
Artificial Intelligence In Medicine 143 (2023) 102630

A
0
n

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

Research paper

Insight into ADHD diagnosis with deep learning on Actimetry: Quantitative
interpretation of occlusion maps in age and gender subgroups
Patricia Amado-Caballero a,∗, Pablo Casaseca-de-la-Higuera a, Susana Alberola-López b,
Jesús María Andrés-de-Llano c, José Antonio López-Villalobos c, Carlos Alberola-López a

a Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, Valladolid, Spain
b Centro de Salud Jardinillos, 34001 Palencia, Spain
c Complejo Asistencial Universitario de Palencia, 34005 Palencia, Spain

A R T I C L E I N F O

Keywords:
ADHD
Actigraphy
Deep learning
Understandable AI

A B S T R A C T

Attention Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in childhood
that often persists into adulthood. Objectively diagnosing ADHD can be challenging due to the reliance on
subjective questionnaires in clinical assessment. Fortunately, recent advancements in artificial intelligence
(AI) have shown promise in providing objective diagnoses through the analysis of medical images or activity
recordings. These AI-based techniques have demonstrated accurate ADHD diagnosis; however, the growing
complexity of deep learning models has introduced a lack of interpretability. These models often function as
black boxes, unable to offer meaningful insights into the data patterns that characterize ADHD.
Objective: This paper proposes a methodology to interpret the output of an AI-based diagnosis system for
combined ADHD in age and gender-stratified populations.
Methods: Our system is based on the analysis of 24 hour-long activity records using Convolutional Neural
Networks (CNNs) to classify spectrograms of activity windows. These windows are interpreted using occlusion
maps to highlight the time–frequency patterns explaining ADHD activity.
Results: Significant differences in the frequency patterns between ADHD and controls both in diurnal and
nocturnal activity were found for all the populations. Temporal dispersion also presented differences in the
male population.
Conclusion: The proposed interpretation techniques for CNNs highlighted gender- and age-related differences
between ADHD patients and controls. Leveraging these differences could potentially lead to improved
diagnostic accuracy, especially if a larger and more balanced dataset is utilized.
Significance: Our findings pave the way for the development of an AI-based diagnosis system for ADHD that
offers interpretability, thereby providing valuable insights into the underlying etiology of the disease.
1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a neurode-
velopmental disorder characterized by persistent inattention and/or
hyperactivity-impulsivity. It exerts a significant impact on development
and can lead to adverse effects on academic, social, and occupational
functioning [1].

Review studies on the prevalence of ADHD in children and ado-
lescents indicate rates ranging from 2% to 7% [2]. In the Spanish
population, a prevalence rate of 6.6% has been reported [3]. Further-
more, consistent figures have been observed across different stages of
development, with rates of 6.9% in childhood, 6.2% in pre-adolescence,
and 6.9% in adolescence [4]. The high prevalence of ADHD, along with
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its significant impact on the social, academic, and school environments,
emphasizes the importance of early diagnosis. Early detection plays
a vital role in ensuring that affected individuals receive appropriate
support for higher education and improved quality of life standards.
However, it should be noted that clinical diagnosis of ADHD can be sub-
jective and variable depending on the diagnostic method employed [4],
underscoring the urgent need for more objective and reliable diagnostic
tools.

The diagnosis of ADHD reveals an imbalance in the number of
males compared to females, with a gender ratio of approximately 3:1
(males vs. females) [5]. Several studies suggest that this disparity arises
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from the difficulty in identifying clear markers in women, potentially
leading to underdiagnosis in this population [5,6]. Consequently, there
is an urgent need to develop methods that offer a deeper understand-
ing of these gender differences and enable more accurate detection
among females. In addition, it is important to acknowledge that ADHD
symptoms often attenuate with age, and certain characteristic patterns,
such as hyperactivity, may change or fade over time [7]. This poses
a challenge in detecting the disorder if it has not been previously
diagnosed. Therefore, early diagnosis becomes even more critical in
order to identify and address ADHD at the earliest stages.

As we describe in Section 2, various methods have been proposed
for automating ADHD diagnosis. Our interest lies in approaches that
utilize (physical) activity as input information, given its ubiquitous-
ness, non-invasiveness, and cost-effectiveness. Within this category, we
have recently introduced a solution based on deep learning, which
exhibits state-of-the-art performance in terms of diagnosis accuracy
(figures [8]). In this present paper, our objective is twofold: first, to de-
velop a methodology for identifying patterns in patients activity based
on deep neural network activation, and second, to provide physicians
with physiologically explainable information regarding both the net-
work and the patients behavior. To this end, the idea of occlusion maps
is taken as a starting point; patterns identified with this methodology
will be analytically characterized within age and gender subgroups and
will let us compare ADHD cases and controls with customary statistical
tools. We expect that shedding some light into the network behavior
will enable physicians to achieve a better understanding of both the
problem and the solution provided in [8]. Furthermore, this approach
will provide visual and quantitative information that can be utilized to
explain the diagnosis and the patient condition in relation to population
values. This will prove valuable in facilitating communication with
both the patient and their family, offering a clearer insight into the
diagnosis and the patient’s overall situation

The remainder of the paper is organized as follows: Section 2
provides an overview of the state-of-the-art in objective diagnosis of
ADHD, with a special focus on machine (deep) learning methods and
their interpretation. Section 3 presents the materials employed in the
study and the proposed methodology for the identification and interpre-
tation of activity patterns associated with ADHD. Results are presented
in Section 4 and discussed in Section 5. Finally, Section 6 concludes the
paper by summarizing the main conclusions derived from the study.

2. State of the art

2.1. ADHD diagnosis and deep learning

ADHD diagnosis commonly relies on the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) criteria [1].

However, this diagnostic process primarily relies on clinical as-
sessment, which involves questionnaires completed by parents and
teachers. The subjectivity inherent in the responses from the patient’s
environment strongly influences the diagnosis. To address this chal-
lenge, various objective diagnostic methods have been proposed over
the years to provide more reliable assessments.

One of the main difficulties in finding a reliable diagnostic method
for this disorder stems from the existing differences in the expression
of symptoms in terms of patient gender or age. This was noticed in [9],
where the focus was put on the difficulties in detecting the pathology
in girls, since they are more prone to show patterns of inattention over
impulsivity or hyperactivity, which is in contrast to the symptom profile
commonly observed in boys.

Recent studies have further addressed these complications. Rosch
et al. [10] studied the fronto-subcortical functional networks and dis-
covered their alteration in children with ADHD, particularly in girls.
Murray et al. [11] identified that females were more prone to exhibit
symptoms emerging during early adolescence, whereas males tended
to display symptoms starting in childhood. Furthermore, a relationship
2

was found between delayed diagnosis in girls and the manifestation
of hyperactivity and impulsivity patterns, which resulted from a later
onset of symptoms.

The clinical studies conducted by Mowlem et al. [12,13] have
examined these gender differences in depth, where several important
findings have been reported. Firstly, they found that the association
between hyperactivity/impulsivity, behavioral symptoms, and ADHD
diagnosis or treatment status is more pronounced in females compared
to males. Consequently, when a girl presents these symptoms, her di-
agnosis tends to occur earlier than in boys. However, a challenge arises
from the fact that external symptoms, such as hyperactivity/impulsivity
and conduct problems, are more commonly observed in boys, while
girls with ADHD may exhibit lower levels of these symptoms. Fur-
thermore, the skewed gender ratio in many study samples, with a
larger representation of boys than girls, complicates the identification
of behavioral and emotional patterns in females. The study in [13]
revealed the significance of emotional symptoms in girls who meet
the diagnostic criteria for ADHD. This finding suggests that emotional
symptoms play a crucial role in the female phenotype, providing sup-
port for the notion that girls may express their difficulties in distinct
ways.

