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Abstract: In this article, the interpolation of daily data of global solar irradiation, and the maximum,
average, and minimum temperatures were measured. These measurements were carried out in
the agrometeorological stations belonging to the Agro-climatic Information System for Irrigation
(SIAR, in Spanish) of the Region of Castilla and León, in Spain, through the concept of Virtual
Weather Station (VWS), which is implemented with Artificial Neural Networks (ANNs). This is
serving to estimate data in every point of the territory, according to their geographic coordinates
(i.e., longitude and latitude). The ANNs of the Multilayer Feed-Forward Perceptron (MLP) used are
daily trained, along with data recorded in 53 agro-meteorological stations, and where the validation
of the results is conducted in the station of Tordesillas (Valladolid). The ANN models for daily
interpolation were tested with one, two, three, and four neurons in the hidden layer, over a period
of 15 days (from 1 to 15 June 2020), with a root mean square error (RMSE, MJ/m2) of 1.23, 1.38, 1.31,
and 1.04, respectively, regarding the daily global solar irradiation. The interpolation of ambient
temperature also performed well when applying the VWS concept, with an RMSE (◦C) of 0.68 for the
maximum temperature with an ANN of four hidden neurons, 0.58 for the average temperature with
three hidden neurons, and 0.83 for the minimum temperature with four hidden neurons.

Keywords: daily global solar irradiation; daily maximum temperature; daily average temperature;
daily minimum temperature; evapotranspiration; agro-meteorology; Artificial Neural Networks
(ANNs); Virtual Weather Station (VWS) concept; spatial interpolation

1. Introduction

Agricultural productivity can be increased by knowing and predicting more precisely
crop yields under various conditions. This is a key concept in both precision agriculture
and agricultural modelling. Several authors have studied the different techniques applied
in precision agriculture and in the modelling of crop production where they involve me-
teorological variables, with the objective of improving quality, profitability, resource use
efficiency and sustainability [1–3]. Among these techniques, the application of variable
doses of water, fertilizers and agrochemicals (while considering agrometeorological condi-
tions), as well as the estimation of production (based on the evolution of meteorological
variables and the physiological response of crops), are the most frequently used and are cur-
rently adopted by many farmers. Indeed, in most cases, crop recommendations are based
on data recorded from field studies that compile their conditions (soil and environment) [4].

The impact of global solar irradiation on the Earth’s surface has a significant influence
on a country’s economy, including, for example, agricultural productivity, renewable energy
use, food security and human health risks [5], as reported in [6–10].
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Prediction and estimation studies of meteorological variables focus on measured data
as inputs to the model. Franco et al. [11] found that there is a lack of such studies that use
ANN models, and that focus on generating data in sites where such data are not available,
so that they can be used as inputs to other models.

Solar radiation is a fundamental factor for most physical and biophysical processes
due to its role contributing in to the balance of energy and water. However, interpolation
techniques are applied to large areas and do not capture the high variation at finer scales.
Fu and Rich [12] calculated insolation maps based on regression analysis of atmospheric
conditions, elevation, surface orientation and the influence of surrounding topography,
by correlating ground temperature with insolation and elevation, explaining the marginal
variation of other factors, such as crop canopy, in the vicinity of Rocky Mountain Biological
Laboratory, Gunnison, CO, USA, which area is approximately 300 km2 and has dramatic
topographic variation, with an elevation ranging from 2500 to 4300 m.

The lack of site-specific global solar radiation data is a significant barrier to most ap-
plications of crop models. Indeed, Mavromatis and Jagtap [13] evaluated several empirical
methods for estimating daily solar radiation from observed maximum and minimum air
temperatures, using data from urban and rural sites in Florida (USA), and using spatially
interpolated coefficients to improve the results, which are applied to estimate crop yield
potential and evapotranspiration. The Donatelli–Bellocchi model [14,15] achieved the most
accurate estimates with a Root Mean Square Error (RMSE) of 3.1–4.1 MJ/(m2 d) in rural
areas and 3.2–4.9 MJ/(m2 d) in urban areas.

Spatial interpolation is a classical geostatistical operation that aims to predict values
assigned to unobserved locations from a defined sample of data on specific substrates.
However, the underlying continuity and heterogeneity of spatial data are too complex
to be approximated by traditional statistical models. By using deep learning models, in
particular the idea of conditional generative adversarial networks (CGAN) [16], deeper
representations of sampled spatial data and their interactions with local structural patterns
can be captured. Zou et al. [17], with a case study (global solar radiation) on elevations
in southeast of China, demonstrated the model ANN capacity to achieve outstanding
interpolation results compared to the benchmark methods: a model ANN (9-17-1) provided
better accuracy (RMSE = 1.34 MJ/m2, and R2 = 0.91) compared to the improved Bristow–
Campbell model (RMSE = 2.19 MJ/m2, and R2 = 0.83) and the improved Ångström–Prescott
model (RMSE = 2.65 MJ/m2, and R2 = 0.68).

