvae (LC50 = 2.6 µM) and a significant acetylcholinesterase inhibitory
activity (IC50 = 0.64 µM) [28]. No synthetic approach has been reported to date.

2.2.4. Aspericacids

Aspericacids A (27) and B (28) were isolated in 2020 by Ding and He from the sponge-
associated Aspergillus sp. LS78 [29]. Both compounds bear a 2,5-disubstituted tetrahydrofu-
ran ring coupled with an unsaturated fatty acid (Figure 7). Their structure was determined
by HRESIMS and 1D and 2D NMR spectroscopy, while their absolute configuration was
established relying on electronic circular dichroism (ECD). Compound 27 presents a mod-
erate inhibitory activity against Candida albicans and Cryptococcus neoformans with a MIC
value of 50 µg/mL, although 28 has a weaker activity, MIC = 128 µg/mL. No synthetic
approach has been reported to date.
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3. Terpenes
3.1. Monoterpenes
3.1.1. Pantofuranoids

Pantofuranoids A–F (29–34) are monoterpenes that were isolated in 1996 from the
Antarctic red alga Pantoneura plocamioides [30]. They are the first monoterpenes found to
contain a tetrahydrofuran moiety, and their common framework (Figure 8) suggests that
they all come from the same terpene precursor.
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In 2006, Toste reported the enantioselective total synthesis of (−)-33, in which the key
step is a vanadium-catalyzed sequential resolution/oxidative cyclization [31]. Using an
in situ generated vanadium(V)–oxo complex with chiral tridentate Schiff base ligand 35
as catalyst, racemic homoallylic alcohol 36 was readily converted into 2,4-cis-substituted
THF 37 (Scheme 3). The observed stereochemistry can be explained through a chair-like
transition state in which coordination of the pseudo-equatorial ester group to the vanadium
complex determines the selectivity of the syn-epoxidation step. Then, compound 37 was
further elaborated to (−)-33 in 6 steps and 29% overall yield from 37.
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3.1.2. Furoplocamioids

Furoplocamioids A–C 38–40 (Figure 9) are monoterpenes that were isolated in 2001
from the red marine alga Plocamium cartilagineum [32]. They bear an unusual polyhalo-
genated tetrahydrofuranyl ring. Their structural similarity to pantofuranoids suggests
a close relationship between the species that produce them. This is an interesting fact,
since Plocamium cartilagineum and Pantoneura plocamioides are classified in different orders,
Gigartinales and Ceramiales. Therefore, a taxonomic revision could be required. Later, the
Darias group determined the C7 relative stereochemistry by comparison with the NMR
spectra of similar reported terpenes [33]. González-Coloma and coworkers found that 38
and 40 show antifeedant effects against Leptinotarsa decemlineata. It was shown that 40 was
also an efficient aphid repellent (against Mizuspersicae and Ropalosiphumpadi) and selective
insect cell toxicant. In addition, both compounds showed low mammalian toxicity and
phytotoxic effects [34].
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3.2. Sesquiterpenes
3.2.1. Heronapyrrols

Heronapyrrols A–C are pyrroloterpenes that were isolated in 2010 from a marine
Streptomyces sp. CMB-M0423 [35]. They present bioactivity against Gram-positive bacte-
ria Staphylococcus aureus ATCC 9144 and Bacillus subtilis ATCC 6633 but no mammalian
cytotoxicity. Heronapyrrol C (41), apart from the characteristic and unusual 2-nitropyrrol
moiety of this family, presents a bis-tetrahydrofuran core. Later, Capon and Stark first
synthesized and then isolated heronapyrrol D (42) (Figure 10) from the same marine-
derived microbe [36]. Heronapyrrol D displays bioactivity against Gram-positive bacteria
Staphylococcus aureus ATCC 25923 (IC50 = 1.8 µM), Staphylococcus epidermidis ATCC 12228
(IC50 = 0.9 µM), and Bacillus subtilis ATCC 6633 (IC50 = 1.8 µM). However, it is inactive
against the Gram-negative bacteria Pseudomonas aeruginosa ATCC 10145 and Escherichia coli
ATCC 25922.
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To determine the relative and absolute stereochemistry of (+)-41, Stark and coworkers
proposed and synthesized the most likely stereostructure of its enantiomer (−)-41, based on
a biomimetic polyepoxide cyclization [37]. The same authors also reported the preparation
of a bioisosteric carboxylate analog of (−)-41 [38].

The first total synthesis of (+)-41 was reported in 2014 by Brimble and coworkers, who
used as key steps to introduce the five stereogenic centers a Julia–Kocienski coupling, a Shi
epoxidation, and a catalytic epoxide-opening reaction [39]. The same year, the first total
synthesis of (+)-42 was achieved by Capon and Stark using a similar approach [36]. In 2016,
Brimble and Furkert reviewed the isolation and synthesis of this family of compounds [40].

Later on, the same authors reported another total synthesis for both (+)-41 and (+)-
42 [41]. Shi epoxidation of diol 43, followed by CSA-catalyzed epoxide opening and
cyclization, produces diastereomerically pure 44 in 75% yield over two steps. A further
eight steps, with 31% yield over them, produces intermediate 45, which deprotection gives
(+)-heronapyrrol D (42). Epoxidation of 42 with a Shi ketone catalyst, followed by CSA-
catalyzed epoxide opening, produced enantiomerically pure (+)-heronapyrrol C (41) in 75%
yield (Scheme 4).
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Other synthetic approaches towards the 2-nitropyrrole system have been investigated
by Brimble and Furkert, finding that Sonogashira coupling of 4-iodo-2-nitropyrrole with
the appropriate alkyne was more effective than an approach relying on Stille coupling [42].