Regarding age, the most relevant change from childhood consists
in the attenuation of hyperactive/impulsivity patterns [14] due to the
fact that inattention symptoms blend with sleep disorders [15,16] and
adolescent depression [17,18]

Despite the abundance of clinical studies that emphasize these
differences, to the best of our knowledge, there is a lack of machine
learning research that quantitatively measures these differences using
objective diagnostic techniques. Existing endeavors in the field primar-
ily focus on the detection of ADHD pathology and the discrimination
between individuals with ADHD and healthy subjects.

As for automated diagnosis, traditional machine learning methods
are progressively being substituted by deep-learning approaches. From
our perspective, we classify them into the two following classes:

• Non-actimetric methods, that comprise both image-based meth-
ods (and typically Magnetic Resonance Imaging –MRI–) or physi-
ological signal-based methods (in which electroencephalography
–EEG– stands out).

• Actimetric methods, featuring a lower cost and high effectiveness
in diagnosis, particularly when combined with deep learning
techniques.

Tables 1–3 summarize the most relevant studies that combine deep
learning with the information sources mentioned above. The tables are
organized in terms of Materials, Methods and Results & Conclusions, as
directly reported by their authors.

With regard to MRI studies, the dataset commonly used is ADHD-
00 Global Competition. Using a CNN as the core of the deep learning
ystem, the highest accuracy is provided by Khullar et al. [21] who
ombined a 2D-CNN with a LSTM (Long Short-Term Memory), ob-
aining 98.12%. As for EEG signals, Chen et al. [31] used a CNN to
chieve the highest classification accuracy (94,67%) over a group with
0 ADHD and 51 healthy controls. Other network arquitectures such
s recurrent convolutional neural networks (RCNN) have been used for
lassification of ADHD subjects. For instance, Yang et al. [35], obtained
7.36% accuracy with a RCNN fed with EEG data.

Recently, attention mechanisms have gathered interest within the
eep learning community. These mechanisms serve as valuable com-
onents that can greatly enhance the performance of deep neural
etworks, particularly when working with sequential data. This is done
y enhancing the most relevant parts of the processed data, replicating
o some extent cognitive attention patterns. In the last few years, a
umber of studies have been reported on diagnosis and classification
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Table 1
State of the art on DEEP LEARNING approaches for ADHD assessment based on medical-imaging. Results are those reported by the authors.

Medical imaging

Ref. Materials: Methods: Results and conclusion:

[19] Resting-state functional MRI images from
ADHD-200 Global Competition preprocessed using
Data Processing Assistant for RestingState fMRI
(DPARSF) programs with 197 ADHD (158 male)
and 362 (190 male) typically developing children
(TDC)

Features extract from Functional MRI (fMRI) and
Structural MRI (sMRI) data with multi-modality
3D-CNN

Accuracy (%) = 69.15

[20] sMRI from ADHD-200 Global Competition with 362
ADHD and 585 TDC

3D fractal dimension complexity map (FDCM) from
sMRI with 3D-CNN

Accuracy (%) = 69.01 (for the
feature of the gray matter
(GM) density

[21] Some datasets of ADHD-200 Global Competition:
Kennedy Krieguer Institute (KKI): 61 TDC and 22
ADHD. NeuroIMAGE Sample (NI): 23 TDC and 25
ADHD. New York University Child Study Center
(NY): 99 TDC and 123 ADHD. Oregon Health &
Science University(OHSU): 42 TDC and 37 ADHD
Peking University (PEKING): 146 TDC and 113
ADHD.

Resting state functional magnetic resonance imaging
(rs-fMRI) and deep learning-based techniques such as
2-dimensional convolutional neural network (CNN)
algorithm and hybrid 2-dimensional convolutional
neural network-long short-term memory (2D
CNN–LSTM)

Accuracy (%) = 99.50,
Sensitivity (%) = 99.40,
Specificity (%) = 99.60
(smallest dataset) Accuracy
(%) = 97.00, Sensitivity (%) =
96.50, Specificity (%) = 97.40
(bigger dataset) Accuracy (%)
= 98.12, Sensitivity (%) =
97.50, Specificity (%) = 98.16
(average of all dataset)

[22] Resting-state functional MRI images from some
datasets of ADHD-200 Global Competition : NI: 37
Healthy Control (HC) and 36 ADHD. NY: 110 HC
and 147 ADHD and PEKING: 85 HC and 51 ADHD.

Feature extractor from fMRI pre-processed time-series
signals with a functional connectivity network, and a
classification network.

Accuracy (%) = 73.1
Sensitivity (%) = 65.5,
Specificity (%) = 91.6

[23] Resting-state fMRI and anatomical data from
ADHD-200 Global Competition with 20 TDC called
‘‘controls’’ and 20 individuals diagnosed with
ADHD called ‘‘treatments’’

Deep neural network (DNN) using functional
connectivity-based fMRI data

Accuracy (%) = 95

[24] ADHD-200 Global Competition with 352 ADHD and
429 HC

Rs-fMRI data using 15 important region of
interest(ROIs) for training three different models to
classify ADHD: Separate Channel CNN–RNN with
Attention (ASCRNN), Separate Channel dilate
CNN–RNN with Attention (ASDRNN) and Separate
Channel CNN - slicing RNN with Attention (ASSRNN)

Accuracy for ASSRNN
model(%) = 70.6

[25] ADHD-200 Global Competition with 286 ADHD and
340 TDC in the training set and 73 ADHD and 89
TDC in the test set.

4-D CNN arquitecture with spatio-temporal deep
learning models & rs-fMRI for automatic ADHD
diagnostic

Accuracy (%) = 71.3 AUC =
0.80

[26] fMRI from ADHD-200 Global Competition Deep Channel Self-Attention Factorization for
classificate ADHD

Precision (%) = 99.87 Recall
(%) = 99.90 F1-Score (%) =
99.88 Accuracy (%) = 99.0

[27] Resting-state fMRI data from ADHD-200 Global
Competition, specifically the datasets from New
York University medical center, Kennedy Krieger
Institute, and Peking University

Auto-encoding network with attention mechanism Accuracy (%) = 98.9

[28] fMRI from ADHD-200 Global Competition over
281 children with ADHD and 266 normal control
children

Attention mechanism with auto-encoder for ADHD
classification

Accuracy (%) = 77.2

[29] fMRI from ADHD-200 Global Competition over 422
ADHD and 597 HC

Separated Channel Attention Convolutional Neural
Network

Accuracy (%) = 68.6

[30] fMRI from ADHD-200 Global Competition Spatiotemporal attention auto-encoder (STAAE) with
rs-fMRI for classification of ADHD patients

Accuracy (%) = 72.5
of ADHD, using functional MRI (fMRI) data. Notably, the approaches
in [28,29] achieved classification accuracy figures above 90% over
a database where other deep learning techniques struggled to reach
80%. Bakhtyari et al. [38] used a deep neural network combining
convolutional LSTM layers together with attention mechanisms over
EEG data. They obtained 99.75% accuracy in diagnosing ADHD.

The use of deep learning over actimetry has also provided inter-
esting results. Muñoz et al. [39] obtained 93.7% accuracy in a group
with 11 ADHD and 11 healthy controls with an ankle accelerometer
and a CNN architecture. More recently, we proposed [8] an ensemble
architecture that used a CNN to classify activity patterns that were
further combined for final diagnosis using a Support Vector Machine
(SVM). Data was obtained using an actimeter placed on the dominant
wrist. The diagnostic accuracy was 98.6%.
3

2.2. Interpretation of deep learning

CNNs are widely used to solve classification problems, especially in
the field of disease detection. However, they find a major difficulty in
explaining the underlying issues motivating the disease, since they act
as black boxes and do not provide a simple association between the
results obtained and their clinical explanation. Nevertheless, different
methodologies have been developed to address this issue. The most
widespread are:

• DeepDream is an algorithm created by Google; it provides means
for visualizing the patterns learned by a neural network by send-
ing an image through the network, calculating the gradient of the
image with respect to the activations of a particular layer and
returning an image that would represent the maximum activation
of the network for the classes under analysis [42].
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Table 2
State of the art on DEEP LEARNING approaches for ADHD assessment based on biomedical signals. Results are those reported by the authors.