Environmental variables are recorded by point sampling. However, precision agricul-
ture requires more precise and specific knowledge of these characteristic variables near
or within the crop, and thus, spatially continuous data on environmental variables be-
comes necessary. Li and Heap [18] classified 25 Spatial Interpolation Methods (SIM) into
three different categories: non-geostatistical, geostatistical, and combined methods, and
provided guidelines and suggestions for selecting the appropriate method for a specific
environmental dataset.

A typical spatial interpolation method, which is very efficient and simple, is Inverse
Distance Weighting (IDW), for which Li et al. [19] proposed a new approach, called Dual
IDW (DIDW), which takes into account the correlation of the data, to avoid unfavourable
estimates with unevenly distributed samples. A case study based on Walker Lake data
indicates that DIDW significantly improves interpolation accuracy over traditional IDW,
and also slightly outperforms Ordinary Kriging (OK) for small data samples to capture
adequate spatial continuity.

The spatial interpolation of the Earth’s weather variables occupies an important role
in climate studies, but most of the traditional spatial interpolation methods do not consider
geographical semantics in their practical application. Wu et al. [20] proposed an improved
algorithm for IDW by considering geographic Semantics (SIDW), which adds the influence
of land use type on the interpolation of land surface temperature data by the Landsat 8
OLI-TIRS satellite over China, achieving generally higher accuracy and precision than IDW,
Kriging, natural neighbour, and spline function interpolation methods.
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Loghmari et al. [21] developed and evaluated two monthly spatial interpolation
models of global solar radiation, for the purpose of predicting global solar radiation within
a distance of more than 50 km in southern and central Tunisia: an artificial neural network
(ANN) that obtained better results than a model based on IDW.

In order to spatially fill gaps (nowcasting) in micrometeorological data sets (wind,
humidity and temperature), Gunawardena et al. [22] employed Multivariate Linear Regres-
sion (MLR) and ANN at eight locations, using measurements from three nearby weather
stations, covering scales from 100 m to 5 km. These measurements were made in re-
gions marked by complex terrain, where spatial variability is high on small length scales,
which in this case is the Cadarache Valley, which is located in southeastern France, from
December 2016 to June 2017, demonstrating that both methods are acceptable.

In this case [23], it is notable the interpolation of the observed weather in the centre of
a 25 by 25 km grid, where the weather data is homogeneous, and the temperature, sunshine,
humidity and wind speed are expected to change gradually at distances of 50 to 150 km in
the European Commission’s MARS (Monitoring Agriculture with Remote Sensing) Crop
Yield Forecasting System (MCYFS) wiki.

Geographic Information Systems (GIS) offer different options to analyze and repre-
sent the spatial heterogeneity of the incident solar radiation in a given area. Martín and
Dominguez [24] presented a description of the methods for estimating the distribution
of solar radiation in geographical areas, from a sample of data, using deterministic tech-
niques (global polynomial interpolation, local polynomial interpolation, inverse distance
weighting and radial basis functions) and geostatistical techniques (kriging and co-kriging)
applying them for the summer solstice 2011, from 45 stations in Spain. Indeed, the global
polynomial method presents interpolations closer to the real value, the geostatistical meth-
ods, in turn, generally present very low squared errors (the universal kriging and the
ordinary co-kriging are those that show the best adequacy in the results).

The data, which is collected at discrete weather stations, can only be meaningful when
represented by surfaces. Spatial interpolation methods help to convert the point data into
surfaces by estimating missing values for areas where data is not collected. In addition to
the objective, the total number of data points, their location and their distribution in the
study area affect the accuracy and efficiency of the interpolation. Keskin et al. [25] aimed
to investigate the optimal spatial interpolation method for mapping meteorological data
(precipitation, temperature and wind speed) in the Northern part of Turkey, using the
interpolation methods (IDW, kriging, radial basis and natural neighbour). This investi-
gation was carried out in January 2005, resulting in a three-locations average RMSE for
a temperature of 0.94 ◦C with IDW, 0.75 ◦C with kriging and 0.70 ◦C natural neighbour.