3.2.2. Kumausallene and Kumausyne

(−)-Kumausallene (46) was isolated in 1983 from the marine red alga Laurencia nippon-
ica Yamada [43]. This compound belongs to a family of non-isoprenoid sesquiterpenes that
contain a 2,6-dioxa-bicyclo [3.3.0]octane core with an exo-cyclic bromoallene (Figure 11).
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In 1993, the first total synthesis of (±)-46 was reported by Overman, who chose a
hexahydrobenzofuranone 47 (obtained by a Prins cyclization–pinacol rearrangement from
48) as the key intermediate for the construction of the bis-tetrahydrofuran unit (Scheme 5).
Further transformation of 47 into bicyclic lactone 49 (within three further steps) and final
methanolisis and tandem cyclization of the corresponding hydroxyester provided, in good
yield, the desired dioxabicyclo [3.3.0]octane 50 [44].
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In 2011, a synthetic approach for (−)-46 by Tang employed a desymmetrization
strategy for the formation of the 2,5-cis-substituted THF ring [45]. C2-symmetric diol 51 is
desymmetrized by a palladium-catalyzed cascade reaction to form lactone 52 in 87% yield
(Scheme 6). The total synthesis comprised just 12 steps from commercial acetylacetone. In
2015, Ramana et al. published a different formal total synthesis of (−)-46 based on a chiral
pool approach [46].
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(+)-Trans-Kumausyne (53) (Figure 12) is a halogenated non-isoprenoid sesquiterpene
isolated in 1983 from red alga Laurencia nipponica Yamada [47]. Its first total synthesis
was achieved in 1991 by Overman and coworkers [48]. A review covering the synthetic
approaches towards kumausallene and kumausyne, and other natural products containing
a 2,3,5-trisubstituted tetrahydrofuran moiety, was published by Fernandes in 2020 [18].
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3.3. Diterpenes
3.3.1. Darwinolide

(+)-Darwinolide (54) (Figure 13) is a diterpene isolated in 2016 by Baker from the
Antarctic Dendroceratid sponge Dendrilla membranosa [49]. It presents fourfold selectivity
against a biofilm phase of methicillin-resistant Staphylococcus aureus (IC50 of 33.2µM), com-
pared to the planktonic phase (with the higher MIC of 132.9 µM). This interesting property
and its low mammalian cytotoxicity (IC50 of 73.4 mM) against a J774 macrophage cell line
turn darwinolide into a possible scaffold for antibiofilm-specific antibiotics. Additionally, it
was found to have modest activity (11.2 µM) against L. donovani-infected macrophages [50].
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Its total synthesis was reported in 2019 by Christmann [51]. The required tetrahydro-
furanyl ring is installed starting from the commercially available anhydride 55, which is
converted to the 2,5-dimethoxylated tetrahydrofuran 56 in four steps. A sequence of oxida-
tion (with o-iodoxybenzoic acid), saponification, and Criegee oxidation with Pb(OAc)4 is
then used to convert 56 into 57 in 61% yield over three steps (Scheme 7). A further 14 linear
steps are needed to complete the total synthesis of 54, with an overall yield of 1.4%.
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3.3.2. Uprolides

Cembranolides are a family of compounds related to cembrene, which is a 14-membered
macrocyclic diterpene with multiple (E)-double bonds. Among them, uprolides are a sub-
family of compounds named after the University of Puerto Rico. Uprolides A–G were
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isolated in 1995 by Rodríguez and coworkers from the Caribbean gorgonian Eunicea Mam-
mosa and their structure was assigned by spectroscopic methods and chemical interconver-
sion [52,53]. They are the first natural cembranolides from a Caribbean gorgonian that bear
a double bond at C6 or C8. While uprolides A–C show an epoxy moiety, uprolides D–G
seemed to contain a tetrahydrofuran moiety instead. Uprolides D (58), D acetate (59), D
diacetate (60), and E acetate (61) (Figure 14) present a moderate cytotoxicity against HeLa
cells ((IC50 = 2.5 to 5.1 µg/ ml). Moreover, 59 shows cytotoxicity against the following
human tumor cell lines: CCRF-CEM T-cell leukemia (IC50 = 7.0 µg/mL), HCT-116 colon
cancer (IC50 = 7.0 µg/mL), and MCF-7 breast adenocarcinoma (IC50 = 0.6 µg/mL).
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Later structural revisions determined the presence of a tetrahydropyran ring, instead of
the previously proposed tetrahydrofuran, in uprolides F diacetate and G acetate, hypotheses
that were confirmed by asymmetric total synthesis of these natural products [54–57].

In 2007, a synthetic approach to obtain the macrocyclic core of 58 was proposed by
Ramana [58]. The formation of the macrocyclic core is produced by ring-closing metathesis
(RCAM) using a Grubbs’ first-generation catalyst. The RCAM of acetate 62 produces
13-membered macrocyclic 63 in 67% yield (Scheme 8). The macrocyclic core of uprolide E
could not be synthesized using the same methodology.
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Marshall developed a synthetic route for C1/C14 bis-epimer of 58 in which the macro-
cyclization is produced by an intramolecuar Barbier reaction [59]. Some years later, other
members of the uprolide family, which lack the tetrahydrofuran ring, have been isolated
from the gorgonian octocoral Eunicea succinea [60].