Biomedical signals

Ref. Materials: Methods: Results and conclusion:

[31] EEG data from 50 children with ADHD (9 girls, mean age: 10.44 ±
0.75) and 51 handedness- and age-matched controls.

CNN arquitecture Accuracy (%) = 94.67

[32] EEG data from 13 ADHD-C [9 boys, 4 girls; age: 8.5 ± 0.7 y (mean ±
standard error)], 12 ADHD-I [7 boys, 5 girls; age: 8.75 ± 0.65 y] and
14 controls [8 boys, 6 girls; mean age: 8.92 ± 1.38 y].

CNN arquitecture Accuracy (%) = 99.46, Recall (%)
= 99.45, Precision (%) = 99.48
and Kappa = 0.99

[33] EEG data from 144 participants. 52 participants (10 female, age:10.9 ±
2.4; IQ: 100 ± 12) fulfilled criteria for ADD(ADHD inattentive)
according to ICD-10 (F98.8), 48 were diagnosed with the combined
subtype (ADHD; ICD-10 F90.0 or F90.1) (12 female, age: 10.6 ± 1.9;
IQ: 103 ± 13). and the remaining 44 participants were healthy control
children (15 female,age: 11.3 ± 2.2; IQ: 103 ± 12)

CNN arquitecture Accuracy (%) = 83

[34] EEG data from 50 children with ADHD (nine girls, mean age: 10.44 ±
0.75) and 57 controls who were matched for age

CNN arquitecture Accuracy (%) = 90.29

[35] Motor imagery datasetEEGMMIDB, from PhysioNet (subjects in the
study: 108)

Recurrent convolutional neural
network (RCNN)

Accuracy (using all channels) (%)
= 97.36 Accuracy (using a
selection of channels) (%) =
92.31

[36] EEG signals recorded from 31 ADHD children and 30 healthy children Deep CNN Accuracy (%) = 98.48

[37] EEG data from a total of 40 participants including 20 healthy adults
(10 males, 10 females) and 20 ADHD adult patients (10 males, 10
females) group.

Four layer CNN Accuracy (%) = 88 ± 1.12, AUC
(%) = 96 ± 0.74

[38] EEG data from 46 children with ADHD and 45 children in the control
group, in the age range of 7–12 years

ConvLSTM with attention mechanism
with 5 fold cross validation.

Accuracy (%) = 99.75
Table 3
State of the art on ADHD assessment through activity measurement. Results are those reported by the authors.

Activity performing a specific task

Ref. Materials: Methods: Results and conclusion:

[39] 22 patients, 11 ADHD and 11 healthy
subjects

Two accelerometers on the wrist and ankle
respectively to analyze data obtained in 6 school
hours and a CNN Arquitecture

Accuracy = 0.8570 , Sensitivity = 0.6 and
Specificity = 1 for the wrist and Accuracy= 0.937,
Sensitivity =0.8 y Specificity=1 for the ankle. No
specifics on the differences between ADHD and
controls activity patterns were provided.

[40] 19 ADHD patients and 24 healthy controls
aged 6–11 years old.

Activity signals obtained through two inertial
movement sensors placed on waist and the
non-dominant ankle during the visit to the
psychiatrist (1 h approximately).

Best results are achieved for a SVM-based classifier
with 10 features; accuracy = 95.12%, sensitivity =
94.44% and specificity = 96.65%.

[8] 73 ADHD (combined kind) patients and 75
healthy controls between the ages of 6 and
15 years old.

Actigraphy device placed on their dominant wrist
& CNN Arquitecture + SVM.

Accuracy (%) = 98.6 & Sensitivity (%) = 97.62 &
Specificity (%) = 99.52

[41] 51 ADHD patients and 52 with other
disorders termed as clinical controls
between the ages of 17 and 67 years old.

Wrist-worn actigraph device for movement
activity and a compact battery-powered chest-worn
device for ECG-based heart rate data. + SVM.

Accuracy (%) = 98.43 & F-Measure = 98.42 &
Sensitivity (%) = 98.33 & AUC = 0.983
• Class activation maps (CAM), proposed by Zhou et al. [43], high-
light those regions of the image used by the CNN to distinguish
between the different categories, using global average pooling
(GAP).

• Grad-CAM, designed by Selvaraju et al. [44], consists of a gener-
alization of CAM that employs the average clustering of the class
probability gradients.

• Occlusion Maps. This technique was first implemented by Zeiler
et al. [45] in order to understand CNNs and has been since
used in multiple occasions to gain insight into the behavior of
neural networks. It works by defining a mask, either of fixed
or variable size, which will be placed on the input image and
will consequently hide some image information to the CNN. The
class probability provided by the CNN fed by this distorted input
will be a en estimate of the importance of the hidden area for
the classification (higher probability means less importance). The
mask is then slided, the process is repeated and the output values
are stored in a matrix, which is then resized to have the same
dimensions as the original image.

• Attention mechanisms have demonstrated their utility not only
for improving performance but also for facilitating interpretation
4

within deep learning models. By highlighting the most relevant
components of input signals or intermediate features, attention
mechanisms provide valuable insights into the underlying data.

We are aware of some studies that have applied some of these
techniques to understand ADHD. Dubreuil-Vall et al. [37] applied
DeepDream to find out what type of inputs optimally excite the output
nodes of a network trained with EEG signals from adults diagnosed
with ADHD. Chen et al. [34] used EEG signals to train a 3D-CNN
and further used Grad-CAM to derive the class-discriminative region
in the spatial-frequency space for the ‘ADHD’ or ‘control’ categories.
Dong et al. [28] employed attention mechanisms to interpret functional
connectivity patterns in ADHD patients. Specifically, these mechanisms
were employed to extract factor matrices that encapsulated maximal
information, enabling the identification of connected regions of interest
within fMRI frames.

To the best of our knowledge, no studies to date have reported the
utilization of interpretation maps within the field of actimetry. Addi-
tionally, the application of deep learning algorithms with interpretation
maps has primarily focused on qualitative analysis of the obtained
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results. However, our proposal aims to push the boundaries further
by employing Gaussian mixture models to quantitatively assess these
results.

According to this review, our proposal is built upon the following
key concepts:

• There is sufficient evidence to support the significant influence
of age and gender on ADHD diagnosis. Despite this, current
automated diagnosis methods do not effectively incorporate this
information.

• As previously stated, the application of deep learning inter-
pretability techniques in the field of ADHD with actimetry re-
mains unexplored

ur proposal contributes to the field by providing some insight into
hese two topics.

. Materials and methods

.1. Materials

Our group of subjects consists of 139 children, aged between 6 and
5. 70 of them have been diagnosed with combined ADHD according to
SM-V while the remaining 69 are healthy. None of these subjects were
n medication at the time of data collection. Hereinafter, individuals in
he first group will be referred to as cases and those in the second group

as controls.
The procedure to diagnose ADHD was the following:
Parents and educators were involved in completing the ADHD RS-

IV questionnaire [Attention Deficit Hyperactivity Disorder Rating Scale
- IV] [46]. This questionnaire has been proven reliable and valid,
and matches the diagnostic criteria outlined in the DSM-V. Further-
more, its utility extends to the classification of different subtypes of
ADHD. All ADHD cases exceeding the psychometric criteria in the
RS-IV questionnaire completed a clinical interview also matching the
DSM-V. This clinical interview ensures the existence of a persistent
pattern of symptoms, their presence in two or more settings before
the age of twelve, and clinically significant impairment in social or
academic activity. In summary, the case is defined by the joint presence
of psychometric and clinical criteria. Controls were assessed using the
same procedure, excluding the presence of ADHD using the ADHD
RS-IV.