Yazar [26] performed spatial interpolation of solar radiation with data from 81 agrome-
teorological stations over heterogeneous agricultural areas including different crop species,
irrigation techniques, and topographical and other conditions in Southeastern Turkey,
by applying Ordinary Kriging (OK) individually and to reduce the Ordinary Co-Kriging
(OCK) error with solar radiation related data (air temperature, vapour pressure deficit and
digital elevation model), with up to 21% accuracy, which allowed for better evaluation and
management of crop development and yield.

Leirvik and Yuan [5] employed statistical methods (Random Forest (RF); Linear Regres-
sion (LR); Generalized Additive Regression (GAM); Least Squares Dummy Variable (LSDV);
Ordinary Kriging (OK); and combinations, as LR + OK, GAM + OK, and LSDV + OK) to
interpolate missing values in a monthly dataset spanning nearly five decades of global solar
irradiation over the Earth’s surface, highlighting the benefits of using Machine Learning in
environmental research.

Antonić et al. [27] used ANN models for monthly mean values of meteorological vari-
ables (air temperature, daily minimum and maximum air temperature, relative humidity,
precipitation, global solar irradiation and evapotranspiration) through data obtained from
127 meteorological stations in Croatia. The inputs used (elevation, latitude, longitude,
month and time series of the respective climatic variables) were from two meteorological
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stations. The quality of the results allows the construction of spatial distributions of the
average climate for a given period, which would be useful for dendroecological analysis.

Siqueira et al. [28] performed the generation of synthetic daily solar irradiation series
from spatial interpolation based on ANNs, employing geographic variables (latitude, lon-
gitude and altitude) and meteorological variables (precipitation, maximum and minimum
temperature), which were easily available. The data were measured during the months of
November (from 2001 to 2006) over seven locations in Pernambuco, Brazil.

Many climate studies need to generate predictions of a climate variable at a given
location using values from other locations. Snell et al. [29] conducted a spatial interpolation
of daily maximum surface air temperatures using ANNs, so as to generate estimates at
11 locations in the central U.S. continent, using information from a network of surrounding
stations for the 4- and 16-point cases and over a 63-year period (from 1931 to 1993) that
were used as input and output vectors for the ANNs. The results obtained are better
than the spatial average, nearest neighbour and inverse distance methods, and the poten-
tial of using ANNs for downscaling General Circulation Models (GCMs) of temperature
is discussed.

Rigol et al. [30] performed a spatial interpolation of daily minimum air temperature
using an ANN trained with input variables (date, field variables and neighbouring tem-
perature observations) for a full year, covering an area of 100 km × 100 km in Yorkshire,
UK, analyzing the internal weights of the inputs to estimate the degree of spatial correla-
tion between neighbouring stations, and the most influential variables contributing to the
trend. The performance when testing ANN (33-1-1) is RMSE = 3.15 ◦C, of ANN (19-4-1) is
RMSE = 1.26 ◦C, and of ANN (45-4-1) RMSE = 1.15 ◦C.

Zambon et al. [31] reviewed Industry 4.0 procedures suitable for the agricultural sector,
while pointing out that the 4.0 revolution in agriculture is still limited to a few innovative
companies. Additionally, environmental variability and stochastic events contribute to
a high degree of uncertainty in the supply chain and a lack of predictability in agricultural
operations. This is where recent technologies related to the digital age, such as precision
agriculture, which uses positioning technologies combined with the application of sensors
and data, provide digital information in all agricultural processes.

In this paper, the concept of a Virtual Weather Station (VWS) is used and employs
meteorological data from real stations to estimate data from a nearby location that does
not have a weather station. As part of the VWS development, the performance of ANN
models for interpolating each separate meteorological variable (global solar irradiation,
maximum, average and minimum temperatures) was evaluated. The performance of the
models is compared with those obtained by Franco et al. [11], who proposed the use of
a VWS in places where meteorological data are needed, as an alternative to their acquisition,
when it is not possible to install a meteorological station. The ANN models, in this case,
were used with all the variables of the same place, while in this article, the estimation of
each variable (solar irradiation and temperatures) is carried out separately (an ANN model
for each meteorological variable).

2. Materials and Methods

In this section, the following points are described: (1) the meteorological data used with
the tested geographic interpolation models, corresponding to global daily solar irradiation
and ambient temperature (maximum, average and minimum), as well as information on
the location of the agro-meteorological stations where these data were recorded; (2) the
ANN models designed for the estimation of the analyzed meteorological variables; and
(3) the statistics used to analyze the accuracy of the results obtained by the ANN-based
interpolation models that have been examined.
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2.1. Daily Data on Global Solar Irradiation and Ambient Temperature (Maximum, Average
and Minimum)

The daily average data of global solar irradiation and ambient temperature (maximum,
mean and minimum) used in this article, for a 15-day period (from 1 to 15 June 2020, were
collected in the 54 agrometeorological stations (Appendix A) belonging to the Agro-climatic
Information System for Irrigation (SIAR, Sistema de Información para el Asesoramiento al
Riego, in Spanish), located in Castilla and León Region, in the North-central part of Iberian
Peninsula, as shown in the map presented in Figure 1 and in Table A1 (data of altitude,
latitude and longitude).
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Figure 1. Location of the 54 agrometeorological stations belonging to the Agro-climatic Information
System for Irrigation (SIAR) located in Castilla and León Region, Spain [32], highlighting (red star)
the site of the agrometeorological station referenced for this study (Tordesillas, Valladolid).