3.4. Triterpenes
3.4.1. Intricatetraol

Intricatetraol (64) is a halogenated triterpenoid with a C2 symmetry that was isolated
in 1993 from the red alga Laurencia intricata (Figure 15). Suzuki and coworkers observed
that a crude fraction of the extract showed cytotoxic activity against P388 leukemia cells
with an IC50 value of 12.5 µg/mL. Nevertheless, pure intricatetraol was no longer active
after chromatography. At first, its stereostructure was proposed as being based on its
hypothetical biogenesis [61]. In 2006, Morimoto confirmed this assignment by synthesizing
a degradation product of intricatetraol through a two-directional synthesis [62].
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One year later, Morimoto completed the asymmetric total synthesis of (+)-64 and, thus,
determined its absolute configuration [63]. The tetrahydrofuran ring 65 was stereospecif-
ically constructed by treatment of diepoxyalcohol 66 with lithium hydroxide aqueous
solution. A further 10 steps (with an accumulated yield of 30%) were needed to obtain
intermediate 67, which was then dimerized to afford 68 by olefin metathesis with a second-
generation Grubbs catalyst. Final diimide reduction of intermediate 68 produced (+)-64
(Scheme 9).
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3.4.2. Omaezakianol

Omaezakianol (69) (Figure 16) is a squalene-derived triterpene polyether that was
isolated in 2008 from the red alga Laurencia omaezakiana by Morimoto and coworkers [64].
The same group rapidly reported its first asymmetric total synthesis and, therefore, sta-
blished its absolute configuration [65]. Key steps were olefin cross-metathesis and an
epoxide-opening cascade.
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In 2010, Corey reported a short total synthesis via a biomimetic epoxide-initiated
cationic cascade reaction [66]. Compound 70 was treated with camphorsulfonic acid (CSA)
to induce the epoxide-opening cascade cyclization, producing 71. Reduction of 71, with
sodium in acetone under reflux, formed the terminal double bond with opening of the THF
ring, affording 69 in 76% yield (Scheme 10). Thus, the synthesis was accomplished in just
six steps from squalene.
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Another biomimetic epoxide-opening cascade for the synthesis of (+)-69 was reported
in 2013 by Morimoto and coworkers [67]. The cascade, which mimics the direct hydrolysis
mechanism of epoxide hydrolases, begins with 5-exo cyclization of the terminal epoxide
triggered by Brønsted acid catalysis. Intermediate 72 then undergoes an epoxide-opening
cascade reaction with TfOH to afford (+)-69 in 33% yield (Scheme 11).
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3.4.3. Longilenes

Longilenes are triterpene polyethers that were first isolated from the wood of Eu-
rycoma longifolia in the form of (−)-longilene peroxide ((−)-73) [68,69]. In 2001, Morimoto
accomplished its total synthesis [70] and determined its absolute configuration. The same
author also developed a biomimetic synthesis of the C9–C16 fragment of oxasqualenoids in
an enantioselective manner [71]. This chiral building block could be used as an advanced
intermediate for the synthesis of different polyethers, such as teurilene, longilene peroxide,
or glabrescol.

In 2018, Fernández and Daranas reported the isolation of other members of the family,
namely (+)-longilene peroxide ((+)-73), longilene (74), and the derivative (+)-prelongilene
((+)-75), from the red seaweed Laurencia viridis [72]. These compounds present Ser/Thr
protein phosphatase 2A inhibitory activity (Figure 17). To date, no synthetic approaches
have been reported.
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3.4.4. Laurokanols and Yucatecone

In 2021, laurokanols A–E (76–80) and yucatecone (81) (Figure 18), polyether triterpenes,
were isolated from the red alga Laurencia viridis [73]. Laurokanols have an unprecedented
tricyclic core with an [6,6]-spiroketal system. Yucatecone is the first compound of this
series with an R configuration at the C14 position. A biogenetic model, supported by DFT
calculations, was then postulated for the biogenesis of yucatecone.
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3.4.5. Thyrsenol

Thyrsenol A (82) and B (83) (Figure 19) are polyether squalene derivatives that were
isolated by Norte and coworkers in 1997 from the red alga Laurencia viridis [74]. Although
both compounds show high activity against murine lymphoid neoplasm P-388 cells, com-
pound 83 induced significantly higher inhibitory effects [75]. Other related compounds,
such as thyrsiferol derivatives and dehydrovenustatriol, were found to be even more active.
Therefore, it was postulated that the presence of a flexible chain around C14 to C19, and its
configuration, are of particular importance for the bioactivity of these compounds. Later,
Fernández and coworkers also found 83 to have protein phosphatase PP2A inhibitory activ-
ity [76]. The activity was comparable to that of dehydrothyrsiferol and thysiferyl-23-acetate,
concluding that a hydroxyl group at C15 or C16 is a key factor for their intrinsic activity. In
2011, the isolation of other derivatives has been reported [77].
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3.4.6. Saiyacenol

Saiyacenols A (84) and B (85) (Figure 20) are triterpene polyethers that were isolated
in 2012 from the red alga Laurencia viridis. Both inhibit cell proliferation of various human
tumor cell lines (MM144 (human multiple myeloma), HeLa (human cervical carcinoma),
CADO-ES1 (human Ewing’s sarcoma), and show the best inhibitory activity against Jurkat
(human T-cell acute leukemia) [78]. In 2015, saiyacenol C (86), and two hydroxylated
derivatives 87 and 88, were isolated from the same alga [79]. Although saiyacenols showed
no activity toward a range of bacteria and fungal strains, compounds 85 and 86 avoid
Navicula cf. salinicola and Cylindrotheca sp. growth, while compounds 87 and 88 were also
active against germination of Gayralia oxysperma.
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More recently, Piñero and Fernández evaluated a range of natural and semisyn-
thetic terpenoid polyethers against protozoan parasites of the Trypanosoma and Leishmania
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genera [80]. Both 84 and 85 have anti-protozoal activity against Leishmania amazonensis
(IC50 = 12.96 and 10.32 µM, respectively). Interestingly, saiyacenol A 84 was also effective
against the highly resistant Trypanosoma cruzi (IC50 = 13.75 ± 2.28 µM). The semisynthetic
28-iodosaiyacenol B showed a high value (IC50 = 5.40 ± 0.13 µM) against Leishmania amazo-
nensis and no toxicity to murine macrophage J774.A1. This turns it into a possible scaffold
for antikinetoplastid drugs, as the data are comparable to those of the reference drug
miltefosine (IC50 = 6.48).