We further subdivided each group according to two criteria, namely,
age and gender:

• Age subgroups: the primary subgroup consists of subjects aged 6
to 11, representing those attending primary school. On the other
hand, the secondary subgroup includes subjects aged 12 to 15,
corresponding to the junior high school age range.

• Gender subgroups: males and females.

The final group and subgroup distribution is summarized in
Table 4.We created additional subgroups by combining the intersection
of the two criteria above, i.e., ‘‘primary males’’ (PM), ‘‘primary females’’
(PF), ‘‘secondary males’’ (SM) and ‘‘secondary females’’ (SF). Age and
gender subgroups will be collectively referred to as main subgroups.
Ages for each subgroup were distributed as follows (mean ± standard
deviation): 7.9 ± 1.7 (PM), 13.1 ± 1.1 (SM), 7.2 ± 1.0 (PF) and 12 ± 1.7
(SF).

Actimetry recordings were acquired with an ActiGraph GT3x device
placed in the non-dominant wrist. All subjects were monitored in their
regular daily activity for approximately 24 h. As input data, we utilized
the magnitude signal derived from acceleration measurements in all
three Cartesian axes, employing a sampling rate of 1 Hz.

This study was approved by the ‘‘Área de Salud de Palencia’’ Re-
search Ethics Committee (Register number: 2022/009). Subjects pro-
5

vided their informed consent before the recordings.
Table 4
Groups and subgroups of the study.
Cases Males Females Total

Primary 47 12 59
Secondary 9 2 11

Total 56 14 70

Controls Males Females Total

Primary 50 11 61
Secondary 6 2 8

Total 56 13 69

3.2. Methods

The methodology employed for diagnosing subjects in each sub-
group, investigating the impact of age and gender on the detection of
ADHD, follows a similar approach as presented in our previous work
[8]. This methodology can be broadly summarized into two distinct
steps:

1. Data preprocessing: Actigraphy signals were transformed into
spectrograms so that a time–frequency representation of the
signal was obtained. The following process was carried out:

• First, two records were created to differentiate between
nocturnal and diurnal activity (using data time stamps).

• The signals were fragmented into 1800-, 300- and 60-
second intervals, corresponding to long, medium and short
term activities.

• Finally, time consecutive spectrograms were created out of
these intervals. These spectrograms are stored as column
vectors, and horizontally concatenated to build a 2D time–
frequency image representation of the original signal. Each
of these images will be hereinafter referred to as window.

2. The obtained windows constitute the input to the CNN, so
each of them is classified as an ADHD or non-ADHD pattern.
Subsequently, an SVM classifier is utilized for patient diagnosis,
where the input to the classifier is the proportion of windows
identified as ADHD by the CNN. The network presented (see
Fig. 1) consists of 3 convolutional layers with 32, 64 and 128
filters respectively, followed by an activation layer (ReLU) and
a normalization layer (BatchNormalization), a fully connected
layer and a softmax layer. The architecture of the CNN has been
validated in [8].
This process is carried out both for nocturnal and for diurnal
activity. Although we addressed in [8] the three types of signal
fragmentation mentioned above, for the sake of simplicity, this
paper will focus on 1800-second intervals as they demonstrated
superior diagnostic accuracy.
In order to analyze age and gender differences, we have trained
eight networks, namely, {male,female,primary,secondary}, for
both diurnal and nocturnal activity periods. The training/testing
procedure has been carried out by means of 10-fold cross-
validation. The procedure is shown in Fig. 2. The upper branch
of the figure shows the customary procedure for window classifi-
cation into case/control categories. In this paper, we emphasize
the significance of the lower branch as it provides a mechanism
to explore the distinctions between cases and controls by delving
into the internal functioning of the CNN. Specifically, for each
fold we obtain the occlusion maps on the test set using only the
windows for which the softmax provides a decision probability
above 90%. The specific procedure has three stages (see Fig. 3),
which are now described in detail:
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Fig. 1. Structure of the network and the training process of the diagnosis system designed in [8].
Fig. 2. Overview of the classification (upper branch) and occlusion map determination (lower branch). The color code in the upper branch indicates the classification in
Cases/Controls for each subgroup for which a CNN is trained (either for nocturnal or for diurnal activity).
Fig. 3. Procedure for the interpretation method. Occlusion maps are obtained out of inputs of the CNN for which decision confidence is higher than 90%. The block labeled as
‘‘GMM fitting’’ carries out the operation described in Eq. (1). The block labeled as ‘‘Test’’ executes the hypothesis tests on the samples indicated in Eqs. (3) and (4).
3.2.1. Occlusion maps
For every window that meets the aforementioned selection criterion,

we have computed its occlusion map. Maps obtained from different
selected windows of the same subject undergo normalization to their
maximum values and are subsequently pixel-wise averaged, resulting
in a singular occlusion map per subject. Given that separate studies
were conducted for age, gender, and diurnal/nocturnal activity, each
patient will have four distinct occlusion maps representing each study.
Population-level maps for each group are derived by computing the
median map across all patients within the respective group.

3.2.2. Gaussian mixture model fitting
We have fitted a Gaussian mixture model (GMM) to each occlusion

map. Specifically, denoting by 𝑚(𝑥, 𝑦) the occlusion map at point (𝑥, 𝑦)
pertaining to some specific domain 𝜒 ⊂ Z2 within the 2D grid, and
𝑓 (𝑥, 𝑦;𝜽 ) a 2D Gaussian density function with parameters 𝜽 , the fit is
6

𝑖 𝐢
obtained by

min
𝑝1 ,𝑝2 ,𝜽𝟏 ,𝜽𝟐

∑

(𝑥,𝑦)∈𝜒

(

𝑚(𝑥, 𝑦) −
2
∑

𝑖=1
𝑝𝑖𝑓 (𝑥, 𝑦;𝜽𝑖)

)2

(1)

with

𝜽𝑖 =
[

𝜂𝑥𝑖 𝜎𝑥𝑖 𝜂𝑦𝑖 𝜎𝑦𝑖 𝜌𝑥𝑖𝑦𝑖
]

, (2)

i.e., the parameter vectors include means (denoted by letter 𝜂) and stan-
dard deviations (denoted by letter 𝜎) as well as the Pearson correlation
coefficient (𝜌) between the two components. Subindices indicate the
direction along which each parameter is calculated (specifically, –x– the
horizontal axis and –y– the vertical axes). Hereinafter

[

𝜽𝑖
]

𝑘 will denote
the 𝑘th component of this vector, (1 ≤ 𝑘 ≤ 5).
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3.2.3. Statistical analysis of the fitted parameters
The objective is to assess the presence of statistically significant

differences in the GMM fits between ADHD subjects and controls within
each subgroup. For this purpose, the following procedure has been
carried out:

• First, we looked for the dominant Gaussian distribution in each
of the subjects, i.e., the density function associated with the
largest 𝑝𝑖 in Eq. (1). Let 𝜽𝑐𝑎𝑑,𝑗 denote the parameter vector of the
dominant distribution corresponding to subject 𝑗 in the group of
cases (1 ≤ 𝑗 ≤ 𝑀) belonging to some subgroup. Correspondingly,
𝜽𝑐𝑜𝑑,𝑗 denotes the dominant parameter vector of the 𝑗th control
(1 ≤ 𝑗 ≤ 𝑁). In addition, we define

𝜽𝑐𝑎𝑑 [𝑘] =
[ [

𝜽𝑐𝑎𝑑,1
]

𝑘
⋯

[

𝜽𝑐𝑎𝑑,𝑀
]

𝑘

]

(3)

𝜽𝑐𝑜𝑑 [𝑘] =
[ [

𝜽𝑐𝑜𝑑,𝑗
]

𝑘
⋯

[

𝜽𝑐𝑜𝑑,𝑁
]

𝑘

]

(4)

i.e., the vectors consisting respectively of 𝑀 and 𝑁 entries that
correspond to the 𝑘th component of the dominant vector de-
fined in (2) for both cases and controls. These vectors will be
hereinafter referred to as the samples.