SIAR is a project financed by the Ministry of Environment and Rural and Maritime
Areas of Spain, which is managed by the Agricultural Technological Institute of Castilla
and León, (ITACyL, Instituto Tecnológico Agrario de Castilla y León, in Spanish), through
the Meteorological Information Service [32]. The SIAR project helps farmers to manage
irrigation water in an optimal way, advising them on the doses to be applied at each time
of the year, depending on the phenological stage of the crop, by calculating the reference
evapotranspiration (ETo).

Within the agrometeorological stations of the SIAR network, solar irradiance is mea-
sured by a Skye SP1110 pyranometer (Campbell Scientific, Inc., North Logan, UT, USA),
consisting of a silicon photocell sensitive to radiation between 350 and 1100 nm, while the
ambient temperature is measured by a Pt-1000 temperature sensor, which is based on the
variation of platinum resistance with temperature. The linearization and amplification elec-
tronics for these sensors are located next to a Vaisala HMP45C probe (Campbell Scientific,
Inc., North Logan, UT, USA), which is used to measure ambient temperature and relative
humidity, in the temperature ranges of −40 to 60 ◦C, and 0 to 100%, respectively.

The climatic classification for the location of most agrometeorological stations is Csb,
with some located in areas classified as Cfb, Csa and BSk types [33], according to the
Koppen-Geiger climate classification.

2.2. Estimation of Solar Irradiation and Ambient Temperature Using Artificial Neural Networks

The architectures of the ANNs used for the evaluated geographic interpolation models
are illustrated in Figure 2. All of them contain two inputs (longitude and latitude) and
one output, which can be the daily global solar irradiation, or the daily mean values of the
ambient temperature (maximum, average, or minimum).
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Figure 2. The architecture of the models evaluated with Artificial Neural Networks (ANN). Layers
(input-hidden-output) (2-1 . . . 4-1) based on the input variables [latitude and longitude] to individu-
ally estimate: (a) daily global solar irradiation; (b) daily maximum temperature; (c) daily average
temperature; (d) daily minimum temperature.

The implementation of the ANNs was performed in MATLAB Software with the
feedforwardnet function, dimensioned with the input and output data vectors, which deter-
mine the size of the respective layers, generating a Multilayer feed-Forward Perceptron
(MLP) type ANN with a single hidden layer, where the selected activation function be-
tween neurons in the hidden layer was the hyperbolic sigmoidal tangent (tansig), while
the selected transfer function for the neurons in the output layer was linear (purelin). The
Levenberg–Marquardt back-propagation (BP-LM) algorithm was applied to achieve fast
optimization (trainlm) [34,35].

The training of the ANNs was performed with the train function, with matrices of
input and output data vector, carried out daily in 53 agrometeorological stations of the
SIAR network (all of them belonging to this network, except the agrometeorological station
of Tordesillas, used in the validation phase of the results), over a period of 15 days (from
1 to 15 June 2020). Finally, the sim function was used, testing the ANNs previously trained
with 1, 2, 3, and 4 neurons in the hidden layer, to estimate each meteorological variable
studied separately, over the same 15 days at the station located in Tordesillas (Valladolid,
Figure 1), with geographic coordinates 41◦30′32′′ N and 4◦59′20′′ W, altitude 658 mamsl,
used as reference for the validation. The period from June 1 to 15 was chosen because it
is the period of the year when agricultural activity is the highest in the Iberian Peninsula,
coinciding with the end of winter crops and the beginning of summer crops.

2.3. Statistics for the Validation of the ANN Models

The accuracy of the results obtained by the ANN models in the validation phase was
analyzed using the following statistics: Root Mean Square Error (RMSE, solar irradiation
MJ/m2 and temperature ◦C), using Equation (1); and the coefficient of determination (R2),
as an indicator of the level of model fit, using Equation (2).