Very recently, Nishikawa and Morimoto reported the asymmetric total synthesis of
saiyacenol A, along with that of the related Aplysiol B [81]. In their research, an epoxide-
opening cascade was used to form both THF rings in the same step (Scheme 12). Thus,
from advanced precursor 89, treatment with CSA provoked two sequential 5-exo openings
to form the oxygenated rings in bis-tetrahydrofuran 90. The last step consisted of cross-
methathesis with the ruthenium catalyst 91 and later bromoetherification with BDSB.
Preliminary cytotoxicity was tested against P388, HT-29, and HeLa tumor cell lines, showing
values of 5.4, 85, and >100 µM, respectively.

Mar. Drugs 2022, 20, x FOR PEER REVIEW 19 of 35 
 

 

genera [80]. Both 84 and 85 have anti-protozoal activity against Leishmania amazonensis 
(IC50 = 12.96 and 10.32 μM, respectively). Interestingly, saiyacenol A 84 was also effective 
against the highly resistant Trypanosoma cruzi (IC50 = 13.75 ± 2.28 μM). The semisynthetic 
28-iodosaiyacenol B showed a high value (IC50 = 5.40 ± 0.13 μM) against Leishmania ama-
zonensis and no toxicity to murine macrophage J774.A1. This turns it into a possible scaf-
fold for antikinetoplastid drugs, as the data are comparable to those of the reference drug 
miltefosine (IC50 = 6.48). 

Very recently, Nishikawa and Morimoto reported the asymmetric total synthesis of 
saiyacenol A, along with that of the related Aplysiol B [81]. In their research, an epoxide-
opening cascade was used to form both THF rings in the same step (Scheme 12). Thus, 
from advanced precursor 89, treatment with CSA provoked two sequential 5-exo openings 
to form the oxygenated rings in bis-tetrahydrofuran 90. The last step consisted of cross-
methathesis with the ruthenium catalyst 91 and later bromoetherification with BDSB. Pre-
liminary cytotoxicity was tested against P388, HT-29, and HeLa tumor cell lines, showing 
values of 5.4, 85, and >100 μM, respectively. 

 
Scheme 12. Synthesis of saiyacenol A by Nishikawa and Morimoto. 

3.4.7. Teurilene 
Teurilene (92) (Figure 21) is a triterpene polyether that was isolated in 1985 from the 

red alga Laurencia obtusa by Kurosawa and coworkers [82]. It has three linked 2,5-disub-
stituted THF rings and, even though it has eight stereogenic centres, it is an achiral com-
pound due to its meso-symmetry (Cs). Compound 92 has a remarkable cytotoxic activity 
against KB cells (IC50 = 7.0 μg mL−1) [69]. Synthetic approaches and routes up to 2014 are 
commented on in a previous review [83]. 

 

Scheme 12. Synthesis of saiyacenol A by Nishikawa and Morimoto.

3.4.7. Teurilene

Teurilene (92) (Figure 21) is a triterpene polyether that was isolated in 1985 from the red
alga Laurencia obtusa by Kurosawa and coworkers [82]. It has three linked 2,5-disubstituted
THF rings and, even though it has eight stereogenic centres, it is an achiral compound due
to its meso-symmetry (Cs). Compound 92 has a remarkable cytotoxic activity against KB
cells (IC50 = 7.0 µg mL−1) [69]. Synthetic approaches and routes up to 2014 are commented
on in a previous review [83].
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3.4.8. Thyrsiferol

Thyrsiferol (93) is a polyoxygenated triterpenoid ether that was isolated in 1978
from the red alga Laurencia thyrsifera [84]. Its absolute stereochemistry (Figure 22) was
determined in 1986 when venustatriol was isolated, since the latter could be crystallized
and characterized by X-ray diffraction [85]. During the next two decades, a plethora of
thyrsiferol derivatives have been isolated. Their biological profiles (cytotoxic, anti-viral,
anti-tumor) have attracted much attention and several syntheses were published and
reviewed in 2008 [86].
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Thyrsiferol has later been found to inhibit hypoxia-induced hypoxia-inducible factor-1
(HIF-1) activation in T47D human breast tumor cells, as well as to inhibit a mitochon-
drial ETC complex I and show tumor cell line-selective time-dependent inhibition of cell
viability/proliferation [77]. In addition, Piñero and Fernández recently reported it to
be active against Acanthamoeba castellanii trophozoites (IC50 = 13.97 µM). Its derivative,
22-hydroxydehydrotyrsiferol, was similarly active (IC50 = 17.00 µM) and both were not
toxic against murine macrophages, which makes them potential leads for the discovery of
novel amoebicidal substances [87].

3.4.9. Rhabdastins

The first members of this family, Rhabdastins A-G, were first isolated in 2010 by
Iwagawa from the sponge Rhabdastrella globostellata [88]. They belong to the group ofisoma-
labaricane triterpenes. In 2021, the tetrahydrofuran-containing rhabdastins H (94) and I (95)
(Figure 23) were isolated from the sponge Rhabdastrella sp. [89]. They are the first marine
isomalabaricanes that present a tetrahydrofuran unit in their structure. Both compounds
show antiproliferative effect against K562 (IC50 11.7 and 9.8 µM, respectively) and Molt4
(IC50 16.5 and 11.0 µM) leukemic cells.
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3.5. Meroterpenes
3.5.1. Alisiaquinones and Alisiaquinol

Alisiaquinones A–C (96–98) and alisiaquinol (99) (Figure 24) are meroterpenes that
were isolated in 2008 from a New Caledonian deep-water sponge [90]. They display mild
antimalarial activity, but the high level of toxicity (100% and 80% mortality, respectively)
shown in in vivo assays limited their interest as antimalarial agents. Nevertheless, their
structure can be an inspiration for the development of related structures towards novel
antimalarial drugs.
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3.5.2. Tricycloalterfurenes