• The samples will be compared to find statistical differences be-
tween them. Specifically, a Gaussianity test will be first carried
out on each sample; if Gaussianity applies in both, an unpaired
t-test is used. Otherwise, a Mann Whitney U-test is employed.

• The appropriate test is executed for all the parameters in Eq. (2).
Whenever significant differences are found (i.e., the 𝑝-value is
lower than 0.05) boxplots are displayed.

For completeness, we also analyzed the Cauchy–Schwarz diver-
gence [47] between the fitted distributions. Specifically, letting

𝜣 =
[

𝜽1 𝑝1 𝜽2 𝑝2
]

(5)

where subscript 1 denotes the dominant Gaussian, and denoting
𝑔𝑋𝑗 (𝑥, 𝑦;𝜣), 𝑋 = {𝑐𝑎, 𝑐𝑜} the fitted distribution for the 𝑗th subject
for that group, the divergence between the 𝑖th case and 𝑗th subject
belonging to group 𝑋 is defined as

𝑑𝑐𝑎,𝑋𝑖,𝑗 = 𝑑
(

𝑔𝑐𝑎𝑖 (𝑥, 𝑦;𝜣), 𝑔𝑋𝑗 (𝑥, 𝑦;𝜣)
)

, (6)

with 1 ≤ 𝑖, 𝑗 ≤ 𝑀 , 𝑖 ≠ 𝑗 for 𝑋 = 𝑐𝑎 and 1 ≤ 𝑖 ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑁 , for
𝑋 = 𝑐𝑜. Eq. (6) is extended accordingly to age and gender subgroups.

4. Results

This section focuses on the statistical analysis of occlusion maps
in the defined subgroups. Distribution distances, mixture parameter
distributions, and representative occlusion maps have been thoroughly
examined and the main results are presented. These representations
offer physicians objective visual and quantitative tools that can be
utilized in their practice to elucidate the results obtained from the
decision support tool described in [8]. The depicted occlusion maps
will represent population-level maps.

To examine differences related to the age and gender of the patients,
we analyzed the outcomes of the networks mentioned in Section 3.
Additionally, we assessed the performance of these networks on various
intersection subgroups. We first calculated the Cauchy–Schwarz diver-
gence between distribution fits for the primary subgroup. Fig. 4 shows
the results for nocturnal activity. As can be inferred, distances between
each pair of cases tend to be smaller than case-control distances. A
similar behavior can be observed for the secondary subgroup and
diurnal activity (see Fig. 5). These results motivate further analysis
on quantitative differences between cases and controls in different
subgroups.

Tables 5 and 6 show the p-values obtained from pairwise-comparing
each of the five components in Eq. (2) (plus the weighting term of
the dominant Gaussian) for cases and controls in each of the indicated
7

Table 5
P-values from the hypothesis tests for the age training. CNNs used are Pri-
mary/Secondary both for nocturnal and diurnal activities. p is the weighting factor
of the dominant Gaussian; the other five columns refer to the parameters defined in
Eq. (2).

p 𝜂𝑥 𝜂𝑦 𝜎𝑥 𝜎𝑦 𝜌𝑥𝑦
SECONDARY

NIGHT 0.5593 0.975 0.4853 0.1881 0.9361 0.2201
DAY 0.0029 0.6263 0.0097 0.1563 0.1296 0.1672

PRIMARY

NIGHT 0.7251 0.0107 0.0 0.5461 0.5531 0.7409
DAY 0.2418 0.1228 0.3864 0.1459 0.9548 0.5923

PRIMARY FEMALES

NIGHT 0.8086 0.1855 0.0008 0.9261 0.116 0.29
DAY 0.7804 0.3523 0.2941 0.1679 0.1499 0.7531

SECONDARY FEMALES

NIGHT 0.7321 0.4578 0.8193 0.7435 0.5156 0.1201
DAY 0.5138 0.975 0.0008 0.3523 0.8430 0.766

PRIMARY MALES

NIGHT 0.3388 0.4279 0.0282 0.0228 0.0366 0.0001
DAY 0.3352 0.0181 0.5808 0.4381 0.0052 0.9728

SECONDARY MALES

NIGHT 0.499 0.436 0.2308 0.6077 0.5374 0.703
DAY 0.0453 0.3623 0.797 0.0009 0.0124 0.5292

Table 6
𝑝-values from the hypothesis tests for the gender training. CNNs used are Male/Female
both for nocturnal and diurnal activities. p is the weighting factor of the dominant
Gaussian; the other five columns refer to the parameters defined in Eq. (2).

p 𝜂𝑥 𝜂𝑦 𝜎𝑥 𝜎𝑦 𝜌𝑥𝑦
MALES

NIGHT 0.0256 0.0302 0.8092 0.8729 0.9884 0.3875
DAY 0.6188 0.547 0.4905 0.0582 0.2272 0.4203

FEMALES

NIGHT 0.1365 0.2141 0.9744 0.0489 0.048 0.8385
DAY 0.6361 0.6468 0.0660 0.8180 0.7614 0.2365

PRIMARY FEMALES

NIGHT 0.8086 0.2887 0.2967 0.3375 0.3585 0.0781
DAY 0.7804 0.5368 0.3753 0.9772 0.8938 0.3109

SECONDARY FEMALES

NIGHT 0.7321 0.8417 0.8343 0.5258 0.6943 0.0629
DAY 0.5138 0.7119 0.0247 0.0986 0.5557 0.3151

PRIMARY MALES

NIGHT 0.3388 0.4494 0.1312 0.9453 0.247 0.0089
DAY 0.3352 0.2294 0.1067 0.125 0.854 0.0195

SECONDARY MALES

NIGHT 0.499 0.2138 0.4494 0.0576 0.06604 0.5556
DAY 0.0453 0.4861 0.3205 0.0005 0.0424 0.6336

subgroups. The Primary/Secondary CNNs have been used to obtain the
results in Table 5, while for Table 6 networks are Male/Female. Results
are provided for each subgroup as well as for diurnal and nocturnal
activity. Results indicate that both 𝜂𝑦 and 𝜎𝑦, i.e., those parameters
directly related to information in the frequency domain, take the lead
in terms of statistical significance. Hereinafter, we will concentrate on
these two parameters.

4.1. Insight on 𝜂𝑦

Regarding 𝜂𝑦, we present the boxplots obtained for the most relevant
subgroups. In particular, Fig. 6 shows boxplots for ADHD cases (left
box) and controls (right box) in Primary (left), PM (center) and PF
(right) subgroups for nocturnal activity and Fig. 7 shows representative
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Fig. 4. Cauchy–Schwarz divergence between cases (left) and cases and controls (right) for nocturnal activity period. The CNN used is primary-nocturnal. PM: primary male. PF:
primary female.
Fig. 5. Cauchy–Schwarz divergence between cases (left) and cases and controls (right) for day activity period. The CNN used is secondary-diurnal. SM: secondary male. SF:
secondary female.
Fig. 6. Boxplots for 𝜂𝑦 for Primary controls (right) and Primary Cases (left) for the primary-nocturnal CNN.
occlusion maps from subjects in these subgroups, with upper row for
cases and lower row for controls.

Relative to the secondary networks, Fig. 8 shows boxplots for cases
(left box) and controls (right box) in Secondary (left) and SF (right)
subgroups for diurnal activity. The representative occlusion maps from
subjects in these subgroups can be seen in Fig. 9; specifically, the
two upper figures correspond to ADHD cases and the lower images
to controls (left Secondary, right SF). The CNN used in this case is
secondary-diurnal.