RMSE =

√√√√∑n
i=1

(
Yi − Ŷi

)2

n
(1)
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R2 = 1−
∑n

i=1

(
Yi − Ŷi

)2

∑n
i=1
(
Yi − Y

)2 (2)

3. Results

This section presents the results obtained by the ANN models for the daily estimation
of global solar irradiation (1) and ambient temperature (maximum (2), average (3), and
minimum (4)) at the agrometeorological reference station SIAR, located in Tordesillas,
Valladolid, Castilla and León, Spain.

3.1. ANN Models for Estimating Daily Global Solar Irradiation at the Reference Station

The results of the ANN models for estimating daily global solar irradiation at the
reference station presented in Figure 2a are shown in Table 1. The best result is obtained
when using ANN (2-4-1) with RMSE = 1.04 MJ/m2, which improves on the best ANN
result of Franco et al. [11] for the summer months of 1.63 MJ/m2, by using the rectified
linear unit activation function.

Table 1. Daily global solar irradiation (MJ/m2) in Tordesillas (Valladolid) measured for 15 days (i.e.,
1–15 June 2020), estimated with the neural architectures varying the number of neurons from four to
one in the hidden layer (i.e., ANN (2-4-1), ANN (2-3-1), ANN (2-2-1) and ANN (2-1-1)), and fitting of
the statistics.

Tordesillas Data ANN (2-4-1) ANN (2-3-1) ANN (2-2-1) ANN (2-1-1)

1 June 2020 27.58 26.85 27.27 27.62 26.83

2 June 2020 25.61 25.60 26.03 25.79 25.79

3 June 2020 24.38 23.16 22.23 21.90 22.77

4 June 2020 27.74 25.29 25.07 24.68 24.67

5 June 2020 31.09 30.41 30.79 29.92 30.00

6 June 2020 27.45 27.29 26.22 26.29 25.98

7 June 2020 17.94 17.58 16.14 16.92 17.10

8 June 2020 26.96 26.75 26.72 26.60 26.47

9 June 2020 24.94 26.89 27.32 27.06 26.07

10 June 2020 28.46 27.96 28.60 27.73 27.64

11 June 2020 21.55 20.72 22.33 21.74 21.07

12 June 2020 14.93 14.16 15.71 15.94 14.41

13 June 2020 21.29 20.51 21.10 20.21 20.36

14 June 2020 27.64 26.34 26.60 26.31 26.18

15 June 2020 22.21 22.30 23.11 22.43 22.69

RMSE 1.04 1.31 1.38 1.23

R2 0.94 0.90 0.89 0.91

RMSE, root mean square error (MJ/m2); R2, determination coefficient. The best results are underlined.

3.2. ANN Models for the Estimation of the Maximum Daily Temperature in the Reference Station

The results of the ANN models shown in Figure 2b for the estimation of the daily
maximum temperature at the reference station, are presented in Table 2. The best result ob-
tained is the ANN (2-4-1) with RMSE = 0.68 ◦C, which improves the best result of the ANNs
Franco et al. [11] for the summer months by 1.28 ◦C using the sigmoid activation function.
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Table 2. Daily maximum temperature (◦C) in Tordesillas (Valladolid) measured for 15 days (i.e.,
1–15 June 2020), estimation performed with the neural architectures varying the number of neurons
from four to one in the hidden layer (i.e., ANN (2-4-1), ANN (2-3-1), ANN (2-2-1) and ANN (2-1-1)),
and fitting of the statistics.

Tordesillas Data ANN (2-4-1) ANN (2-3-1) ANN (2-2-1) ANN (2-1-1)

1 June 2020 28.73 27.92 27.96 27.72 27.54
2 June 2020 29.73 29.01 29.34 29.05 28.57
3 June 2020 27.73 26.52 26.17 26.18 25.58
4 June 2020 21.26 20.98 20.78 21.09 20.82
5 June 2020 26.86 26.60 26.28 26.68 26.30
6 June 2020 27.13 26.12 26.48 25.92 25.59
7 June 2020 19.19 18.15 19.26 18.57 18.74
8 June 2020 20.06 20.05 19.86 19.91 19.89
9 June 2020 20.26 20.26 20.60 21.02 20.62
10 June 2020 24.8 24.33 24.14 24.11 24.12
11 June 2020 21.46 20.66 20.42 20.32 20.39
12 June 2020 18.2 17.45 16.71 16.84 16.42
13 June 2020 18.99 19.37 19.30 19.45 19.28
14 June 2020 21.79 21.98 21.18 21.29 21.17
15 June 2020 22.79 22.20 22.17 22.00 22.22

RMSE 0.68 0.77 0.86 1.04

R2 0.97 0.96 0.95 0.92

RMSE, root mean square error (◦C); R2, determination coefficient. The best results are underlined.