Tricycloalterfurenes A–D (100–103) were isolated in 2017 from the culture extract of
an Alternaria alternata strain (k21-1) isolated from the surface of the marine red alga Lomen-
taria hakodatensis [91]. These meroterpenes present activity against three phytoplankton
(Chattonella marina, Heterosigma akashiwo, and Prorocentrum donghaiense) and one marine
zooplankton (Artemia salina). The higher activity of tricycloalterfurene A (64, 37, 46%,
respectively, against the phytoplankton species) indicates that hydroxylation at C2 or C3
negatively influences the activity against these organisms. Later, Oh and Shin reported
the isolation, from a marine-derived Stemphylium sp. fungus, of tricycloalterfurenes E–G
(104–106) [92]. Very recently, Fraga proposed some structural revisions [93]. Regarding
tricycloalterfurenes A–C, the correct configuration of the hydroxyl group would be 4R
(Figure 25), comparing the NMR data with that of guignardone T [94]. With respect to
trycicloalterfurene D, the correct configuration was proposed to be 6-β-OH (6R), also by
NMR data comparison to similar systems [95]. To date, no synthetic approaches have
been reported.
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3.5.3. Marinoterpins

Marinoterpins A–C (107–109) (Figure 26) are linear merosesterterpenoids that were re-
cently isolated (2021) by Winter and Fenical from the marine-derived actinomycete bacteria
Streptomyces sp. AJS-327 and CNQ-253 [96]. Due to their similarity to the aurachin family of
compounds, a marinoterpin biosynthetic cluster (mrt) was identified. Thus, a biosynthetic
route for the 3-geranylfarnesyl-2-methylquinoline core was proposed, although the reac-
tions that lead to the tetrahydrofuran rings as well as the N-oxidation still remain unknown.
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4. Other Tetrahydrofuran Derivatives
4.1. Substituted Tetrahydrofurans
4.1.1. Pachastrissamine (Jaspine B)

Pachastrissamine (110) was first isolated by Higa and coworkers from a marine sponge
of the genus Pachastrissa [97]. A year later, Debitus reported its isolation from another
sponge Jaspis sp. and, thus, named the compound jaspine B [98]. Other related com-
pounds were also isolated, including jaspine A (111) (Figure 27). Pachastrissamine is
a sphingolipid—in particular, a derivative from anhydrophytosphingosine. Its biolog-
ical activity and synthetic endeavors until 2016 were summarized by Martinková in a
mini-review [99].
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4.1.2. Myrothecols

In 2020, (−)-1S-myrothecol ((−)-112), (+)-1R-myrothecol ((+)-112), and methoxy-
myrothecol (113) (Figure 28) were isolated from deep-sea fungus Myrothecium sp. BZO-
L062 [100]. Enantiomers (−)-112 and (+)-112 were separated by normal-phase chiral
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HPLC, and their absolute configurations were established by ECD spectra. Compounds
(−)-112 and (+)-112 display anti-inflammatory activity, inhibit nitric oxide formation in
lipopolysaccharide-treated cells (RAW264.7), and present antioxidant activity in the 2,2-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and oxygen-radical absorbance capac-
ity assays.

Mar. Drugs 2022, 20, x FOR PEER REVIEW 24 of 35 
 

 

 
Figure 28. Structure of (−)-1S-myrothecol ((−)-112), (+)-1R-myrothecol ((+)-112), and methoxy-my-
rothecol (113). 

4.1.3. Astronypyrone, Astronyquinone, and Astronyurea 
In 2016, astronypyrone (114), astronyquinone (115), and astronyurea (116) (Figure 29) 

were isolated from the marine fungus Astrosphaeriella nypae BCC 5335 [101]. Compound 
115 shows weak antituberculosis activity (with a MIC value of 50 μg/mL) and presents 
cytotoxicity against African green monkey kidney fibroblast cell lines (IC50 = 17.4 μg/mL). 

 
Figure 29. Structure of astronypyrone (114), astronyquinone (115), and astronyurea (116). 

4.1.4. Sinularones 
Sinularones A-I were isolated in 2012 from the marine soft coral Sinularia sp. [102]. 

Their structures were elucidated by IR, MS, CD, 1D, and 2D NMR. Among them, sinu-
larones E (117) and F (118) contain a tetrahydrofuran moiety (Figure 30). 

 
Figure 30. Structure of sinularones E (117) and F (118). 

Their first total synthesis, based on a hydrogenative metathesis of enynes, was re-
ported in 2020 by Fürstner and coworkers [103]. The required 2,5-cis-tetrahydrofuran de-
rivative 119 was readily obtained by hydrogenation (over Rh/Al2O3) of commercial furane 
120. Three further steps were needed to obtain silyl ether 121, which in the presence of 
ruthenium catalyst 122 and H2 undergoes a hydrogenative metathesis. Later deprotection 
with TBAF produces 117 with 65% yield over both steps. Sinularone F (118) synthesis uti-
lizes the same strategy (Scheme 13). 

Figure 28. Structure of (−)-1S-myrothecol ((−)-112), (+)-1R-myrothecol ((+)-112), and methoxy-
myrothecol (113).

4.1.3. Astronypyrone, Astronyquinone, and Astronyurea

In 2016, astronypyrone (114), astronyquinone (115), and astronyurea (116) (Figure 29)
were isolated from the marine fungus Astrosphaeriella nypae BCC 5335 [101]. Compound
115 shows weak antituberculosis activity (with a MIC value of 50 µg/mL) and presents
cytotoxicity against African green monkey kidney fibroblast cell lines (IC50 = 17.4 µg/mL).
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4.1.4. Sinularones