4.2. Insight on 𝜎𝑦

With respect to 𝜎𝑦, the most significant results were obtained on
the primary and secondary male subgroups. More specifically, Fig. 10
shows boxplots for ADHD cases (left box) and controls (right box) in
the PM subgroup for diurnal and nocturnal activity (left and center, ob-
tained from primary-diurnal and primary-nocturnal CNNs respectively)
and for SM nocturnal activity (right, with secondary nocturnal CNN).
The occlusion maps for some subjects from these subgroups are shown
in Figs. 11 and 12; specifically, Fig. 11 refers to PM diurnal activity
while Fig. 12 refers to SM nocturnal activity (cases left, controls right).
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4.3. Occlusion vs. attention maps

Given the usefulness of attention mechanisms in interpreting the
behavior of neural networks to understand brain connectivity in ADHD
patients [28], we have conducted experiments to explore their appli-
cability to our problem. To achieve this, we have employed a method
based on spatial attention, as outlined in [48]. This approach involves
extracting attention weights using spatial patches over the feature
maps. Firstly, we apply average pooling and max pooling operations to
each channel of the feature map. The results of both pooling operations
are then concatenated to form a single descriptor. Subsequently, we
utilize a convolutional layer and a sigmoid function to generate the
desired attention map from the concatenated feature descriptor.

Figs. 13 and 14 show comparative examples of attention and occlu-
sion maps for male and primary subjects respectively. In both figures,
the occlusion maps (right) show the most meaningful regions high-
lighted, whereas the attention maps (left) show the same for the
feature channel extracted from the third convolutional layer. The fig-
ures clearly demonstrate that the highlighted regions in the occlusion
maps exhibit a higher degree of regularity, allowing for straightforward
quantification using a simple model like the proposed Gaussian mix-
ture. Furthermore, the information provided by the occlusion maps can
be easily explained in the time–frequency domain since it is directly
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Fig. 7. Occlusion Maps obtained for the Primary cases (upper) and Primary controls (lower), for the primary-nocturnal CNN. Center and rightmost images are PM and PF, while
leftmost images integrate both genders.
Fig. 8. Boxplots for 𝜂𝑦 for Secondary controls (right) and Secondary Cases (left) for the secondary-diurnal CNN.
derived from the input spectrogram. Conversely, the energy regions
in the attention maps appear more scattered and less regular. While
they may contain relevant information regarding the location and shape
of meaningful structures in the time–frequency domain, they turn out
not to be as amenable to modeling for the extraction of quantitative
information.

5. Discussion

The findings presented in Section 4 suggest the existence of distinc-
tive features in the differences between cases and controls, according
to the patient’s age and gender. Divergence measures between cases
and controls presented in Figs. 4 and 5 show this separation, which is
consistent with the system’s ability to perform classification. Based on
this hypothesis, quantification of occlusion maps seems a good starting
point to understand the specific behavior of each subgroup.

Regarding the results obtained from the GMM fit to the occlusion
maps (Eq. (1)), the frequency behavior is more relevant to understand
differences between cases and controls, as observed in Table 5, where
𝜂𝑦 and 𝜎𝑦 are shown to be the most significant parameters. Focusing
on the primary and secondary subgroups, Figs. 6, 8 and 10 show that
day and night have a different influence when it comes to differen-
tiating between cases and controls, which is coherent with clinical
9

evidence. [14,16] report that adolescents with ADHD often experience
sleep difficulties, which subsequently impact the proper development of
their daily activities [49]. Although these differences in sleep disorders
are present in both nocturnal and diurnal activity, they are more
relevant in the occlusion maps of the latter, as we detail below.

Parameter 𝜂𝑦 is consistently lower for ADHD cases than that of
controls in the primary subgroup as well as in PM and PF (see Fig. 6).
It is worth noting that this effect is less prominent in the PF subgroup,
which aligns with the challenges observed in diagnosing females with
ADHD, [9–13]. This discrepancy may be attributed to the fact that inat-
tention is the prevailing pattern within the PF subgroup. The maps in
Fig. 7 highlight that nocturnal activity in ADHD cases exhibits smaller
high-valued areas compared to controls, although these differences are
accompanied by notable temporal variations. In contrast, the activity
of controls tends to be more temporally concentrated, with larger high-
valued areas that reach their maxima near the center of the occlusion
map.

Regarding the secondary subgroup, 𝜂𝑦 proves to be more discrimi-
native during diurnal activity. Fig. 8 illustrates that this parameter is
significantly higher in ADHD cases compared to controls, indicating a
greater energy influence in the network outcome at high frequencies.
This can be interpreted as heightened variability in the movement
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Fig. 9. Occlusion maps obtained for the secondary cases (upper) and secondary controls (lower), for the secondary-diurnal CNN.
Fig. 10. Boxplots for 𝜎𝑦 for controls (right) and Cases (left) of Primary and Secondary males. CNN used: leftmost figure primary-diurnal, center: primary nocturnal, rightmost:
secondary-nocturnal.
Fig. 11. Occlusion Maps obtained for the Primary Male controls (right) and Primary Male cases (left) for the primary-diurnal CNN.
pattern of individuals with ADHD throughout the day. In the occlusion
maps displayed in Fig. 9, ADHD cases exhibit the highest activity
concentration at frequencies around 0.6𝜋 radians, whereas controls
show concentrated activity within the range of 0.3𝜋 to 0.45𝜋 radians.
Furthermore, the controls’ pattern exhibits a distinct bimodality in
the central region of the temporal dimension, characterized by highly
condensed activity in that area. In contrast, ADHD cases display an
10
extended zone where activity spreads out across the entire window,
indicating a different distribution pattern.

Results concerning 𝜎𝑦 are particularly interesting for males in age
groups. When observing the maps depicted in Fig. 11, a notable distinc-
tion arises in the primary subgroup. In diurnal activity, the maximum
of the distribution for ADHD cases is closer to the end of the activity
compared to controls. Additionally, cases in the PM subgroup exhibit
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Fig. 12. Occlusion Maps obtained for the Secondary Male controls (right) and Secondary Male cases (left) for the secondary-nocturnal CNN.
Fig. 13. Maps obtained for the Male cases (upper) and Male controls (lower), for the male-diurnal CNN. Center and rightmost images are the maps, while leftmost images represent
the input of the network.
higher frequencies during this period of the day. Conversely, both PM
and SM subgroups demonstrate a wider range of frequencies in ADHD
cases compared to controls during nocturnal activity, as illustrated in
Fig. 10. This characteristic is also evident in the SM occlusion maps
depicted in Fig. 12.

To better illustrate the differences between males and females, we
compare the occlusion maps obtained for these subgroups in ADHD
cases. We show in Fig. 15 maps for the age group, specifically, diurnal
activity for secondary subgroup and nocturnal activity for primary
subjects; the figure reveals that primary females diagnosed with ADHD
present less temporal dispersion for nocturnal activity compared to
males. Moreover, there is a slight shift towards lower frequencies
observed within that interval. Additionally, a lower dispersion of fre-
quencies can be observed in the SF subgroup when compared to the SM
subgroup.

The subgroup analysis conducted thus far has yielded valuable
insights into the impact of age and gender on the pathology, as evident
from the distinct patterns exhibited by each subgroup. The visual
information we have introduced in the paper provides the physician
with tools that can be used in clinical practice to explain the patient
and their family the outcome of the automated diagnosis procedure
as well as the location of the patient within those parameter spaces.
11
The information is supported by quantitative indices obtained from the
GMM that can be used to find physiologically explainable normality
intervals. This makes the deep learning solution developed in [8] more
explainable and, hence, more reliable.