3.3. ANN Models for the Estimation of the Average Daily Temperature in the Reference Station

The results of the ANNs models shown in Figure 2c for estimating the daily mean tem-
perature at the reference station are presented in Table 3. The best result is obtained
by ANNs (2-3-1) with RMSE = 0.58 ◦C, which improves the best ANN performance
Franco et al. [11] for the summer months by 0.99 ◦C when using the hyperbolic tangent
activation function.

Table 3. Daily average temperature (◦C) in Tordesillas (Valladolid) measured for 15 days (i.e.,
1–15 June 2020), estimation performed with the neural architectures varying the number of neurons
from four to one in the hidden layer (i.e., ANN (2-4-1), ANN (2-3-1), ANN (2-2-1) and ANN (2-1-1)),
and fitting of the statistics.

Tordesillas Data ANN (2-4-1) ANN (2-3-1) ANN (2-2-1) ANN (2-1-1)

1 June 2020 20.39 19.71 19.40 19.47 19.26
2 June 2020 22.00 21.47 21.53 20.98 20.57
3 June 2020 19.04 18.51 18.20 18.40 17.98
4 June 2020 16.15 16.02 15.42 14.92 15.35
5 June 2020 16.83 16.13 16.50 16.80 16.57
6 June 2020 18.09 17.46 18.04 17.53 17.31
7 June 2020 14.65 13.61 13.61 13.62 13.96
8 June 2020 13.77 13.03 13.14 12.94 12.82
9 June 2020 13.83 13.06 13.83 13.09 13.05
10 June 2020 16.68 15.75 16.20 15.75 15.83
11 June 2020 15.11 14.69 14.50 14.80 14.02
12 June 2020 11.88 11.31 11.88 11.18 11.20
13 June 2020 13.45 13.37 13.15 12.84 12.72
14 June 2020 15.43 15.10 15.10 14.76 14.59
15 June 2020 15.99 15.84 15.57 15.41 15.40

RMSE 0.61 0.58 0.78 0.88

R2 0.95 0.95 0.91 0.89

RMSE, root mean square error (◦C); R2, determination coefficient. The best results are underlined.
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3.4. ANN Models for the Estimation of the Minimum Daily Temperature in the Reference Station

The results of the ANN models shown in Figure 2d for the estimation of the daily
minimum temperature at the reference station, are visualized in Table 4. It obtained the
best result for the ANN (2-4-1) with RMSE = 0.83 ◦C, which improves the best result of
all ANNs Franco et al. [11] for the summer months by 1.55 ◦C, when using the hyperbolic
tangent activation function.

Table 4. Daily minimum temperature (◦C) in Tordesillas (Valladolid) measured for 15 days (i.e.,
1–15 June 2020), estimated with the neural architectures varying the number of neurons from four to
one in the hidden layer (i.e., ANN (2-4-1), ANN (2-3-1), ANN (2-2-1) and ANN (2-1-1)), and fitting of
the statistics.

Tordesillas Data ANN (2-4-1) ANN (2-3-1) ANN (2-2-1) ANN (2-1-1)

1 June 2020 11.93 10.80 10.57 10.93 10.67

2 June 2020 13.67 13.38 13.54 13.27 12.85

3 June 2020 13.86 13.21 13.88 13.00 13.00

4 June 2020 11.33 9.32 9.37 9.20 9.16

5 June 2020 6.19 6.58 6.10 5.77 5.86

6 June 2020 9.59 9.84 9.75 9.70 9.00

7 June 2020 10.66 9.07 9.60 8.88 9.21

8 June 2020 7.8 7.31 7.41 6.38 6.54

9 June 2020 5.99 5.80 5.76 5.24 5.16

10 June 2020 7.67 6.72 5.84 5.66 5.98

11 June 2020 9.26 9.16 8.84 8.51 8.32

12 June 2020 8.66 8.13 8.21 8.45 7.72

13 June 2020 5.99 6.49 6.74 7.18 7.29

14 June 2020 7.19 7.19 6.94 7.07 7.07

15 June 2020 8.06 7.87 8.21 8.41 7.84

RMSE 0.83 0.88 1.11 1.12

R2 0.89 0.88 0.81 0.80

RMSE, root mean square error (◦C); R2, determination coefficient. The best results are underlined.

4. Discussion

In this paper, ANNs were used to perform spatial weather forecasts using data mea-
sured by SIAR agrometeorological stations in Castilla and León (Spain), one of the largest
regions in Europe (94,224 km2, where more than half of the area is agricultural land), using
meteorological data from both the area near the reference station and the neighbouring
areas, which achieved a better performance of the ANN models. Loghmari et al. [21]
applied an ANN model using the available meteorological data in the target area with
a Recorded Average Relative Root Mean Square Error (ARRMSE) of 6.4%, while the IDW
model estimated the global solar radiation measured in nearby areas with an error of 5.11%.