Sinularones A-I were isolated in 2012 from the marine soft coral Sinularia sp. [102].
Their structures were elucidated by IR, MS, CD, 1D, and 2D NMR. Among them, sinularones
E (117) and F (118) contain a tetrahydrofuran moiety (Figure 30).
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Their first total synthesis, based on a hydrogenative metathesis of enynes, was reported
in 2020 by Fürstner and coworkers [103]. The required 2,5-cis-tetrahydrofuran derivative
119 was readily obtained by hydrogenation (over Rh/Al2O3) of commercial furane 120.
Three further steps were needed to obtain silyl ether 121, which in the presence of ruthenium
catalyst 122 and H2 undergoes a hydrogenative metathesis. Later deprotection with TBAF
produces 117 with 65% yield over both steps. Sinularone F (118) synthesis utilizes the same
strategy (Scheme 13).
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ing from commercial D-(−)-ribose [108,109]. Krause performed a modular synthesis of (+)-
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propriate four stereocenters 124 was prepared in four linear steps from a known enyne. 
Thus, Sharpless epoxidation and benzylation of (E)-hex-2-en-4-yn-1-ol provided propar-
gyl epoxide 125 in 47% yield over two steps. A copper hydride-catalyzed reduction of 125, 
followed by a gold-catalyzed cycloisomerization, furnished the key dihydrofuranyl inter-
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of 126 afforded 124 as a satisfactory 78:22 mixture of diastereoisomers. The desired natural 
product was obtained in a further four steps (Scheme 14). 

Scheme 13. Synthesis of sinularone E (117). A similar strategy was applied to sinularone F (118).

4.1.5. (+)-Varitriol

(+)-Varitriol ((+)-123) (Figure 31) was isolated in 2002 from a marine-derived strain
of the fungus Emericella variecolor [104]. Its structure and relative stereochemistry were
determined by NMR studies. It displays low cytotoxic activity against leukemia, ovarian,
and colon cells, but its response to renal, CNS, and breast cancer cell lines was very
promising (of the range of GI50 = 1.63–2.44·10−7 M). In 2006, Jennings and coworkers
achieved the first total synthesis of its enantiomer (-)-123 and, thus, determined its absolute
stereochemistry [105].
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Its activity towards the mentioned cancer cell lines attracted the attention of synthetic
chemists; different synthetic approaches for (+)-123 appeared in the next few years [106].
Taylor employed a known tetrahydrofuran-2,3,4-triol derivative as the starting material for
the synthesis (in three further steps) of the desired (−)-123 and its 3′-epi-derivative [107].
Srihari also achieved the synthesis of (−)-123, (+)-123, and its 6′-epi-derivative starting
from commercial D-(−)-ribose [108,109]. Krause performed a modular synthesis of (+)-123
in 10 steps, with an overall yield of 6,4% [110]. The key tetrahydrofuran with the ap-
propriate four stereocenters 124 was prepared in four linear steps from a known enyne.
Thus, Sharpless epoxidation and benzylation of (E)-hex-2-en-4-yn-1-ol provided propargyl
epoxide 125 in 47% yield over two steps. A copper hydride-catalyzed reduction of 125,
followed by a gold-catalyzed cycloisomerization, furnished the key dihydrofuranyl inter-
mediate 126, with two of the required stereogenic centers. Final Sharpless dihydroxylation
of 126 afforded 124 as a satisfactory 78:22 mixture of diastereoisomers. The desired natural
product was obtained in a further four steps (Scheme 14).
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Later on, Qin developed a direct cross-coupling between terminal alkynes and gly-
cosyl acetates, which was applied to the formal synthesis of (+)-123 and analogues [112]. 
More recently, Wang and coworkers reported another formal synthesis of (+)-123 [113]. 
They developed a chromium-catalyzed enantioconvergent allenylation of aldehydes to 
synthesize α-allenols from racemic propargyl halides. Starting from silylated propargyl 
bromide 129 and benzyloxyacetaldehyde, allenol 130 can be accessed through the devel-
oped procedure. The chromium catalyst was formed in situ by the addition of chromium 
chloride and the oxazoline ligand (R,S)-131. Manganese acted as a reducing agent, and 
Cp2ZrCl2 as a dissociation reagent. Then, removal of the silyl group with 

Scheme 14. Modular synthesis of (+)-varitriol ((+)-123) by Krause.

A recent example of the total synthesis of (+)-123 was reported by Cordero-Vargas [111].
In this approach, the tetrahydrofuranyl key intermediate 127, bearing the four precise
sterocenters, was obtained from commercial L-ribono-1,4-lactone in six steps. The key step
in this process is the stereocontrolled nucleophilic addition to five-membered oxocarbenium
ions directed by the protecting groups. Thus, TBS-protected lactone 128, obtained in four
conventional steps from L-ribono-1,4-lactone, undergoes acetylide addition; a subsequent
Lewis acid promoted oxocarbenium ion formation. The following stereoselective hydride
attack provides tetrahydrofuran 127 as a single diastereomer in 60% yield. The final
synthesis of (+)-123 is achieved in a further four steps with 31% yield over them (Scheme 15).
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Scheme 15. Protecting group-directed nucleophilic addition for the synthesis of (+)-varitriol (123).

Later on, Qin developed a direct cross-coupling between terminal alkynes and glycosyl
acetates, which was applied to the formal synthesis of (+)-123 and analogues [112]. More
recently, Wang and coworkers reported another formal synthesis of (+)-123 [113]. They de-
veloped a chromium-catalyzed enantioconvergent allenylation of aldehydes to synthesize
α-allenols from racemic propargyl halides. Starting from silylated propargyl bromide 129
and benzyloxyacetaldehyde, allenol 130 can be accessed through the developed procedure.
The chromium catalyst was formed in situ by the addition of chromium chloride and
the oxazoline ligand (R,S)-131. Manganese acted as a reducing agent, and Cp2ZrCl2 as a
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dissociation reagent. Then, removal of the silyl group with tetrabutylammonium fluoride
gave advanced intermediate 132 in 82% yield, thus accomplishing the formal synthesis of
the desired (+)-123 (Scheme 16).
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5. Conclusions