Through the completion of this study, we have been able to explain
differences in the measurable patterns of ADHD across different age
and gender subgroups. This has facilitated the association of specific
manifestations of the pathology with distinct patterns observed in
the occlusion maps. Even though the results presented in this study
provide valuable insight, and related statistics provide useful graphical
information that may be even used in clinical practice, limitations in
terms of the children study group should be acknowledged, specially for
the secondary and female groups, where the number of patients is much
lower. However, our dataset reveals the prevalence of this pathology in
terms of age and gender. As individuals age, it is highly uncommon
for patients without any medication to seek a clinician initial diag-
nosis. Conversely, it would pose ethical concerns that medication for
diagnosed patients in their early years was deliberately delayed for the
purpose of our experiment. Regarding gender, the prevalence of the
pathology is notably lower in girls, resulting in fewer female patients
being enrolled accordingly. Given the inherent challenges in recruiting
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Fig. 14. Maps obtained for the Male cases (upper) and Male controls (lower), for the primary-diurnal CNN. Rightmost images are the attention maps, while leftmost images
represent the occlusion maps.
Fig. 15. Leftmost images: occlusion Maps obtained for the Primary Female cases (top) and Secondary female cases (bottom) for the female-nocturnal and female-diurnal CNN
respectively. Rightmost images: maps obtained for Primary Male cases (top) and Secondary Male (bottom) cases for the male-nocturnal and male-diurnal CNN.
subjects for certain subgroups, one potential avenue to explore is the
utilization of generative models.

6. Conclusion

In this work we have shown the presence of gender and age-related
differences in individuals diagnosed with ADHD through the utilization
of CNN visualization techniques, specifically, occlusion maps. We have
developed a statistics-based quantification tool for these maps based
12
on a Gaussian Mixture Model fit and hypothesis tests on its estimated
parameters. Our methodology provides physicians with a valuable tool
for comprehending the underlying movement patterns in objectively
diagnosed ADHD children using AI. This work constitutes a step for-
ward in achieving explainable AI for diagnosis support, unveiling new
applications so far hindered by black box systems.

Declaration of competing interest

The authors declare no conflict of interest.



Artificial Intelligence In Medicine 143 (2023) 102630P. Amado-Caballero et al.
Acknowledgments

This work was supported in part by the Agencia Estatal de Investi-
gación, and under Grants PID2020-115339RB-I00, TED2021-130090B-
I00 and TED2021-131536B-I00, and by the company ESAOTE Ltd
through grant 18IQBM. The last funder was not involved in the study
design, collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication. The work was also
partly supported by the EU Horizon 2020 Research and Innovation
Programme under the Marie Sklodowska-Curie grant agreement No
101008297. This article reflects only the authors’ view. The European
Union Commission is not responsible for any use that may be made of
the information it contains.

References

[1] American Psychiatric Association c. Diagnostic and statistical manual of mental
disorders : DSM-5. fifth ed.. VA: American Psychiatric Association Arlington;
2013, xliv, 947 p.

[2] Sayal K, Prasad V, Daley D, Ford T, Coghill D. ADHD in children and young
people: prevalence, care pathways, and service provision. Lancet Psychiatry
2018;5(2):175–86.

[3] Rodríguez-Molinero L, López-Villalobos JA, Garrido-Redondo M, Sacristán-
Martín AM, Martínez-Rivera MT, Ruiz-Sanz F. Estudio psicoclínico de prevalencia
y comorbilidad del trastorno por déficit de atención con hiperactividad en
Castilla y León (España). Pediatr Aten Primaria 2009;11:251–70.

[4] López Villalobos JA, Andrés de Llano JM, López Sánchez MV, Rodríguez Mo-
linero L, Garrido Redondo M, Sacristán Martín AM, et al. Criterion validity and
clinical usefulness of attention deficit hyperactivity disorder rating scale IV in
attention deficit hyperactivity disorder (ADHD) as a function of method and age.
Psicothema 2017;29(1):103–10.

[5] Ramtekkar UP, Reiersen AM, Todorov AA, Todd RD. Sex and age differences
in attention-deficit/hyperactivity disorder symptoms and diagnoses: implications
for DSM-V and ICD-11. J Am Acad Child Adolesc Psychiatry 2010;49(3):217–28.

[6] Hobbs N. Effects of under-diagnosis of attention deficit hyperactivity disorder in
female students. 2019.

[7] Wasserstein J. Diagnostic issues for adolescents and adults with ADHD. J Clin
Psychol 2005;61(5):535–47.

[8] Amado-Caballero P, Casaseca-de-la Higuera P, Alberola-Lopez S, Andrés-de
Llano JM, López-Villalobos JA, Garmendia-Leiza JR, et al. Objective ADHD
diagnosis using convolutional neural networks over daily-life activity records.
IEEE J Biomed Health Inform 2020;24(9):2690–700.

[9] Staller J, Faraone SV. Attention-deficit hyperactivity disorder in girls. CNS Drugs
2006;20(2):107–23.

[10] Rosch KS, Mostofsky SH, Nebel MB. ADHD-related sex differences in fronto-
subcortical intrinsic functional connectivity and associations with delay
discounting. J Neurodev Disord 2018;10(1):1–14.

[11] Murray AL, Booth T, Eisner M, Auyeung B, Murray G, Ribeaud D. Sex
differences in ADHD trajectories across childhood and adolescence. Dev Sci
2019;22(1):e12721.

[12] Mowlem FD, Rosenqvist MA, Martin J, Lichtenstein P, Asherson P, Larsson H. Sex
differences in predicting ADHD clinical diagnosis and pharmacological treatment.
Eur Child Adolesc Psychiatry 2019;28(4):481–9.

[13] Mowlem F, Agnew-Blais J, Taylor E, Asherson P. Do different factors influence
whether girls versus boys meet ADHD diagnostic criteria? Sex differences among
children with high ADHD symptoms. Psychiatry Res 2019;272:765–73.

[14] Ingram S, Hechtman L, Morgenstern G. Outcome issues in ADHD: Adolescent and
adult long-term outcome. Ment Retard Dev Disabil Res Rev 1999;5(3):243–50.

[15] Becker SP, Lienesch JA. Nighttime media use in adolescents with ADHD: Links
to sleep problems and internalizing symptoms. Sleep Med 2018;51:171–8.

[16] Becker SP, Langberg JM, Eadeh H-M, Isaacson PA, Bourchtein E. Sleep and day-
time sleepiness in adolescents with and without ADHD: Differences across ratings,
daily diary, and actigraphy. J Child Psychol Psychiatry 2019;60(9):1021–31.

[17] Ward AR, Sibley MH, Musser ED, Campez M, Bubnik-Harrison MG, Meinzer MC,
et al. Relational impairments, sluggish cognitive tempo, and severe inattention
are associated with elevated self-rated depressive symptoms in adolescents with
ADHD. ADHD Atten Defic Hyperact Disord 2019;11(3):289–98.

[18] Powell V, Riglin L, Hammerton G, Eyre O, Martin J, Anney R, et al. What
explains the link between childhood ADHD and adolescent depression? Investi-
gating the role of peer relationships and academic attainment. Eur Child Adolesc
Psychiatry 2020;29(11):1581–91.

[19] Zou L, Zheng J, Miao C, Mckeown MJ, Wang ZJ. 3D CNN based automatic di-
agnosis of attention deficit hyperactivity disorder using functional and structural
13

MRI. IEEE Access 2017;5:23626–36.
[20] Wang T, Kamata S-i. Classification of structural MRI images in ADHD using 3D
fractal dimension complexity map. In: 2019 IEEE international conference on
image processing. IEEE; 2019, p. 215–9.

[21] Khullar V, Salgotra K, Singh HP, Sharma DP. Deep learning-based binary
classification of ADHD using resting state MR images. Augment Hum Res
2021;6(1):1–9.

[22] Riaz A, Asad M, Alonso E, Slabaugh G. DeepFMRI: End-to-end deep learning
for functional connectivity and classification of ADHD using fMRI. J Neurosci
Methods 2020;335:108506.

[23] Chauhan N, Choi B-J. DNN based classification of ADHD fMRI data using
functional connectivity coefficient. Int J Fuzzy Log Intell Syst 2020;20(4):255–60.

[24] Kim B, Park J, Kim T, Kwon Y. Finding essential parts of the brain in rs-
fMRI can improve diagnosing ADHD by deep learning. 2021, arXiv preprint
arXiv:2108.10137.