The date set used by Franco et al. [11] to interpolate the values of the most impor-
tant meteorological variables in agriculture using an ANN was daily precipitation (mm),
evapotranspiration ETo (mm), mean daily air temperature (◦C), maximum temperature
(◦C), minimum temperature (◦C), mean daily relative humidity (%), maximum relative
humidity (%), minimum relative humidity (%), mean wind speed (m/s) and total solar
irradiation (MJ/m2) during the summer months (June, July and August) by the same SIAR
agrometeorological stations in the territory of Castilla and León, Spain.
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In this paper, ANN models are performed independently for each daily variable
studied (global solar irradiation, and maximum, average and minimum temperatures)
from the geographic coordinates [longitude and latitude] of the location to be estimated,
achieving better performance in RMSE values (1.04 MJ/m2, 0.68 ◦C, 0.58 ◦C, and 0.83 ◦C,
respectively), compared to the ANN models. Franco et al. [11] simultaneously analyzed in
the same ANN, ten meteorological variables, during the summer months, obtaining RMSE
values of 1.63 MJ/m2, 1.28 ◦C, 0.99 ◦C, and 1.55 ◦C, respectively, for the same variables.

5. Conclusions

Precision agriculture can improve the performance of crops, and thus increase agri-
cultural productivity, by considering a precise knowledge of the meteorological variables
that affect them in their development. The number of agrometeorological station networks
is increasing, but it is still interesting to have data from the specific location of the crops,
which can be obtained by interpolating the data measured by the agrometeorological station
network. Strong et al. [36] assessed and evaluated the barriers to the adoption of smart
agriculture through the Internet of Things (IoT) among Brazilian farmers in the Rio Grande
do Sul, where they found that elements such as compatibility, complexity, testability, and
visibility were the predictors of farmers’ adoption of innovative solutions. As for ANN
models, they were analyzed in this paper to describe the importance of their application
for the adoption of climate-smart agriculture.

Kilelu et al. [37] carried out a report on the development of enterprises providing
agricultural services in the context of the transformation of agricultural value chains and
food systems in the dairy sector in Kenya, where they have the potential to provide
innovation support to entrepreneurial farmers as well as contribute to the sustainable
growth of the sector.

In this article, ANN models were used to interpolate the data measured daily by the
SIAR network of agrometeorological stations in the Region of Castilla and León (Spain) for
several meteorological variables: global solar irradiation, maximum, average and minimum
temperatures, from the geographical coordinates of the location where the interpolation
was carried out, by means of an ANN model for each of the variables studied. This study
uses meteorological data available in the target region (areas close to the reference station)
and in neighbouring regions (areas far from the reference station). The possibility of having
synthetic meteorological data that best represent the local meteorology at each place and
time is therefore very important to be able to apply advanced agricultural forecasting
techniques that, for example, are related to the knowledge of the phenological behaviour
of plants of productive interest, to the prediction of the necessary irrigation doses and
the incidence of pests and diseases, or to the estimation of the potential product of the
crops [38–40].

The results obtained from this study are more successful than those obtained previ-
ously for the same SIAR network by applying a single ANN model for all meteorological
variables (10 variables). The key to this improvement in results is the use of more simplified
and simpler ANN models, which provide a more accurate ANN (Occam’s razor).

In addition, the results obtained from the VWS in this study can be applied to make
the prediction, at the same location, of the global solar irradiation of the next day with
the ANN models developed by Diez et al. [34], and to estimate the hourly distribution of
the ambient temperature, during the 24 h of the day, with the ANN models developed by
Diez et al. [35], as well as the prediction of the values, for the next day, of the temperature
(maximum, average and minimum).

Future studies that develop these ANN models for the interpolation of meteorological
variables from geographic coordinates for crop production could include a predictor vari-
able that directly affects the variable to be estimated (in a sloping terrain, its orientation to
interpolate solar irradiation, or in the case of temperatures, the type of vegetation cover)
that would increase the accuracy of the ANN models.
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Nomenclature

ANN Artificial Neural Network
ARRMSE Average Relative Root Mean Square
BP-LM Back-Propagation Levenberg–Marquardt algorithm
CGAN Conditional Generative Adversarial Networks
DIDW Dual Inverse Distance Weighting
ETo Evapotranspiration
GAM Generalized Additive Regression
GCM General Circulation Models
GIS Geographic Information System
IDW Inverse Distance Weighting
IoT Internet of Things