Terpenes and related compounds represent an important family of marine-derived
metabolites. The great number of studies focused on their biological activities and total
synthesis remark their importance. We have summarized the most active compounds
for a variety of bioactivities (see Table 2). Trans-oxylipid has shown nematocidal prop-
erties against Haemonchus contortus (LD50 = 1.8 ppm) and Trichostrongyllus colubriformis
(LD50 = 9.9 ppm). These values, comparable to the commercial levamisole and closantel,
make this compound an interesting scaffold for the development of antihelmintic sub-
stances. Though not related to drug development, we want to remark the biological interest
of (+)-PMA. Its potent olfactory response in sea lampreys makes it very valuable for the
control and conservation of lamprey populations. Efforts should be made in developing
a total synthesis for this compound, as none has been reported to date. Mutafuran D has
antifungal activity, showing a moderate value of MIC = 4 mg/mL against Cryptococcus
neoformans var. grubii. Although not an impressive value, further studies could shed light
on the structure–activity relationship of this brominated ene-yne tetrahydrofuran deriva-
tive. Furoplocamioid C could serve as a lead for novel biopesticides, as it has shown a
potent antifeedant effect against Leptinotarsa decemlineata, with an EC50 of 19.1 nmol/cm2,
Myzus Persicae (EC50 of 3.7 nmol/cm2), and Ropalosiphum Padi (EC50 of 1.6 nmol/cm2) but
it has low mammalian toxicity and phytotoxic effects. With respect to antibacterial activity,
heranopyrrole D has shown very good values against Staphylococcus aureus ATCC 25923
(IC50 = 1.8 mM), Staphylococcus epidermidis ATCC 12228 (IC50 = 0.9 mM), and Bacillus subtilis
ATCC 6633 (IC50 = 1.8 mM); thus, the nitropyrrole moiety should be further studied to
determine whether it plays an important role in its antibacterial behavior. On the other
hand, though (+)-darwinolide shows a more moderate value against Staphylococcus aureus
(IC50 = 33.2 µM), its selectivity towards the biofilm phase and its low toxicity makes it a
very good lead for the development of antibiofilm-specific antibiotics.

Regarding antitumoral applications, there are several compounds that have shown
very promising activities. Uprolide D acetate has cytotoxic activity against different tumor
cell lines: HeLa cells (IC50 = 2.5 mM), CCRF-CEM T-cell leukemia (IC50 = 7.0 mM), HCT-
116 colon cancer (IC50 = 7.0 mM), and MCF-7 breast adenocarcinoma (IC50 = 0.6 mM).
Thyrsenol B has an impressive potential against murine lymphoid neoplasm P-388 cells
(IC50 = 0.016 mM). Saiyacenol B shows antiproliferative activity against tumor cell lines
MM144 human multiple myeloma (IC50 = 11.0 mM), HeLa human cervical carcinoma
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(IC50 = 24.5 mM), CADO-ES1 human Ewing’s sarcoma (IC50 = 14.0 mM), and possesses a
very good value for Jurkat (human T-cell acute leukemia): IC50 = 2.7 mM. Furthermore, it
presents antifouling activity against Navicula cf. salinicola (IC50 = 17.2 mM) and Cylindrotheca
sp. (IC50 = 17.0 mM). Finally, (+)-varitriol is a very interesting example, as it is quite a
simple molecule with powerful properties. It presents submicromolar activities against
different cancer cell lines, namely RXF-393 (Renal cancer cell) GI50 = 0.16 µM; SNB-75 (CNS
cancer cell) GI50 = 0.24 µM; and DU-145 (breast cancer cell) GI50 = 0.11 µM. Although some
efforts have already been made and different total syntheses reported, we believe that
further studies should point to the synthesis of analogs and the study of structure–activity
relationships in this simple scaffold.

Regarding antiprotozoal activity, saiyacenol B shows a good IC50 of 10.3 mM against
Leishmania amazonensis. Interestingly it was surpassed by its synthetic counterpart, 28-iodo-
saiyacenol B, with a value of IC50 = 5.4 mM pointing to an interesting effect of this 28-iodo-
substitution. Alisiaquinone C presents antimalarial activity in vitro against the chloroquine-
resistant strains MC29 CQR (IC50 = 0.08 mM) and B1 CQR (IC50 = 0.21 mM), and the
chloroquine-sensitive strain F32 CQS (IC50 = 0.15 mM). Though it presents a high toxicity,
similar structures that preserve antimalarial activity and have reduced toxicity values
could be developed. A possible lead for anti-inflammatory development is myrothecol: it
shows antioxidant activity with an EC50 = 1.2 mg/mL (S isomer) and EC50 = 1.4 mg/mL (R
isomer), inhibits nitric oxide formation, and displays anti-inflammatory activity. It is also a
small molecule and, thus, its synthesis will require lower effort.

In conclusion, the tetrahydrofuran moiety is a common motif found in a variety of such
compounds, which has meant a particular emphasis of researchers on the development of
new methodologies for the synthesis of such derivatives. In this context, total synthesis is a
powerful tool to have access to these natural products. Firstly, it is an invaluable means
for the determination of the structure and total configuration of natural compounds since,
in some cases, the available NMR methods are insufficient in definitively determining the
structures of biologically relevant substances. Secondly, since extracting and purifying
compounds from natural sources are difficult and time-consuming processes, total synthesis
has emerged as a suitable solution for the production of larger amounts of compounds, thus
bringing possibilities for further biological studies, the discovery of novel drug candidates,
and the expansion of the medicinal chemistry frontiers.

Table 2. Summary of most active compounds for a range of bioactivities within this review.

Compound Biological
Activity

Cell Line or
Organism Biological Result Assay Reference

trans-oxylipid Nematocidal
Haemonchus contortus LD50 = 1.8 ppm Parasitic nematode

larval
development assay

[21]Trichostrongylus
colubriformis LD50 = 9.9 ppm

(+)-PMA Pheromone Petromyzon marinus 10−11 molL−1 Electro-
olfactogram [26]

Mutafuran D Antifungal activity Cryptococcus
neoformans var. grubii MIC = 4 µg/mL Pathogenic fungus

assay [27]

Furoplocamioid C Antifeedant effects

Leptinotarsa
decemlineata EC50 = 19.1 nmol/cm2

Insect bioassay [32]
Myzus persicae EC50 = 3.7 nmol/cm2

Ropalosiphum padi EC50 = 1.6 nmol/cm2
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Table 2. Cont.