[25] Mao Z, Su Y, Xu G, Wang X, Huang Y, Yue W, et al. Spatio-temporal deep
learning method for ADHD fMRI classification. Inform Sci 2019;499:1–11.

[26] Ke H, Wang F, Ma H, He Z. ADHD identification and its interpretation of
functional connectivity using deep self-attention factorization. Knowl-Based Syst
2022;250:109082.

[27] Chen Y, Gao Y, Jiang A, Tang Y, Wang C. ADHD classification combining
biomarker detection with attention auto-encoding neural network. Biomed Signal
Process Control 2023;84:104733.

[28] Dong Q, Qiang N, Lv J, Li X, Liu T, Li Q. Spatiotemporal attention autoencoder
(STAAE) for ADHD classification. In: Medical image computing and computer
assisted intervention–MICCAI 2020: 23rd international conference, Lima, Peru,
October 4–8, 2020, proceedings, part VII 23. Springer; 2020, p. 508–17.

[29] Zhang T, Li C, Li P, Peng Y, Kang X, Jiang C, et al. Separated channel attention
convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site
rs-fMRI dataset. Entropy 2020;22(8):893.

[30] Qiang N, Dong Q, Liang H, Ge B, Zhang S, Zhang C, et al. A novel
ADHD classification method based on resting state temporal templates
(RSTT) using spatiotemporal attention auto-encoder. Neural Comput Appl
2022;34(10):7815–33.

[31] Chen H, Song Y, Li X. A deep learning framework for identifying children with
ADHD using an EEG-based brain network. Neurocomputing 2019;356:83–96.

[32] Ahmadi A, Kashefi M, Shahrokhi H, Nazari MA. Computer aided diagnosis system
using deep convolutional neural networks for ADHD subtypes. Biomed Signal
Process Control 2021;63:102227.

[33] Vahid A, Bluschke A, Roessner V, Stober S, Beste C. Deep learning based on
event-related EEG differentiates children with ADHD from healthy controls. J
Clin Med 2019;8(7):1055.

[34] Chen H, Song Y, Li X. Use of deep learning to detect personalized spatial-
frequency abnormalities in EEGs of children with ADHD. J Neural Eng
2019;16(6):066046.

[35] Li Y, Yang H, Li J, Chen D, Du M. EEG-based intention recognition with deep
recurrent-convolution neural network: Performance and channel selection by
Grad-CAM. Neurocomputing 2020;415:225–33.

[36] Moghaddari M, Lighvan MZ, Danishvar S. Diagnose ADHD disorder in children
using convolutional neural network based on continuous mental task EEG.
Comput Methods Programs Biomed 2020;197:105738.

[37] Dubreuil-Vall L, Ruffini G, Camprodon JA. Deep learning convolutional neural
networks discriminate adult ADHD from healthy individuals on the basis of
event-related spectral EEG. Front Neurosci 2020;251.

[38] Bakhtyari M, Mirzaei S, Amiri H. Combination of ConvLSTM and attention
mechanism to diagnose ADHD based on EEG signals. In: 2021 7th international
conference on signal processing and intelligent systems. IEEE; 2021, p. 1–5.

[39] Muñoz-Organero M, Powell L, Heller B, Harpin V, Parker J. Automatic extraction
and detection of characteristic movement patterns in children with ADHD based
on a convolutional neural network (CNN) and acceleration images. Sensors
2018;18(11):3924.

[40] O’Mahony N, Florentino-Liano B, Carballo JJ, Baca-García E, Rodríguez AA.
Objective diagnosis of ADHD using IMUs. Med Eng Phys 2014;36(7):922–6.

[41] Kaur A, Kahlon KS. Accurate identification of ADHD among adults using real-time
activity data. Brain Sci 2022;12(7):831.

[42] Mordvintsev A, Olah C, Tyka M. Inceptionism: Going deeper into neural
networks. 2015, Google Research https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html.

[43] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for
discriminative localization. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, p. 2921–9.

[44] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-
cam: Visual explanations from deep networks via gradient-based localization.
In: Proceedings of the IEEE international conference on computer vision. 2017,
p. 618–26.

[45] Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In:

European conference on computer vision. Springer; 2014, p. 818–33.

http://refhub.elsevier.com/S0933-3657(23)00144-6/sb1
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb1
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb1
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb1
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb1
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb2
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb2
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb2
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb2
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb2
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb3
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb3
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb3
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb3
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb3
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb3
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb3
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb4
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb5
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb5
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb5
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb5
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb5
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb6
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb6
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb6
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb7
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb7
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb7
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb8
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb8
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb8
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb8
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb8
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb8
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb8
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb9
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb9
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb9
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb10
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb10
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb10
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb10
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb10
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb11
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb11
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb11
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb11
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb11
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb12
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb12
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb12
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb12
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb12
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb13
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb13
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb13
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb13
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb13
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb14
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb14
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb14
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb15
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb15
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb15
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb16
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb16
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb16
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb16
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb16
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb17
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb17
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb17
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb17
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb17
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb17
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb17
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb18
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb18
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb18
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb18
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb18
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb18
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb18
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb19
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb19
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb19
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb19
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb19
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb20
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb20
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb20
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb20
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb20
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb21
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb21
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb21
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb21
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb21
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb22
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb22
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb22
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb22
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb22
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb23
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb23
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb23
http://arxiv.org/abs/2108.10137
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb25
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb25
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb25
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb26
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb26
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb26
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb26
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb26
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb27
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb27
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb27
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb27
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb27
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb28
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb28
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb28
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb28
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb28
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb28
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb28
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb29
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb29
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb29
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb29
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb29
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb30
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb30
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb30
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb30
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb30
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb30
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb30
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb31
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb31
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb31
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb32
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb32
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb32
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb32
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb32
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb33
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb33
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb33
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb33
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb33
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb34
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb34
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb34
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb34
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb34
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb35
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb35
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb35
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb35
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb35
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb36
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb36
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb36
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb36
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb36
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb37
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb37
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb37
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb37
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb37
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb38
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb38
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb38
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb38
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb38
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb39
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb39
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb39
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb39
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb39
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb39
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb39
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb40
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb40
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb40
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb41
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb41
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb41
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb43
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb43
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb43
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb43
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb43
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb44
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb44
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb44
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb44
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb44
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb44
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb44
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb45
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb45
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb45


Artificial Intelligence In Medicine 143 (2023) 102630P. Amado-Caballero et al.
[46] DuPaul GJ, Power TJ, Anastopoulos AD, Reid R. ADHD rating Scale—IV:
Checklists, norms, and clinical interpretation. Guilford Press; 1998.

[47] Kampa K, Hasanbelliu E, Principe JC. Closed-form Cauchy-Schwarz PDF diver-
gence for mixture of Gaussians. In: The 2011 international joint conference on
neural networks. IEEE; 2011, p. 2578–85.
14
[48] Woo S, Park J, Lee J-Y, Kweon IS. Cbam: Convolutional block attention module.
In: Proceedings of the European conference on computer vision. (ECCV), 2018,
p. 3–19.

[49] Szentkirályi A, Madarász CZ, Novák M. Sleep disorders: impact on daytime
functioning and quality of life. Expert Rev Pharm Outcomes Res 2009;9(1):49–64.

http://refhub.elsevier.com/S0933-3657(23)00144-6/sb46
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb46
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb46
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb47
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb47
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb47
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb47
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb47
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb48
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb48
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb48
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb48
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb48
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb49
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb49
http://refhub.elsevier.com/S0933-3657(23)00144-6/sb49

	Insight into ADHD diagnosis with deep learning on Actimetry: Quantitative interpretation of occlusion maps in age and gender subgroups
	Introduction
	State of The Art
	ADHD diagnosis and deep learning
	Interpretation of deep learning

	Materials and methods
	Materials
	Methods
	Occlusion maps
	Gaussian Mixture Model fitting
	Statistical analysis of the fitted parameters


	Results
	Insight on ηy
	Insight on σy
	Occlusion vs. attention maps

	Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