ITACyL
Agricultural Technological Institute in Castilla and León
(Instituto Tecnológico Agrario de Castilla y León, in Spanish)

LR Linear Regression
LSDV Least Squares Dummy Variable
mamsl meters above mean sea level
MARS Monitoring Agriculture with Remote Sensing
MCYFS MARS Crop Yield Forecasting System
MLP Multilayer Feed-forward Perceptron
MLR Multivariate Linear Regression
OCK Ordinary Co-Kriging
OK Ordinary Kriging
OLI Operational land imager
RF Random Forest
RMSE Root Mean Square Error
R2 Coefficient of determination

SIAR
Agro-climatic Information System for Irrigation
(Sistema de Información para el Asesoramiento al Riego, in Spanish)

SIDW Semantics Inverse Distance Weighting
TIRS Thermal infrared sensor
SIM Spatial Interpolation Methods
VWS Virtual Weather Station.
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Appendix A

Appendix A shows the information (altitude, latitude and longitude) of the 54 agrom-
eteorological stations belonging to the Agro-climatic Information System for Irrigation
(SIAR) InfoRiego [32], located in the nine provinces of Castilla and León Region, Spain, in
Table A1.

Table A1. Location of the 54 agrometeorological stations belonging to the Agro-climatic Information
System for Irrigation (SIAR) located in Castilla and León Region, Spain.

Province Location Altitude (mamsl) Latitude (◦) Longitude (◦)

Ávila Nava de Arévalo 921 40.997 −4.765
Ávila Muñogalindo 1128 40.597 −4.905
Ávila Losar del Barco 1027 40.397 −5.535
Burgos Valle de Losa 635 42.988 −3.220
Burgos Condado de Treviño 551 42.719 −2.690
Burgos Valle de Valdelucio 975 42.724 −4.081
Burgos Lerma 840 41.987 −3.763
Burgos Tardajos 770 42.353 −3.814
Burgos Vadocondes 870 41.628 −3.573
Burgos Santa Gadea del Cid 520 42.684 −3.108
León Carracedelo 467 42.550 −6.733
León Mansilla Mayor 791 42.512 −5.446
León Cubillas de los Oteros 777 42.378 −5.511
León Zotes del Páramo 779 42.265 −5.731
León Quintana del Marco 750 42.201 −5.862
León Hospital de Órbigo 835 42.463 −5.883
León Bustillo del Páramo 874 42.439 −5.800
León Sahagún 856 42.369 −5.006
León Santas Martas 885 42.453 −5.362
Palencia Torquemada 868 42.039 −4.300
Palencia Villaeles de Valdavia 881 42.576 −4.558
Palencia Villamuriel del Cerrato 750 41.952 −4.508
Palencia Fuentes de Nava 744 42.090 −4.767
Palencia Villoldo 817 42.256 −4.598
Palencia Herrera de Pisuerga 821 42.549 −4.311
Palencia Villaluenga de la Vega 927 42.525 −4.776
Palencia Lantadilla 798 42.336 −4.300
Salamanca Ciudad Rodrigo 635 40.618 −6.492
Salamanca Arabayona 850 41.047 −5.393
Salamanca Ejeme 812 40.769 −5.525
Salamanca Aldearrubia 815 41.004 −5.493
Segovia Gomezserracín 870 41.287 −4.299
Segovia Navas de la Asunción 822 41.141 −4.486
Soria Almazán 943 41.483 −2.556
Soria Hinojosa del Campo 1043 41.743 −2.081
Soria San Esteban de Gormaz 855 41.535 −3.220
Soria Fuentecantos 1063 41.843 −2.434
Valladolid Mayorga 748 42.172 −5.300
Valladolid Finca Zamadueñas 714 41.626 −4.740
Valladolid Medina del Campo 724 41.320 −4.904
Valladolid Rueda 700 41.385 −4.968
Valladolid Villalón de Campos 788 42.100 −5.034
Valladolid Torrecilla de la Orden 793 41.219 −5.267
Valladolid Olmedo 750 41.292 −4.717
Valladolid Encinas de Esguevas 816 41.754 −4.091
Valladolid Tordesillas 658 41.509 −4.989
Valladolid Valbuena de Duero 756 41.662 −4.284
Valladolid Medina de Rioseco 739 41.889 −5.030
Zamora Colinas de Trasmonte 709 42.014 −5.821
Zamora Villaralbo 659 41.497 −5.670
Zamora Villalpando 701 41.825 −5.406
Zamora Pozuelo de Tábara 714 41.780 −5.907
Zamora Barcial del Barco 738 41.935 −5.644
Zamora Toro 623 41.489 −5.470
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