Compound Biological
Activity

Cell Line or
Organism Biological Result Assay Reference

Heranopyrrole D Antibacterial
activity

Staphylococcus aureus
ATCC 25923 IC50 = 1.8 µM

Antibacterial assay [36]
Staphylococcus

epidermidis ATCC
12228

IC50 = 0.9 µM

Bacillus subtilis
ATCC 6633 IC50 = 1.8 µM

(+)-Darwinolide Antibacterial
activity Staphylococcus aureus IC50 = 33.2 µM MRSA biofilm

assay [49]

Uprolide D acetate
Cytotoxic Activity

Against Tumor
Cell Lines

HeLa cells IC50 = 2.5 µg/ m

Cytotoxicity assay
on human cells

[52]

CCRF-CEM T-cell
leukemia IC50 = 7.0 µg/ mL

HCT 116 colon
cancer IC50 = 7.0 µg/ mL

MCF-7 breast
adenocarcinoma IC50 = 0.6 µg/ mL

Thyrsenol B

Cytotoxic Activity
Against Tumor

Cell Lines

Murine lymphoid
neoplasm P-388 cells IC50 = 0.016 µM Cytotoxicity assays

on human cells [74]

Inhibitory activity Protein phosphatase
PP2A

Inhibition > 90%
([PP2A] > 10 µM) Enzymatic assay [75]

Saiyacenol B

Antiproliferative
activity Against

Tumor Cell Lines

MM144 (human
multiple myeloma)

Jurkat (human T-cell
acute leukemia)

IC50 = 11.0 µM

Cytotoxicity assays
on human cells

[78]

HeLa (human
cervical carcinoma) IC50 = 24.5 µM

CADO-ES1 (human
Ewing’s sarcoma) IC50 = 14.0 µM

Jurkat (human T-cell
acute leukemia IC50 = 2.7 µM

Antifouling
activity

Navicula cf. salinicola IC50 = 17.2 µM Diatom growth
inhibition

Cylindrotheca sp. IC50 = 17.0 µM
Inhibition of

macroalgal spore
germination

Anti-protozoal
activity

Leishmania
amazonensis IC50 = 10.3 µM In vitro

susceptibility assay [80]

28-iodo-
saiyacenol B

Anti-protozoal
activity

Leishmania
amazonensis IC50 = 5.4 µM In vitro

susceptibility assay [80]

Alisiaquinone C

Antimalarial
activity

(in vitro)

MC29 CQR IC50 = 0.08 µM [3H]-
Hypoxanthine
incorporation

[90]

B1 CQR IC50 = 0.21 µM

F32 CQS IC50 = 0.15 µM

Antimalarial
activity

(in vivo)
Rodent malaria

Mortality day 5 = 0
(5 mg/kg/day)

Mortality day 5 = 80
(20 mg/kg/day)

four-day
suppressive
in vivo assay
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Table 2. Cont.

Compound Biological
Activity

Cell Line or
Organism Biological Result Assay Reference

(−)-1S-Myrothecol Antioxidant
activity

EC50 = 1.2 µg/mL ABTS assay

[100]

µM Trolox
Equiv/µM = 1.4 ORAC assay

(+)-1R-Myrothecol Antioxidant
activity

EC50 = 1.4 µg/mL ABTS assay

µM Trolox
Equiv/µM = 1.2 ORAC assay

(+)-Varitriol Cytotoxic activity
to cancer cell lines

RXF-393 (Renal
cancer cell) GI50 = 0.16 µM Cytotoxicity assays

[104]SNB-75 (CNS cancer
cell) GI50 = 0.24 µM Cytotoxicity assays

DU-145 (breast
cancer cell) GI50 = 0.11 µM Cytotoxicity assays

Author Contributions: Writing—original draft preparation, L.F.-P. and P.G.-A.; writing—reviewing and
editing, C.D.-P. and A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the “Junta de Castilla y León”, grant number VA294-P18.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: L.F.-P. and P.G.-A. acknowledge predoctoral grants funded by the “Junta de
Castilla y León” and the University of Valladolid, respectively.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Ac: acetate; Aq.: aqueous; BDSB: bromodiethylsulfonium bromopentachloroantimonate; Bn: benzyl;
Boc: tert-butyloxy carbonyl; Bu: butyl; Bz: benzoyl; Cat.: catalyst; CD: circular dichroism; Cp:
cyclopentadienyl; CSA: camphorsulfonic acid; Cy: cyclohexyl; D-(−)-DET: (−)-diethyl D-tartrate;
DDQ: 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone; DFT: density functional theory; (DHQD)2PYR:
hydroquinidine-2,5-diphenyl-4,6-pyrimidinediyl diether; DIAD: diisopropyl azodicarboxylate; DME:
dimethoxyethane; DMSO: dimethylsulfoxide; dr: diastereomeric ratio; ECD: electronic circular
dichroism; ee: enantiomeric excess; HMDS: hexamethyl disilazide; HPLC: high-performance liquid
chromatography; IBX: orto-iodoxybenzoic acid; IR: infrared; M: molar; MS: mass spectrometry; Ms:
methanesulfonyl; NMR: nuclear magnetic resonance; PAB: para-aminobenzoate; PG: protecting
group; Ph: phenyl; PMA: petromyric acid A; PMB: petromyric acid B or para-methoxybenzyl; PNB:
para-nitrobenzoate; p-NBA: para-nitrobenzoic acid; Pr: propyl; TBAF: tetrabutylammonium fluo-
ride; TBHP: tert-butyl hydroperoxide; TIPS: triisopropylsilyl; TfOH: trifluoromethanesulfonic acid;
TMS: trimethylsilyl.
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